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Role of the schema in data management

• Traditional data modeling: prescriptive schema
• data must conform
• many advantages

• Web data, data integration: descriptive schema
• express expected characteristics of data
• in RDF graphs, such characteristics are known as shapes



RDF graphs

• Directed graphs with labels on edges
• Edge 𝑥 → 𝑦 with label 𝑝: triple (𝑥, 𝑝, 𝑦)
• 𝑥 is called the subject
• 𝑦 is called the object
• 𝑝 is called the property

• Real RDF:
• nodes can be of different kinds (IRI, blank, literal)
• properties can also be nodes



Shapes in graph data

• Shape:
• a unary query over RDF graphs

• returns a set of nodes
• a predicate on nodes of RDF graphs

• node under consideration is called focus node

• Examples: let 𝑥 denote the focus node
• “𝑥 has a phone property, but no email”
• “𝑥 has at least five managed-by edges”
• “𝑥 has a path of friend-edges to the CEO of Apple”
• “𝑥 has no other properties than name, address, and birthdate”



Shape languages

• In principle, could simply use SPARQL to express shapes
• Yet, two dedicated shape languages:
• SHACL 
• Shapes Constraint Language
• W3C Recommendation
• logic-based, description logic style

• ShEx
• Shape Expressions
• shex.io
• automata/regex based
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DESCRIBE queries in SPARQL
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DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>

• 𝐵!(𝑣, 2), etc.

𝑣



DESCRIBE USING SHAPE?

• Balls 𝐵!(𝑣, 𝑘) where 𝑘 = 1, 2, … give a concept of neighborhood 
that is too crude
• Using a shape 𝜎, can we define a subgraph 𝐵!(𝑣, 𝜎)?
Example:
• Let 𝜎 be “𝑣 has at least one email edge, and at most one name 

edge”
• What should 𝐵!(𝑣, 𝜎) consist of?
• If 𝑣 does not satisfy 𝜎: the empty graph
• Otherwise: intuition: at least one of the email edges. Anything else?



Motivations for neighborhoods

• Provenance for shapes: 𝐵! 𝑣, 𝜎  can serve an an explanation 
why 𝑣 satisfies 𝜎
• Repairing shape violations: if 𝑣 does not satisfy 𝜎, then 𝐵!(𝑣, ¬𝜎) 

can point out edges that should be added
• Knowledge graph subsets [Labra Gayo et al.]: given a shape 𝜎, 

build a subset of 𝐺 by taking union of all 𝐵!(𝑣, 𝜎)
• Also known as “shape fragments” [EDBT 2023 paper on provenance for 

SHACL]
• Basically, using shapes as a retrieval mechanism
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• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.
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2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

SHACL as a logic [Corman et al.]



SHACL RDF syntax vs SHACL logical syntax

• W3C SHACL has an RDF syntax of “shapes graphs”
• RDF syntax allows exchange and management of schema information 

using standard Web tools

• Logical syntax proposal by Corman et al.
• More convenient for writing complex shapes, logical analysis
• Extended to cover the full SHACL specification
• [Delva, Dimou, Jakubowski, Van den Bussche EDBT 2023]

• Tool SLS developed 



SLS tool

https://github.com/MaximeJakubowski/sls_project
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ABSTRACT
In constraint languages for RDF graphs, such as ShEx and SHACL,
constraints on nodes and their properties are known as “shapes”.
Using SHACL, we propose in this paper the notion of neighbor-
hood of a node E satisfying a given shape in a graph ⌧ . This
neighborhood is a subgraph of ⌧ , and provides data provenance
of E for the given shape. We establish a correctness property
for the obtained provenance mechanism, by proving that neigh-
borhoods adhere to the Su�ciency requirement articulated for
provenance semantics for database queries. As an additional ben-
e�t, neighborhoods allow a novel use of shapes: the extraction
of a subgraph from an RDF graph, the so-called shape fragment.
We compare shape fragments with SPARQL queries. We discuss
implementation strategies for computing neighborhoods, and
present initial experiments demonstrating that our ideas are fea-
sible.

1 INTRODUCTION
An important functionality expected ofmodern datamanagement
systems [1] is that they can provide provenance for the results they
produce in response to queries or constraint checks. Intuitively,
the provenance of a query result explains why the result was
produced. Provenance typically takes the form of a subinstance,
containing the data on which the produced result depends, or
the data that is responsible for the result.

Provenance semantics have been proposed for a variety of data
models and query languages, as surveyed by Glavic [27], even
with many di�erent proposals for the standard relational model
and conjunctive queries. For the Shapes Constraint Language,
SHACL [54], however, a provenance semantics has been lacking
so far. Our goal in this paper is to �ll this gap.

SHACL is the W3C-recommended language for formulating
constraints (called “shapes”) on nodes in graph data, more specif-
ically, RDF graphs [52]. In RDF, a framework often used on the
Web, data is represented as sets of subject–property–object triples.
Viewing properties as labeled edges, such a set of triples is indeed
naturally interpreted as a labeled graph over the subjects and
objects.

Example 1.1. Consider a publication graph (like the DBLP data-
base) in RDF, where nodes represent papers, authors, and classes.
We have :author-labeled edges from papers to their authors, and
rdf:type-labeled edges from nodes to their class (e.g., paper, stu-
dent, professor). A node on which a constraint is checked will

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the 
26th International Conference on Extending Database Technology (EDBT), 28th 
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

be referred to as a focus node. Consider the constraint “the focus
node has at least one author of type student”. In the language
SHACL, this constraint is expressed by the following shape:
:WorkshopShape sh:property [

sh:path :author ; sh:qualifiedMinCount 1 ;

sh:qualifiedValueShape [ sh:class :Student ] ] .

The �rst line introduces the shape and names it :WorkshopShape;
the other two lines de�ne the actual constraint in SHACLs RDF-
based syntax.

Provenance semantics is normally de�ned for query languages,
not for constraint languages. Yet, any shape (constraint) q can be
naturally treated as the query that returns the set of nodes from
the input graph that conform to q . Following this idea, we will
propose a provenance semantics for SHACL that returns, for any
shape q , any RDF graph ⌧ , and any focus node E from ⌧ that
conforms to the shape, a certain subset of ⌧ . This subset, which
we call the neighborhood of E in ⌧ with respect to q , intuitively
consists of the triples from ⌧ that contribute to E conforming to
q .

Example 1.2. For our example :WorkshopShape, we will de-
�ne the neighborhood of a conforming node E to consist of all
triples (E :author G ) from the graph where the graph also has the
triple (G rdf:type Student), and that triple is also included in the
neighborhood.

The above example involves a simple positive-existential con-
straint, but SHACL has quite powerful logical constructs, includ-
ing negation, universal and counting quanti�ers, path expres-
sions, and primitives for equality and disjointness. This means
that giving a nontrivial de�nition of neighborhood is challenging,
if we want neighborhoods to satisfy an essential criterion known
as su�ciency [27]. Simply put, a neighborhood # of a node E
with respect to a shape q is su�cient if E still conforms to q when
evaluated in the subgraph # . We will prove su�ciency for our
provenance semantics for SHACL.

For conjunctive queries or positive-existential queries, su�-
ciency is easy to satisfy. For a language with the logical constructs
mentioned above, however, we are the �rst to present a nontrivial
provenance semantics for which su�ciency can be proved. We
specify “nontrivial” here, as one can always de�ne the neigh-
borhood to be the entire graph and obtain su�ciency trivially.
Indeed, the challenge is to keep only the relevant triples, without
throwing out too much. Also, thanks to negation, we obtain both
“why” and “why not” provenance [34]: if E does not conform to
a shape q , then its neighborhood for the shape ¬q provides the
explanation.

Interestingly, neighborhoods suggest an opportunity to lever-
age shapes beyond conformance checking, and use them also to
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≥":author . ≥" rdf:type . ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(:Student)

Shapes graph in RDF

Logical syntax
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• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.
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Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.
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� G, a |= � if:
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We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.
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a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

SHACL as a logic [Corman et al.]
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boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
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2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

𝑐: constant

SHACL as a logic [Corman et al.]



• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:
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(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

𝑡: node test

SHACL as a logic [Corman et al.]



• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

𝑝, 𝑟: properties

SHACL as a logic [Corman et al.]



• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.
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SHACL as a logic [Corman et al.]



• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.
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SHACL as a logic [Corman et al.]



• Syntax of shapes 𝜙:

• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
k p. #{b 2 JpKG(a) | G, b |=  }  k
8p. every b 2 JpKG(a) satisfies G, b |=  

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

what follows. We omit inverse properties and property paths. We also omit the
constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes � is then given by the
following grammar:

� ::= > | ? | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| � ^ � | � _ � | ¬� | �k p.� | k p.� | 8p.�

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let � be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies � in G, denoted by G, a |= �. The
table omits the obvious logical meanings of > (true), ? (false), and the boolean
connectives (and, or, not). In the table we use the notation JpKG(a) to denote
the set {b | (a, p, b) 2 G}.

Table 1. Semantics of shapes.

� G, a |= � if:

hasValue(c) a = c
test(t) a satisfies t
eq(p, r) the sets JpKG(a) and JrKG(a) are equal
disj (p, r) the sets JpKG(a) and JrKG(a) are disjoint
closed(P ) for all triples (s, p, o) 2 G with s = a we have p 2 P
�k p. #{b 2 JpKG(a) | G, b |=  } � k
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We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let � be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a,�) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p+ p+ p, etc.

𝑃: set of properties

closed(name,email,birthdate)

SHACL as a logic [Corman et al.]
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• Semantics, node 𝑎 in graph 𝐺 satisfies 𝜙 if:
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Description logics

SHACL as a logic [Corman et al.]



Intermezzo: expressiveness of SHACL
• Each of 𝑒𝑞, 𝑑𝑖𝑠𝑗, 𝑐𝑙𝑜𝑠𝑒𝑑 is primitive
• cannot be expressed in terms of the other language constructs

• We simplified a bit: SHACL allows regular expression property 
paths 𝐸 and constraints 𝑒𝑞(𝐸, 𝑝) and 𝑑𝑖𝑠𝑗(𝐸, 𝑝)
• Allowing even more general 𝑒𝑞(𝐸), 𝐸*) would increase expressive power
• Same for 𝑑𝑖𝑠𝑗(𝐸), 𝐸*)

• [Bogaerts, Jakubowski, Van den Bussche, ICDT and LMCS]

• Recursion is left unspecified in W3C Recommendation
• can be added as in logic programming



Intermezzo: computing shape queries
• The shape query for a shape 𝜎:
• Input: an RDF graph 𝐺
• Output: all nodes 𝑣 ∈ 𝐺 such that 𝐺, 𝑣 ⊨ 𝜎

• Dedicated SHACL engines exist, e.g., TopQuadrant
• SHACL can also be compiled to SPARQL [Corman et al.]
• Without property paths, even to SQL [ISWC 2024]

• SHACL is strictly weaker than SPARQL
• Not expressible, focus node 𝑥:
• “𝑥 is part of a 4-clique”
• “𝑥 has more 𝑝-edges than 𝑟-edges”



Provenance polynomials

• Provenance polynomials for database queries:
• 𝑣 a result of a query 𝑄 on database 𝐷 
• 𝒑𝒐𝒍(𝑫, 𝒗, 𝑸): compact representation of all proofs why 𝑣 ∈ 𝑄(𝐷)

• Multivariate polynomial, unknowns are facts in 𝐷
Example: let 𝑄 be select R.A from R(A,B) join S(B)

𝑝𝑜𝑙 𝐷, 𝑎, 𝑄 = 𝑎, 𝑏 ⋅ 𝑏 + 𝑎, 𝑐 ⋅ [𝑐]

• Known for positive relational algebra,
first-order logic, Datalog

[Green, Karvounarakis, Tannen], [Grädel, Tannen], [Deutch, Milo, Roy, Tannen]
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Provenance for SHACL

• [Dannert, Grädel]: provenance polynomials for ALC
• Simplest description logic
• Unknowns are triples
• 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙) ∧ 𝜙* = 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙) ⋅ 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙*
• 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙) ∨ 𝜙* = 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙) + 𝑝𝑜𝑙 𝐺, 𝑎, 𝜙*
• 𝑝𝑜𝑙 𝐺, 𝑎, ∃𝑝. 𝜓 = ∑ +,,,- ∈/ 𝑎, 𝑝, 𝑏 ⋅ 𝑝𝑜𝑙(𝐺, 𝑏, 𝜓)
• 𝑝𝑜𝑙 𝐺, 𝑎, ∀𝑝. 𝜓 = ∏ +,,,- ∈/ 𝑎, 𝑝, 𝑏 ⋅ 𝑝𝑜𝑙(𝐺, 𝑏, 𝜓)

• Crucial property: 𝑎 satisfies 𝜙 iff polynomial not zero
• We must extend this:
• to counting qualifiers ≥0 𝑝. 𝜓  and  ≤0 𝑝. 𝜓
• to 𝑒𝑞, 𝑑𝑖𝑠𝑗, 𝑐𝑙𝑜𝑠𝑒𝑑



Polynomials for ≥! 𝑝. 𝜓  and  ≤! 𝑝. 𝜓 

• Idea:
• ≥) 𝑝. 𝜓  is same as  ∃𝑝. 𝜓
• ≤1 𝑝. 𝜓  is same as  ∀𝑝.¬𝜓
• Adapt to larger 𝑘 (see paper)

Example: 𝜙 =≤"auth.≤#type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(stud)
“𝑥 has at most one author who is not a student”
𝑝𝑜𝑙 𝐺, 𝑐, 𝜙 = [𝑐,auth, 𝑎"] ⋅ [𝑎",type,prof] ⋅ 0

+ [𝑐,auth, 𝑎$] ⋅ [𝑎$,type,stud] ⋅ 1
= [𝑐,auth, 𝑎$] ⋅ [𝑎$,type,stud]

𝑐
𝑎!

𝑎"

prof

stud

auth

auth

type

type



• For 𝑑𝑖𝑠𝑗 and ¬𝑒𝑞, we also need negated triples (absence of triple)

𝑝𝑜𝑙 𝐺", 𝑎, 𝑒𝑞 𝑝, 𝑟 = 𝑎, 𝑝, 𝑏 ⋅ 𝑎, 𝑟, 𝑏 ⋅ 𝑎, 𝑟, 𝑏 ⋅ [𝑎, 𝑝, 𝑏]
𝑝𝑜𝑙 𝐺$, 𝑎, 𝑑𝑖𝑠𝑗 𝑝, 𝑟 = 𝑎, 𝑝, 𝑏" ⋅ 𝑎, 𝑟, 𝑏" ⋅ 𝑎, 𝑟, 𝑏$ ⋅ 𝑎, 𝑝, 𝑏$
𝑝𝑜𝑙 𝐺%, 𝑎, ¬𝑑𝑖𝑠𝑗 𝑝, 𝑟 = 𝑎, 𝑝, 𝑏$ ⋅ 𝑎, 𝑟, 𝑏$
𝑝𝑜𝑙 𝐺", 𝑎, 𝑒𝑞 𝑝, 𝑟 = 𝑎, 𝑝, 𝑏" ⋅ 𝑎, 𝑟, 𝑏" + 𝑎, 𝑟, 𝑏% ⋅ 𝑎, 𝑝, 𝑏%

Polynomials for 𝑒𝑞, 𝑑𝑖𝑠𝑗

𝑎 𝑎 𝑎

𝑏 𝑏! 𝑏"

𝑏" 𝑏#𝑏!

𝑝 𝑟 𝑝 𝑟 𝑝
𝑝 𝑟

𝑟

𝐺" 𝐺$
𝐺%



From polynomials to neighborhoods

• Let 𝐺, 𝑣 ⊨ 𝜎. How should we define 𝐵(𝐺, 𝑣, 𝜎)?
• 𝑩𝒕𝒐𝒌: 
• Calculate provenance polynomial 𝑝𝑜𝑙(𝐺, 𝑣, 𝜎)
• Return all positive triples occurring as unknowns (tokens) in the 

polynomial
• We could also take all triples, both negative and positive

• [Bogaerts, Jakubowski, Van den Bussche PODS 2024]

• 𝑩𝒎𝒐𝒏:
• Pick a monomial (term) from the polynomial
• Return all triples in there
• Non-deterministic!



𝐵"#! and 𝐵$#%
• Example: 𝜙 =≤"auth.≤#type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(stud)
• 𝑝𝑜𝑙 𝐺, 𝑐, 𝜙 = [𝑐, auth, 𝑎*] ⋅ [𝑎*, type,stud]

• So, 𝑩𝒕𝒐𝒌 𝑮, 𝒄,𝝓 = 𝑩𝒎𝒐𝒏 𝑮, 𝒄,𝝓 =

• Example: 𝜎 = ≥"auth. ⊤
• 𝑝𝑜𝑙 𝐺, 𝑐, 𝜎 = [𝑐,auth, 𝑎)] + [𝑐,auth, 𝑎*]  so  𝑩𝒕𝒐𝒌 𝑮, 𝒄, 𝝈 =

• For 𝑩𝒎𝒐𝒏(𝑮, 𝒄, 𝝈) two possibilities:

𝑐
𝑎!

𝑎"

prof

stud

auth

auth

type

type

𝑐
𝑎" studauth

type

𝑐
𝑎!
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𝑐
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𝑎!auth



Remark: computing 
neighborhoods

• Computing 𝐵!"#  can done in 
SPARQL

• Extends known translations from 
SHACL to SPARQL

• Works even with property paths
• [Delva, Dimou, Jakubowski, Van den 

Bussche, EDBT 2023]0

5

10

15

20

25

30

1.5M 2.5M 3.5M 4.5M

Ov
er

he
ad

 p
er

ce
nt

ag
e

Figure 1: Overhead (percent increase in time to do prove-
nance extraction, over mere validation of a shape) shown
for 57 shapes over four graph sizes. Each line represents a
shape.

known as the “Tyrolean Knowledge Graph”. Notably, however,
Scha�enrath et al. managed to run their comparative study on a
1-million slice of the knowledge graph only, as common SHACL
validation engines are still in their infancy and not very e�cient.

For our experiment, instead, we generated a 1.5-million triple
induced subgraph of the knowledge graph as follows.We sampled
50 000 individual nodes uniformly at random, and then retrieved
all triples involving these individuals as subjects or objects. By
sampling a larger number of 100K, 150K and 200K nodes, we
similarly obtained subgraphs of (approximately) 2.5, 3.5, and 4.5
million triples.

We used a 12 core AMD EPYC 2.595GHz processor with 16GB
DDR4 RAM and 400GB SSD.We executed each of the shapes three
times, both on pySHACL and on pySHACL-fragments. Timers
were placed around the validator.run() function, so data loading
and shape parsing time is not included.The average overhead turns
out to be well below 10%; if we restrict attention to the shapes
where validation on the 1.5M graph takes longer than a second,
the average overhead grows to 15.6%. Figure 1 shows that the
overhead may vary somewhat going to larger graphs, but stays
constant on average. There are some outliers where the overhead
�uctuates more wildly, but these happen to be associated with
low (below second) runtimes.

The shapes where the overhead is highest are those with exis-
tential shapes and many target nodes with large neighborhoods.
For some property ? and some conditionk , an existential shape
requires that the target node must have at least one ?-edge to
a node G satisfying k (expressed as �1 ? .k ). Here, a validator
merely needs to check for each target node E that at least one
such G exists, while provenance computation must also retrieve
all the satisfying triples (E, ?, G).

5.3.2 Computing neighborhoods in SPARQL. Instead of modi-
fying an existing SHACL engine, one may compute provenance
using SPARQL queries, as presented in Section 5.1. Shapes give
rise to complex SPARQL queries which pose quite a challenge to
SPARQL query processors. It is outside the scope of the present
paper to do a performance study of SPARQL query processors;
our goal rather is to obtain an indication of the practical feasibility
of computing neighborhoods in SPARQL.
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Figure 2: Execution times of provenance computation for
12 shapes by SPARQL queries, over four graph sizes. Each
line represents a shape.

Initial work by Corman et al. has reported satisfying results
on doing validation for nonrecursive schemas by a single, com-
plex SPARQL query [18]. The question we want to answer is
whether we can observe a similar situation when computing
neighborhoods, where the queries become even more complex.

We have obtained a mixed picture. We used the main-memory
SPARQL engine Apache Jena ARQ. Implementing Corollary 5.5
by following the constructive proof of Proposition 5.3, we trans-
lated the shape fragment queries for the benchmark shapes from
the previous Section 5.3.1 into large SPARQL queries. The gener-
ated expressions can be hundreds of lines long, as our translation
procedure is not yet optimized to generate “e�cient” SPARQL
expressions. However, we then reduced the shapes by substitut-
ing > for node tests, and simplifying the resulting expressions.
This reduction preserves the graph-navigational nature of the
queries.

After the reduction, 13 out of 57 shapes produced SPARQL
queries that ARQ could execute. The other queries were still too
long and did not terminate or went out of memory. Figure 2 shows
the runtimes on the same test data and the same machine as the
overhead experiment; one shape is omitted from the Figure as it
does not retrieve any triples at all. Reported timings are averages
over three runs.

Finally, to test the extraction of paths in SPARQL, we used
the DBLP database [21], and computed the shape fragment for
shape �1 0�/0/0�/0/0�/0.hasValue(MYV), where 0 stands for
the property dblp:authoredBy, andMYV stands for the DBLP IRI
for Moshe Y. Vardi. This extracts not only all authors at co-author
distance three or less from this famous computer scientist, but,
crucially, also all 0-triples on all the relevant paths. The generated
SPARQL query is similar to the query from Example 5.2.

We ran this heavy analytical query on the two secondary-
memory engines Apache Jena ARQ on TDB2 store, and GraphDB.
The execution times over increasing slices of DBLP, going back-
wards in time from 2021 until 2010, are comparable between
the two engines (see Figure 3). Vardi is a proli�c and central
author and co-author; just from 2016 until 2021, almost 7% of
all DBLP authors are at distance three or less, or almost 145 943
authors. The resulting shape fragment contains almost 3% of all
dblpl:authoredBy triples, or 219 085 unique triples. We see that
retrieving neighborhoods can be a computationally intensive
task for which new methods may be needed.
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What’s in a neighborhood?
Describing nodes in RDF graphs using shapes
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Causality as alternative to provenance 
polynomials
• Neighborhood 𝐵 𝐺, 𝑣, 𝜙  is supposed to explain why 𝐺, 𝑣 ⊨ 𝜙
• 𝐵+,-  and 𝐵.,/  do that, in a sense (see later)

• Halpern-Pearl causality: formal definition of cause for 𝐺, 𝑣 ⊨ 𝜙
• Supercause: set 𝐶 of positive, negative triples from 𝐺 such that 

after “flipping” 𝐶 in 𝐺, node 𝑣 no longer satisfies 𝜙
• Cause: minimal supercause

• Note: A repair for violating 𝜙 is the same as a cause of ¬𝜙!
• [Ahmetaj et al., ISWC 2022]



• We have 𝐺$, 𝑎 ⊨ 𝑑𝑖𝑠𝑗(𝑝, 𝑟)

• { 𝑎, 𝑝, 𝑏$ , 𝑎, 𝑝, 𝑏" } is a supercause:
• Flipping this in 𝐺* yields 𝑮𝟐9 : 𝑝 and 𝑟 no longer disjoint 𝑎:9

• Not a cause: deleted [𝑎, 𝑝, 𝑏)] is unnecessary
• The two (minimal) causes are:

• { 𝑎, 𝑝, 𝑏! }   (insert [𝑎, 𝑝, 𝑏!])
• { 𝑎, 𝑟, 𝑏" }    (insert [𝑎, 𝑟, 𝑏"])

Causality: example

𝑎

𝑏! 𝑏"
𝑝 𝑟

𝐺$

𝑝

𝑎

𝑏"
𝑟

𝐺$9



Neighborhoods by causality?

• Tempting to define a neighborhood to be a cause
• We will see soon this is not “sufficient”

• What does work: from 𝐵+,-, only keep causally relevant triples
• Belonging to some cause
• High computational complexity
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Is there a “best” definition of neighborhood?

• No. Several desiderata, incompatible.
• Sufficiency: Natural desidaratum in provenance research [Glavic]
• If 𝐺, 𝑣 ⊨ 𝜎, then also 𝑩 𝑮, 𝒗, 𝝈 , 𝑣 ⊨ 𝜎
• “Node 𝑣 should still satisfy the shape in its shape neighborhood”

• Theorem: 𝐵+,-, 𝐵.,/, and causally relevant restrictions, are 
sufficient
• Determinism
• Minimality, e.g., minimally sufficient neighborhoods
• not deterministic: “focus node has at least an email or a phone property”

• [Bogaerts, Jakubowski, Van den Bussche PODS 2024]



Conclusions and further research
• Shapes can be used for more than descriptive schemas
• Retrieve subgraphs!
• No single approach is “best”, but we can follow some principles

1. Extend SHACL to full RDF (where properties can be nodes)
• Or even RDF-star?

2. Neighborhoods for property paths
• Can become very large

3. Empirical research needed why SHACL is “better” than SPARQL
• Theoretical complexity is lower

4. Compare SHACL neighborhoods to ShEx neighborhoods [Labra Gayo 
et al.]
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