What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

Maxime Jakubowski* & Jan Van den Bussche
Data Science Institute
Hasselt University, Belgium
*soon to join TU Wien

What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

Introduction

Motivation for neighborhoods
Provenance polynomials
Causality

Desiderata for neighborhoods

o 0k W=

Conclusion

Role of the schema in data management

* Traditional data modeling: prescriptive schema
* data must conform
* many advantages

* Web data, data integration: descriptive schema
* express expected characteristics of data
* in RDF graphs, such characteristics are known as shapes

RDF graphs

* Directed graphs with labels on edges
* Edge x — y with label p: triple (x,p, y)

 x is called the subject
* yis called the object
* pis called the property

* Real RDF:
* nodes can be of different kinds (IRI, blank, literal)

* properties can also be nodes

Shapes in graph data

* Shape:
* aunary query over RDF graphs
* returns a set of nodes

* apredicate on nodes of RDF graphs
* node under consideration is called focus node

* Examples: let x denote the focus node
* “x has a phone property, but no email”
* “x has at least five managed-by edges”
* “x has a path of friend-edges to the CEO of Apple”
* “x has no other properties than name, address, and birthdate”

Shape languages

* In principle, could simply use SPARQL to express shapes
* Yet, two dedicated shape languages:
« SHACL

 Shapes Constraint Language
* W3C Recommendation
* logic-based, description logic style

e ShEX

 Shape Expressions
* shex.io
* automata/regex based

What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

2. Motivation for neighborhoods

DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>

DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>
* Returns a subgraph: all edges to and from the node
e “Ball of radius 1”

DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>
* Returns a subgraph: all edges to and from the node
« B%(v,1): “Ball of radius 1” in graph G

DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>
* Returns a subgraph: all edges to and from the node
« B%(v,1): “Ball of radius 1” in graph G

DESCRIBE queries in SPARQL

DESCRIBE <http://www.wikidata.org/entity/Q19660>

« B4(v,2), etc.

DESCRIBE USING SHAPE?

* Balls B¢ (v, k) where k = 1, 2, ... give a concept of heighborhood
that is too crude

e Using a shape o, can we define a subgraph B¢ (v, 5)?

Example:

* Let 0 be “v has at least one email edge, and at most one name
edge”

« What should B¢ (v, ¢) consist of?

* If v does not satisfy o: the empty graph
* Otherwise: intuition: at least one of the email edges. Anything else?

Motivations for neighborhoods

* Provenance for shapes: BY (v, ¢) can serve an an explanation
why v satisfies o

* Repairing shape violations: if v does not satisfy g, then B® (v, =0)
can point out edges that should be added

* Knowledge graph subsets [Labra Gayo et al.]: given a shape o,
build a subset of G by taking union of all B¢ (v, o)

* Also known as “shape fragments” [EDBT 2023 paper on provenance for
SHACL]

* Basically, using shapes as a retrieval mechanism

What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

3. Provenance polynomials for SHACL

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢:

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| NP OV O 2d| 29| <kp-¢ | VDO

* Semantics, node a in graph G satisfies ¢ if:

o) G,a = ¢ if

hasValue(c) a=-c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
>k DY #{b € [p]“ ()|Gb\— v} >k

<k DY #{b € [p]“ ()|Gb|— Y} <k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL RDF syntax vs SHACL logical syntax

* W3C SHACL has an RDF syntax of “shapes graphs”

* RDF syntax allows exchange and management of schema information
using standard Web tools

* Logical syntax proposal by Corman et al.
* More convenient for writing complex shapes, logical analysis
* Extended to cover the full SHACL specification
* [Delva, Dimou, Jakubowski, Van den Bussche EDBT 2023]

* Tool SLS developed

4)
:WorkshopShape sh:property [

sh:path :author ; sh:qualifiedMinCount 1 ; Shapes graph in RDE
sh:qualifiedValueShape [sh:class :Student]] .

o)

SLS tool

Lzlzauthor . =, rdf:itype . hasValue(:Student)] Logical syntax

https://github.com/Maximelakubowski/sls_project

https://github.com/MaximeJakubowski/sls_project

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢:

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| NP OV O 2d| 29| <kp-¢ | VDO

* Semantics, node a in graph G satisfies ¢ if:

o) G,a = ¢ if

hasValue(c) a=-c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
>k DY #{b € [p]“ ()|Gb\— v} >k

<k DY #{b € [p]“ ()|Gb|— Y} <k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢Z c: constant

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| ONG | OV O[T Zkp.d | <kp.¢ | Vp.¢

* Semantics, node a in graph G satisfies ¢ if:

¢ G,a = ¢ if:

hasValue(c) a=c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
> - 40b € [p]°(a) | Gb b= v} > k

<pp-¥ #1{b € [p]® () | G,b =) < k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢: t: node test

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| N[OV O 9| 2k pd<kp.d | VD@

* Semantics, node a in graph G satisfies ¢ if:

¢ G,a = ¢ if:

hasValue(c) a=c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
> - 40b € [p]°(a) | Gb b= v} > k

<pp-¥ #1{b € [p]® () | G,b =) < k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢: p,T: properties

¢ = T | L | hasValue(c) | test(t) | q@|dzsy@\closed
| N[OV O 9| Zkp.d | <pp.d | VDO

* Semantics, node a in graph G satisfies ¢ if:

¢ G,a = ¢ if:

hasValue(c) a=c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
> - 40b € [p]°(a) | Gb b= v} > k

<pp-¥ #1{b € [p]® () | G,b =) < k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢:

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| NP OV O 2d| 29| <kp-¢ | VDO

* Semantics, node a in graph G satisfies ¢ if:
¢ G,af=¢if
hasValue(c) a=c
test(t) a satisfies ¢
eq(p, 1) the sets [p]“(a) and [r]°(a) are equal
disj (p,) the sets [p]©(a) and [r]°(a) are disjoint
closed(P) for all trlples (s,p,0) € G with s = a we have p € P
> - 40b € [p]°(a) | Gb b= v} > k
<pp-¥ #1{b € [p]® () | G,b =) < k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢:

¢ = T | L | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)
| oA OV D[20| 2kpd | <kp.@ | .o

* Semantics, node a in graph G satisfies ¢ if:

o) G,a = ¢ if: 5 ﬁ'
hasValue(c) a=c Q

test(t) a satisfies t "#.é
eq(p, 1) the sets [p]“(a) and [r]°(a) are equal o_a\\;ﬁr
disy(p,T) the sets [p]©(a) and [r]°(a) are disjoint T e
closed(P) for all triples (s,p,0) € G with s = a we have p € P

>k P %ehﬂ(ﬂGbF Y} >k

<k DY #{b € [p]“ ()|Gb|— Y} <k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

¢ Syntax of shapes ¢Z P: set of properties

¢ == T | L | hasValue(c) | test(t) | eq(p,7) | disj(p,r) | closed@
| NGOV O |9 | Zppd | <pp-@|Vp.d

* Semantics, node a in graph G satisfies ¢ if:

¢ G,a = ¢ if:

hasValue(c) a=-c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]“(a) and [r]°(a) are disjoint closed(name,email,birthdate)
closed(P) for all trlples (s,p,0) € G with s = a we have p € P

> - 40b € [p]°(a) | Gb b= v} > k

<k DY #{b € [p]“ ()|Gb|— Y} <k

Vp.ap every b € [p]©(a) satisfies G,b = 9

SHACL as a logic [Corman et al.]

* Syntax of shapes ¢:
¢ = T | L | hasValue(c) | test(t) | eq(p,7) | disj(p,r) | closed(P)
‘Q/\ ¢ ’ ¢ \% ¢ | _'¢ ’ >k p°¢ ’ <k p°¢ ‘ VPD Description logics
* Semantics, node a in grapi G satisfies ¢ if:

¢ G,a = ¢ if:

hasValue(c) a=c

test(t) a satisfies ¢

eq(p, 1) the sets [p]“(a) and [r]°(a) are equal

disj (p,) the sets [p]©(a) and [r]°(a) are disjoint

closed(P) for all trlples (s,p,0) € G with s = a we have p € P
> - 40b € [p]°(a) | Gb b= v} > k

<pp-¥ #{b € [p]” () | G,b =) < k

Vp.ap every b € [p]©(a) satisfies G,b = 9

Intermezzo: expressiveness of SHACL

* Each of eq, disj, closed is primitive
* cannot be expressed in terms of the other language constructs

* We simplified a bit: SHACL allows regular expression property
paths E and constraints eq(E,p) and disj(E,p)

* Allowing even more general eq(E1, E;) would increase expressive power
* Same for disj(Eq, E;)
* [Bogaerts, Jakubowski, Van den Bussche, ICDT and LMCS]

* Recursion is left unspecified in W3C Recommendation
* can be added as in logic programming

Intermezzo: computing shape queries

* The shape query for a shape o:
* Input: an RDF graph G
e Output: allnodesv € G suchthatG,v E o

* Dedicated SHACL engines exist, e.g., TopQuadrant

* SHACL can also be compiled to SPARQL [Corman et al.]
* Without property paths, even to SQL [ISWC 2024]

* SHACL is strictly weaker than SPARQL

* Not expressible, focus node x:
 “x is part of a 4-clique”
* “x has more p-edges than r-edges”

Provenance polynomials

* Provenance polynomials for database queries:

v aresult of aquery) on database D
* pol(D,v,Q): compact representation of all proofswhy v € Q(D)

* Multivariate polynomial, unknowns are facts in D R S
Example: let Q be select R.Afrom R(A,B)joinS(B) NEN B
a b b

pol(D,a,Q) = la,b] - [b] + a,c] - [c] a o c
a d e
* Known for positive relational algebra,
first-order logic, Datalog

[Green, Karvounarakis, Tannen], [Gradel, Tannen], [Deutch, Milo, Roy, Tannen]

Provenance for SHACL

* [Dannert, Gradel]: provenance polynomials for ALC
* Simplest description logic
 Unknowns are triples

* pol(G,a,p1 A ¢3) = pol(G,a,py) - pol(G, a, p;)

* pol(G,a, 1V @) = pol(G,a,$q) + pol(G, a, p;)

* pol(G,a,3p.y) = Z(a,p,b)ea[a; p,b] - pol(G,b,)

* pol(G,a,Vp.y) = H(a,p,b)ea[a: p,b] - pol(G,b,¥)
* Crucial property: a satisfies ¢ iff polynomial not zero
* We must extend this:

* to counting qualifiers =, p.y and <, p.y¥
* to eq, disj, closed

Polynomials for =, p.y¥ and <, p.y

* |dea:
e >, p. Y issameas Ap. Y
e <y p.Y¥ issameas Vp.—y
* Adapt to larger k (see paper)

Example: ¢ = < auth.<jtype. hasValue(stud)

“x has at most one author who is not a student”
pol(G,c,¢d) = [c,auth,a,] - [a,,type,prof]| - O
+ [c,auth, a,] - [a,,type,stud] - 1
= [c,auth, a,] - [a,,type,stud]

Polynomials for eq, disj

* For disj and —eq, we also need negated triples (absence of triple)
G3

by by bs

pol(Gy,a,eq(p, 7)) = [a,p,b] - [a,7,b] - [a,7,b] - [a,p, b]
pol(G,,a,disj(p,7)) = [a,p,by] - [a,7,b;] - [a,7,b,] - [, p, b,]
pol(Gs,a,~disj(p,)) = [a,p,b,] - [a, 7, b]
pol(Gy,a,eq(p,r)) = [a,p,b;] - [a,7,bi] + [a,7,bs] - [a, p, bs]

From polynomials to neighborhoods

* Let G,v E 0. How should we define B(G,v,0)?

° Btok:
* Calculate provenance polynomial pol(G, v, o)
* Return all positive triples occurring as unknowns (tokens) in the
polynomial
* We could also take all triples, both negative and positive
* [Bogaerts, Jakubowski, Van den Bussche PODS 2024]

° Bmon:
* Pick a monomial (term) from the polynomial

* Return all triples in there
* Non-deterministic!

type

2: a; —— prof
Btok and Bmon ‘ a, P&, siud

auth

* Example: ¢ = <;jauth.<ytype. hasValue(stud)
* pol(G,c,¢) = [c,auth,a,] - [a,, type,stud]

° SO: BtOk(GJ C, ¢) — Bmon(G: C, ¢) — ‘ apra a, —’ stud

auth

* Example: 0 = =>;auth. T auth_» a;
* pol(G,c,a) = [c,auth,a] + [c,auth,a,] so B;,k(G,c,0) =| ¢ au{i

* For B,,,,,(G, ¢, o) two possibilities:

/iffb/”' ! c
C m‘az

Remark: computing
neighborhoods .

 Computing B;,, candonein

o

SPARQL -

v 25

 Extends known translations from é -
SHACL to SPARQL .

* Works even with property paths 10

* [Delva, Dimou, Jakubowski, Van den
Bussche, EDBT 2023] 1.5M 2.5M 3.5M 4.5M

What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

4. Causality

Causality as alternative to provenance
polynomials

* Neighborhood B(G, v, ¢) is supposed to explain why G, v & ¢
* B;,x and B,,,,, do that, in a sense (see later)

* Halpern-Pearl causality: formal definition of cause for G, v E ¢

* Supercause: set C of positive, negative triples from G such that
after “flipping” C in G, node v no longer satisfies ¢

 Cause: minimal supercause

* Note: A repair for violating ¢ is the same as a cause of —¢!
 [Ahmetaj et al., ISWC 2022]

Causality: example G G;

* We have G,,a E disj(p,1) l;\/;‘ pf/"

* {la,p, b;],|la,p, b{]} is a supercause:
* Flipping this in G, yields G5: p and r no longer disjoint a;
* Not a cause: deleted [a, p, b1] is unnecessary
* The two (minimal) causes are:
* {la,p, b;]}
* {la,7,by]}

Neighborhoods by causality?

* Tempting to define a neighborhood to be a cause
* We will see soon this is not “sufficient”

* What does work: from B;,;, only keep causally relevant triples
* Belonging to some cause
* High computational complexity

What’s in a neighborhood?
Describing nodes in RDF graphs using shapes

5. Desiderata for neighborhoods

Is there a “best” definition of neighborhood?

* No. Several desiderata, incompatible.

* Sufficiency: Natural desidaratum in provenance research [Glavic]

* IfG,v E g,thenalso B(G,v,0),v E o
* “Node v should still satisfy the shape in its shape neighborhood”

* Theorem: B;,,, B,,,n, @and causally relevant restrictions, are
sufficient

e Determinism

* Minimality, e.g., minimally sufficient neighborhoods
* not deterministic: “focus node has at least an email or a phone property”

* [Bogaerts, Jakubowski, Van den Bussche PODS 2024]

Conclusions and further research

* Shapes can be used for more than descriptive schemas
* Retrieve subgraphs!
* No single approach is “best”, but we can follow some principles

1. Extend SHACL to full RDF (where properties can be nodes)

e Oreven RDF-star?

2. Neighborhoods for property paths

* Can become very large

3. Empirical research needed why SHACL is “better” than SPARQL

* Theoretical complexity is lower

4. Conl1 are SHACL neighborhoods to ShEx neighborhoods [Labra Gayo
et al.

References—thanks Bart Bogaerts, Thomas
Delva, Anastasia Dimou

* Maxime Jakubowski, Jan Van den Bussche: Compiling SHACL into SQL. ISWC 2024

 Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: Postulates for provenance:
Instance-based provenance for first-order logic. PODS 2024

* Thomas Delva, Anastasia Dimou, Maxime Jakubowski, Jan Van den Bussche: Data
provenance for SHACL. EDBT 2023

 Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: Expressiveness of SHACL
features and extensions for full equality and disjointness tests. ICDT 2022, LMCS
2024

* Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: SHACL: A description logic
in disguise. LPNMR 2022

* Bart Bogaerts, Maxime Jakubowski: Fixpoint semantics for recursive SHACL. ICLP
2021

