## What's in a neighborhood? Describing nodes in RDF graphs using shapes

Maxime Jakubowski\* & **Jan Van den Bussche** Data Science Institute Hasselt University, Belgium \*soon to join TU Wien

# What's in a neighborhood? Describing nodes in RDF graphs using shapes

- 1. Introduction
- 2. Motivation for neighborhoods
- 3. Provenance polynomials
- 4. Causality
- 5. Desiderata for neighborhoods
- 6. Conclusion

#### Role of the schema in data management

- Traditional data modeling: **prescriptive** schema
  - data must conform
  - many advantages
- Web data, data integration: **descriptive** schema
  - express expected characteristics of data
  - in RDF graphs, such characteristics are known as **shapes**

## **RDF** graphs

- Directed graphs with labels on edges
- Edge  $x \rightarrow y$  with label p: triple (x, p, y)
  - x is called the **subject**
  - y is called the **object**
  - *p* is called the **property**
- Real RDF:
  - nodes can be of different kinds (IRI, blank, literal)
  - properties can also be nodes

### Shapes in graph data

- Shape:
  - a unary **query** over RDF graphs
    - returns a set of nodes
  - a predicate on nodes of RDF graphs
    - node under consideration is called **focus node**
- Examples: let x denote the focus node
  - "x has a phone property, but no email"
  - "x has at least five managed-by edges"
  - "x has a path of friend-edges to the CEO of Apple"
  - "*x* has no other properties than name, address, and birthdate"

## Shape languages

- In principle, could simply use SPARQL to express shapes
- Yet, two dedicated shape languages:

#### • SHACL

- Shapes Constraint Language
- <u>W3C Recommendation</u>
- logic-based, description logic style

#### • ShEx

- Shape Expressions
- <u>shex.io</u>
- automata/regex based

# What's in a neighborhood? Describing nodes in RDF graphs using shapes

#### 1. Introduction

- 2. Motivation for neighborhoods
- 3. Provenance polynomials
- 4. Causality
- 5. Desiderata for neighborhoods
- 6. Conclusion

- Returns a **subgraph**: all edges to and from the node
- "Ball of radius 1"

- Returns a **subgraph**: all edges to and from the node
- $B^{G}(v, 1)$ : "Ball of radius 1" in graph G



- Returns a **subgraph**: all edges to and from the node
- $B^{G}(v, 1)$ : "Ball of radius 1" in graph G







#### DESCRIBE USING SHAPE?

- Balls  $B^{G}(v, k)$  where k = 1, 2, ... give a concept of neighborhood that is **too crude**
- Using a shape  $\sigma$ , can we define a subgraph  $B^G(v, \sigma)$ ?

#### Example:

- Let  $\sigma$  be "v has at least one email edge, and at most one name edge"
- What should  $B^G(v, \sigma)$  consist of?
  - If v does not satisfy  $\sigma$ : the empty graph
  - Otherwise: intuition: at least one of the email edges. Anything else?

#### Motivations for neighborhoods

- **Provenance** for shapes:  $B^{G}(v, \sigma)$  can serve an an **explanation** why v satisfies  $\sigma$
- **Repairing** shape violations: if v does **not** satisfy  $\sigma$ , then  $B^G(v, \neg \sigma)$  can point out edges that should be added
- Knowledge graph subsets [Labra Gayo et al.]: given a shape  $\sigma$ , build a subset of G by taking union of all  $B^G(v, \sigma)$ 
  - Also known as "shape fragments" [EDBT 2023 paper on provenance for SHACL]
  - Basically, using shapes as a **retrieval** mechanism

# What's in a neighborhood? Describing nodes in RDF graphs using shapes

#### 1. Introduction

2. Motivation for neighborhoods

#### 3. Provenance polynomials for SHACL

- 4. Causality
- 5. Desiderata for neighborhoods
- 6. Conclusion

• Syntax of **shapes**  $\phi$ :

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

#### SHACL RDF syntax vs SHACL logical syntax

- W3C SHACL has an RDF syntax of "shapes graphs"
  - RDF syntax allows exchange and management of schema information using standard Web tools
- Logical syntax proposal by Corman et al.
  - More convenient for writing complex shapes, logical analysis
  - Extended to cover the **full** SHACL specification
  - [Delva, Dimou, Jakubowski, Van den Bussche EDBT 2023]
- Tool SLS developed

:WorkshopShape sh:property [
 sh:path :author ; sh:qualifiedMinCount 1 ;
 sh:qualifiedValueShape [ sh:class :Student ] ] .

Shapes graph in RDF



 $\geq_1$ :author .  $\geq_1$  rdf:type . *hasValue*(:Student)

Logical syntax

https://github.com/MaximeJakubowski/sls\_project

• Syntax of **shapes**  $\phi$ :

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ : *c*: constant

 $\phi ::= \top \mid \perp \mid hasValue(c) \mid test(t) \mid eq(p,r) \mid disj(p,r) \mid closed(P) \\ \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \geq_k p.\phi \mid \leq_k p.\phi \mid \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ : t: node test

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ctest(t)a satisfies tthe sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ :

p,r: properties

$$\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P) | \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$$

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ :

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)a the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ :

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ 

• Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ :

*P*: set of properties

- $\phi ::= \top \mid \perp \mid hasValue(c) \mid test(t) \mid eq(p,r) \mid disj(p,r) \mid closed(P)$  $\mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \geq_k p.\phi \mid \leq_k p.\phi \mid \forall p.\phi$
- Semantics, node a in graph G satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ctest(t)a satisfies tthe sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint closed(name,email,birthdate) disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

• Syntax of **shapes**  $\phi$ :

 $\phi ::= \top | \perp | hasValue(c) | test(t) | eq(p,r) | disj(p,r) | closed(P)$  $| \phi \land \phi | \phi \lor \phi | \neg \phi | \ge_k p.\phi | \le_k p.\phi | \forall p.\phi$ Description logics

• Semantics, node a in graph  $\hat{G}$  satisfies  $\phi$  if:

 $G, a \models \phi$  if:  $\phi$ hasValue(c)a = ca satisfies ttest(t)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are equal eq(p,r)the sets  $\llbracket p \rrbracket^G(a)$  and  $\llbracket r \rrbracket^G(a)$  are disjoint disj(p,r)for all triples  $(s, p, o) \in G$  with s = a we have  $p \in P$ closed(P) $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \ge k$  $\geq_k p.\psi$  $#\{b \in \llbracket p \rrbracket^G(a) \mid G, b \models \psi\} \le k$  $\leq_k p.\psi$ every  $b \in \llbracket p \rrbracket^G(a)$  satisfies  $G, b \models \psi$  $\forall p.\psi$ 

#### Intermezzo: expressiveness of SHACL

- Each of *eq*, *disj*, *closed* is **primitive** 
  - cannot be expressed in terms of the other language constructs
- We simplified a bit: SHACL allows regular expression **property paths** *E* and constraints eq(E, p) and disj(E, p)
  - Allowing even more general  $eq(E_1, E_2)$  would **increase** expressive power
  - Same for  $disj(E_1, E_2)$
- [Bogaerts, Jakubowski, Van den Bussche, ICDT and LMCS]
- **Recursion** is left unspecified in W3C Recommendation
  - can be added as in logic programming

#### Intermezzo: computing shape queries

- The **shape query** for a shape  $\sigma$ :
  - Input: an RDF graph G
  - Output: all nodes  $v \in G$  such that  $G, v \models \sigma$
- Dedicated SHACL engines exist, e.g., TopQuadrant
- SHACL can also be compiled to SPARQL [Corman et al.]
  - Without property paths, even to SQL [ISWC 2024]
- SHACL is strictly weaker than SPARQL
- Not expressible, focus node *x*:
  - "x is part of a 4-clique"
  - "x has more p-edges than r-edges"

#### Provenance polynomials

- Provenance polynomials for **database queries**:
  - v a result of a query Q on database D
  - pol(D, v, Q): compact representation of all proofs why  $v \in Q(D)$
- Multivariate polynomial, unknowns are facts in D

**Example:** let Q be select R.A from R(A,B) join S(B)

 $pol(D, a, Q) = [a, b] \cdot [b] + [a, c] \cdot [c]$ 

• Known for positive relational algebra, first-order logic, Datalog

[Green, Karvounarakis, Tannen], [Grädel, Tannen], [Deutch, Milo, Roy, Tannen]



#### **Provenance for SHACL**

- [Dannert, Grädel]: provenance polynomials for ALC
  - Simplest description logic
  - Unknowns are triples
  - $pol(G, a, \phi_1 \land \phi_2) = pol(G, a, \phi_1) \cdot pol(G, a, \phi_2)$
  - $pol(G, a, \phi_1 \lor \phi_2) = pol(G, a, \phi_1) + pol(G, a, \phi_2)$
  - $pol(G, a, \exists p. \psi) = \sum_{(a,p,b) \in G} [a, p, b] \cdot pol(G, b, \psi)$
  - $pol(G, a, \forall p, \psi) = \prod_{(a, p, b) \in G} [a, p, b] \cdot pol(G, b, \psi)$
- Crucial property: a satisfies  $\phi$  iff polynomial not zero
- We must extend this:
  - to **counting** qualifiers  $\geq_k p.\psi$  and  $\leq_k p.\psi$
  - to eq, disj, closed

## Polynomials for $\geq_k p.\psi$ and $\leq_k p.\psi$

#### • Idea:

- $\geq_1 p.\psi$  is same as  $\exists p.\psi$
- $\leq_0 p.\psi$  is same as  $\forall p. \neg \psi$
- Adapt to larger k (see paper)



#### **Example:** $\phi = \leq_1 \text{auth.} \leq_0 \text{type.} hasValue(\text{stud})$

"x has at most one author who is not a student"

$$pol(G, c, \phi) = [c, \text{auth}, a_1] \cdot [a_1, \text{type, prof}] \cdot 0 + [c, \text{auth}, a_2] \cdot [a_2, \text{type, stud}] \cdot 1 = [c, \text{auth}, a_2] \cdot [a_2, \text{type, stud}]$$

#### Polynomials for *eq*, *disj*

• For *disj* and  $\neg eq$ , we also need negated triples (**absence** of triple)



$$pol(G_1, a, eq(p, r)) = [a, p, b] \cdot [a, r, b] \cdot [a, r, b] \cdot [a, p, b]$$
  

$$pol(G_2, a, disj(p, r)) = [a, p, b_1] \cdot [a, r, b_1] \cdot [a, r, b_2] \cdot [a, p, b_2]$$
  

$$pol(G_3, a, \neg disj(p, r)) = [a, p, b_2] \cdot [a, r, b_2]$$
  

$$pol(G_1, a, eq(p, r)) = [a, p, b_1] \cdot [a, r, b_1] + [a, r, b_3] \cdot [a, p, b_3]$$

#### From polynomials to neighborhoods

- Let  $G, v \models \sigma$ . How should we define  $B(G, v, \sigma)$ ?
- *Btok*:
  - Calculate provenance polynomial  $pol(G, v, \sigma)$
  - Return all positive triples occurring as unknowns (tokens) in the polynomial
  - We could also take **all** triples, both negative and positive
    - [Bogaerts, Jakubowski, Van den Bussche PODS 2024]
- **B**<sub>mon</sub>:
  - Pick a monomial (term) from the polynomial
  - Return all triples in there
  - Non-deterministic!

## $B_{tok}$ and $B_{mon}$



- **Example:**  $\phi = \leq_1 \text{auth.} \leq_0 \text{type.} hasValue(stud)$ 
  - $pol(G, c, \phi) = [c, auth, a_2] \cdot [a_2, type, stud]$
  - So,  $B_{tok}(G, c, \phi) = B_{mon}(G, c, \phi) =$

$$c \xrightarrow{type} stud$$

- Example:  $\sigma = \geq_1$  auth. T
  - $pol(G, c, \sigma) = [c, \text{auth}, a_1] + [c, \text{auth}, a_2]$  so  $B_{tok}(G, c, \sigma) = \begin{bmatrix} auth & a_1 \\ c & auth & a_2 \end{bmatrix}$



• For  $B_{mon}(G, c, \sigma)$  two possibilities:



### Remark: computing





# What's in a neighborhood? Describing nodes in RDF graphs using shapes

- 1. Introduction
- 2. Motivation for neighborhoods
- 3. Provenance polynomials for SHACL
- 4. Causality
- 5. Desiderata for neighborhoods
- 6. Conclusion

# Causality as alternative to provenance polynomials

- Neighborhood  $B(G, v, \phi)$  is supposed to **explain** why  $G, v \vDash \phi$
- $B_{tok}$  and  $B_{mon}$  do that, in a sense (see later)
- Halpern-Pearl causality: formal definition of **cause** for  $G, v \models \phi$
- **Supercause:** set C of positive, negative triples from G such that after "flipping" C in G, node v no longer satisfies  $\phi$
- Cause: minimal supercause
- Note: A repair for violating  $\phi$  is the same as a cause of  $\neg \phi$ !
  - [Ahmetaj et al., ISWC 2022]

#### Causality: example

• We have  $G_2, a \models disj(p, r)$ 



- {[*a*, *p*, *b*<sub>2</sub>], [*a*, *p*, *b*<sub>1</sub>]} is a **supercause**:
  - Flipping this in  $G_2$  yields  $G'_2$ : p and r no longer disjoint  $a'_3$
  - Not a **cause**: deleted  $[a, p, b_1]$  is unnecessary
  - The two (minimal) **causes** are:
    - $\{\overline{[a, p, b_2]}\}$  (insert  $[a, p, b_2]$ )
    - $\{\overline{[a,r,b_1]}\}$  (insert  $[a,r,b_1]$ )

#### Neighborhoods by causality?

- Tempting to define a neighborhood to be a cause
  - We will see soon this is not "sufficient"
- What **does** work: from  $B_{tok}$ , only keep **causally relevant** triples
  - Belonging to some cause
  - High computational complexity

# What's in a neighborhood? Describing nodes in RDF graphs using shapes

- 1. Introduction
- 2. Motivation for neighborhoods
- 3. Provenance polynomials for SHACL
- 4. Causality
- 5. Desiderata for neighborhoods
- 6. Conclusion

#### Is there a "best" definition of neighborhood?

- No. Several desiderata, incompatible.
- Sufficiency: Natural desidaratum in provenance research [Glavic]
  - If  $G, v \vDash \sigma$ , then also  $B(G, v, \sigma), v \vDash \sigma$
  - "Node v should still satisfy the shape in its shape neighborhood"
- **Theorem:** *B*<sub>tok</sub>, *B*<sub>mon</sub>, and causally relevant restrictions, are sufficient
- Determinism
- Minimality, e.g., minimally sufficient neighborhoods
  - not deterministic: "focus node has at least an email **or** a phone property"
- [Bogaerts, Jakubowski, Van den Bussche PODS 2024]

#### Conclusions and further research

- Shapes can be used for **more** than descriptive schemas
- Retrieve subgraphs!
- No single approach is "best", but we can follow some **principles**
- 1. Extend SHACL to full RDF (where properties can be nodes)
  - Or even RDF-star?
- 2. Neighborhoods for property paths
  - Can become very large
- 3. Empirical research needed why SHACL is "better" than SPARQL
  - Theoretical complexity is lower
- 4. Compare SHACL neighborhoods to ShEx neighborhoods [Labra Gayo et al.]

# References—thanks Bart Bogaerts, Thomas Delva, Anastasia Dimou

- Maxime Jakubowski, Jan Van den Bussche: Compiling SHACL into SQL. ISWC 2024
- Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: *Postulates for provenance: Instance-based provenance for first-order logic*. **PODS 2024**
- Thomas Delva, Anastasia Dimou, Maxime Jakubowski, Jan Van den Bussche: *Data provenance for SHACL*. **EDBT 2023**
- Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: Expressiveness of SHACL features and extensions for full equality and disjointness tests. ICDT 2022, LMCS 2024
- Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: SHACL: A description logic in disguise. LPNMR 2022
- Bart Bogaerts, Maxime Jakubowski: *Fixpoint semantics for recursive SHACL*. ICLP 2021