
Introduction to SHACL
Jan Van den Bussche

Data Science Institute, Hasselt University

Shapes Constraint Language (SHACL)

• A language for expressing integrity constraints on RDF graphs
• W3C standard

1. RDF graph
2. Shape
3. Constraint

RDF graph

• directed graph with labels on edges
• edge labels are called “properties”
• edge 𝑥 → 𝑦 with label 𝑝:

• 𝑥 is called the “subject”
• 𝑦 is called the “object”
• 𝑝 is called the “property”

• In RDF:
• properties can also be nodes

• SHACL, however, is oblivious to this
• nodes can be of different kinds (IRI, blank, literal)

• SHACL provides tests for this

Shape

• a unary query over RDF graphs
• a property of nodes of RDF graphs
• node under consideration is called “focus node”

• Examples: let 𝑥 denote the focus node
• “𝑥 has a phone property, but no email”
• “𝑥 has at least five managed-by edges”
• “𝑥 has a path of friend-edges to the CEO of Apple”
• “𝑥 has no other properties than name, address, and birthdate”

Constraints

• We are slightly generalizing SHACL here
• Constraints are expressed as inclusions between shapes:

𝜑! ⊆ 𝜑"
where 𝜑! and 𝜑" are shapes
• referred here to as left-hand shape (lhs) and right-hand shape (rhs)

• “Every node satisfying 𝜑! also satisfies 𝜑"”

Examples of inclusions

• “Every node of type Person has a phone or email property”
• lhs: nodes with an edge labeled type to node Person
• rhs: nodes with a phone or email property

• “Different nodes never have the same email”
• lhs: nodes with an incoming email edge
• rhs: nodes that do not have two or more incoming email edges

• “Every Mathematician has a finite Erdös number”
• lhs: nodes of type Mathematician
• rhs: nodes that can reach node Erdös by a property path author!/author ∗

Targets

• In reality, SHACL does not have these arbitrary left-hand shapes
• Instead, right-hand shapes are associated to “targets”
• Targets are simple shapes of four kinds:
• node: a constant node
• class : nodes with a path (type/subclass∗) to some constant
• subjects-of: nodes with an outgoing edge of some label
• objects-of: nodes with an incoming edge of some label

SHACL

• SHACL, a language for expressing shapes
• and associating them with targets to form inclusion constraints

• The syntax is in RDF!
• “Shapes graph”
• Description-logic syntax was introduced
• Corman et al. ISWC 2018; Andresel et al. WWW 2020

• Extended by Jakubowski (Delva et al. EDBT 2023)
• equivalent to full SHACL
• SLS parser https://github.com/MaximeJakubowski/sls_project

https://github.com/MaximeJakubowski/sls_project

SHACL Logical Syntax

retrieve data. Speci�cally, given a shape q and an input graph
⌧ , we can retrieve the subgraph of ⌧ formed by the union of all
neighborhoods of all nodes in ⌧ that conform to q . We refer to
the result as the shape fragment of ⌧ with respect to q . We will
actually prove a stronger version of su�ciency, to the e�ect that
a node E conforms to q in ⌧ if and only if conforms to q in the
shape fragment of ⌧ with respect to q .

Readers familiar with the language will point out that in stan-
dard usage of SHACL, shapes are associated with targets, which
are simple kinds of node-returning queries. Such a target–shape
pair represents an inclusion statement, to the e�ect that all nodes
returned by the target must satisfy the shape. Thus, in SHACL
one speci�es a collection of inclusion statements, which we refer
to as a shape schema.1 The task of validation then amounts to
checking whether an input graph conforms to the schema, i.e.,
satis�es all inclusions.

In our work, we will duly generalize the notion of shape frag-
ments to shape schemas, and also extend the su�ciency result
to them.

Example 1.3. We may associate to our shape :WorkshopShape
the target that retrieves all papers. In SHACL syntax this is ex-
pressed by adding the statement :WorkshopShape sh:targetClass
:Paper to the shapes graph. An RDF graph ⌧ validates against
the resulting schema if for every triple (E rdf:type :Paper) in ⌧ ,
node E conforms to :WorkshopShape.

The shape fragment of ⌧ for this schema, as we will de�ne
it, consists of all the above triples (E rdf:type :Paper) plus all
triples from the neighborhoods of these nodes E with respect
to shape :WorkshopShape. Su�ciency for shape fragments will
guarantee that the resulting shape fragment still validates against
the schema (as we can indeed also verify in this example).

The further contents of this paper can be summarized as fol-
lows. Section 2 presents preliminaries on SHACL, de�ning shapes
and shape schemas formally.

Section 3 motivates and de�nes our notion of neighborhood,
and establishes su�ciency.

Section 4 develops the notion of shape fragments.
Section 5 explores how neighborhoods can be computed, ei-

ther by translation to SPARQL, or by instrumenting an existing
SHACL validator. We present initial experiments showing that
computing neighborhoods is feasible.

Section 6 compares our work to related work on data prove-
nance, and to a recent independent proposal, similar to shape
fragments, made by Labra Gayo [36]. We also compare the ex-
pressive power of shape fragments to Triple Pattern Fragments
[62], a popular existing subgraph retrieval mechanism based on
single triple patterns [10, 31, 38].

Section 7 concludes the paper by discussing possible new
applications and topics for further research.

Due to space limitations, some proofs have been omitted or
abbreviated; a full version is available on arXiv.

2 PRELIMINARIES ON SHACL
In this section, we give self-contained de�nitions of shapes, their
syntax and their semantics, and of shape schemas. It will be
convenient here to work not with the actual SHACL syntax, but
to build upon the logical syntax proposed by Corman, Reutter
and Savkovic [19], which is gaining traction [3, 5, 39, 45]. We
extend their proposal to cover all features of SHACL, such as

1The o�cial SHACL terminology is “shapes graph” instead of shape schema.

disjointness, zero-or-one property paths, closedness, language
tags, node tests, and literals. We have veri�ed that our de�nitions
given here fully cover real SHACL.

From the outset, we assume three pairwise disjoint in�nite
sets � , !, and ⌫ of IRIs, literals, and blank nodes, respectively. We
use # to denote the union � [⌫[!; all elements of # are referred
to as nodes. Literals may have a “language tag” [52]. We abstract
this by assuming an equivalence relation ⇠ on !, where ; ⇠ ; 0

represents that ; and ; 0 have the same language tag. Moreover, we
assume a strict partial order < on ! that abstracts comparisons
between numeric values, strings, dateTime values, etc.

An RDF triple (B, ?,>) is an element of (� [⌫) ⇥ � ⇥ # . We
refer to the elements of the triple as the subject B , the property ? ,
and the object > . An RDF graph ⌧ is a �nite set of RDF triples. It
is natural to think of an RDF graph as an edge-labeled, directed
graph, viewing a triple (B, ?,>) as a ?-labeled edge from node B
to node > .

We formalize SHACL property paths as path expressions ⇢.
Their syntax is given by the following grammar, where ? ranges
over � :

⇢ ::= ? | ⇢� | ⇢/⇢ | ⇢ [⇢ | ⇢⇤ | ⇢?
SHACL can do many tests on individual nodes, such as testing

whether a node is a literal, or testing whether an IRI matches
some regular expression. We abstract this by assuming a set ⌦
of node tests; for any node test C and node 0, we assume it is
well-de�ned whether or not 0 satis�es C .

The formal syntax of shapes q is now given by the following
grammar.
� ::= ⇢ | id
q ::= > | ? | hasShape(B) | test (C) | hasValue(2)

| eq(� , ?) | disj(� , ?) | closed (%)
| less�an(⇢, ?) | less�anEq(⇢, ?) | uniqueLang(⇢)
| ¬q | q ^ q | q _ q
| �= ⇢ .q | = ⇢ .q | 8⇢ .q

with ⇢ a path expression; B 2 � [⌫; C 2 ⌦; 2 2 # ; ? 2 � ; % ✓ �
�nite; and = a natural number.

Remark 2.1. In shapes of the form eq(� , ?) or disj(� , ?), the
argument expression � can be either a path expression ⇢ or the
keyword ‘id’. We will see soon that ‘id’ stands for the focus
node. We need to include these id-variants in order to re�ect
the distinction, made in the SHACL recommendation, between
“node shapes” (expressing constraints on the focus node itself)
and “property shapes” (expressing constraints on nodes reachable
from the focus node by a path expression). ⇤

We formalize SHACL shapes graphs as schemas. We �rst de�ne
the notion of shape de�nition, as a triple (B,q, g) where B 2 � [⌫,
and q and g are shapes. The elements of the triple are referred to
as the shape name, the shape expression, and the target expression,
respectively.2

Now a schema is a �nite set� of shape de�nitions such that no
two shape de�nitions have the same shape name. Moreover, as in
the current SHACL recommendation, in this paper we consider
only nonrecursive schemas. Here,� is said to be recursive if there
is a directed cycle in the directed graph formed by the shape
names, with an edge B1 ! B2 if hasShape(B2) occurs in the shape
expression de�ning B1.

In order to de�ne the semantics of shapes and shape schemas,
we �rst recall that a path expression ⇢ evaluates on an RDF
2Real SHACL only supports speci�c shapes for targets, but our development works
equally well when allowing any shape for a target.

286

retrieve data. Speci�cally, given a shape q and an input graph
⌧ , we can retrieve the subgraph of ⌧ formed by the union of all
neighborhoods of all nodes in ⌧ that conform to q . We refer to
the result as the shape fragment of ⌧ with respect to q . We will
actually prove a stronger version of su�ciency, to the e�ect that
a node E conforms to q in ⌧ if and only if conforms to q in the
shape fragment of ⌧ with respect to q .

Readers familiar with the language will point out that in stan-
dard usage of SHACL, shapes are associated with targets, which
are simple kinds of node-returning queries. Such a target–shape
pair represents an inclusion statement, to the e�ect that all nodes
returned by the target must satisfy the shape. Thus, in SHACL
one speci�es a collection of inclusion statements, which we refer
to as a shape schema.1 The task of validation then amounts to
checking whether an input graph conforms to the schema, i.e.,
satis�es all inclusions.

In our work, we will duly generalize the notion of shape frag-
ments to shape schemas, and also extend the su�ciency result
to them.

Example 1.3. We may associate to our shape :WorkshopShape
the target that retrieves all papers. In SHACL syntax this is ex-
pressed by adding the statement :WorkshopShape sh:targetClass
:Paper to the shapes graph. An RDF graph ⌧ validates against
the resulting schema if for every triple (E rdf:type :Paper) in ⌧ ,
node E conforms to :WorkshopShape.

The shape fragment of ⌧ for this schema, as we will de�ne
it, consists of all the above triples (E rdf:type :Paper) plus all
triples from the neighborhoods of these nodes E with respect
to shape :WorkshopShape. Su�ciency for shape fragments will
guarantee that the resulting shape fragment still validates against
the schema (as we can indeed also verify in this example).

The further contents of this paper can be summarized as fol-
lows. Section 2 presents preliminaries on SHACL, de�ning shapes
and shape schemas formally.

Section 3 motivates and de�nes our notion of neighborhood,
and establishes su�ciency.

Section 4 develops the notion of shape fragments.
Section 5 explores how neighborhoods can be computed, ei-

ther by translation to SPARQL, or by instrumenting an existing
SHACL validator. We present initial experiments showing that
computing neighborhoods is feasible.

Section 6 compares our work to related work on data prove-
nance, and to a recent independent proposal, similar to shape
fragments, made by Labra Gayo [36]. We also compare the ex-
pressive power of shape fragments to Triple Pattern Fragments
[62], a popular existing subgraph retrieval mechanism based on
single triple patterns [10, 31, 38].

Section 7 concludes the paper by discussing possible new
applications and topics for further research.

Due to space limitations, some proofs have been omitted or
abbreviated; a full version is available on arXiv.

2 PRELIMINARIES ON SHACL
In this section, we give self-contained de�nitions of shapes, their
syntax and their semantics, and of shape schemas. It will be
convenient here to work not with the actual SHACL syntax, but
to build upon the logical syntax proposed by Corman, Reutter
and Savkovic [19], which is gaining traction [3, 5, 39, 45]. We
extend their proposal to cover all features of SHACL, such as

1The o�cial SHACL terminology is “shapes graph” instead of shape schema.

disjointness, zero-or-one property paths, closedness, language
tags, node tests, and literals. We have veri�ed that our de�nitions
given here fully cover real SHACL.

From the outset, we assume three pairwise disjoint in�nite
sets � , !, and ⌫ of IRIs, literals, and blank nodes, respectively. We
use # to denote the union � [⌫[!; all elements of # are referred
to as nodes. Literals may have a “language tag” [52]. We abstract
this by assuming an equivalence relation ⇠ on !, where ; ⇠ ; 0

represents that ; and ; 0 have the same language tag. Moreover, we
assume a strict partial order < on ! that abstracts comparisons
between numeric values, strings, dateTime values, etc.

An RDF triple (B, ?,>) is an element of (� [⌫) ⇥ � ⇥ # . We
refer to the elements of the triple as the subject B , the property ? ,
and the object > . An RDF graph ⌧ is a �nite set of RDF triples. It
is natural to think of an RDF graph as an edge-labeled, directed
graph, viewing a triple (B, ?,>) as a ?-labeled edge from node B
to node > .

We formalize SHACL property paths as path expressions ⇢.
Their syntax is given by the following grammar, where ? ranges
over � :

⇢ ::= ? | ⇢� | ⇢/⇢ | ⇢ [⇢ | ⇢⇤ | ⇢?
SHACL can do many tests on individual nodes, such as testing

whether a node is a literal, or testing whether an IRI matches
some regular expression. We abstract this by assuming a set ⌦
of node tests; for any node test C and node 0, we assume it is
well-de�ned whether or not 0 satis�es C .

The formal syntax of shapes q is now given by the following
grammar.
� ::= ⇢ | id
q ::= > | ? | hasShape(B) | test (C) | hasValue(2)

| eq(� , ?) | disj(� , ?) | closed (%)
| less�an(⇢, ?) | less�anEq(⇢, ?) | uniqueLang(⇢)
| ¬q | q ^ q | q _ q
| �= ⇢ .q | = ⇢ .q | 8⇢ .q

with ⇢ a path expression; B 2 � [⌫; C 2 ⌦; 2 2 # ; ? 2 � ; % ✓ �
�nite; and = a natural number.

Remark 2.1. In shapes of the form eq(� , ?) or disj(� , ?), the
argument expression � can be either a path expression ⇢ or the
keyword ‘id’. We will see soon that ‘id’ stands for the focus
node. We need to include these id-variants in order to re�ect
the distinction, made in the SHACL recommendation, between
“node shapes” (expressing constraints on the focus node itself)
and “property shapes” (expressing constraints on nodes reachable
from the focus node by a path expression). ⇤

We formalize SHACL shapes graphs as schemas. We �rst de�ne
the notion of shape de�nition, as a triple (B,q, g) where B 2 � [⌫,
and q and g are shapes. The elements of the triple are referred to
as the shape name, the shape expression, and the target expression,
respectively.2

Now a schema is a �nite set� of shape de�nitions such that no
two shape de�nitions have the same shape name. Moreover, as in
the current SHACL recommendation, in this paper we consider
only nonrecursive schemas. Here,� is said to be recursive if there
is a directed cycle in the directed graph formed by the shape
names, with an edge B1 ! B2 if hasShape(B2) occurs in the shape
expression de�ning B1.

In order to de�ne the semantics of shapes and shape schemas,
we �rst recall that a path expression ⇢ evaluates on an RDF
2Real SHACL only supports speci�c shapes for targets, but our development works
equally well when allowing any shape for a target.

286

Some research on the theory of SHACL

• Expressiveness (Bogaerts et al. ICDT 2023)
• Satisfiability, containment
• Pareti et al.; Leinberger et al.; both ISWC 2020

• Recursion
• Corman et al., Andresel et al.
• Bogaerts & Jakubowski ICLP 2021
• Chmurovic et al. Datalog 2022

• Logical entailment from ontologies (Ahmetaj et al. ECAI 2023)

SHACL engines

• pySHACL
• Apache Jena
• TopBraid
• some more engines, e.g.,
• shaclex (Labra)
• Cem Okulmus

Some SHACL systems research

• SHACL2SPARQL (Corman et al. ISWC 2019)
• TravSHACL (Figuera et al. WWW 2021)
• Magic Sets optimization (Ahmetaj et al. VLDB 2022)

Some research on new applications of SHACL

• mining SHACL shapes
• Rabbani et al. VLDB 2023

• semantic SPARQL optimization (Rabbani et al. EDBT 2021)
• inferring shapes (Dimou)
• explaining & repairing SHACL constraint violations
• Ahmetaj et al., KR 2021, ISWC 2022

• provenance, shape fragments (Delva et al. EDBT 2023)
• access control (?)

Other approaches

• Many of the mentioned research topics have also been pursued for
other approaches
• ShEx
• property graphs
• and more

• see this seminar!

Upload your slides!

• Homepage of this Dagstuhl seminar
• google [Dagstuhl shapes theory implementation]

• Follow link to “Materials” site
• only accessible for participants

• We’ll also have to make a report

