Introduction to SHACL

Jan Van den Bussche

Data Science Institute, Hasselt University

Shapes Constraint Language (SHACL)

* A language for expressing integrity constraints on RDF graphs
 W3C standard

1. RDF graph
2. Shape
3. Constraint

RDF graph

 directed graph with labels on edges
* edge labels are called “properties”

* edge x — y with label p:
e x is called the “subject”
* yis called the “object”
* pis called the “property”

* In RDF:

e properties can also be nodes
 SHACL, however, is oblivious to this

* nodes can be of different kinds (IRI, blank, literal)
* SHACL provides tests for this

Shape

* a unary query over RDF graphs
* a property of nodes of RDF graphs

* node under consideration is called “focus node”

* Examples: let x denote the focus node
* “x has a phone property, but no email”
* “x has at least five managed-by edges”
* “x has a path of friend-edges to the CEO of Apple”
* “x has no other properties than name, address, and birthdate”

Constraints

* We are slightly generalizing SHACL here

* Constraints are expressed as inclusions between shapes:
P11 & P

where @, and @, are shapes
 referred here to as left-hand shape (lhs) and right-hand shape (rhs)

* “Every node satisfying ¢, also satisfies @,”

Examples of inclusions

* “Every node of type Person has a phone or email property”
* |lhs: nodes with an edge labeled type to node Person
* rhs: nodes with a phone or email property

e “Different nodes never have the same email”
* |hs: nodes with an incoming email edge
* rhs: nodes that do not have two or more incoming email edges

* “Every Mathematician has a finite Erdds number”
* |hs: nodes of type Mathematician
* rhs: nodes that can reach node Erdds by a property path (author™ /author)”

Targets

* In reality, SHACL does not have these arbitrary left-hand shapes
* Instead, right-hand shapes are associated to “targets”

* Targets are simple shapes of four kinds:
* node: a constant node
* class : nodes with a path (type/subclass™) to some constant
* subjects-of: nodes with an outgoing edge of some label
* objects-of: nodes with an incoming edge of some label

SHACL

* SHACL, a language for expressing shapes
e and associating them with targets to form inclusion constraints

* The syntax is in RDF!
e “Shapes graph”

* Description-logic syntax was introduced
 Corman et al. ISWC 2018; Andresel et al. WWW 2020

* Extended by Jakubowski (Delva et al. EDBT 2023)
e equivalent to full SHACL
 SLS parser https://github.com/Maximelakubowski/sls project

https://github.com/MaximeJakubowski/sls_project

SHACL Logical Syntax

E : ‘E_‘E/E‘EUE‘E*‘E?
F
¢ ::

p

E |id
T | L | hasShape(s) | test(t) | hasValue(c)
eq(F,p) | disj(F,p) | closed(P)

lessThan(E, p) | lessThanEq(E, p) | uniqueLang(E)
YA AT

>nE¢ | <nE.¢ | VE.¢

Some research on the theory of SHACL

* Expressiveness (Bogaerts et al. ICDT 2023)

e Satisfiability, containment
* Pareti et al.; Leinberger et al.; both ISWC 2020

e Recursion

* Corman et al., Andresel et al.
* Bogaerts & Jakubowski ICLP 2021
* Chmurovic et al. Datalog 2022

* Logical entailment from ontologies (Ahmetaj et al. ECAI 2023)

SHACL engines

* pySHACL
* Apache Jena
* TopBraid

* some more engines, e.g.,

» shaclex (Labra)
e Cem Okulmus

Some SHACL systems research

 SHACL2SPARQL (Corman et al. ISWC 2019)
* TravSHACL (Figuera et al. WWW 2021)
* Magic Sets optimization (Ahmetaj et al. VLDB 2022)

Some research on new applications of SHACL

* mining SHACL shapes
e Rabbani et al. VLDB 2023

* semantic SPARQL optimization (Rabbani et al. EDBT 2021)
e inferring shapes (Dimou)

* explaining & repairing SHACL constraint violations
 Ahmetaj et al., KR 2021, ISWC 2022

* provenance, shape fragments (Delva et al. EDBT 2023)
* access control (?)

Other approaches

* Many of the mentioned research topics have also been pursued for
other approaches

e ShEx
* property graphs
* and more

* see this seminar!

Upload your slides!

* Homepage of this Dagstuhl seminar
» google [Dagstuhl shapes theory implementation]

* Follow link to “Materials” site
* only accessible for participants

* We'll also have to make a report

