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Instance-based provenance is an explanation for a query result in the form of a subinstance of the database. We
investigate different desiderata one may want to impose on these subinstances. Concretely we consider seven
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postulate. Moreover, we consider the postulate of minimality, which can be imposed with respect to any set of
basic postulates. Our main technical contribution is an analysis and characterisation of which combinations
of postulates are jointly satisfiable. Our main conceptual contribution is an approach to instance-based
provenance through three-valued instances, which makes it applicable to first-order logic queries involving
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1 INTRODUCTION
One of the main goals in the field of data provenance [8, 14] is to provide explanations for the
results of database queries: Where do the resulting data come from? Why are they results? How
were they produced? In this paper, we focus on the “why” and “where”; the “how” ties into much
broader fields, such as process and workflow provenance [3, 26, 28], or self-explaining computation
[7].
Two forms of explanations for query results can be distinguished, which we call proof-based

and instance-based data provenance, respectively. Proof-based provenance presents a proof, or
derivation, that a given result indeed satisfies a given query evaluated in a given database. A popular
approach in this category is the use of provenance polynomials [16], which can be viewed as a
compact representation of all proofs for unions of conjunctive queries. Provenance polynomials
were later extended to full first-order logic by Grädel and Tannen [15, 32].
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Instance-based provenance, on the other hand, explains query results by presenting a subinstance
of the database. In the present paper, we investigate instance-based provenance from a broad
perspective. Intuitively, the explaining subinstance should list the relevant information in the
database that caused the query result under consideration. The question then becomes how to
formalize this intuition. More broadly, what desiderata do we reasonably want to require of instance-
based provenance? Also, are there requirements that are mutually incompatible?

Sufficiency, provenance relations, and 3-valued subinstances. The most evident requirement for
instance-based provenance is that the subinstance should still satisfy the query it purports to explain.
This requirement dates back to the lineage work [9] and was coined sufficiency by Glavic [14]. We
take sufficiency as the defining property of a provenance relation: a total, generic mechanism that
relates query results to sufficient subinstances. Totality means that every query result should get
an explanation (possibly several, so non-determinism is allowed), and genericity means that the
mechanism should not interpret relation names.
In order to support queries involving negation, we need a proper notion of subinstance that

treats the presence of tuples in relations on equal footing with the absence of tuples. For example,
to explain that a tuple 𝑡 belongs to the difference 𝑅 − 𝑆 of two relations, the positive fact 𝑅(𝑡) is
equally important as the negative fact ¬𝑆 (𝑡). We will thus define subinstances as 3-valued instances
that are consistent with the database instance under consideration. In our example, the 3-valued
instance 𝐼 = {𝑅(𝑡),¬𝑆 (𝑡)} would then be a sufficient subinstance to explain that 𝑡 ∈ 𝑅 − 𝑆 in some
database 𝐷 . Here, 𝐼 is 3-valued because it omits (and interprets as unknown) all other facts and
non-facts from 𝐷 , which are indeed irrelevant. Also, 𝐼 is sufficient, because regardless of how we
complete it to a total instance, 𝑡 ∈ 𝑅 − 𝑆 will be true. We thus adopt a certain-answer semantics,
known as supervaluation semantics, for first-order logic on 3-valued instances [31].

Provenance polynomials and causality for first-order logic. While we use certain-answer semantics
to define sufficiency, it is appropriate to take a more syntactic approach in the definition of
provenance polynomials over 3-valued instances, as they are a proof-theoretic notion. We evaluate
tokens corresponding to unknown facts as zero, and show that the polynomial for a formula 𝜑 in 𝐼 is
nonzero if and only if 𝜑 evaluates to true in 𝐼 using Kleene semantics. It follows that the subinstance
obtained from all tokens in the provenance polynomial constitutes a sufficient explanation. We
thus generalize the connection that was known for UCQs to full first-order logic.

In order to define causes for first-order queries in 3-valued instances, we follow the most recent
definition of Halpern-Pearl causality [17]. We will characterize sufficient subinstances as those
that intersect with all possible causes. It follows that the set of causal facts is another sufficient
explanation, albeit quite different from the one obtained through the provenance polynomial.

Postulates for provenance. Towards our investigation of desiderata for instance-based provenance,
we formulate seven basic postulates for provenance relations:

Proof containment (K): Let 𝐼 be a subinstance returned as explanation for a first-order query
𝜑 on database 𝐷 . Proof containment requires that the provenance polynomial for 𝜑 on 𝐼

contain a monomial from the provenance polynomial for 𝜑 on 𝐷 . Intuitively, this means
that at least one of the proofs that 𝜑 holds in 𝐷 still works to prove that 𝜑 holds in 𝐼 . This
postulate is indicated by K simply because it is equivalent to requiring that 𝜑 is Kleene-true
in 𝐼 (a stronger requirement than sufficiency).

Proof preservation (PP): Postulate PP is stronger than K and requires that the provenance
polynomials for 𝜑 on 𝐼 and on 𝐷 be the same. Intuitively, 𝐼 is fully representative for 𝐷 in the
sense that the different possible proofs for showing that 𝜑 holds are the same in 𝐼 and in 𝐷 .
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Cause containment (CC), cause preservation (CP): Parallel to the previous two, these pos-
tulates deal with causes instead of provenance polynomials.

Proof relevance (PR), causal relevance (CR): These postulates upper-bound 𝐼 by requiring
that it should only contain facts from the provenance polynomial of 𝜑 on 𝐷 (postulate PR),
or facts from causes of 𝜑 on 𝐷 (postulate CR).

Determinism (D): The seventh postulate is of a different nature and requires that the prove-
nance relation be deterministic: for each query result a unique explanation can be given,
without violating genericity.

On top of these, we consider postulates ofminimality,Min(𝑋 ), for any subset𝑋 of {K, PP,CC,CP,
𝑃𝑅,𝐶𝑅}. This postulate requires that the returned explanation be a minimal subinstance satisfying
all properties in 𝑋 .
While each basic postulate by itself is certainly reasonable, different postulates may be incom-

patible. For example, no provenance relation can be both K and CR, simply because a tautology
(always-true query) has no causes. Also {PR,CC} is unsatisfiable, since causes may require facts that
do not show up in the provenance polynomial, as we will show. One more unsatisfiable example is
{Min(∅),D}: there may be several minimal sufficient subinstances, and we cannot deterministically
pick one in a generic manner.
On the other hand, {PR,CR,D} can be satisfied by returning the intersection of the set of

facts from the provenance polynomial with the set of causal facts. Returning just the facts in the
polynomial, or just the causal facts, satisfies {PP,D} and {CC,D}, respectively. For another example,
{CR,Min(PR)} can be satisfied by returning a minimally sufficient subset of facts from the tokens
of the polynomial. Adding D to the latter set of postulates, however, renders it unsatisfiable again.

In this paper we will present a complete analysis of satisfiability for all possible combinations of
postulates.

Positive formulas. Since much of provenance research has restricted attention to positive queries,
or even just UCQs, it is natural to ask how the postulates behave in restriction to positive formulas.
Note that we still allow universal quantifiers, something that seems to have been neglected in
earlier work. The main effect of restricting to positive formulas, as we will show, is that causal
facts necessarily must appear in the provenance polynomial (something that was already known
for Meliou cases in the UCQ case). Consequently, some previously unsatisfiable combinations of
postulates become satisfiable in this setting. The other combinations remain unsatisfiable, which is
now more difficult to prove since we can only use positive formulas as counterexamples.

Related work. Besides provenance polynomials, graph-based proof representations for data
provenance have been proposed as well [23, 24].
A version of Halpern-Pearl causality [18] was first applied to provenance by Meliou et al. [27].

They consider singleton subinstances to explain answers and nonanswers to conjunctive queries.
Our definition conservatively extends the approach by Meliou et al., in the sense that, for positive
formulas, a fact belongs to a cause if and only if it is a Meliou cause. Also, our result that causal
facts for positive queries must appear in the provenance polynomial was already known for Meliou
causes in the conjunctive-query case.

To our knowledge, our work is the first to consider instance-based provenance for full first-order
logic (FO). For unions of conjunctive queries (UCQ, positive-existential formulas, or relational
algebra without difference), well-known initial approaches to instance-based provenance are the
notions of lineage [9] and witness [5]. Indeed, witnesses are basically defined to be sufficient
subinstances [8]. Thus, our definition of provenance result is the generalization of witness to full
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FO. For UCQs, lineage has been shown to be sufficient [8]. Note that Cui and Widom have defined
lineage in the presence of difference, but, then, lineage is no longer sufficient [10].
Still for UCQs, there are already known connections between proof-based and instance-based

provenance [14]. In that case, the set of all tuples occurring as tokens in the provenance polynomial
yields the lineage, and minimal monomials in the polynomial correspond similarly to minimal
witnesses. Also, the tuples in these minimal monomials are the Meliou causes mentioned above.

Previous works have investigated postulates for other complex tasks, such as belief revision [19],
clustering [20], or ensuring fairness [21]. Cheney [6] explores desiderata for provenance traces
of program executions. Bourgaux et al. consider postulates for Datalog semantics over annotated
databases [4]. While some of their postulates are specific to Datalog and/or annotation semantics,
other ideas are relevant to our framework. For example, their “necessary” facts are counterfactual
causes. Also, they define “usable” facts which are related to the tokens in the provenance polynomial.

2 PRELIMINARIES
We fix an infinite set dom called the domain and also assume an infinite supply of variables var. A
schema Σ is a finite set of relation names, each with an associated arity. A term is either a variable
or an element from dom (in which case the term is called a constant). A Σ-formula 𝜑 is given by
the following grammar:

𝜑 ::= 𝑡1 = 𝑡2 | 𝑅(𝑡1, . . . , 𝑡𝑖 ) | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 𝜑 | ∀𝑥 𝜑
where 𝑥 is a variable from var, 𝑡1, 𝑡2, . . . , 𝑡𝑖 are terms, and 𝑅 is a relation name from Σ of arity 𝑖 .
Atomic formulas of the form 𝑅(𝑡1, . . . , 𝑡𝑖 ) are called relation atoms.

Remark 2.1. In many examples we will use propositional schemas, i.e., schemas consisting of
proposition symbols, i.e., nullary relation names. Nullary atoms 𝑃 () will be simply written as 𝑃 for
clarity.

A positive fact over Σ is a statement of the form 𝑅(𝑎1, . . . , 𝑎𝑖 ) where 𝑅 is a relation name from Σ,
of arity 𝑖 , and 𝑎1, . . . , 𝑎𝑖 are elements from dom. A negative fact over Σ is a statement of the form
¬𝑅(𝑎1, . . . , 𝑎𝑖 ) where 𝑅(𝑎1, . . . , 𝑎𝑖 ) is a positive fact. We refer to both positive and negative facts
simply as facts. The negation of a positive fact 𝑓 is defined to be ¬𝑓 , and the negation of ¬𝑓 is
defined to be 𝑓 . We define flipping a set of facts A, denoted by ¬A, as {¬𝑓 | 𝑓 ∈ A}. We also define
the flipping of a subset of facts D ⊆ A as A[¬D] = (A − D) ∪ ¬D. A set of facts is called consistent

if it does not contain both a fact and its negation.
A Σ-instance is a finite consistent set of facts over Σ. We call B a subinstance of instance A simply

if B is a subset of A.
Remark 2.2. What we call an instance is what is often called a “three-valued” instance. Standard,

total instances will be formally defined shortly.
A valuation of a formula 𝜑 is a partial mapping 𝜈 from var to dom, defined at least on all free

variables in 𝜑 . We also agree that every valuation is extended to dom as the identity: so 𝜈 (𝑎) = 𝑎

for every 𝑎 ∈ dom. We also write 𝜈 (𝜑) to denote the formula that substitutes the free variables of
𝜑 with the corresponding domain elements. The empty valuation (used when evaluating formulas
without free variables) will be denoted in this paper by 𝜀.

The active domain of an instance A, denoted adom(A), is the set of all domain elements that
occur in A. The active domain of a formula 𝜑 , denoted adom(𝜑) is the set of domain elements that
occur as constants in 𝜑 .
A relativized instance is an instance on an explicit domain [1]. Formally, a relativized instance

of a schema Σ is a tuple (d,A) where A is a Σ-instance; adom(A) ⊆ d ⊆ dom; and d is finite. A
Σ-formula 𝜑 is said to be interpretable in (d,A) if adom(𝜑) ⊆ d.
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A completion of (d,A) is a total relativized instance (d, B), on the same domain, such that A ⊆ B.
Here, totality means that (d, B) is “two-valued”, i.e., B contains either 𝑓 or ¬𝑓 for every fact 𝑓 over
Σ with constants from d. Total relativized instances will henceforth be simply referred to as total
instances. A formal convenience of our definition is that every total instance has a unique schema,
determined by the relation names in its facts.
Let (d,A) be a total instance, let 𝜑 be a formula that is interpretable in (d,A), and let 𝜈 be a

valuation of 𝜑 in d. The notion that (d,A) satisfies 𝜑 under 𝜈 , denoted (d,A), 𝜈 ⊨ 𝜑 , is well known
and we omit the formal definition [1].

That is for total instances. For general, three-valued, instances, however, various semantics are in
use [31]. In this paper, we will work with two of them. Supervaluation is a natural certain-answer
semantics; Kleene semantics is the most classical of three-valued logics.

Let (d,A) be a relativized instance and let 𝜑 and 𝜈 be as above.

Supervaluation semantics. The supervaluation of 𝜑 in (d,A), denoted by ⟦𝜑⟧(d,A),𝜈super , is defined to
be t if (d, B), 𝜈 ⊨ 𝜑 for every completion (d, B) of (d,A); it is f if (d, B), 𝜈 ⊭ 𝜑 for every completion
(d, B) of (d,A); and it is u otherwise. Here, t, f and u stand for true, false and unknown.

Kleene semantics. The Kleene value, denoted by ⟦𝜑⟧(d,A),𝜈K , is defined as follows. For relation
atoms 𝛼 , we define ⟦𝛼⟧(d,A),𝜈K to be t if 𝜈 (𝛼) ∈ A; it is f if 𝜈 (¬𝛼) ∈ A; and it is u otherwise.
For equalities, ⟦𝑡1 = 𝑡2⟧(d,A),𝜈K is t if 𝜈 (𝑡1) and 𝜈 (𝑡2) are the same element; otherwise it is f .
The boolean operators follow the well-known 3-valued truth tables. Recall that 𝑣1 ∨ 𝑣2 = t if at

least one of 𝑣1 and 𝑣2 is t; it is f if both are f ; and it is u otherwise. Likewise, 𝑣1 ∧ 𝑣2 = f if at least
one of 𝑣1 and 𝑣2 is f ; it is t if both are t; and it is u otherwise. Also, ¬t = f ; ¬f = t; and ¬u = u.
Existential and universal quantifiers ∃𝑥 𝜑1 and ∀𝑥 𝜑1 are treated as disjunctions

∨
𝑐∈d 𝜑1 [𝑥/𝑐]

and conjunctions
∧

𝑐∈d 𝜑1 [𝑥/𝑐], respectively. Here 𝜑1 [𝑥/𝑐] denotes 𝜑1 where 𝑐 is substituted for all
free occurrences of 𝑥 .
The advantage of Kleene semantics is that it is defined in a syntactical, compositional manner.

The advantage of supervaluation is that it is more precise, in the sense that if a formula is Kleene-
true or Kleene-false, then it also has that value under supervaluation.1 On total instances, both
semantics coincide with the standard one.

Example 2.3. As a simple example that supervaluation can be strictly more precise than Kleene,
consider the propositional tautology 𝜑 = 𝑃 ∨ ¬𝑃 with 𝑃 nullary. It is always true on total instances,
and also always true under supervaluation. Formally, on the empty relativized instance, we have
⟦𝜑⟧(∅,∅),𝜀super = t. In contrast, ⟦𝜑⟧(∅,∅),𝜀K = u since u ∨ u = u.

Query results and potential query results. Let, as before, be (d,A) be a relativized instance of some
schema Σ, let 𝜑 be a Σ-formula interpretable on (d,A), and let 𝜈 be a valuation of 𝜑 in d. We refer
to the tuple r = (d,A, 𝜈, 𝜑) as a potential query result; when indeed ⟦𝜑⟧(d,A),𝜈super = t, we call r plainly
a query result. When (d,A) is total, we also call r a total query result.

3 PROVENANCE POLYNOMIALS AND KLEENE
We recall provenance polynomials for first-order logic [15], used here over the boolean semiring.
We adapt them to three-valued instances, the simple idea being that u collapses to 0.

Let r = (d,A, 𝜈, 𝜑) be a potential query result, with 𝜑 in negation normal form. The provenance
polynomial pol(r) is defined in Figure 1. It is a polynomial over the boolean semiring, with facts

1A similar property has been exploited in the context of instances with null values [25].
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pol(d,A, 𝜈, 𝛼) =
{
𝜈 (𝛼) if 𝜈 (𝛼) ∈ A

0 otherwise

pol(d,A, 𝜈,¬𝛼) =
{
𝜈 (𝛼) if 𝜈 (¬𝛼) ∈ A

0 otherwise

pol(d,A, 𝜈, 𝑡1 = 𝑡2) =
{
1 if 𝜈 (𝑡1) = 𝜈 (𝑡2)
0 otherwise

pol(d,A, 𝜈, 𝑡1 ≠ 𝑡2) =
{
1 if 𝜈 (𝑡1) ≠ 𝜈 (𝑡2)
0 otherwise

pol(d,A, 𝜈, 𝜑1 ∨ 𝜑2) = pol(d,A, 𝜈, 𝜑1) + pol(d,A, 𝜈, 𝜑2)
pol(d,A, 𝜈, 𝜑1 ∧ 𝜑2) = pol(d,A, 𝜈, 𝜑1) · pol(d,A, 𝜈, 𝜑2)

pol(d,A, 𝜈,∀𝑥 𝜑1) =
∏
𝑎∈d

pol(d,A, 𝜈 [𝑥 ↦→ 𝑎], 𝜑1)

pol(d,A, 𝜈, ∃𝑥 𝜑1) =
∑︁
𝑎∈d

pol(d,A, 𝜈 [𝑥 ↦→ 𝑎], 𝜑1)

Fig. 1. Provenance polynomial of a potential query result for a formula in negation normal form. In the first
two lines, 𝛼 stands for a relation atom.

(positive or negative) from A playing the role of indeterminates.2 The indeterminates are referred
to as tokens, and a negative fact used as token is written in the polynomial as 𝑓 instead of ¬𝑓 .
Example 3.1. Let d = {𝑎, 𝑏, 𝑐}, let 𝜑 be ∃𝑥 (𝑃 (𝑥) ∧ ¬𝑄 (𝑥)), and consider the three instances

𝐴 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐)}
𝐵 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐),¬𝑄 (𝑏)}
𝐶 = {𝑃 (𝑎), 𝑃 (𝑏), 𝑃 (𝑐),¬𝑄 (𝑏),¬𝑄 (𝑐)}.

We have:
pol(d, 𝐴, 𝜀, 𝜑) = 0

pol(d, 𝐵, 𝜀, 𝜑) = 𝑃 (𝑏)𝑄 (𝑏)

pol(d,𝐶, 𝜀, 𝜑) = 𝑃 (𝑏)𝑄 (𝑏) + 𝑃 (𝑐)𝑄 (𝑐). □

The polynomial of a potential query result tells us something about its Kleene-truth value.
Specifically, we have the following generalization of Proposition 9 from Grädel and Tannen [15] to
the three-valued setting. The proof is straightforward.

Proposition 3.2. Let r = (d,A, 𝜈, 𝜑) be a potential query result. Then pol(r) ≠ 0 iff ⟦𝜑⟧(d,A),𝜈K = t.

Because supervaluation is more precise than Kleene, we have:

Corollary 3.3. Let r = (d,A, 𝜈, 𝜑) be a potential query result. If pol(r) ≠ 0 then ⟦𝜑⟧(d,A),𝜈super = t.

The converse direction of the corollary does not hold for the same reason already illustrated in
Example 2.3.
2The boolean semiring has two elements 0 and 1 with logical or as addition and logical and as multiplication. Note that,
since 1 + 1 = 1, any polynomial 𝑝 is equal to 𝑝 + 𝑝 .
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4 CAUSES IN FIRST-ORDER LOGIC
Causality is a large subject in the philosophy of science [29]. An influential proposal to define
causality was made by Halpern and Pearl [18]. Their definition was updated a few times; here we
follow the most recent definition [17].
Halpern and Pearl consider so-called structural models built on a set of endogenous variables.

(There are also exogenous variables, which we do not consider here.) A structural model assigns to
every such variable 𝑋 a function 𝐹 and a tuple (𝑋1, . . . , 𝑋𝑚) of other variables to which 𝐹 can be
applied. The assignment to 𝑋 , denoted by 𝑋 = 𝐹 (𝑋1, . . . , 𝑋𝑚), is called a structural equation. The
dependency graph on variables described by all the structural equations should be acyclic.
An actual cause for the values of certain variables is then defined to be a setting of values to

some other variables, that satisfies a number of conditions [17] which we do not repeat here; below
we will give a self-contained definition directly applied to our purpose.

Our purpose is, of course, the explanation of query results. We can straightforwardly view a
query result (d,A, 𝜈, 𝜑) as a structural model. As endogenous variables, we take all possible positive
facts on d, plus the pair (𝜑, 𝜈), which we also view as an endogenous variable. The structural
equations for positive facts 𝑓 involve simple constant functions and take the forms 𝑓 = t or 𝑓 = f or
𝑓 = u, depending on whether 𝑓 is in 𝐴, or ¬𝑓 is in 𝐴, or neither is in 𝐴. The structural equation for
(𝜑, 𝜈) is given by the function that determines the value of ⟦𝜑⟧(d,A),𝜈super from the values of the facts.
Under the above view, the notion of actual cause for the value ⟦𝜑⟧(d,A),𝜈super = t boils down to the

following. The notation 𝐴[¬𝐶] for flipping 𝐶 in 𝐴 was defined in Section 2.

Definition 4.1. A supercause of a query result r = (d,A, 𝜈, 𝜑) is a subinstance C of A such that
⟦𝜑⟧(d,A[¬C ] ),𝜈super ≠ t. An actual cause (or simply cause) is a minimal supercause.

An earlier version of Halpern-Pearl causality was applied to conjunctive query results by Meliou
et al. [27]. In their setting, actual causes are always single facts, which is not true here, as we will
see in the following example. Nevertheless, we will see later that in the case of positive formulas,
the Meliou causes are exactly the facts that appear in causes as defined here.

Example 4.2. Let r = (∅,A, 𝜀, 𝜑}) with A = {𝑃,𝑄, 𝑅} and 𝜑 the propositional formula (𝑃 ∧
𝑄) ∨ (𝑅 ∧ 𝑆). There are two causes, namely, {𝑃} and {𝑄}. The query result r′ = (∅, B, 𝜀, 𝜑) with
B = A ∪ {𝑆} has four causes, namely, {𝑃, 𝑅}, {𝑃, 𝑆}, {𝑄, 𝑅}, and {𝑄, 𝑆}.
Our terminology of supercause and cause is inspired by similar terminology in dependency

theory, where a key is a minimal superkey [1]. This analogy is not perfect, however. In dependency
theory, every superset of a key is a superkey, but here, not every superset of a cause is a supercause.
It is not even true that if 𝐶1 and 𝐶2 are supercauses and 𝐶1 ⊆ 𝐶3 ⊆ 𝐶2, then 𝐶3 must also be a
supercause. For example, over proposition symbols 𝑃 , 𝑄 and 𝑅, consider the formula 𝜑 that states
that an odd number of said propositions is true. The supercauses of 𝜑 being true in 𝐴 = {𝑃,𝑄, 𝑅}
are all subsets of 𝐴 of odd cardinality.

Remark 4.3. It is possible for a query result to have no causes at all. This can only happen when
the formula says something purely about the domain. For example, let d = {𝑎, 𝑏, 𝑐} and let 𝜑 be
∃𝑥1∃𝑥2∃𝑥3∀𝑦 (𝑦 = 𝑥1 ∨ 𝑦 = 𝑥2 ∨ 𝑦 = 𝑥3). This formula is supervaluation-true on every instance A
with adom(A) ⊆ d. Hence, for any such A, the query result (d,A, 𝜀, 𝜑) has no causes. In particular,
this holds for formulas that are tautologies.

5 INSTANCE-BASED PROVENANCE AND SUFFICIENCY
Instance-based provenance attempts to explain a query result by providing a subinstance that is
“sufficient”. The query result may be assumed to be total, since that is the standard database setting.
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The subinstances serving as provenance, however, are typically not total. We are going to assess
these three-valued instances with respect to the query they purport to explain. This is the reason
why we needed to set up everything for 3-valued logic in the preceding sections.

Formally, let r = (d,A, 𝜈, 𝜑) be a total query result, and let B be a subinstance of A. We take
sufficiency as the defining property of instance-based provenance:
Definition 5.1. Subinstance B is called sufficient for r if (d, B, 𝜈, 𝜑) is also a query result, i.e., if

⟦𝜑⟧(d,B),𝜈super = t. A provenance result is a pair (r, B) such that B is sufficient for r.
It is important to note that sufficiency is upward closed: if 𝐵 ⊆ 𝐴 is sufficient and 𝐵 ⊆ 𝐵′ ⊆ 𝐴, then

also 𝐵′ is sufficient. This holds because 3-valued logic semantics (both Kleene and supervaluation)
are monotone in information order (where u < t and u < f and t and f are incomparable).
Intuitively, “giving more information does not hurt”, although later in the paper we will pay
attention to minimality as a desideratum for provenance.
We next explore how provenance results can be obtained from provenance polynomials and

from causality.

5.1 Provenance from polynomials
In the case of unions of conjunctive queries, it is well known that the lineage or why-provenance
of a query result is provided by the tokens in the provenance polynomial [16]. We generalize this
connection here to full first-order logic.

Formally, let r = (d,A, 𝜈, 𝜑) be a total query result with provenance polynomial 𝑝 = pol(r). Since
r is total, ⟦𝜑⟧(d,𝐴),𝜈

K equals ⟦𝜑⟧(d,𝐴),𝜈
super = t. Hence, by Proposition 3.2, the polynomial 𝑝 is nonzero. For

any monomial𝑚 of 𝑝 , we write tokens(𝑚) to denote the set of facts (positive or negative) occurring
as tokens in 𝑝 . From the definition of 𝑝 it is readily verified that tokens(𝑚) is a subinstance of A.
We also write tokens(r) for the union of all tokens(𝑚), i.e., the set of all facts occurring in 𝑝 .

In a sense, every monomial of the provenance polynomial encodes a proof for the query result.
In accordance, we establish:

Theorem 5.2. Let r = (d,A, 𝜈, 𝜑) be a total query result, and let𝑚 be a monomial of pol(r). Then
𝐵 = tokens(𝑚) is sufficient for r. Actually, 𝐵 is even Kleene-sufficient, meaning that ⟦𝜑⟧(d,𝐵),𝜈K = t.

Proof sketch. For any 𝐵 ⊆ 𝐴, the polynomial on 𝐵 is a quotient of the polynomial on 𝐴;
formally, pol(d, B, 𝜈, 𝜑) = pol(r)/(A − B). Hence, if 𝐵 contains tokens(𝑚), the polynomial on 𝐵 still
has𝑚 as a monomial. In particular, the polynomial on 𝐵 is not zero. Proposition 3.2 then yields
⟦𝜑⟧(d,𝐵),𝜈K = t as desired. □

5.2 Provenance from causality
The following “hitting-set lemma” establishes a close connection between sufficiency and causality:

Lemma 5.3. Let r be a total query result with instance 𝐴, and let 𝐵 ⊆ 𝐴. Then 𝐵 is sufficient for r if
and only if 𝐵 intersects every cause of r.

This is a good place to note that causes need not be sufficient, as illustrated by the propositional
formula 𝑃 ∧𝑄 on instance {𝑃,𝑄} with causes {𝑃} and {𝑄}. The above lemma still implies a rather
strong sufficiency result. Similar to tokens(r), which contains all facts in the provenance polynomial,
we define cf (r) (causal facts) as the union of all causes of r. We establish:

Theorem 5.4. For any total query result r, the intersection cf (r) ∩ tokens(r) is sufficient for r.

Proof. From Theorem 5.2 and the upward-closedness of sufficiency, we know that tokens(r) is
sufficient, so by the above Lemma it intersects with all causes. Then certainly cf (r) ∩ tokens(r)
also intersects with all causes, so the same lemma yields sufficiency. □
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The sets cf (r) and tokens(r) are in general incomparable. Intuitively this is because the notion
of cause is syntax-independent [14]: it is the same for equivalent formulas. Provenance polynomials
are syntax-dependent.

Example 5.5. Consider the propositional formula 𝜑 = 𝜓 ∨ (𝜓 ∧𝑅) where𝜓 = 𝑃 ∨ (¬𝑃 ∧𝑄). Note
that 𝜓 is equivalent to 𝑃 ∨ 𝑄 . Over instance 𝐴 = {𝑃,𝑄, 𝑅}, the provenance polynomial for 𝜑 is
𝑃 + 𝑃𝑅, so tokens(r) = {𝑃, 𝑅}. In contrast, the only cause of 𝜑 being true in 𝐴 is {𝑃,𝑄}.

6 PROPERTIES OF PROVENANCE RESULTS
We introduce a number of natural properties that one may want to require of provenance results.
They will form the basis for the postulates in the next section.

Definition 6.1 (Properties of provenance results). Let p = (r, 𝐵) be a provenance result, with
r = (d,A, 𝜈, 𝜑).

• p is proof preserving (pp) if pol(d,A, 𝜈, 𝜑) = pol(d, B, 𝜈, 𝜑).
• p is proof containing (pc) if tokens(𝑚) ⊆ B for some monomial𝑚 in pol(d,A, 𝜈, 𝜑).
• p is proof-relevant (pr) if B ⊆ tokens(r).
• p satisfies Kleene (k) if ⟦𝜑⟧(d,B),𝜈K = t.
• p is cause preserving (cp) if r and (d, B, 𝜈, 𝜑) have exactly the same causes.
• p is cause containing (cc) if B contains a cause for r, on condition that a cause exists; otherwise,
cc is trivially satisfied.

• p is cause-relevant (cr) if B ⊆ cf (r).
We call the above basic properties. Let 𝑋 be any set of basic properties.

• p is minimal for 𝑋 (min(𝑋 )) if 𝐵 is minimal such that p satisfies all basic properties in 𝑋 .

We use the term ‘proof’ in the properties regarding the provenance polynomial because the
monomials in the polynomial encode the different proofs for a query result. Apart from property
Kleene (see below), there is a clear symmetry in the set of basic properties. On the one hand we
have preservation, containment, and relevance for proofs; on the other hand, we have the same for
causes. Here, the two relevance properties express upper bounds on the facts that appear in the
provenance, while the preservation and containment properties express lower bounds.
One may wonder why proof containment is not defined in another way, requiring that the

polynomials on 𝐴 and on 𝐵 have a monomial in common. Also, one may wonder why property
Kleene is in the list. This is answered in the following:

Proposition 6.2. Provenance result p as above is proof-containing, iff it satisfies Kleene, iff

pol(d,A, 𝜈, 𝜑) and pol(d, B, 𝜈, 𝜑) have a monomial in common.

Wewill continuewith property k and omit the equivalent property pc.We can also give equivalent
formulations for proof and cause preservation:

Proposition 6.3. Let provenance result p = (r, 𝐵) be as above. Then p is pp iff 𝐵 contains tokens(r),
and p is cp iff 𝐵 contains cf (r).

The properties we consider here are not all independent. For example, proof (cause) preservation
is stronger than proof (cause) containment. Also, since proof and cause relevance are upper bound
properties, it is plausible (we prove it formally) thatmin(pp) andmin(k) imply pr, and similarly that
min(cp) andmin(cc) imply cr. Interestingly, alsomin(∅) implies cr. We list some useful implications
in the following, where we denote logical implication by ⇒. (We do not claim the list is complete.)

Proposition 6.4. (1) pp ⇒ k (2) cp ⇒ cc (3) min(pp) ⇒ pr (4) min(k) ⇒ pr (5) min(cp) ⇒ cr
(6) min(∅) ⇒ cr (7) min(cc) ⇒ cr (8) min(pr) ⇒ min(∅) (9) min(cr) ⇔ min(∅)
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7 POSTULATES FOR PROVENANCE RELATIONS
Provenance relations are our proposed abstraction of mechanisms for instance-based provenance.

Definition 7.1. A provenance relation is an infinite set Π of provenance results that is total and
generic.

By totality we mean that Π has at least one provenance result for each total query result (over
all schemas). There may be several provenance results for one total query result, i.e., provenance
relations may be nondeterministic.
By genericity we mean two things. First, Π should not interpret relation names, i.e., should

not provide different provenance for situations that are identical except for the names of relations.
Second, Π should not make a difference between a disjunction𝜓1 ∨𝜓2 and the same disjunction
𝜓2 ∨𝜓1 in the reverse order, and similarly for conjunctions. When two formulas differ only in the
way disjunctions and conjunctions are ordered, we call them isomorphic.

Formally,Π is generic ifΠ is invariant under vocabulary renaming and under formula isomorphism.
We omit the formal definition of these invariances and give an example instead.

Example 7.2. Over proposition symbols 𝑃 and 𝑄 , consider the formula 𝜑 = 𝑃 ∨𝑄 and the total
instance {𝑃,𝑄}. Clearly, (𝐴,𝜑) is a total query result; for simplicity in this example we omit the
domain and the valuation from the notation for query and provenance results. Consider subinstances
𝐵1 = {𝑃} and 𝐵2 = {𝑄}. Both are sufficient for 𝜑 being true on 𝐴. Intuitively, there is no reason
to prefer symbol 𝑃 over symbol 𝑄 . Accordingly, if a provenance relation Π would relate (𝐴,𝜑)
to 𝐵1, we would expect Π to relate (𝐴,𝜑) also to 𝐵2, and thus to be nondeterministic. We can see
this formally using genericity. Assume (𝐴,𝜑, 𝐵1) ∈ Π. Formally, let 𝜌 be the vocabulary renaming
that swaps 𝑃 and 𝑄 . By invariance under renaming, (𝐴,𝜑 ′, 𝐵2) ∈ Π, where 𝜑 ′ = 𝑄 ∨ 𝑃 . Then by
invariance under isomorphism, also (𝐴,𝜑, 𝐵2) ∈ Π.

Remark 7.3. Genericity is similar in spirit, but formally different, from the notion of genericity
for database queries [1]. The latter notion is about invariance under isomorphism of instances,
whereas our notion is about invariance on a simple syntactic level (schemas and formulas). □

The properties of provenance results from Definition 6.1 now give rise to properties on the
level of provenance relations, simply by requiring them pointwise. We refer to these properties as
postulates that one may want to impose on a provenance relation. We used lowercase letters for
the properties; we now use uppercase letters for the postulates. In addition to postulates obtained
from properties, we also consider the natural postulate of determinism.

The postulates on a provenance relation Π are as follows.
Polynomial preservation (PP): every p ∈ Π is proof preserving.
Kleene (K): every p ∈ Π satisfies Kleene.
Proof relevance (PR): every p ∈ Π is proof-relevant.
Cause Preservation (CP): every p ∈ Π is cause preserving.
Cause Containing (CC): every p ∈ Π is cause containing.
Causal Relevance (CR): every p ∈ Π is cause-relevant.
Determinism (D): for every total query result r, there is exactly one provenance result (r, 𝐵)

in Π.
Let 𝑋 be any set of basic properties from Definition 6.1.

Minimal for 𝑋 (Min(𝑋 )): every p ∈ Π is min(𝑋 ).
We can illustrate some postulates using five “canonical” provenance relations. All five are

deterministic. Let r be an arbitrary total query result about instance 𝐴.
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• Πid relates r with 𝐴, as a subinstance of itself. Indeed, the entire instance is the trivial
instance-based provenance. It satisfies the postulates PP, K, CP, CC, and D.

• Πtok relates r with tokens(r). It satisfiesMin(pp), K, PR, and D.
• Πcf relates r with cf (r). It satisfiesMin(cp), CC, CR, and D.
• Π

tokcf

∩ relates r with tokens(r) ∩ cf (r). It satisfies PR, CR, and D.
• Π

tokcf

∪ relates r with tokens(r) ∪ cf (r). It satisfies K, CC, D, andMin(pp, cp).
The above claims follow directly from the definitions, results and remarks in the preceding

sections. For example, that Πcf is a well-defined provenance relation, i.e., that cf (r) is sufficient for
any total query result r, follows from Theorem 5.4 and the upward-closedness of sufficiency. That
Πtok satisfies K follows from Theorem 5.2 and the monotonicity of Kleene semantics in information
order. That Πtok satisfiesMin(pp) is immediate from Proposition 6.3. And so on.

8 YOU CAN’T HAVE IT ALL: SATISFIABILITY
In this section we systematically analyze the satisfiability of different combinations of postulates.
Here, a set of postulates X is called satisfiable if there exists a provenance relation that satisfies all
postulates in X.

We start by considering sets of basic postulates; these are the postulates PP, K, PR, CP, CC and CR
corresponding to the corresponding basic properties pp, k, pr, cp, cc and cr of individual provenance
results. For any set𝑋 of the latter properties, we denote the corresponding set of basic postulates by
Postulates(𝑋 ). We also write 𝑋 for the closure of 𝑋 under the implications stated in Proposition 6.4.

It turns out that when a set of basic postulates is satisfiable, it is also satisfiable by a deterministic
provenance relation. Recall the canonical provenance relations discussed at the end of the previous
section. We show:

Theorem 8.1. Let𝑋 be a set of basic properties. If 𝑋 contains {k, cr} or {pr, cc}, then Postulates(𝑋 )
is unsatisfiable. Otherwise, Postulates(𝑋 ) ∪ {D} is satisfiable by one of the provenance relations Πid

,

Πtok
, Πcf

, or Π
tokcf

∩ .

Proof. To show {K,CR} is not satisfiable consider any provenance relation Π and the query
result r1 = (∅, {𝑃}, 𝜀, 𝑃 ∨ ¬𝑃) over the proposition symbol 𝑃 . Because of totality, there must be a
provenance result (r1, B) ∈ Π. Since 𝑃 ∨¬𝑃 is a tautology, r1 has no causes, so cf (r1) = ∅. Therefore,
for Π to satisfy CR, the only possible value for B is ∅. However, (r1, ∅) does not satisfy property k,
so Π cannot satisfy K.
To show {PR,CC} is not satisfiable consider r2 = (∅, {𝑃,𝑄}, 𝜀, 𝜑) where 𝜑 is 𝑃 ∨ (¬𝑃 ∧𝑄), for

proposition symbols 𝑃 and𝑄 . Let (r2, B) ∈ Π. We can verify pol(r2) = 𝑃 . Also, since 𝜑 is equivalent
to 𝑃 ∨𝑄 , there is only one cause {𝑃,𝑄}. For r to satisfy pr, we should have B ⊆ {𝑃}, but then (r2, B)
cannot satisfy property cc, so Π cannot satisfy CC.
The remaining sets of postulates are satisfiable. We consider all maximal sets of basic postulates

that are not supersets of {K,CR} or {PR,CC}. The set {PP,K,CP,CC} is satisfied by Πid . The set
{PP,K, PR} is satisfied by Πtok . The set {CR,CP} is satisfied by Πcf . The set {PR,CR} is satisfied by
Π
tokcf

∩ . □

Note how the two unsatisfiable combinations show a symmetry between proofs and causes.
Indeed, {K,CR} requires proof containment (which we have seen is the same as property k) but
causal relevance, while {CC, PR} requires causal containment but proof relevance.
We next consider minimality. A single minimality postulate Min(𝑋 ) is satisfiable if and only if

Postulates(𝑋 ) is. However, as already hinted by Example 7.2, determinism is no longer for free, so
we obtain additional unsatisfiable combinations.
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Example 8.2. Example 7.2 basically showed that {Min(∅),D} is unsatisfiable. A different example
is given by {Min(pp, cc),D}. To see that this is unsatisfiable, consider r = (𝜑,𝐴) with the proposi-
tional formula 𝜑 = (𝑃 ∧𝑄 ∧¬𝑅) ∨𝑅 and the instance 𝐴 = {𝑃,𝑄, 𝑅} (we omit domain and valuation
in propositional logic). The polynomial is 𝑅, and there are two causes, namely 𝐵1 = {𝑃, 𝑅} and
𝐵2 = {𝑄, 𝑅}. Crucially, 𝐵1 and 𝐵2 are also the only two minimal sufficient subinstances that are
proof preserving and cause containing. Reasoning as in Example 7.2, swapping symbols 𝑃 and 𝑄 ,
we see that any provenance relation Π containing (r, 𝐵1) must also contain (r, 𝐵2), and vice versa.

We can show the following.

Theorem 8.3. For 𝑋 a set of basic properties, {Min(𝑋 ),D} is satisfiable if and only if 𝑋 equals the

closure of one of {pp}, {cp}, {pp, pr}, {cp, cr}, or {pp, cp}.

Note again the symmetry between proof and cause. Interestingly, the satisfiable combinations
in the above result are “categorical”, in the sense that each of them is satisfied by exactly one
provenance relation. Indeed, {Min(pp),D} and {Min(pp, pr),D} are equivalent and satisfied only
by Πtok ; symmetrically, {Min(cp),D} and {Min(cp, cr),D} are equivalent and satisfied only by Πcf .
Finally {Min(pp, cp),D} is satisfied only by Π

tokcf

∪ .
Next, we investigate combining a minimality postulate with extra basic postulates. Observe

that for Postulates(𝑌 ) ∪ {Min(𝑋 )} to be satisfiable, at the very least Postulates(𝑋 ∪ 𝑌 ) must be
satisfiable, but, it turns out that many combinations then become unsatisfiable.

Example 8.4. Consider {Min(k), PP}. The first postulate restricts the subinstance to come from
just one monomial of the provenance polynomial; the second forces the subinstance to contain
all provenance tokens. Intuitively, the two postulates are opposing each other and indeed their
combination is unsatisfiable. (Consider, for example, a propositional formula 𝑃 ∨𝑄 on the instance
{𝑃,𝑄}.)
For another example, consider {Min(pp),CC}, and consider the propositional formula 𝑃 ∨ (¬𝑃 ∧

𝑄) on the instance {𝑃,𝑄}. The polynomial is 𝑃 , but the only cause is {𝑃,𝑄}, again showing that
the two postulate are opposing each other.

We can characterize the combinations that remain satisfiable as follows.

Theorem 8.5. For sets 𝑋 and 𝑌 of basic properties, Postulates(𝑌 ) ∪ {Min(𝑋 )} is satisfiable if and
only if

(1) 𝑌 ⊆ 𝑋 and Postulates(𝑋 ) is satisfiable; or
(2) 𝑋 and 𝑌 fall in the following table:

𝑋 𝑌 Reason

∅ pr or cr or {pr, cr} Min(pr)
pr cr Min(pr)
cr pr Min(pr)
k pr Min(k)
pp pr Min(pp)
cc cr Min(cc)
cp cr Min(cp)

We see that when Postulates(𝑌 ) ∪ {Min(𝑋 )} is satisfiable it is almost always equivalent to
Min(𝑋 ), except in the first line in the table, where it is Min(pr). This postulate can be satisfied
by the provenance relation Πtok

min that relates each total query result r to the minimal sufficient
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subinstances that are contained in tokens(r). To satisfy postulateMin(k) we can return the minimal
monomials in pol(r). PostulateMin(cc) is satisfiable simply because CC is, but a simple description
of a satisfying provenance relation seems elusive.

Of course, the discussed provenance relations are nondeterministic. So what happens when we
combine a minimality postulate with both extra basic postulates and determinism? It turns out that
essentially no satisfiable combinations remain, beyond those that are equivalent to a combination of
a type already seen before. The same holds when we combine two different minimality postulates.
Thus, our analysis of satisfiability is concluded.

Theorem 8.6. Let 𝑋 and 𝑌 be sets of basic properties.

(1) If {Min(𝑋 ),D} ∪ Postulates(𝑌 ) is satisfiable, then it is equivalent to {Min(𝑋 ),D}.
(2) If {Min(𝑋 ),Min(𝑌 )} is satisfiable, then it is equivalent to Min(𝑋 ) or Min(𝑌 ).

9 POSITIVE QUERIES
A lot of past research on provenance has focused on positive relational algebra, or unions of
conjunctive queries (UCQs). It is therefore interesting to look at the postulates in the absence of
negation. We focus slightly more generally on positive first-order logic formulas, adapting the
grammar from Section 2 as follows:

𝜑 ::= 𝑡1 = 𝑡2 | 𝑡1 ≠ 𝑡2 | 𝑅(𝑡1, . . . , 𝑡𝑖 ) | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 𝜑 | ∀𝑥 𝜑
Thus, negation is absent, but universal quantification is still allowed.

In this setting, supervaluation semantics and Kleene semantics coincide. Also, it is no longer
necessary to work with three-valued instances, since positive formulas are well-known to be
monotone on total instances (𝐷 ≤ 𝐷 ′ if every positive fact in 𝐷 is also a positive fact in 𝐷 ′). For
relativized three-valued instances we can now write (d, 𝐴), 𝜈 ⊨ 𝜑 to mean that (d, 𝐷), 𝜈 ⊨ 𝜑 with 𝐷

the negative completion that adds unknown facts as negative.
Causes for positive formulas never contain negative facts. Moreover, our Definition 4.1 of cause

is compatible with the definition by Meliou et al. [27] of causes for UCQs:
Definition 9.1. Let r = (d,A, 𝜈, 𝜑) be a total query result, with 𝜑 positive, and let 𝑓 be a positive

fact in 𝐴. We call 𝑓 a Meliou cause for r if there exists a subinstance B ⊆ A (called a contingency)
such that (d, 𝐴 − 𝐵), 𝜈 ⊨ 𝜑 but (d, 𝐴 − 𝐵 − {𝑓 }), 𝜈 ⊭ 𝜑 .

Proposition 9.2. The set of Meliou causes for r equals cf (r).
Note that Meliou causes, being singletons, are not necessarily causes in themselves. For example,

the only cause of 𝑃 ∨𝑄 being true on instance {𝑃,𝑄} is {𝑃,𝑄} itself. This is because we use the
modified Halpern-Pearl definition which is known for its better treatment of disjunction.

What makes the positive case simpler (compare Example 5.5) is that causal facts always appear
in the provenance polynomial. The proof exploits that flipping positive facts simplifies to deleting
them.

Proposition 9.3. cf (r) ⊆ tokens(r) for positive query results r.

As a consequence, the closure 𝑋 of a set 𝑋 of basic properties is now done with respect to
three implications: pp ⇒ cp and cr ⇒ pr by the above result, and cp ⇒ cc as before. The
implication pp ⇒ k becomes moot in the positive case since k is always satisfied. The effect is
that the combination of postulates {K,CR}, which was unsatisfiable (Theorem 8.1), simplifies to
CR which is satisfied by Πcf . Also {PR,CC} becomes satisfiable and is satisfied by Πtok . Indeed, by
Proposition 9.3, cc and pr are no longer conflicting properties.

Only one unsatisfiable combination remains in the positive case. Intuitively, properties pp and cr
are still conflicting since the causal facts can be a strict subset of the provenance tokens.
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Theorem 9.4. For a set 𝑋 of basic properties, Postulates(𝑋 ) is unsatisfiable in the positive case iff

𝑋 contains {pp, cr}.

For minimality and determinism, compared to Theorem 8.3, there is one new satisfiable case:
since cp and pr are no longer conflicting, {Min(cp, pr),D} is now satisfied by Πcf .

Theorem 9.5. For 𝑋 a set of basic properties, {Min(𝑋 ),D} is satisfiable in the positive case if and

only if 𝑋 equals the closure of one of {pp}, {cp}, {pp, pr}, {cp, cr}, {cp, pr}.

We omit the treatment of combining minimality with extra basic postulates. We can again show
that the only satisfiable cases are equivalent to a single minimality postulate. Also, Theorem 8.6
remains verbatim true in the positive case.

10 CONCLUSION
We have reported on a systematic investigation of instance-based provenance, in its relation to
provenance polynomials and causality, in the setting of first-order queries with negation. We
encountered a number of interesting provenance relations: the deterministic relations Πtok , Πcf ,
Π
tokcf

∪ and Π
tokcf

∩ , and nondeterministic provenance such as the minimal monomials, the minimally
sufficient subinstances, or the minimally sufficient subinstances that contain a cause. For example,
for 𝑃 ∨ (¬𝑃 ∧ 𝑄) on {𝑃,𝑄}, subinstance {𝑄} is minimally sufficient but does not appear in the
polynomial.

Given the available variety of combinations of postulates, it would be interesting to conduct an
empirical study on real-life queries, asking domain experts which provenance relations are the
most practical and useful in different application scenarios. Moreover, such scenarios may suggest
new postulates. Complexity requirements, or the “non-usable fact” postulate from Bourgaux et al.
which requires that query results with the same polynomial should have the same provenance [4],
are examples of other postulates.

Also, a novel applicationmade possible by instance-based provenance is to return data in response
to integrity constraints, i.e., boolean queries. This avenue is beginning to be explored in the context
of RDF constraint languages [10, 22]
The complexity of Halpern-Pearl causality is already well studied [2, 12, 17]. Nevertheless, our

particular instantiation of it for first-order logic query results may have different complexities, and
it is a natural topic for further research to investigate data and combined complexity. (As done for
Meliou causes [27].) Also the complexity of various properties of provenance results considered in
this paper, such as cp or min(cc), merits further investigation.
Another natural direction for further research is to explore instance-based provenance, and

the application of Halpern-Pearl causality, for classes of queries beyond first-order, e.g., queries
involving aggregation or recursion. There exist proposals for Kleene semantics in such settings
[13, 30]. Proof-based provenance results are already available through the work on provenance
circuits for Datalog [11].
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