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Abstract. There are several situations where it is desirable to be able
to extract a subgraph from an RDF graph, based on a node in the graph,
and given a shape that the node conforms to. Such a subgraph can be
called a neighborhood. We discuss desiderata for neighborhoods, and
compare different possible definitions. We show connections with data
provenance and causality. We also show how to obtain provenance poly-
nomials for the shape constraint language SHACL from the work of Dan-
nert and Grädel.

1 Introduction

A lot of data on the Web is present in the form of RDF graphs [1,23]. For our
purposes, we can think of an RDF graph simply as an edge-labeled, directed
graph [25]. In reality the RDF data model is more general [11]; notably, it does
not distinguish between nodes and edge labels.

RDF graphs can be interpreted from two perspectives. One perspective
considers an RDF graph to be a description of knowledge: a logical theory.
Thereto, appropriate vocabularies have been introduced for representing logical
constructs: RDFS for relationships and class hierarchies, and OWL for more
expressive description logic formulas [3]. The other perspective is not in opposi-
tion to the first, but is more primitive in that it does not really try to interpret
the graph. The only interpretation that is still done is that the graph nodes
are not only merely abstract (blank nodes) but can also represent concrete data
values (literal nodes) or can identify actual resources on the Web (IRI nodes).

Here we are taking this second perspective. In this perspective, RDF is a
schemaless data model: unlike in classical data modeling, one does not first design
and prescribe a complex schema, and then only considers instances conforming to
that schema. Instead, every edge-labeled graph is a potential instance. Of course,
there are still many advantages to having a schema, or structural information
about the data, even if it is only partial. These advantages are well known and
lie in efficiency, usability, data quality, etc.

For this reason, schema languages were soon proposed for RDF graphs,
notably, SHACL and ShEx [7,21,23,26]. The emphasis is on descriptive rather
than prescriptive schemas: not the form or structure of the entire data is intended
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to be prescribed completely, but rather, one describes various shapes that can
be expected to be present in the data.

Shapes can be thought of as possibly complex conditions on nodes v in a
graph: which labels can, or must, appear on edges involving v? Which atomic
data types should literal nodes have when they are linked to v? Which further
shapes should the neighbors of v satisfy? Indeed, in SHACL, shapes are essen-
tially logic formulas, which are always evaluated on nodes, as in description logics
[5,24]. In ShEx, shapes are expressed more in a manner reminiscent of regular
expressions and tree automata. In this paper, we will work with the convenient
logical formalisation of SHACL started by Corman et al. [10] and extended to
full SHACL in our work with Delva and Dimou [14].

We note that a SHACL schema (known as a shapes graph) does not only
contain definitions of shapes, but it also allows to pair these shapes to simply
node-selecting queries (so-called targets). An RDF graph G is then said to con-
form to a schema if for each shape–target pair σ–τ , every node v selected by τ
in G satisfies σ in G. The task of checking this (known as validation) will be less
of a focus in the present paper; we will focus more on shapes in themselves.

2 Neighborhoods

In various situations, it is desirable to be able to extract, from an RDF graph
G, a subgraph B of G, based on some given node v, and in accordance to some
given shape σ. We discuss some of these next.

DESCRIBE Queries. The RDF query language SPARQL has a DESCRIBE
query form which, given a node v, returns some RDF graph purporting to
describe that node. Such queries are used often in practice (e.g., [8]). The
SPARQL standard leaves open how these queries should actually be answered.
Yet, most engines return all edges of the graph G in which v is involved, effec-
tively returning a subgraph of G which is often called the neighborhood of v. We
might denote it by BG(v, 1).

The 1 in the above notation stands for the distance the edges go from v in
the graph, which indeed equals one; the B stands for ball, following terminology
and notation from metric topology. More generally, for any natural number k,
we could define BG(v, k) to be the subgraph of G consisting of all edges lying
on paths of length at most k that contain v.

It seems more useful, however, if we could use a describing shape σ instead of
just some distance k, something that has been discussed within the community
[27]. The idea would be to have a notion of neighborhood BG(v, σ), defined for
any given node v that satisfies σ in graph G. Intuitively, we would like this to
be a subgraph of G, containing the relevant edges from G that cause v to satisfy
σ, but preferably not more.

As a simple example, suppose σ is the shape “v has at least one outgoing
email edge, and at most one outgoing name edge”. If v satisfies σ, it seems
intuitively clear that BG(v, σ) will need to contain at least one of the email
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edges emanating from v. Should the neighborhood contain additional edges as
well? That is less clear.

Provenance. Beyond giving a semantics to DESCRIBE queries using shapes,
neighborhoods can also serve to provide provenance for shapes. In databases,
many notions of provenance have been considered [9,15]. The common pattern
to all approaches is that given a database D, a query Q, and a query result ν,
the provenance should explain why ν is indeed a result of Q in D. Our setting
clearly matches this pattern, with G, v and σ playing the role of D, ν and Q,
respectively.

With this motivation of providing provenance for SHACL, we proposed a
concrete definition of neighborhoods in our work with Delva and Dimou [14]. We
will indicate that definition by BG

prov(v, σ), to discriminate it from the general
idea of neighborhood, and from other concrete proposals.

Knowledge Graph Subsets. Many large knowledge graphs consulted in prac-
tice are presented in RDF format and support a SPARQL endpoint. In principle,
any desired graph or subgraph, including one’s favorite definition of neighbor-
hoods, could be constructed from a large data graph using a SPARQL query.
Yet, it may be easier and more natural to extract subgraphs using shapes: given
a shape σ, retrieve all nodes satisfying σ, together with their neighborhoods.

With this motivation of subset extraction, Labra Gayo and collaborators have
proposed another concrete definition of neighborhoods, this time using shapes
expressed in ShEx rather than SHACL [20,22].

Shape Fragments. Independently, the same idea of using shapes as a retrieval
mechanism was proposed in our above-cited work on provenance for SHACL; we
called it shape fragments to make the link with the already known mechanism
of triple pattern fragments [29]. We proved the following correctness property
for Bprov: when a graph conforms to a SHACL schema, then so does the shape
fragment formed by taking the neighborhoods of all target nodes of all shapes
in the schema. Informally speaking, this means that the shape fragment still
contains all information that is important for the schema; yet, the fragment can
be much smaller than the original graph.

Repairs. When a graph is validated against a schema, a violation report is
generated, listing all target nodes that do not satisfy the shape associated to the
target. When we are faced with a node v in a graph G that does not satisfy a
shape σ, we want an explanation of this violation, so that we may repair it in
the data. Since v satisfies the negation ¬σ, the neighborhood BG(v,¬σ) might
serve as such an explanation.

Here, however, we have a problem, since so far we have been thinking of
neighborhoods as subsets of the data, consisting of facts (edges) that are present
in the data (graph). When dealing with negative conditions, missing facts are
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equally important for explanations as present facts. For example, let σ be the
shape “v has a colleague that is also a friend” (expressible in SHACL, using sh:not
and sh:disjoint). When v does not satisfy σ in graph G, this can conceivably
be repaired by adding a friend-edge to one of v’s colleagues (or vice versa).
However, if BG(v,¬σ) is a subgraph of G, it cannot include such a missing
edge. As a matter of fact, Bprov is even defined to be just empty for disjointness
constraints.

Indeed, a proper notion of repair in databases should contain missing facts
as well as present facts [4]. For SHACL, this was pursued by Ahmetaj et al. [2].
They define an explanation1 of a node v in a graph G for a shape σ to be a
minimal pair (A,D), where A is a set of edges missing in G, and D is a set of
edges present in G, such that inserting A into G and deleting D from G would
cause v to no longer satisfy σ.

This notion of explanation may be considered as an alternative definition for
neighborhoods. It differs however in two important aspects from the previous
proposals. Not only does it involve negative information, as already discussed; it
is also no longer deterministic, due to the minimality requirement. For example,
continuing the above example, suppose v has exactly two colleagues c1 and c2,
but no friends. Then each of the two missing friend-edges v � c1 and v � c2
are equally valid minimal explanations for v not having any colleagues that are
also friends.

3 Provenance Polynomials

At this point we have seen that several approaches exist to defining exactly
what should be in a neighborhood, and there may be others. Is there a unique
principled approach? Given the connection to data provenance, we should look
at provenance polynomials, which are at the heart of most approaches in data
provenance [9,15].

In the context of databases, the provenance polynomial of a result ν of a
query Q to a database D is a compact representation of all the proofs why ν
indeed belongs to Q(D). Provenance polynomials were first considered for queries
expressed in positive-existential first-order logic [17]; later they were extended
to full first-order logic [16,28].

Since SHACL (without recursion) can be translated into first-order logic, in
principle, we could use this to obtain provenance polynomials for SHACL. How-
ever, given the affinity of SHACL to description logic, here we adopt the prove-
nance polynomials developed by Dannert and Grädel for modal logics, guarded
logics, and description logics [12,13].

To see how this works, we must recall the formalisation of SHACL as a
logic, already mentioned in the Introduction. We make a few simplifications for
what follows. We omit inverse properties and property paths. We also omit the
1 They actually define explanations for non-satisfaction, but we present the same idea

for satisfaction, so as to fit our story better. For logics closed under negation, as
indeed SHACL is, this makes no difference.
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constraints sh:lessThan, sh:lessThanEq, and sh:uniqueLang. We omit recursion
(which has no standardized meaning) and therefore can also omit shape names
and the sh:hasShape constraint.

Under the above simplifications, the syntax of shapes φ is then given by the
following grammar:

φ ::= � | ⊥ | hasValue(c) | test(t) | eq(p, r) | disj (p, r) | closed(P )
| φ ∧ φ | φ ∨ φ | ¬φ | ≥k p.φ | ≤k p.φ | ∀p.φ

Here, c stands for node constants; t for tests; p and r for property names; P
for finite sets of property names; and k for natural numbers. By tests, we mean
any of the tests on single node values that are provided in SHACL, such as
typechecking of a literal, regex matching of an IRI, etc.

Shapes are evaluated in RDF graphs; we formalize an RDF graph as a finite
set of edges, where an edge is a triple of the form (s, p, o), where s and o are
nodes and p is a property name. We often abbreviate “RDF graph” to “graph”.

Let φ be a shape, let G be a graph, and let a be a node in G. Table 1
now gives the definition of when a satisfies φ in G, denoted by G, a |= φ. The
table omits the obvious logical meanings of � (true), ⊥ (false), and the boolean
connectives (and, or, not). In the table we use the notation �p�G(a) to denote
the set {b | (a, p, b) ∈ G}.

Table 1. Semantics of shapes.

φ G, a |= φ if:

hasValue(c) a = c

test(t) a satisfies t

eq(p, r) the sets �p�G(a) and �r�G(a) are equal

disj (p, r) the sets �p�G(a) and �r�G(a) are disjoint

closed(P ) for all triples (s, p, o) ∈ G with s = a we have p ∈ P

≥k p.ψ #{b ∈ �p�G(a) | G, b |= ψ} ≥ k

≤k p.ψ #{b ∈ �p�G(a) | G, b |= ψ} ≤ k

∀p.ψ every b ∈ �p�G(a) satisfies G, b |= ψ

We introduce provenance polynomials as multivariate polynomials over the
boolean semiring,2 with edges playing the role of indeterminates. If e is an edge,
we will write [e] when it is used as an indeterminate. We will refer to these
indeterminates as provenance tokens (or simply tokens). To deal with negation,
we assume (without loss of generality) that shapes are in negation normal form.

Now, let φ be a shape in negation normal form, let G be a graph, and let
a be a node in G. Table 2 defines the provenance polynomial pol(G, a, φ) for

2 The boolean semiring has two elements 0 and 1 with logical or as addition and logical
and as multiplication. Note that, since 1+1 = 1, any polynomial p is equal to p+ p,
also p + p + p, etc.
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the SHACL logical operators. Since these operators are standard in description
logics, our definition is in line with the definition given by Dannert and Grädel
[12] for the description logic ALC. Their definition is generalized here to deal
with counting quantifiers.

Table 2. Definition of provenance polynomials for SHACL logical operators.

φ pol(G, a, φ)

� 1

⊥ 0

hasValue(c) 1 if a = c and 0 otherwise

¬hasValue(c) 0 if a = c and 1 otherwise

test(t) 1 if a satisfies t and 0 otherwise

¬test(t) 0 if a satisfies t and 1 otherwise

φ1 ∧ φ2 pol(G, a, φ1) · pol(G, a, φ2)

φ1 ∨ φ2 pol(G, a, φ1) + pol(G, a, φ2)

∀p.ψ
∏

b∈�p�G [a, p, b] · pol(G, b, ψ)

≥k p.ψ
∑{∏

b∈X [a, p, b] · pol(G, b, ψ) | X ⊆ �p�G(a) & #X = k}
≤k p.ψ

∏{∑
b∈X [a, p, b] · pol(G, b, ¬ψ) | X ⊆ �p�G(a) & #X = k + 1}

Example 1. Consider the shape φ expressing “v has at most one author who is
not a student”:

φ = ≤1 auth.≤0 rdf:type.hasValue(stud)

Consider graph G:

G =

c auth a1

a1 rdf:type prof
c auth a2

a2 rdf:type stud

Node c satisfies φ in G, since only a1 is not a student.
To compute pol(G, c, φ), let σ = hasValue(stud) and let ψ = ≤0 rdf:type.σ, so

that φ = ≤1 auth.ψ. Note that ¬ψ in negation normal form equals ≥1 rdf:type.σ.
We calculate:

pol(G, c, φ) = [c, auth, a1] · pol(G, a1,¬ψ) + [c, auth, a2] · pol(G, a2,¬ψ)
= [c, auth, a1] · [a1, rdf:type, prof] · pol(G, prof, σ)

+ [c, auth, a2] · [a2, rdf:type, stud] · pol(G, stud, σ)
= [c, auth, a1] · [a1, rdf:type, prof] · 0

+ [c, auth, a2] · [a2, rdf:type, stud] · 1
= [c, auth, a2] · [a2, rdf:type, stud].

Recall that the triples in square brackets are provenance tokens.
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Now suppose we would add to G a triple (c, auth, a3), so that c no longer
would satisfy φ. Then, due to X = {a1, a3}, the above result would be multiplied
by 0 and the entire polynomial would become 0. 
�

The above example illustrates the following fundamental property, which is
straightforward to prove formally.

Theorem 1. G, a |= φ if and only if pol(G, a, φ) �= 0.

3.1 Neighborhoods from Polynomials

Theorem 1 suggests at least two principled approaches to defining a neighbor-
hood BG(a, φ):

All tokens: Simply collect the edges from all tokens in pol(G, a, φ). We denote
this by BG

tok(a, φ).
One monomial: Every polynomial is a sum of monomials. Now collect the edges

from the tokens in just one of the monomials. We denote this by BG
mon(a, φ).

This is a non-deterministic approach, since there may be many monomials in
a polynomial.

Note that, if G, a � φ, the polynomial is 0, so by both approaches above, the
neighborhoods would be empty, which is reasonable since the node does not
satisfy the shape describing the neighborhood.

Example 2. In Example 1, there is only one monomial, and we have

BG
tok(a, φ) = BG

mon(a, φ) = {(c, auth, a2), (a2, rdf:type, stud)}.

For a simple example involving multiple monomials, let φ now denote the
shape ≥1 auth.�, simply expressing that v has at least one author. For the same
graph G, we have pol(G, c, φ) = [c, auth, a1] + [c, auth, a2], so

BG
tok(c, φ) = {(c, auth, a1), (c, auth, a2)}.

For BG
mon(c, φ)), there are two possible outcomes, namely the two singletons

{(c, auth, a1)} and {(c, auth, a2)}. 
�
What with the constraints eq and disj and their negations? These go beyond

description logic-like constraints, in that they independently test the presence
or absence of edges in the graph. To deal with them, we must introduce explicit
atomic edge formulas of the form E(e), where e is an edge. These formulas do not
belong to SHACL but help defining the polynomials. Essentially, the polynomial
of E(e) in G equals the token [e] if e is present in G, and equals 0 otherwise.

Moreover, to deal with disj and ¬eq we must also introduce negated edge
formulas and allow negative tokens, of the form [e]. The polynomial of ¬E(e)
equals [e] if e is absent from G, and 0 otherwise. This then leads to the definitions
in Table 3. One can verify that Theorem 1 continues to hold.



8 M. Jakubowski and J. Van den Bussche

Table 3. Provenance polynomials for eq , disj , and their negations.

φ pol(G, a, φ)

E(e) [e] if e ∈ G and 0 otherwise

¬E(e) [e] if e /∈ G and 0 otherwise

eq(p, r)
∏

b∈�p�G(a)[a, p, b] · pol(G, a, E(a, r, b))

· ∏
b∈�r�G(a)[a, r, b] · pol(G, a, E(a, p, b))

disj (p, r)
∏

b∈�p�G(a)[a, p, b] · pol(G, a, ¬E(a, r, b))

· ∏
b∈�r�G(a)[a, r, b] · pol(G, a, ¬E(a, p, b))

¬disj (p, r)
∑

b∈�p�G(a)[a, p, b] · pol(G, a, E(a, r, b)

¬eq(p, r)
∑

b∈�p�G(a)[a, p, b] · pol(G, a, ¬E(a, r, b))

+
∑

b∈�r�G(a)[a, r, b] · pol(G, a, ¬E(a, p, b))

Example 3. To illustrate the four new constraints, consider the three graphs in
Fig. 1. We have:

pol(G1, a, eq(p, r)) = [a, p, b]2 [a, r, b]2

pol(G2, a, disj (p, r)) = [a, p, b1] [a, r, b1] [a, r, b2] [a, p, b2]
pol(G3, a,¬disj (p, r)) = [a, p, b2] [a, r, b2]

pol(G3, a,¬eq(p, r)) = [a, p, b1] [a, r, b1] + [a, r, b3] [a, p, b3]


�

Fig. 1. Graphs used in Example 3.

We may choose to extend the notion of a neighborhood by also allowing
negated edges e to be present, indicating that their absence is important for
the satisfaction of the shape. In this case, we can generalize the definitions of
Btok and Bmon, taking edges from positive tokens as well as negated edges from
negated tokens. We refer to such neighborhoods as 3-valued neighborhoods.

Example 4. In Example 3, for BG3
tok(a,¬eq(p, r)), we would obtain the 3-valued

neighborhood
{(a, p, b1), (a, r, b1), (a, r, b3), (a, p, b3)}.

For 3-valued BG3
mon(a,¬eq(p, r)) there would be the two possibilities

{(a, p, b1), (a, r, b1)} and {(a, r, b3), (a, p, b3)}.


�
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For other applications, one may want to insist that a neighborhood really
is a subgraph, so consists only of edges present in the graph. In that case we
can define variants Bpostok and Bposmon which take only the edges from positive
tokens and disregard negative tokens in the polynomial. Interestingly, with one
exception, one can verify that the neighborhood definition proposed for prove-
nance for SHACL [14], which we denote here by Bprov, coincides with Bpostok.
The only exception is for disj (p, r), for which Bprov defines the neighborhood
to be empty, while BG

postok(a, disj (p, r)) consists of all p- and r-edges emanating
from a in G.

4 Causality

A quite different, purely semantic approach to neighborhoods is through causal-
ity. In this realm, the notion of actual cause proposed by Halpern and Pearl
[19] has been very influential. Adapting their more recent definition [18] to our
setting, this amounts to the following. Let G, a |= σ as before. A supercause for
G, a |= σ is a set S of positive and negated edges such that all positive edges
belong to G; all negated edges are missing from G; and in the graph resulting
from G by deleting the positive edges and inserting the negated edges, a no
longer satisfies φ. Now a cause is a minimal supercause.

Example 5. Take G2, a |= disj (p, r) from Example 3. The set {(a, p, b2), (a, r, b2)}
is a supercause but not a cause. Indeed, {(a, p, b2)} alone is already a cause, since
inserting this missing edge would make p and r no longer disjoint at a. Simi-
larly, {(a, r, b1)} is a cause. The two causes for G1, a |= eq(p, r) are {(a, p, b)}
and {(a, r, b)} since deleting either of them causes equality to be no longer
satisfied. 
�

Of course, causes are exactly the explanations introduced by Ahmetaj et
al. [2] in their work on repairs, already discussed in Sect. 2. It is tempting to
use causes as neighborhoods. However, we will see soon that they may violate a
fundamental property that we likely want from neighborhoods.

5 Desiderata for Neighborhoods

At this point we understand that there are a variety of possible definitions of
precisely what should be in a neighborhood. There is no single best definition,
since there are different desiderata one may have about neighborhoods, and these
desiderata are not all compatible with each other. We discuss this next, taking
some of our work with Bogaerts [6] done in the setting of first-order logic, and
adapting it slightly to the SHACL context.

Determinism has been mentioned a number of times already. Btok is deter-
ministic; Bmon, and also causes, are not. It depends on the application whether
nondeterminism is acceptable. When using neighborhoods as a retrieval mecha-
nism, as discussed in Sect. 2, we probably want determinism.
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Sufficiency. One desideratum seems so fundamental that it probably should be
a hard requirement: given that v satisfies shape σ in graph G, then B(G, v, σ)
should be such that v still satisfies σ in B(G, v, σ).3 When a neighborhood def-
inition has this property for all B, v, σ, we call it sufficient. This terminology
was coined by Glavic [15] in the context of data provenance.

Example 6. Consider G, c and φ from Example 1 where we calculated pol(G, c, φ)
showing that

BG
tok(c, φ) = {(c, auth, a2), (a2, rdf:type, stud)}.

We see that c also satisfies φ in this neighborhood.
Next let us continue Example 3. From the polynomials given there we obtain:

BG1
postok(a, eq(p, r)) = {(a, p, b), (a, r, b)}

BG2
postok(a, disj (p, r)) = {(a, p, b1), (a, r, b2)}

BG3
postok(a,¬disj (p, r)) = {(a, p, b2), (a, r, b2)}
BG3

postok(a,¬eq(p, r)) = {(a, p, b1), (a, r, b3)}
We again see that a still satisfies the respective constraint in each of the neigh-
borhoods. 
�

The above example is no coincidence: it can be proven [14] that Bprov, which
we have seen earlier is almost the same as Bpostok, is indeed a sufficient prove-
nance definition. Also Bposmon can be shown to be sufficient, adapting proof
techniques used in the context of first-order logic [6].

Causes (Sect. 4) are typically not sufficient. For a simple example, let σ be
the shape ≥1 p.� ∧ ≥1 r.�. Node a satisfies σ in graph G = {(a, p, b), (a, r, c)}.
There are two causes, namely the which node a satisfies in the two singleton
subsets of G. In neither of them, a satisfies σ.

Causal Relevance. While a single cause may not provide a sufficient notion
of neighborhood, interesting notions can still be obtained based on causality.
Indeed, a natural desideratum on neighborhoods can be that it exclusively con-
sists of edges that come from causes (where different edges may come from differ-
ent causes). We call such edges causally relevant. For example, it can be shown
[6] that restricting Btok to only causally relevant edges still yields a sufficient
notion of neighborhood.

Minimality. Given some set X of desiderata, we may naturally require neigh-
borhoods to be minimal for X. Minimality almost always leads to nondetermin-
ism, as there will be typically multiple minimal candidates. For example, just
take sufficiency, and the shape ≥1 p.� ∨ ≥1 r.� requiring that v has a p-edge or
an r-edge. When v has both, we can keep only one of them and have a minimally
sufficient neighborhood.
3 When using 3-valued neighborhoods, we should be careful about what we mean by

satisfaction [6].
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6 Conclusion

Coming back to our initial motivation for studying neighborhoods in Sect. 2,
what, if any, should the standard semantics of DESCRIBE USING a shape be
in SPARQL? As there is no “best” definition, it is probably best left unstan-
dardized. Yet, Bpostok seems to be a very reasonable semantics. When we want
something smaller, we can further restrict to causally relevant edges, but, the
computational complexity may be high. The computational complexity of find-
ing causes for SHACL shapes is already known to be high [2]. Perhaps, the
complexity of finding the causally relevant edges in the provenance polynomial
may be lower; this may be a direction for further research.

Computing neighborhoods, especially in the presence of property paths in
shapes (which we have omitted here for simplicity) can be a challenge [14]. That
also seems to be a good direction for further research.

In this paper, we have worked with SHACL, but neighborhoods for ShEx
have already been investigated [20,22]. A comparison between the approaches,
in particular comparing nonrecursive ShEx to provenance polynomials for non-
recursive SHACL, would be interesting.

Finally, we mention that RDF is more than just labeled graphs; edge labels
can be nodes by themselves. Designing an extension of SHACL that treats prop-
erties on equal footing as subjects and objects is another interesting direction
for further research.

Acknowledgments. We thank Bart Bogaerts, Thomas Delva, and Anastasia Dimou
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