GOOD: A Graph-Oriented
Object Database System

Marc Gemis

Inge Thyssens

Jan Paredaens

Jan Van den Bussche*

University of Antwerp (UTA)T

1 Introduction

In this video session we demonstrate a graph-
oriented database management system, called
GOOD [1]. The scheme of a database is
represented as a directed graph. Also the
database instance is (conceptually) represented
as a graph. However, such an instance graph
contains all information stored in the database
and is therefore too complicated to be displayed
completely on the computer screen, in a user-
friendly way. It would be almost impossible
to find the desired information, not to men-
tion how difficult it would be to make directly
changes in such a graph. Therefore we devel-
oped a language that simplifies the information
retrieval and modification.

2 The language of GOOD

A formal definition of the GOOD-language can
be found in [2, 3]. The language has only five
basic graph transformation operations (node

*Research Assistant of the NFWO

tDepartment of Mathematics
and Computer Science, University of Antwerp (UIA),
Universiteitsplein 1, B-2610 Antwerp, Belgium, Email:
{gemis,pareda,thyssens,vdbuss}@wins.uia.ac.be

and edge additions and deletions and a dupli-
cate eliminator) which can be combined into
program and method constructions. With such
programs we can express database queries, up-
dates, scheme constructions and restructurings
in a uniform way, as explained in [4]. GOOD
can account for a number of object-oriented fea-
tures, as shown in [5].

All operations are based on pattern match-
ing. This means that the parts of the database
on which the operation must work, are de-
scribed by means of a graph pattern. The op-
eration will be applied for every matching of
this pattern in the database graph. Patterns in
isolation have the power of select-project-join
queries; the operational power of full language
is computationally complete, as shown in [5, 6].
To our knowledge, this is the first graphical user
interface with this property.

Syntactically, each operation is a graph, con-
sisting of a pattern with special nodes and edges
to indicate which nodes or edges have to be
added or deleted or where duplicates have to
be eliminated.

The base language has been enriched with
macros, which are formally defined in terms of
the basic operations in [5, 7]. The purpose of
these macros is twofold:

1. they provide more pattern specification
possibilities, and



2. they provide programming constructs such
as loops and conditional operations.

Note that these macros are only abbreviation
mechanisms.

To have a database manipulation system, we
must be able to express database queries, up-
dates and scheme manipulations in a uniform
way, with the GOOD operations. This can be
achieved by interpreting programs differently
depending on their ezecution-mode [4]. There
are four execution modes in GOOD: query, up-
date, scheme manipulation and database re-
structuring. Any program can be run in any
mode. The mode is chosen by the user, and de-
scribes whether the program works only tem-
porary or changes only the database instance
graph, or only the scheme graph, or both. In
this way the user can express resp. queries, up-
dates, scheme manipulations and database re-
structurings.

3 The wuser interface of

GOOD

In the video we demonstrate two tools we have
implemented to write GOOD programs and to
display the result of database operations. The
tools are written on DG AViiON computers and
run under OSF /Motif.

The GOOD-programs contructed with these
tools are translated into an adaptation of the
relational algebra. This intermediate code can
then be further translated into the DML and
DDL of a specific database system (currently
Informix ESQL/C.

The first tool, the Program Builder tool helps
the user writing syntactically correct programs.
It is a drawing program with graphical syntax-
directed drawing capabilities, freehand draw-
ing for example is not possible. The only way
to “draw”, is by invoking commands from a
palette or menu-bar, so that the program can
check immediately for syntactical correctness
of the written program-step. Furthermore the

user can either create new objects and prop-
erties or use existing objects and properties by
copying them from a scheme graph. So the user
can be sure that his program can be executed
if he invokes the run-command.

The Program Builder tool allows the user to
customize the layout of the scheme. Not only
the position of the objects and relationships can
be changed, the user can also split the graph
into smaller ones or compose two unconnected
subgraphs into one connected graph, if there
are common objects. Exact definitions of com-
posing and decomposing graphs can be found
in [4]. Customized schemes can be stored and
used in later programs.

The result of a program is examined with the
second tool, the Viewing tool. In this tool, the
user specifies what he wants to see, again by
means of a pattern. This pattern is constructed
in the same way as the patterns in a program
step. The only difference is that the user does
not need to add GOOD-operations to patterns
in the Viewing tool. The matchings of the pat-
tern are then displayed in tabular form. While
a tabular format is a simple and natural way
to represent structured data, other possibilities
(e.g., graph-based or nested-tabular formats)
are currently being investigated. The user can

now select particular objects in the table and
“pin them down” in subsequent patterns. This
yields a novel and powerful technique for brows-
ing [4] as an answer-driven process, naturally
integrated in the viewing tool.

Both the Program Builder and the Viewing
tool provide also additional features for pattern
construction, besides copy and paste. Further-
more the selection of objects with the mouse
is syntax-directed. The tools automatically ex-
tend the set of selected nodes and edges, so that
this set is useful for the copy, cut and paste com-
mands. In this way we avoid syntax errors in an
early phase of the instruction-writing and speed
up program construction.

More details on program building and query-



ing with the Program Builder and Viewing tools
can be found in [8].

4 The Video

In the video session we demonstrate how one
can contruct a program using the Program
Builder. As an example we write a program
that can be used to construct the scheme of a
polygon database. Figure 1 shows the third step
of this example. The user had selected the begin
and end node of a new edge and clicked on the
button with the edge label, so he/she can now
type in the new edge label. The graph in the top
window describes the scheme, while the graph
in the bottom window specifies the GOOD-
operation. In the video we show in detail how
one writes a program, using the features offered
by the Program Builder. We also show how one
can modify the scheme layout with composition
and decomposition. Then we show how one can
construct queries with more complex patterns
in the Viewing tool, and give an example of
browsing. Figure 2 shows the Viewing tool with
a pattern describing the query “Gives all poly-
gons which have a vertex in point (6,4)”, before
the object identifiers of the polygons fulfilling
the condition are displayed in the table. Fi-
nally we show an example of a GOOD-program
specifying a more complex transformation that
could be interpreted either as a query or as an
update.

Acknowledgment: We like to thank Marc
Gyssens and Dirk Van Gucht for their contri-
bution in the design of the GOOD model. We
also like to thank Marc Van der Linden for his
contribution in the design of the GOOD to rela-
tional algebra interpreter. The video was made
possible by financial support from Data General
Belgium.

References

1] J. Paredaens,
J. Van den Bussche, D. Van Gucht, Gemis
M., et al. An overview of GOOD. ACM
SIGMOD Record, March 1992.

2] M. Gyssens, J. Paredaens,
and D. Van Gucht. A graph-oriented object
database model. In Proceedings of the Ninth

ACM Symposium on Principles of Database
Systems, pages 417-424. ACM Press, 1990.

(3] M. Gyssens, J. Paredaens,
and D. Van Gucht. A graph-oriented ob-
ject database model for database end-user
interfaces. In H. Garcia-Molina and H.V.
Jagadish, editors, Proceedings of the 1990
ACM SIGMOD International Conference
on Management of Data, number 19:2 in
SIGMOD Record, pages 24-33. ACM Press,
1990.

[4] M. Andries, M. Gemis, J. Paredaens,
I. Thyssens, and J. Van den Bussche. Con-
cepts for graph-oriented object manipu-
lation. In A. Pirotte, C. Delobel, and
G. Gottlob, editors, Advances in Database
Technology—EDBT’92, volume 580 of Lec-
ture Notes in Computer Science, pages 21—
38. Springer-Verlag, 1992.

[5] M. Gyssens, J. Paredaens, J. Van den Buss-
che, and D. Van Gucht. A graph-oriented
object database model. Technical Report
92-35, University of Antwerp (UIA), 1992.
Revised version of Technical Report no.
327, Computer Science Department, Indi-
ana University, and of UIA Technical Re-
port 91-27.

(6] J. Van den Bussche, D. Van Gucht, M. An-
dries, and M. Gyssens. On the complete-
ness of object-creating query languages. In
Proceedings 33nd Symposium on Founda-
tion of Computer Science, pages 372-379.
IEEE Computer Society Press, 1992.



7]

M. Andries and J. Paredaens. Macro’s for
the GOOD-transformation language. Tech-
nical Report 91-20, University of Antwerp
(U.ILA.), 1991.

M. Gemis, J. Paredaens, and I. Thyssens.
A visual database management interface
based on GOOD. In R. Cooper, editor,
Interfaces to Database Systems, Workshops
in Computing, pages 155-175. Springer-
Verlag, 1993.



