
The expressive power of complex values in

object�based data models�

Jan Van den Busschey Jan Paredaens

Dept� Math� � Computer Sci�� University of Antwerp �UIA�
Universiteitsplein �� B����	 Antwerp� Belgium

E�mail
 vdbuss�wins�uia�ac�be� pareda�wins�uia�ac�be�

Abstract

In object�based data models� complex values such as tuples or sets

have no special status and must therefore be represented by objects�
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i�e�� duplicates may occur� This paper contains a study of the precise
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typical object�based data models supporting �rst�order queries� object

creation� and while�loops� Such models are su�ciently powerful to ex�

press any reasonable collection of complex values� provided duplicates

are allowed� It is shown that in general� the presence of such dupli�

cates is unavoidable in the case of set values� In contrast� duplicates

of tuple values can easily be eliminated� A fundamental operation for

duplicate elimination of set values� called abstraction� is considered

and shown to be a tractable alternative to explicit powerset construc�

tion� Other means of avoiding duplicates� such as total order� equality

axioms� or copy elimination� are also discussed�
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� Introduction

In the past decade� there has been a lot of interest in database systems
allowing a more direct representation of complex data structures than pos�
sible in standard relational systems� Recent work in this �eld lead to the
de�nition of two new data models� the complex value model and the object�
based model� �There were also proposals to combine the two approaches
�AK�	� Bee	
� HK��� LRV����


The complex value model �also known as the complex object� nested
relational� NF�� or unnormalized model �AFS�	�
 is an extension of the stan�
dard relational model �Ull���� While the relational model o�ers collections
of tuples� the complex value model o�ers collections of arbitrary combina�
tions of sets and tuples called complex values� In the object�based model
�GPVG	�� HS�	� HY	
� KV	�� KW	��� a database is thought of as a la�
beled graph of objects� where each set of equally labeled objects comprises
a so�called class� The edges between objects in the graph express properties
and are labeled by property names� This approach is inspired by the object�
oriented philosophy �KL�	�� but can in fact be traced back to the Functional
Data Model �Shi����

A di�erence between the complex value approach and the object�based
approach is that in the latter� complex values are not explicitly part of the
data model� The usual way of representing a complex value in such a model
is by an object� More speci�cally� an n�ary tuple is represented by an ob�
ject� linked to each of the n tuple components by a di�erently labeled edge�
Similarly� a set of objects is represented by an object with equally labeled
edges going to each element of the set� A class of objects then represents a
collection of complex values if each object in the class represents a complex
value in the collection� and conversely� each complex value in the collection
is represented by an object in the class� However� it may occur that two
di�erent objects in the class represent the same value� i�e�� duplicates may
occur�

In this paper� we will be concerned with object�based queries whose result
is a collection of complex values� Such queries augment the database with
the new objects and edges necessary for representing the desired collection�
The fundamental query language for relational databases� the relational cal�
culus �Ull���� can be adapted for this purpose� More speci�cally� a relational
calculus query over the database graph can be used for object creation by
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creating a new object for each tuple in its result� Moreover� if the result is
a binary relation� it can be alternatively used for edge addition� A simple
yet powerful object�based query language� which we call OBQL� can thus be
obtained by providing object creation and edge addition as basic statements
and closing o� under composition and while�loops� This language subsumes
many object�based query languages proposed in the literature�

We will show� using well�known techniques� that any complex value query
satisfying the usual requirements of computability and genericity can be ex�
pressed in OBQL� However� we will show also that this completeness property
depends on the allowance of duplicates in the result� Indeed� if one insists
on duplicate�free representations� even very simple collections of set values
become inexpressible in OBQL� For example� we will show that the query
asking for all subsets of two elements of a given class is not expressible with�
out duplicates� In contrast to sets� duplicates of tuple values can easily be
eliminated in OBQL� which is not completely unexpected since the core of
OBQL is the relational calculus� which is tuple�based from the outset�

Duplicate�free representations have a number of apparent practical advan�
tages� Obviously� duplicates cause redundancy in the database and are often
undesirable from a faithful data modeling point of view� Another advantage
concerns the e�cient answering of queries involving the equality of complex
values� In arbitrary representations� checking for equality of two complex val�
ues requires an expensive comparison of all components� However� if every
complex value is represented by a unique object� checking equality amounts
to one single comparison of the corresponding object identi�ers� A third
advantage is e�ciency of representation� If a client program asks for a col�
lection of complex values� it is useful if the server program can deliver the
collection in the form of a unique handle to each element� Di�erent handles
to the same structured value� i�e�� duplicates� would be very undesirable in
this situation�

Hence� it is desirable to enrich OBQL with an additional primitive for
the creation of duplicate�free value representations� Since the problem of
duplicate elimination exists only for collections of set values� one might sim�
ply add an explicit primitive for constructing such collections� The obvious
candidate for this� �rst considered by Kuper and Vardi in the context of
the Logical Data Model �KV	��� is the powerset operation� Alternatively�
one might propose a quotient construction for creating a unique representa�
tive for each equivalence class of duplicate objects� An operation providing
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this functionality is the abstraction operation� �rst considered by Gyssens�
Paredaens and Van Gucht in the context of the GOOD model �GPVG	���
We will show that these two options for enriching OBQL are equivalent in
expressive power�

However� an important advantage of the abstraction operation over the
powerset operation is that the former is more e�cient� Indeed� we will show
that on ordered databases� abstraction is expressible in OBQL without using
while�loops� As a consequence� the abstraction operation can be computed
in polynomial time on a Turing machine� We also show that any arbitrary
computable and generic equivalence relation is reducible within OBQL to
the particular equivalence relation �is a duplicate of� as dealt with by the
abstraction operation� In other words� every reasonable quotient construc�
tion can be reduced to the particular quotient construction provided by the
abstraction operation�

We will conclude with a discussion on related issues� In particular� we will
observe how the problems of object creation� complex values and duplicates
can be understood in the context of other data models and object�based query
languages proposed in the literature� We will also explain the connection
between the complex value queries as considered in this paper and general
object�creating queries� and in particular� explain the distinction between the
notion of duplicate elimination studied in the present paper and the notion
of copy elimination introduced by Abiteboul and Kanellakis �AK�	�� We will
also brie�y mention further research issues�

� The object�based data model

In this section� we de�ne a general object�based data model� which serves as
a formal framework capturing the features �relevant to this paper
 of many
object�oriented database systems encountered in practice� We will de�ne
database schemes and instances as directed� labeled graphs� and introduce a
simple yet powerful object�based query language� called OBQL� Our formal�
ism closely follows the earlier proposals LDM �KV	�� and GOOD �GPVG	���

It is customary in object�based models to depict a database scheme as
a graph� Thereto we assume the existence of pairwise disjoint sets of class
names� single�valued property names� and multi�valued property names� and
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de�ne�

De�nition ��� A scheme is a �nite� edge�labeled� directed graph� The nodes
of the graph are class names� and the edges are triples �B� e� C
� where B and
C are nodes and the edge label e is a �single� or multi�valued� property name�

A database instance can now be de�ned as a graph consisting of objects
and property�links� the structure of that graph being constrained by some
database scheme� So we assume the existence of an in�nite supply of objects�
and de�ne� for an arbitrary scheme S�

De�nition ��� An instance over S is a �nite� labeled� directed graph� The
nodes of the graph are objects� Each node o is labeled by a class name ��o

of S� The edges are triples �o� e� p
� where o and p are nodes and the edge
label e is a property name of S such that ���o
� e� ��p

 is an edge of S� If e
is single�valued� then for each o there is at most one p such that �o� e� p
 is
in the graph�

The set of all objects in an instance labeled by the same class name C
will be called the class C�

Before turning to the object�based query language OBQL� we must �rst
specify what we mean with the notion of query in the object�based data
model� In the relational model� a query is typically considered a function�
mapping an input database to an output relation �CH�
�� This output re�
lation is often materialized as derived information� or used as part of the
input to a subsequent query� Hence� it is natural to view a relational query
alternatively as a function which augments an input database with a new�
derived relation� This view of a query can be readily adopted in the object�
based data model� a query is a function which augments an input instance
with new objects and edges� Correspondingly� OBQL provides two basic op�
erations� one for object creation and one for edge addition� The language is
closed o� under composition and while�loops�

Object creation and edge addition are based on the following adaptation
of the relational calculus to object databases� With a scheme S� we can
associate a standard� �rst�order� many�sorted logic� The class names of S
are the sorts� and for each edge �B� e� C
 in the scheme there is a binary
predicate name e of sort �B�C
� Given an instance I over S� a sort C is

�



interpreted by the class C in I� and the predicate e�B�C
 is interpreted by
the set of all e�labeled edges going from objects of class B to objects of class
C� Now let ��x�� � � � � xn
 be a formula over S� n � 
� and let Ci be the sort
of variable xi� Evaluating f�x�� � � � � xn
 j �g over I yields an n�ary relation
consisting of all tuples �o�� � � � � on
 of objects in I satisfying �� Note that oi
will be in class Ci�

The object creation operation�

� � C�e� � x�� � � � � en � xn� � �

provides a natural way to augment the database with a representation of the
above n�ary relation� Here� C is some class name and e�� � � � � en are property
names� The e�ect of � on schemes S and instances I is formally de�ned as
follows�

De�nition ���

� ��S
 is the scheme obtained by augmenting S with node C and edges
�C� ei� Ci
� for i � �� � � � � n� �By augmenting a graph G with a node or
edge x� we mean adding x to G provided x does not already belong to
G��

� ��I
 is the instance over ��S
 obtained from I by adding� for each tuple
�o�� � � � � on
 of objects in I such that ��o�� � � � � on
 is true in I� one new
object o with label C� together with edges �o� ei� oi
� for i � �� � � � � n�

If n � �� then evaluating formula � yields a binary relation� which can
be used not only for object creation� but also for edge addition� Indeed� each
pair in the relation can be interpreted as a set of derived edges� These can
be added to the database using the edge addition operation

� � e�x�� x�
 � ��

where e is some multi�valued property name� The e�ect of � on schemes
and instances is formally de�ned as follows�

De�nition ���

� ��S
 is the scheme obtained by augmenting S with the edge �C�� e� C�
�
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� ��I
 is the instance over ��S
 obtained by augmenting I with an edge
�o�� e� o�
 for each tuple �o�� o�
 of objects in I such that ��o�� o�
 is
true in I�

Queries can now be expressed in OBQL by means of arbitrary compo�
sitions of object creation and edge addition operations� Furthermore� these
compositions can be iterated using a while�loop construct of the form

while change do op�� � � � � opk od�

The body of the loop is executed as long as the instance under operation
changes �which might be forever
� The instance resulting from the execution
of an OBQL program P on an instance I will be denoted by P �I
�

Remarks� We conclude this section with some remarks on speci�c features
of OBQL�

The de�nitions of object creation and edge addition allow that the labels
of objects and edges that are added to an instance already exist in the scheme
of that instance� This provision is necessary for adding deriving information
incrementally� e�g�� using a while�loop� For example� the following program
computes the transitive closure of a database graph whose objects are all in
the same class and whose edges all have the same label e� The edges of the
transitive closure will get the label e��

e��x� y
 � e�x� y
�
while change do e��x� y
 � �z � e�x� z
 � e��z� y
 od

A program expressing a query will often create a lot of temporary objects
and edges that are only used for storing intermediate results in the course
of the computation� and should be omitted from the end result� We can
make this formal by dividing object and edge labels �i�e�� class and property
names
 into three kinds� those that are in the input scheme� those that are
wanted in the ouput� and those that are only auxiliary and are used to label
the intermediate results� It will always be clear from the context which of
the labels are auxiliary� we will never explicitly indicate them�

A number of object�based data models considered in the literature
�GPVG	�� HY	
� KW	�� use an alternative semantics for object creation�
which we will call weak semantics� and which is often natural and useful�
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Recall De�nition ��� of the object creation operation� The weak variant of
this operation� written

C�e� � x�� � � � � en � xn� �weak ��

only adds a new object o �as speci�ed in the de�nition
 if there is not already
a C�labeled object o� with edges �o�� ei� oi
 in the database� Hence� it is
equivalent to

C�e� � x�� � � � � en � xn� � � � ��x � e��x� x�
 � � � � � en�x� xn
�

Thus� the weak semantics can be simulated in our semantics� Actually� the
converse is true as well� The converse simulation uses an auxiliary class T �
structured as an ever�growing stack� The stack is initialized with a bottom
object using the �zero�ary� object addition�

T � � �weak true�

The object creation
C�e� � x�� � � � � en � xn� � �

is then simulated by �rst pushing a new object on the stack�

T �previous � t� �weak ��t
� � previous�t�� t
�

�Here� t and t� are variables of sort T � the formula states that t is the top of
the stack�
 The actual object creation is then performed by

C�e� � x�� � � � � en � xn� e � t� �weak � � ��t� � previous�t�� t
�

In words� the new object must be connected to the top of the stack with a
temporary edge labeled e� This guarantees that it will indeed be created�
regardless of whether there already exists an object with the same e�� � � � � en�
edges� since such an object will be connected to a lower object in the stack�

A �nal remark concerns the sorts of the logical variables used in object
creation and edge addition operations� In the sequel� when OBQL programs
are shown� we will precede these programs by a variable declaration which
indicates the sorts of the di�erent variables that are used� For example� to
declare variables x and y as of sort C and variable z as of sort B� we will
write
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sorts x� y � C� z � B

before the beginning of a program using variables x� y and z� Note that
variable declarations strictly belong to the �meta language� and are not
formally part of the syntax of OBQL�

� Representation of complex values

In this section� we show how complex values� in the widely adopted style
of �AB��� AK�	�� can be represented in the object�based data model� and
establish a completeness result for OBQL in this respect�

We �rst need the types� which are expressions inductively de�ned as fol�
lows� In what follows� S is an arbitrary but �xed scheme�

De�nition ���

�� Every class name of S is a type� called an atomic type�

�� If e�� � � � � en are di�erent single�valued property names� and ��� � � � � �n
are types� then �e� � ��� � � � � en � �n� is a type� called a tuple type�

	� If e is a multi�valued property name� and � is a type� then fe � �g is a
type� called a set type�

The order in which the di�erent ei � �i are listed in a tuple type is unimpor�
tant�

The extent of a type over a given instance I over S� which is the set of
all possible values of that type� is now inductively de�ned as follows�

De�nition ���

�� The extent of atomic type C is the class C in I�

�� The extent of tuple type �e� � ��� � � � � en � �n� is the set of all tuples
�e� � v�� � � � � en � vn� such that vi is a value of type �i�

	� The extent of set type fe � �g is the set of all sets of values of type � �

	



Values of non�atomic types are called complex values�

In data models combining the complex value and the object�based ap�
proach� complex values are ��rst�class citizens� of the model and are typically
associated to objects according to a so�called type assignment �see the refer�
ences in the Introduction
� In contrast� the �pure� object�based data model
de�ned in the previous section does not explicitly contain complex values�
However� values can be naturally represented using objects� An n�ary tuple
value can be represented by an object with n single�valued properties� A set
value can be represented by an object with a multi�valued property� To make
this idea formal� we need the �dual� notion of a type assignment� which we
call a class assignment�

De�nition ��� Let � be a type� A class assignment for � is a mapping �
from � and all types occurring in � to class names� such that


�� Atomic types �i�e�� class names� are mapped to themselves�

�� If ���e� � ��� � � � � en � �n�
 � C� then for each i� �C� ei� ���i

 is an edge
of S�

	� If ��fe � � �g
 � C� then �C� e� ��� �

 is an edge of S�

In other words� ���
 � C means that C has the right properties for values
of type � to be representable by objects of class C� Let an arbitrary class
assignment � be �xed� Let I be an instance� let v be a value over I of type
� � and let o be an object in class ���
 in I� We de�ne inductively what it
means for o to represent v�

De�nition ���

�� If � is atomic� then o represents v if o � v�

�� If � is the tuple type �e� � ��� � � � � en � �n� and v � �e� � v�� � � � � en �
vn�� then o represents v if there are objects o�� � � � � on of classes
����
� � � � � ���n
 respectively such that for each i� �o� ei� oi
 in I and
oi represents vi�
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	� If � is the set type fe � � �g� then o represents v if for each v� � v there
is an edge �o� e� o�
 in I such that o� is of class ��� �
 and represents v��
and conversely� for each o� of class ��� �
 such that �o� e� o�
 the value v�

represented by o� is in v�

In the sequel� we will almost never explicitly mention the class assignment
in use if this is clear from the context�

Since we are primarily interested not in single values� but in collections
V of complex values of a common type� we �nally de�ne�

De�nition ��� A class represents a collection V if each object o in the
class represents a value in the collection� and conversely� each value in the
collection is represented by some object in the class�

We are now ready to present a �rst result which indicates that the query
language OBQL de�ned in the previous section is quite powerful� Let S be
a scheme and let � be a complex value type�

De�nition ��� A complex value query of type S 	 � is a function V �
mapping each instance I over S to a collection V �I
 of complex values over
I of type � �

As usual in database applications� we consider only mappings which do not
�interpret� the objects� objects are abstract entities and only their inter�
relationships matter �AU�	� CH�
�� This requirement� nowadays known as
genericity �e�g�� �AV	
� HS	��
� is formalized by the requirement that the
mapping� viewed logically as a binary relationship� is invariant under permu�
tations of the universe of objects� Furthermore� a complex value query V is
called computable if the problem� given an instance I and a complex value
v over I of type � � does v belong to V �I
� is decidable� Finally� V is called
expressible in OBQL if there is a class name K and an OBQL program P aug�
menting each instance I with the necessary objects and edges such that class
K in P �I
 represents V �I
� Clearly� every complex value query expressible
in OBQL is computable and generic� The converse holds as well�

Theorem ��� Every generic computable complex value query is expressible
in OBQL�
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To prove Theorem ���� we �rst observe that we may� without loss of
generality� restrict attention to types of depth �� de�ned as follows�

De�nition ��	 A type has depth � if it has the form �e� � C�� � � � � en � Cn� or
fe � Cg� where C�C�� � � � � Cn are class names�

Indeed� if we know that the theorem holds for depth � types� then the
general theorem follows by an obvious bottom�up construction�

We next present two lemmas�

Lemma ��
 The extent of the tuple type �e� � C�� � � � � en � Cn� is expressible
in OBQL�

Proof� Our task is essentially to represent the Cartesian product of classes
C�� � � � � Cn by a new class K� This can be done by the following object
addition�

sorts x� � C�� � � � � xn � Cn

K�e� � x�� � � � � en � xn� � true�x�� � � � � xn


�true�x�� � � � � xn
 denotes an arbitrary tautology with free variables
x�� � � � � xn�


Lemma ���� The extent of the set type fe � Cg is expressible in OBQL�

Proof� Our task is essentially to represent the powerset of class C by a
new class K� This can be done by the following program� Properties a� and
a� are temporary� Recall that by the de�nition of set types� e must be a
multi�valued property name�

sorts x � C� z� z�� z�� z�� � K

K�e � x� � true�x
�
while change do
K�a� � z�� a� � z�� � ��z � 
x � e�z� x
 � �e�z�� x
 � e�z�� x

�
e�z� x
 � �z�� � �a��z� z��
 � a��z� z��

 � e�z��� x

od

K� � � true
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In the above proof� the powerset is constructed bottom�up� starting from
the singletons and then taking pairs until all sets are represented� The �nal
statement adds a representation for the empty set� The representation K
thus obtained will contain duplicates� i�e�� di�erent K�objects representing
the same set of C�objects� This is allowed by De�nition ���� We will return
to the subject of duplicates in detail in the next section�

We are now ready for�

Proof of Theorem ���� Let V be a generic computable complex value
query of type S 	 � � where � has depth �� We have to show that V is
expressible in OBQL� Let I be an instance over S�

Since V is computable� there is an e�ective algorithm that decides for
each element of the extent of � whether it belongs to V �I
� Since V is
generic� we can assume that this algorithm is implemented on an input�
order independent domain Turing machine �domTM�� The domTM model�
introduced in �HS	��� is well�suited for describing database computations� A
domTM is like a normal Turing machine� but has extra capabilities� Apart
from the letters of the �nite alphabet� the tape can also contain objects�
Hence� there is no need to encode objects as strings over the alphabet� as
would be necessary if we would use a conventional Turing machine� The
transition function of the machine can refer to the objects in a generic manner
only� using two generic variables � and � which can only distinguish whether
two objects are equal or not� The machine has also a register�

Formally� a domTM is a �ve�tuple �Q��� �� q�� qa
� where Q is a �nite set
of states� � is a �nite alphabet� q� is the initial state and qa is the accepting
state� The transition function � � Q 
 �� 
 �� 	 Q 
 �� 
 �� 
 fL�Rg�
where �� � ��f�g and �� � ��f�� �g� maps the current state� the current
contents of the register and the contents of the current tape cell to a new
state� a new contents of the register� a new contents of the current tape cell�
and a movement on the tape� The following technical restrictions apply for
transitions ��q� x� y
 � �q�� x�� y�� m
� y � � only if x � �� � � fx�� y�g only if
� � fx� yg� and � � fx�� y�g only if � � fx� yg� A transition is called generic
if � � fx� yg� A generic transition serves as a template for the in�nite set
of transitions formed by letting � �and � if it occurs
 range over �di�erent

objects� Computations of a domTM are now de�ned in the obvious way�

The input�order independent domTM MV that computes V gets as input
on its tape a description of an instance I� followed by a description of a value
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v of type � over I� I is written on the tape as a string of objects and edges�
listed in some arbitrary order� An object o of class C is written as oC� An
edge from o to p with label e is written as oep� The value v is written as
e�o� � � � enon if � is a tuple type� or simply as a string of its elements if � is a
set type� Note that we assume that the �nite alphabet of MV includes the
class and property names of the scheme S�

We can construct an OBQL program PV that expresses V as follows� On
input I� PV �rst creates a representation of the extent of � in a class K�
Then� for each object o of class K� the computation of MV on input I� v�
where v is the complex value of type � represented by o� is simulated� If the
computation is accepting� then o is marked with a label accept� Finally� for
each accepted K�object o� an object o� of another class K � is created and
the necessary property edges are brought over so that o� represents the same
value �of type �
 as o� As a result� class K � represents the collection V �I
�
as desired�

The �rst part of program PV � expressing the extent of � � was already
shown in Lemma ��	 �if � is a tuple type
 or Lemma ���
 �if � is a set type
�
The �nal part� the creation of class K �� is a straightforward application of
object addition and property addition� Hence� we will focus on the middle
and most important part� the simulation of MV � The techniques used thereto
are inspired by techniques used in earlier completeness proofs �AV	
� CH�
�
HS	��� In order not to loose focus� in the following exposition we will often
refer to the Appendix of this paper for the precise implementation details
of the simulation� The reader interested in concrete examples of programs
written in OBQL is encouraged to examine this Appendix�

To simulate MV on input I� v� we must create a tape on which I and v
are listed� The nodes and edges of I and� if � is a set type� the elements of
v� can be listed in an arbitrary order� However� it is impossible in OBQL to
choose one such order� Therefore� all possible orderings must be generated
and a simulation will be run for each of them� So� for each class C� a
class ListC is created containing all possible lists of all C�objects� using the
following procedure which is similar in spirit to the powerset construction of
Lemma ���
� List objects have the standard single�valued properties head
and tail� and an auxiliary multi�valued property contains used to keep track
of the generation�

sorts x� y � C� z� z�� z� � ListC
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ListC � � � true�
ListC �head � x� contains � y� tail � z� � y � x�
while change do
ListC �head � x� tail � z�� contains � y� � y � x �
�contains�z�� x
 � ��z� � head�z�� x
 � tail�z�� z�
�

contains�z�� x
 � �z� � tail�z�� z�
 � contains�z�� x

od

OrderC�z�� z�
 � ��z� � tail�z�� z�


The last statement marks those lists that contain all C�objects� and which
can thus be viewed as an ordering of the class C� with a loop�edge labeled
OrderC �

We also have to order the edges of input instance I� Once this is done� we
can deduce the orderings of the whole instance as aggregates of the orderings
of the individual classes and properties� This leads to a class Order holding an
object for each possible ordering of the inputs instance� The implementation
details of the ordering of the edges and the construction of the class Order
are given in Appendix A��

The two�way in�nite tape of MV will be simulated by the class Tape�
Every Tape�object simulates a tape cell� and has a single�valued property
left� pointing to its left neighbor cell� Of course� at any instant of time� Tape
contains only a �nite number of cells� but can grow as needed during the
computation� Tape is initialized to a single cell as follows�

Tape� � � true�

Tape cells can contain objects in the input instance I as well as letters
from the �nite alphabet� Therefore� to represent the possible tape symbols
in a uniform way� we populate a �generic� class of Symbol objects� For each
class name C of S� we create a Symbol object for each object of class C in
the input instance I as follows�

sorts x � C� z � Symbol

Symbol �is � x� � true�x


Moreover� we create a Symbol object for each alphabet letter � as follows�

sorts l � ��
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��� � � true�
Symbol �is � l� � true�l


In order to be able to distinguish easily between Symbol objects representing
input objects and Symbol objects representing alphabet letters� we mark the
former using for each class name C of S the following edge addition�

sorts z � Symbol � x � C

object�z� z
 � �x � is�z� x


�Note that this construction of the class Symbol illustrates how variant types�
also known as union types� can be represented using OBQL�


The actual contents of the tape cells are represented by the class Content�
which has single�valued properties labeled cell and contains� Every Content�
object represents a pair �cell � t� contains � x�� meaning that cell t contains x�
Here� t is a Tape�object and x is a Symbol object� Since a simulation of MV

is to be performed for every ordering of I and every value v� every Content�
object has two more properties� named order and val� The order �edge points
to an Order �object and the val �edge points to the K�object representing the
value�

The construction of the initial con�guration of the tape� containing the
input �I� v
 for each simulation is shown in detail in Appendix A��

Before we are ready to start the simulation of the domTM computations
on the input tapes just prepared� we need to initialize some bookkeeping
information� Each computation step will be �timestamped� using a class
Clock� organized as an ever�growing stack� All Content objects that represent
the input con�guration of the tape are linked to time zero� We also need a
class Status with properties order� val� state� register� cell� and time� with the
obvious semantics� to keep track of the status of the di�erent computations
at each step�

The simulation of the actual domTM transitions now happens in one big
while�loop� At the beginning of each iteration� the computations that are
still active are marked with their state information� Next� the computations
that come to an end are marked� After that� a new Clock object is created�
provided there are still active computations left� The loop body is completed
with a number of statements performing the actual con�guration changes for
each of the state triples on which the domTM transition function is de�ned�
All the implementation details are provided in Appendix A��
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This concludes the proof of Theorem ����

� Duplicate�free representations

In this section� we complement the completeness property of OBQL estab�
lished in the previous section with a result showing that OBQL is no longer
complete if duplicate�free representations are required�

Let � be a complex value type� Under a class assignment � with ���
 � C�
objects of class C in a given instance represent values of type � � If two
objects represent the same value� they are called duplicates with respect to
� � De�nition ��� allows duplicates� however� duplicate�free representations
are often useful� as argued in the Introduction and further illustrated by the
following example�

Consider a scheme containing class names Student and Course� with an
edge from Student to Course labeled by the multi�valued property name
takes� In an instance over this scheme� there will be objects labeled Student �
i�e�� students� and objects labeled Course� i�e�� courses� Each student is
connected to the courses he takes by edges labeled takes� Hence� the class
Student represents the collection V of the sets of all courses taken by some
student� However� this representation is not duplicate�free since di�erent
students might well take exactly the same courses�

Of course� we do not want to disallow duplicates in this situation� Nev�
ertheless� it might be desirable to also have a representation of V which
is duplicate�free� Assume we have such an additional class� Set � with in
the scheme an edge from Set to Course labeled contains� In the instance�
each Set�object is linked via contains�edges to precisely the courses of a
set in V � Furthermore� class Set does not contain duplicate objects w�r�t�
fcontains � Courseg� We can then derive a new single�valued property of
students� named takes set � by the following edge addition operation�

sorts s � Student � z � Set � c � Course

takes set�s� z
 � 
c � takes�s� c
 � contains�z� c
�

After this operation� each student is linked to the unique Set�object rep�
resenting the set of courses which that student takes� Queries concerning
the equality of sets of courses can now be answered very e�ciently� To test
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whether students take exactly the same courses� it su�ces to check whether
they are linked to the same Set�object�

The preceding discussions motivates the following question� is it possi�
ble to produce this duplicate�free class Set by means of an OBQL program�
More formally� is the complex value query� mapping a given student�course
database to the complex value collection of type fcontains � Courseg con�
sisting of the sets of all courses taken by some student� expressible in OBQL
without duplicates� We will prove in the following that the answer is nega�
tive� This will also show that our proof of Theorem ���� which relies on the
allowance of duplicates if set values are involved� cannot be improved in this
respect�

Actually� we will prove that even a much simpler complex value query is
already inexpressible without duplicates� Let S be a scheme and C a class
name in S� Let e be a multi�valued property name� For a �xed m � �� the
m�combinations query of type S 	 fe � Cg maps a given instance I over S to
the subset of the powerset of class C in I consisting of all sets of cardinality
m�

The proof will exploit the observation made at the end of Section � that
every OBQL program can be simulated by another program operating under
the weak semantics for object creation� Hence� without loss of generality�
we will assume weak semantics for object creation for the remainder of this
section� Unlike as we did in Section �� we will no longer explicitly indicate
weak object creation with  �weak!�

This assumption allows us to associate untyped� nested tuple values to
created objects� More concretely� let P be an OBQL program� let I be an
instance to which P is applied� and let J be the result of this application�
We associate to each object o � J a value val�o
 in an inductive manner� as
follows�

De�nition ���

� If o is in I� then val�o
 �� o�

� If o is not in I� then o must have been created during the application
of P on I� by an object creation operation of the form


K�e� � x�� � � � � en � xn� � ��x�� � � � � xn


Then o is created in function of a tuple �o�� � � � � on
 of objects in J� and
we de�ne val�o
 �� �e� � val�o�
� � � � � en � val�on
��
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The following important property follows readily from the weak semantics
for object creation�

Lemma ��� Two di�erent objects in the same class have a di�erent associ�
ated value�

In the sequel� it will be convenient to identify an object o in J with the
pair �B� val�o
�� where B is the name of the class of o� �Interestingly� this
identi�cation is analogous to logic programming�based approaches to object
creation �KW	��� We will illustrate this analogy further in Section ����


A permutation of the objects of an instance I can be canonically extended
to a permutation of the complex values over I� With I and J as above� the
identi�cation just made then allows us to observe that OBQL is BP�bounded
in the sense of �CH�
��

Lemma ��� If f is an automorphism of I� then f is also an automorphism
of J�

The proof proceeds by a straightforward induction and is left to the reader�
We are now ready for�

Theorem ��� The m�combinations query is not expressible in OBQL with�
out duplicates�

Proof� Let S be the scheme consisting of one single class name C and
no edges� Setting n �� m " �� let In be the instance over S with objects
�� � � � � n� So� In is a discrete graph of n isolated nodes� As a consequence�
every permutation f�� � � � � ng is an automorphism of In�

For the sake of contradiction� suppose there is an OBQL program P
expressing the m�combinations query� So� for some class name K� class K
in P �Jn
#which we will denote by Kn#is a duplicate�free representation of
the collection of m�combinations over f�� � � � � ng� For each o � Kn� there are
exactly m edges labeled e leaving o� arriving in objects of In� We will denote
the set of these m objects by set�o
� The set of all objects �of In
 appearing
in val�o
 is denoted by base�o
�

We next observe that for any object o in Kn� the permutations of In
leaving set�o
 invariant are precisely those leaving val�o
 invariant� Indeed�
assume f is a permutation of In such that f�set�o

 � set�o
� Since f is an
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automorphism of In� f is also an automorphism of Jn� by Lemma ���� Hence�
f�o
 is an object in Kn with set�f�o

 � f�set�o

� But f�set�o

 � set�o
�
so� since Kn does not contain duplicates� f�o
 � o� By the identi�cation o �
�K� val�o
�� we thus conclude that f�val�o

 � val�o
� Conversely� assume f
is a permutation of In such that f�val�o

 � val�o
� But then f�o
 � o and�
since again f is an automorphism of Jn� f�set�o

 � set�f�o

 � set�o
�

On the other hand� the permutations leaving val�o
 invariant are clearly
those that are the identity on base�o
� As a result� the permutations that
are the identity on base�o
 are precisely those leaving set�o
 invariant� The
number of the former is �n� b
$ � �m" �� b
$� where b is the cardinality of
base�o
� while the number of the latter is �n �m
$m$ � �m$� We thus have
�m " �� b
$ � �m$ and distinguish between the following cases�

� If b � � then m " �� b � m and thus �m " �� b
$ � m$ 	 �m$ which
is false�

� If b � � then m " � � b � m " � and thus �m " �
$ � �m$ or m � �
which is false�

� If b � 
 then m " � � b � m " � and thus �m " �
$ � �m$ or �m "
�
�m " �
 � � which is only possible if m � 
 which is false�

We have thus arrived at the desired contradiction�
It now follows that the student�courses query� which we originally consid�

ered� is not expressible in OBQL without duplicates either� For� if it were�
then the m�combinations query would be expressible without duplicates as
well� contradicting the above theorem� To see the latter claim� consider the
simple m�ary object creation

K�e � x�� � � � � e � xm� �
�

��i�j�m

xi �� xj�

where variables xi are variables of sort C� This operation expresses
the m�combinations query with duplicates� namely� m$ duplicates per m�
combination� Since we can view the C�objects as courses and the K�objects
as students� the ability to create a unique object for each set of all courses
taken by some student would allow us to represent the m�combinations with�
out duplicates�
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� The abstraction operation

Knowing from the previous section that certain complex value queries are not
expressible in OBQL without duplicates� in the present section we investigate
means to extend OBQL so that the problem goes away�

The two examples we gave in the previous section#the student�courses
query and the m�combinations query#are complex value queries whose result
type is a set type of depth �� Actually� the duplicate�free representation
problem does not exist for tuple types of depth one� Indeed� it is easy to
express the extent of a depth � tuple type without duplicates� as shown in
Lemma ��	� so that the proof of Theorem ���� specialized to complex value
queries resulting in depth � tuples� yields expressibility without duplicates�
Furthermore� suppose we would de�ne an extension of OBQL for which a
duplicate�free version of Theorem ��� would hold for complex value queries
whose result type is a set type of depth �� Then by an obvious bottom�up
construction this result would generalize to types of higher depth�

Hence� the �duplicate elimination� problem exists only for collections of
depth � set values� There are at least two natural approaches to extending
OBQL to deal with this problem� A �rst approach� pursuing an analogy
with the tuple case for which we just observed that the problem does not
exist� is to add an operation for expressing the extent of a �depth �
 set type
without duplicates� We will call this operation the powerset operation� A
second approach� inspired by the fact that OBQL is already able to express
all reasonable complex value queries with duplicates� is to add an operation
for producing a duplicate�free representation from another �not necessarily
duplicate�free
 representation� We will call this operation the abstraction
operation� We will now develop these two approaches in more detail�

Let S be a scheme� C a class name in S� and I an instance over S� We
de�ne�

De�nition ��� The powerset operation

powerset Kfe � Cg

applied to I results in the addition� for each subset Z of class C� of one new
object o with label K together with edges �o� e� o�
 to all o� � Z�
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Now assume furthermore that �C� a� B
 is a multi�valued edge in S� For
simplicity� we assume that there is only one edge labeled a leaving C in
the scheme� The relation �� � � and � � � are duplicates w�r�t� fa � Bg� is an
equivalence relation which induces a partition in equivalence classes on the
objects in class C of I� We call these the equivalence classes with respect to
fa � Bg� We then de�ne�

De�nition ��� The abstraction operation

abstr K�b� � C
a

applied to I results in the addition� for each equivalence class Z w�r�t� fa � Bg�
of one new object o with label K together with edges �o� b� o�
 to all o� � Z�

We can now extend OBQL by allowing powerset operations as basic state�
ments in the language� besides object creation and edge addition� The thus
extended language will be called OBQL " powerset� Similarly� we obtain
the language OBQL " abstr�

As an example� the student�courses query can be expressed without du�
plicates in OBQL " powerset as follows�

sorts k � K� s � Student � c � Course� z � Set

powerset Kfe � Courseg�
Set �a � k� � �s � 
c � takes�s� c
 � e�k� c
�
contains�z� c
 � �k � a�z� k
 � e�k� c


As another example� the m�combinations query can be expressed without
duplicates in OBQL " abstr as follows�

K ��a � x�� � � � � a � xm� �
V
��i�j�m xi �� xj�

abstr K�e� � K �
a

From the two above examples and the inexpressibility results of the pre�
vious section� we immediately obtain�

Proposition ��� The languages OBQL"powerset and OBQL"abstr are
strictly more expressive than OBQL�
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As already implicitly suggested in the preceding discussion� the expres�
sive power of duplicate elimination as provided by the abstraction operation
equals precisely the expressive power of duplicate�free powerset construction�
Before we prove this formally� we introduce a technique and a lemma which
will be used in the proof and which seem su�ciently interesting in their own
right to explain them independently�

Recall from Section � that objects and edges with �auxiliary� labels are
only temporary and are omitted from the end result of an application of
a program to an instance� However� it is often convenient to be able to
ignore certain temporary objects not only at the end� but also during the
computation� More speci�cally� let T be an auxiliary class name� and let
��t
 be a formula determining which objects of class T are no longer needed
�t is a variable of sort T 
� We mark these objects by attaching to them a
loop�edge labeled old using the edge addition�

old�t� t
 � ��t
�

The thus marked objects can then be ignored by using formulas of the form
�old�t� t
 � ���t� � � �
� �This technique has been previously used in the liter�
ature �AV	
� Theorem �������


The abstraction operation as de�ned above works on all the objects of a
class C� It is often convenient however to work only on a subset of the class�
determined by some formula ��x
� with x a variable of sort C� We will write
this generalized version of the abstraction operation� which we will call the
qualifying version� as

abstr K�b� � C
a j ��

Qualifying abstraction is a useful shorthand but does not increase the ex�
pressive power� as is shown next�

Lemma ��� OBQL " abstr is equivalent to OBQL " qualifying abstr�

Proof� Given a program in OBQL"qualifying abstr� an equivalent program
in OBQL " abstr can be obtained by replacing each statement of the form

abstr K�b� � C
a j �

with the following statements�
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sorts z � K� z� � K �� x � C

abstr K ��b�� � C
a�
K�b�� � z�� � �old�z�� z�
 � �x � b��z�� x
 � ��x
�
b�z� x
 � �z� � �old�z�� z�
 � b���z� z�
 � b��z�� x
 � ��x
�
old�z�� z�
 � true�z�


As illustrated in the above proof� the old �marking technique is useful to
ensure that a simulation works in case the simulated statement would occur
in the body of while�loop� since in this case the auxiliary class names �K �

in the above
 need to be reused� We point out that one can also de�ne a
qualifying version of the powerset operation� constructing the powerset only
of the subset of class C consisting of those objects x satisfying a formula ��x
�
The analogue of Lemma ��� for powerset can then be proved analogously�

We are now ready for�

Theorem ��� OBQL " powerset is equivalent to OBQL " abstr�

Proof� Given a program P in OBQL " powerset� an equivalent program
in OBQL " abstr can be obtained by the following replacement procedure�
Consider a statement in P of the form

powerset K �fe� � Cg�

Recall the OBQL program given in the proof of Lemma ���
 for representing
the extent of fe � Cg by a class K �albeit with duplicates
� we will call this
program Pdup� Assuming� without loss of generality� that K is not used in P �
we can thus simulate a powerset operation by an application of Pdup followed
by an abstraction operation to eliminate the duplicates� Formally� we replace
the above powerset operation with the following statements�

sorts z � K� z� � K �� z�� � K ��� x � C

�insert program Pdup here
�
abstr K ��b� � K
e j �old�z� z
�
e��z�� x
 � �z�� � �old�z��� z��
 � b�z�� z��
 � e���z��� x
�
old�z� z
 � true�z
�
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Notice the use of qualifying abstraction�
Conversely� let P be a program in OBQL " abstr� An equivalent pro�

gram in OBQL " powerset can be obtained by replacing each abstraction
statement as de�ned in De�nition ���� of the form

abstr K�b� � C
a�

with the following statements�

sorts z � K� z� � K �� x� y � C� v � B

powerset K �fe � Cg�
K�b� � z�� � �old�z�� z�
 � �x � 
y � e�z�� y
 � �
v � a�x� v
 � a�y� v

�
b�z� x
 � �z� � �old�z�� z�
 � b��z� z�
 � e�z�� x
�
old�z�� z�
 � true�z�


The �rst statement creates a unique object for each subset of class C� the
second statement then selects those that actually represent an equivalence
class w�r�t� fa � Bg� as required for the abstraction operation�

Corollary ��� Every generic computable complex value query can be ex�
pressed in OBQL " abstr without duplicates�

Although abstraction and powerset are equivalent from an expressiveness
point of view� they are not from a computational point of view� The result
of an application of the powerset operation can have exponential size� in
contrast� the result of an application of the abstraction operation has linear
size� and can in fact be computed e�ciently� as we will show next�

Let S be a scheme and C a class name in S such that there is an edge �C��
� C
 in S� An instance I over S is called C�ordered if the set of pairs �o� p
 of
objects of class C for which there is an edge �o��� p
 in I is a total order on
class C� Although we know from Proposition ��� that abstraction is in general
not expressible in OBQL� it is easily expressible in the special case of ordered
databases� since in this case we can designate a unique representative for each
equivalence class of duplicates by taking the smallest element� Formally� we
have�

Theorem ��� On C�ordered instances� abstraction over C is expressible in
OBQL without using while�loops�
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Proof� The abstraction
abstr K�b� � C
a

is expressible as follows�

sorts x� y � C� v � B� z � K

duplicates�x� y
 � 
v � a�x� v
 � a�y� v
�
K�b � x� � 
y � duplicates�x� y
 	 x � y�
b�z� y
 � �x � b�z� x
 � duplicates�x� y


Corollary ��	 Abstraction can be computed in polynomial time on a Turing
machine�

Proof� A Turing machine� when presented an instance on its input tape�
e�ectively has access to the order on the objects of the instance in which
they are written on the tape� Since every OBQL program that does not use
while�loops can be implemented on a polynomial�time Turing machine in a
straightforward manner� the claim follows from Theorem ����

We end this section with a result indicating the generality of the abstrac�
tion operation as a means to perform duplicate elimination� As de�ned in
De�nition ���� abstraction can be viewed as a quotient construction w�r�t�
the equivalence relation �� � � and � � � are duplicates�� However� the de�nition
does not rely in any way on this particular equivalence relation� This inspires
us to de�ne a generalization of the abstraction operation as follows�

Let S be a scheme� C be a class name in S� and V� be a total generic
computable complex value query of type S 	 �e� � C� e� � C� such that for
each instance I over S� V��I
#being a collection of binary tuples �ordered
pairs
 of objects of class C#is an equivalence relation on class C� The
generalized abstraction

abstr K�b� � C
V�

applied to an instance I creates a unique new object for each equivalence
class w�r�t� V��I
� similarly to ordinary abstraction�

We next show that generalized abstraction can be easily expressed in
terms of ordinary abstraction�
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Theorem ��
 Generalized abstraction is expressible in OBQL " abstr�

Proof� Consider a generalized abstraction operation of the form just de�
scribed� By Theorem ���� there is an OBQL program P� expressing V�� Let
Equiv be the resulting class of this program� The generalized abstraction is
now expressed as follows�

sorts x� y � C� w � Equiv

�insert program P� here
�
a�x� y
 � �w � e��w� x
 � e��w� y
�
abstr K�b� � C
a

� Discussion

We conclude this paper with a discussion on some of the rami�cations of the
work presented here�

��� Complex values as �rst�class citizens

A variety of formal object�based query languages with object creation capa�
bilities have recently been proposed in the literature� Some of these languages
are based on a data model were complex values are �rst�class citizens �e�g��
�AK�	�
 so that they do not need the abstraction or the powerset operation�
Unfortunately� whether or not a certain concept is ��rst�class� in one data
model or another is not formally de�ned� and in fact often subject of consid�
erable debate� We can clearly illustrate the point however by looking at two
speci�c models� the relational model� and the nested relational model�

The nested relational data model extends the relational model in that tu�
ple components need not be atomic� but can be relations in turn �PDGG�	�
Chapter ��� In this sense� complex values are �rst�class citizens in the nested
relational model� There is also the nested relational algebra� which augments
the relational algebra with two operators� nest and unnest� to manipulate
these complex values� Although we have presented our results in the con�
text of a general object�base data model �since the problems which we have
considered were motivated by object�oriented applications
 the whole theory
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has an equivalent relational counterpart� We will not elaborate this claim�
since data model mappings from object�based to relational and vice versa
are well understood �e�g�� �HY	
�
� We will however illustrate the relational
counterparts of object creation and abstraction�

Object creation can be achieved in the relational model by augmenting
the relational algebra with the new operator� When applied to a relation R�
this operator extends R with a new column containing a unique new identi�er
for each tuple in R� For example�

new�
a b
a c
b c


 �
a b �
a c �
b c �

�

If we add the new operator to an extension of the relational algebra with
while�loops �such as RQL �CH���
� we obtain a relational equivalent of the
language OBQL considered in the present paper�

What is the relational counterpart of the abstraction operation� One way
to de�ne it is in the spirit of the student�courses query of Section �� When
applied to a binary relation R� interpreted as a student�course relation� the
result is another binary relation� interpreted as a set�membership relation�
where each set of all courses taken by some student is represented by a unique
new identi�er� For example�

abstr�

john math
john cs
mary math
mary cs
ellen arts


 �
math �

cs �
arts �

�

By Proposition ��� and the equivalence of RQL"new and OBQL� relational
abstr is not expressible in RQL " new�

However� if we now pick up the original motivation for the current few
paragraphs� and move from the relational model to the nested relational
model� it turns out that abstr becomes expressible� To do this� we add the
nest and unnest to RQL� obtaining NRQL� and next NRQL "new� by ex�
tending the new operator canonically to work on nested relations� Relational
abstraction is expressible in NRQL " new simply as

abstr�R
 � unnest � new � 
� � nest�R
�
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Figure �� Computing abstr�R
 in NRQL " new�

as illustrated in Figure �� To summarize� we hope it has become clear that
abstraction is the operational realization of the ability to represent complex
values �most notably set values� as �rst�class citizens in the data model�

��� Related work

Typically� object�oriented data models of the �pure� variety do not support
complex values on a �rst�rate basis �see the Introduction
� As a result�
many object�based query languages proposed in the literature are essentially
equivalent to OBQL and hence have to deal with the problem of duplicates�
Thereto� they often provide an extra feature in much the same way as the
abstraction operation can be added as an extra feature to OBQL�

Two languages which do not provide such an extra feature are ILOG
�HY	
� and O�Logic �KW	��� Both are essentially extensions of Datalog
�Ull��� with Skolem functions for object creation� For example� the analogue
of the OBQL object creation

K�e� � x�� � � � � en � xn� � ��x�� � � � � xn


in these languages is a rule of the form

K�fKe������en�x�� � � � � xn
� x�� � � � � xn
 � ��x�� � � � � xn
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where fKe������en is an uninterpreted function symbol� Under this analogy� each
thus created object o is identi�ed with a term of the form fKe������en�t�� � � � � tn
�
where the ti are other terms which further identify other objects oi� Note that
this identi�cation corresponds exactly to Lemma ���� where such an object
o was shown to be identi�able with the pair �K� val�o
�� By De�nition ����
val�o
 will equal �e� � val�o�
� � � � � en � val�on
�� whence we can conclude
that the two identi�cations fKe������en�t�� � � � � tn
 and �K� val�o
� have precisely
the same information content and di�er only in syntax� The approaches
to object creation in OBQL and in ILOG or O�Logic are therefore entirely
equivalent� In particular� the latter languages� like OBQL� cannot eliminate
duplicates�

However� F�Logic �KLW	��� the successor of O�Logic� does provide the
possibility to specify additional equality axioms to enforce two terms to be
equal in the underlying logical interpretation� For example� Kifer� Lausen
and Wu �KLW	�� present an F�Logic program for expressing the powerset�
using an interated pairing construction similar in spirit to the OBQL program
used in the proof of Lemma ���
� By adding to this program an axiom of the
form pair�x� pair�y� z

 � pair�y� pair�x� z

� the duplicates are equated and
thus eliminated� In this way� F�Logic can express duplicate�free powerset
and hence �by Theorem ���
 also abstraction�

Two languages which provide an explicit abstraction or duplicate elimi�
nation operation are GOOD �GPVG	�� and the algebra of Shaw and Zdonik
�SZ	
�� The LDM algebra �KV	�� provides an explicit powerset operation�

Languages which provide the ability to non�deterministically choose an
element from a set can also express abstraction� as they can choose a unique
representative for each equivalence class of duplicates� An example is the
language DL �AV	��� Another way to see this is to observe that by repeated
non�deterministic choices� a total order can be constructed so that �by The�
orem ���
 abstraction can be expressed� Consequently� languages providing
the possibility to perform an action on each element of a set in some non�
deterministic order can express abstraction� Examples are the language TL
�AV	
� and some of the languages considered in �HS�	��

��� Duplicate elimination versus copy elimination

In this paper� we have concentrated on complex value queries� as de�ned in
Section �� However� as we observed in Section �� programs in OBQL �and

�




OBQL " abstr for that matter
 in general have the e�ect of augmenting a
database with derived information in the form of new objects and edges� not
necessarily representing a collection of complex values of some �xed type as
is the case for complex value queries� This e�ect is� strictly speaking� non�
deterministic� since the identity of the newly created objects is unimportant
�of course this non�determinism is of an in�nitely more restricted nature
than the arbitrary non�determinism mentioned at the end of Section ���
�
Furthermore� just as with complex value queries� we want the e�ect to be
generic� i�e�� to be invariant under permutations of the universe of objects�

The formal concept of general object�based query alluded upon in the
previous paragraph was introduced by Abiteboul and Kanellakis �AK�	� as
follows� Let Sin and Sout be two schemes such that Sout properly contains
Sin� Denote the set of all instances over a scheme S by inst�S
�

De�nition ��� An object�based query of type Sin 	 Sout is a binary rela�
tionship Q � inst�Sin

 inst�Sout
 satisfying


�� Q is recursively enumerable�

�� If Q�I� J
 then J restricted to Sin equals I�

	� Q is invariant under permutations of the universe of objects�


� If Q�I� J�
 and Q�I� J�
 then there exists a permutation f of the uni�
verse of objects which is the identity on the objects in I such that
f�J�
 � J��

Since the abstraction operation is a query in the above sense� not every
query can be expressed by an OBQL program �by Corollary ���
� In other
words� OBQL is not complete w�r�t� the object�based queries� Is OBQL "
abstr complete� This question was studied by Abiteboul and Kanallakis
�AK�	� in the context of the IQL language� which is essentially equivalent to
OBQL " abstr� They showed that IQL is only complete up to copies�

Formally� let %J and J be instances over Sout� and let I be the restriction
of J to Sin� We de�ne�

De�nition ��� %J is an instance with copies of J if there are n instances
J�� � � � � Jn over Sout such that the following holds


��



�� For each i� there is a permutation f of the universe of objects which is
the identity on the objects in I such that f�Ji
 � J�

�� For each i �� j� Ji and Jj are disjoint outside Sin�

	� %J � J� � � � � � Jn�

Now let %Q and Q be object�based queries of type Sin 	 Sout� We further
de�ne�

De�nition ��� %Q equals Q up to copies if Q�I� J
 implies %Q�I� %J
 for some
instance %J with copies of J � and conversely� %Q�I� %J
 implies Q�I� J
 for some
J such that J is an instance with copies of J�

Abiteboul and Kanellakis proved�

Theorem ��� �
AK�� Every object�based query can be expressed up to
copies in IQL�

The notion of copies just de�ned should of course not be confused with the
notion of duplicates introduced in Section �� Copies are complete instances
which are isomorphic with respect to some reference instance I� while dupli�
cates are individual objects which are logically indistinguishable on the basis
of their local properties� Nevertheless� there turns out to be a connection
between the two notions� Recall from Theorem ��� that every complex value
query can be expressed in OBQL� albeit possibly with duplicates� Using this
result� we can show that not only OBQL " abstr� being equivalent to IQL�
but already OBQL alone is complete up to copies�

Theorem ��� Every object�based query can be expressed up to copies in
OBQL�

Proof� We will outline the argument for the particular case that Sin consists
of a single class name A and no edges� and Sout additionally has class name
B and edges �B� a� A
 and �B� b� B
� The general case is analogous� Let Q
be a query of type Sin 	 Sout� Hence� the e�ect of Q on an instance over
Sin �consisting of a set of A�labeled objects
 is to add a number of new B�
labeled objects together with a�labeled edges from the new to the old objects
and b�labeled edges between the new objects� We want to show that Q is
expressible up to copies in OBQL�
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Thereto� we associate a complex value query Qval to Q as follows� Let S �
in

be the scheme obtained from Sin by adding two classes� B and Count � and
an edge �Count � next �Count
� Given an instance I over Sin and two natural
numbers n and m� denote by I �n�m the instance over S �

in obtained from I by
adding n new objects labeled B� and adding m new objects labeled Count
organized as a linear list by means of next edges� Furthermore� let � be the
complex value type

�a � f�from � B� to � A�g � b � f�from � B� to � B�g��

Given an instance I over Sin� I �n�m �for some n and m
 together with a value v
of type � over I �n�m describes an instance over Sout in the obvious way� which
we denote as J�I �n�m� v
� Finally� let M some �xed Turing machine which
enumerates Q� Now the complex value query Qval of type S �

in 	 � is de�ned
as follows� for each I� n and m� Qval�I �n�m
 results in the collection of values v
for which M on input I outputs an instance J isomorphic to J�I �n�m� v
 after
m steps�

By Theorem ���� Qval is expressible in OBQL� We can now write an OBQL
program expressing Q up to copies as follows� On input I� the program visits
all pairs of natural numbers �n�m
 in succession �encoded using temporary
objects in the well�known way
 and tests at every stage whether Qval�I �n�m
 is
non�empty� If the test succeeds� we have in e�ect a collection of descriptions
of instances J for which Q�I� J
� These descriptions can be collected in an
instances with copies� The details are tedious but straightforward and left
to the reader�

In retrospect� this proof of completeness up to copies is very close to the
one Abiteboul and Kanallakis gave for IQL �AK�� However� we have arrived at
it independently and from a somewhat di�erent perspective� Furthermore� we
have proved the result for OBQL� which shows that the abstraction operation
�or� equivalently� duplicate�free set representation
 is not needed to achieve
completeness up to copies� This has two consequences as to the connection
between the notions of copies and duplicates announced above�

First� it shows that elimination of copies is at least as strong than elimi�
nation of duplicates� Indeed� Theorem ��� implies that the abstraction oper�
ation� viewed as an object�based query� is expressible in OBQL up to copies�
Actually� elimination of copies is known to be strictly stronger than elimi�
nation of duplicates� we will not elaborate on this but refer the interested
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reader to �VVAG	�� for an overview of the di�erent notions of completeness
for object�creating query languages�

Second� inspection of the Proof of Theorem ��� reveals that if OBQL "
abstr is used� then Qval can be expressed without duplicates so that the
instance with copies will contain less copies than would be possible in OBQL�
Hull and Yosikawa �HY	
� have made similar observations in the context of
the ILOG language� although they did not recognize duplicates and copies
as distinct notions� Speci�cally� they claimed that ILOG is complete up to
copies but cannot express the ��combinations query �using the terminology
of our Section �
 without duplicates� Comparing these �ndings with the
results of Abiteboul and Kanellakis on IQL� they concluded that �IQL can
eliminate more duplicates than ILOG�� No rigorous proofs were presented�

��� Further research

To conclude this paper� we mention some further results which have been
obtained in connection with the present work� Van den Bussche and Van
Gucht �VV� have reexamined the problem of duplicate set values in a setting
where a �xed cardinality bound on set values is known� One of their results
is the following generalization of Theorem ���� The m�combinations query
without duplicates� considered in Section �� can be viewed as a cardinality�
restricted version of the powerset operation de�ned in Section �� We can add
this operation to OBQL� obtaining OBQL " powersetm� Then except for
m � 
 and m � �� OBQL " powersetm�� is strictly more expressive than
OBQL " powersetm�

Van den Bussche et al� �VVAG	�� have characterized the classes of all
object�based queries that can be expressed in OBQL and OBQL " abstr
without copies� It turns out that these classes occur naturally as consist�
ing of those queries for which creation of new objects can be achieved by
construction of untyped� nested tuple values �for OBQL " abstr� nested
set values
 over the objects in the input� We have seen that this is indeed
possible in OBQL �see De�nition ��� and following
� Alternative algebraic
characterizations� in the form of extra conditions imposed on object�based
queries� have also been obtained�

Finally� there seems to be a connection between the notion of duplicates
in object�based data models� as considered in this paper� and recent work on
bag databases �bags generalize sets with duplicates
� For example� Grumbach

��



and Milo �GM	�� present results similar to ours concerning the equivalence
between duplicate elimination and powerset construction in the context of
bags� We conjecture that bag representation and manipulation can be natu�
rally studied in the object�based framework set up in the present paper�
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Appendix� Proof of Theorem ��	

A�� Ordering edges and the whole instance

Having created orderings of the di�erent classes of objects in the input in�
stance I� we also have to order the edges in I� This can be done by creating
for each edge �B� e� C
 in the scheme S a new class B e C� which we will call
an edge class� using the following object addition�

sorts x � B� x� � C

B e C�from � x� to � x�� � e�x� x�
�

��



In this way� for each e�edge �o� e� o�
 in the instance� where o is a B�object and
o� is a C�object� an object representing the pair �from � o� to � o�� is created�
The class B e C can now be ordered in the same way as the �ordinary�
classes�

Using the created orderings of the classes and properties� we can now
deduce the orderings of the whole instance as aggregates of the individual
orderings� Let fC�� � � � � Cng be the set of all class names and edge�class names
of S� Then we perform the object creation�

sorts x� � ListC�
� � � � � xn � ListCn

Order �orderC�
� x�� � � � � orderCn � xn� � OrderC�

�x�� x�
 � � � � �OrderCn�xn� xn


A�� Constructing the initial con�guration

The initial con�guration of the tape contains the input �I� v
 for each simu�
lation� We �rst write the objects of I on the tape� For each class name C
of S� we perform the following procedure� The procedure uses an auxiliary
property list of Content�objects which will point to ListC�objects�

sorts t� t� � Tape� c � Content � x � Symbol �
o � Order � v � K� y � C�

l � ListC � stop � StopC � z � �C

Content �cell � t� order � o� val � v� list � l� � ��t� � left�t�� t
 � orderC�o� l
�
while change do
StopC � � � �c � cell�c� t
 � ��t� � left�t�� t
 � �l � list�c� l
 � ��x � head�l� x
�
contains�c� x
 � ��stop � �t � cell�c� t
 � ��t� � left�t�� t
 �
�y�l � list�c� l
 � head�l� y
 � is�x� y
�

Tape�left � t� � ��stop � ��t� � left�t�� t
�
Content �cell � t� order � o� val � v� list � l� contains � x� �
�z � is�x� z
 � ��stop � �t� � left�t� t�
 �
��t�� � left�t��� t
 � �c � cell�c� t�
 � order�c� o
 � val�c� v
 � list�c� l
�

Tape�left � t� � ��stop � ��t� � left�t�� t
�
Content �cell � t� order � o� val � v� list � l� �
��stop � �t� � left�t� t�
 � ��t�� � left�t��� t
 �
�c � cell�c� t�
 � order�c� o
 � val�c� v
 � �l� � list�c� l�
 � tail�l�� l


od
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Note that the last Content�objects created by the above procedure do not
have a contains�property� These �void� objects are harmless and will not
play a role in the further simulation�

To write the edges of I on the tape� we perform� for each edge�class
name� an analogous procedure as for the ordinary class names� At last we
write value v on the tape� If � is the set type fe � Cg� then the ordering of
C is used� We omit the details�

A�� Bookkeeping and actual simulation

Before starting the simulation of the computations on the inputs just pre�
pared� some bookkeeping information must be initialized� Each step of the
simulation will be �timestamped� using a class Clock� organized as an ever�
growing stack and initialized to a single object� standing for time zero� All
Content objects that represent the input con�guration of the tape are linked
to time zero� So� we have the following object en property additions�

sorts c � Content � cl � Clock

Clock � � � true�
time�c� cl
 � true�c� cl


Furthermore� for each state q of MV � we create a class �q� consisting of a
single object� using the operation �q� � � true�

The class Status with properties order� val� state� register� cell and time
keeps track of the status of the di�erent computations at each step� Initially�
the state is the initial state q�� and the cell is the �rst tape cell� The initial
contents of the register does not matter so we leave it unspeci�ed� We thus
have the following initialization�

sorts o � Order � v � K� z � �q�� t � Tape� cl � Clock

Status �order � o� val � v� state � z� cell � t� time � cl� �
true�o� v� z� cl
 � ��t� � left�t�� t


The simulation of the actual domTM transitions now happens in one big
while�loop� At the beginning of each iteration� the state information of the
computations that are still active can be described by a triple �q� x� y
� where
q � Q� x � � � f�g� and y � � � f�� �g� This information� which is implicit
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in classes Status and Content� is made explicit by marking each order�value
pair whose associated computation is still active with a gqxy�object as follows�
If x� y � � then we have the statement� respectively


sorts o � Order � v � K� cl� cl� � Clock �
s � Status� c � Content � zx� zy � Symbol �
zq � �q� xx � �x� yy � �y

gqxy�order � o� val � v� time � cl� �
��cl� � previous�cl�� cl
 � �s� c� zq� zx� xx� zy� yy �
order�s� o
 � val�s� v
 � time�s� cl
 �
order�c� o
 � val�c� v
 � time�c� cl
 �
state�s� zq
 � register�s� zx
 � is�zx� xx
 �
�t � cell�s� t
 � cell�c� t
 � contains�c� zy
 � is�zy� yy


If x � � and y � �� then x ranges over all objects in the input instance I� In
this case� the clause register�s� zx
 in the above statement must be replaced
by register�s� zx
 � object�zx� zx
� The cases x � y � � and x � �� y � � are
similar and left to the reader�

Next� the computations that come to an end are marked with a Done�
object by including the following statement for each triple �q� x� y
 on which
the transition function is unde�ned�

sorts s � Status� v � K� cl� cl� � Clock �
o � Order � zq � �q� z � gqxy

Done�order � o� val � v� state � zq� � �cl � ��cl� � previous�cl�� cl
 �
�z � order�z� o
 � val�z� v
 � time�z� cl


After that� a new Clock �object is created� provided there are still active
computations left�

sorts cl� cl� � Clock � o � Order � v � K� d � Done

Clock �previous � cl� � ��cl� � prev�cl�� cl
 �
�o� v � ��d � order�d� o
 � val�d� v


The loop body is completed with� for each triple �q� x� y
 on which the
transition function is de�ned� three statements performing the actual con�
�guration change� For example� if ��q� �� y
 � �q�� �� �� L
� we have�
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sorts o � Order � t� t� � Tape� cl� cl�� cl�� � Clock �
s � Status� x � Symbol � v � K�

z � gq�y� zq� � eq�
Content �order � o� val � v� cell � t� contains � x� time � cl� �
�cl� � previous�cl� cl�
 � ��cl�� � previous�cl��� cl
 � �z� s �
order�z� o
 � val�z� v
 � time�z� cl�
 �
order�s� o
 � val�s� v
 � time�s� cl�
 � cell�s� t
 � register�s� x
�

Content �order � o� val � v� cell � t� contains � x� time � cl� �
�cl� � previous�cl� cl�
 � ��cl�� � previous�cl��� cl
 � �z� s �
order�z� o
 � val�z� v
 � time�z� cl�
 �
order�s� o
 � val�s� v
 � time�s� cl�
 � �cell�s� t
 �
�c � order�c� o
 � val�c� v
 � time�c� cl
 � cell�c� t
 � contains�c� x
�

Status �order � o� val � v� state � zq� � register � x� cell � t� time � cl� �
�cl� � previous�cl� cl�
 � ��cl�� � previous�cl��� cl
 � �z� s �
order�z� o
 � val�z� v
 � time�z� cl�
 �
order�s� o
 � val�s� v
 � time�s� cl�
 � register�s� x
 � �t� � cell�s� t�
 � left�t�� t


The other cases are similar�
Finally� after the end of the loop� the accepted values v� i�e�� those corre�

sponding to computations that have halted in state qa� are marked�

sorts v � K� d � Done� z � fqa
accept�v� v
 � �d � val�d� v
 � state�d� z
�

��


