The expressive power of complex values in
object-based data models”

Jan Van den Busschef Jan Paredaens

Dept. Math. & Computer Sci., University of Antwerp (UIA)
Universiteitsplein 1, B-2610 Antwerp, Belgium
E-mail: vdbuss@wins.uia.ac.be, pareda@wins.uia.ac.be.

Abstract

In object-based data models, complex values such as tuples or sets
have no special status and must therefore be represented by objects.
As a consequence, different objects may represent the same value,
i.e., duplicates may occur. This paper contains a study of the precise
expressive power required for the representation of complex values in
typical object-based data models supporting first-order queries, object
creation, and while-loops. Such models are sufficiently powerful to ex-
press any reasonable collection of complex values, provided duplicates
are allowed. It is shown that in general, the presence of such dupli-
cates is unavoidable in the case of set values. In contrast, duplicates
of tuple values can easily be eliminated. A fundamental operation for
duplicate elimination of set values, called abstraction, is considered
and shown to be a tractable alternative to explicit powerset construc-
tion. Other means of avoiding duplicates, such as total order, equality
axioms, or copy elimination, are also discussed.

*Extended and revised version of a paper presented at the Tenth ACM Symposium on
Principles of Database Systems [VP91].
tResearch Assistant of the Belgian National Fund for Scientific Research.

1 Introduction

In the past decade, there has been a lot of interest in database systems
allowing a more direct representation of complex data structures than pos-
sible in standard relational systems. Recent work in this field lead to the
definition of two new data models: the complexr value model and the object-
based model. (There were also proposals to combine the two approaches
[AKS89, Bee90, HK87, LRVS88].)

The complex value model (also known as the complex object, nested
relational, NF2, or unnormalized model [AFS89]) is an extension of the stan-
dard relational model [UlI88]. While the relational model offers collections
of tuples, the complex value model offers collections of arbitrary combina-
tions of sets and tuples called complexr values. In the object-based model
[GPVG94, HS89, HY90, KV93, KW93], a database is thought of as a la-
beled graph of objects, where each set of equally labeled objects comprises
a so-called class. The edges between objects in the graph express properties
and are labeled by property names. This approach is inspired by the object-
oriented philosophy [KL89], but can in fact be traced back to the Functional
Data Model [Shi81].

A difference between the complex value approach and the object-based
approach is that in the latter, complex values are not explicitly part of the
data model. The usual way of representing a complex value in such a model
is by an object. More specifically, an n-ary tuple is represented by an ob-
ject, linked to each of the n tuple components by a differently labeled edge.
Similarly, a set of objects is represented by an object with equally labeled
edges going to each element of the set. A class of objects then represents a
collection of complex values if each object in the class represents a complex
value in the collection, and conversely, each complex value in the collection
is represented by an object in the class. However, it may occur that two
different objects in the class represent the same value, i.e., duplicates may
occur.

In this paper, we will be concerned with object-based queries whose result
is a collection of complex values. Such queries augment the database with
the new objects and edges necessary for representing the desired collection.
The fundamental query language for relational databases, the relational cal-
culus [UlI88], can be adapted for this purpose. More specifically, a relational
calculus query over the database graph can be used for object creation by

creating a new object for each tuple in its result. Moreover, if the result is
a binary relation, it can be alternatively used for edge addition. A simple
yet powerful object-based query language, which we call OBQL, can thus be
obtained by providing object creation and edge addition as basic statements
and closing off under composition and while-loops. This language subsumes
many object-based query languages proposed in the literature.

We will show, using well-known techniques, that any complex value query
satisfying the usual requirements of computability and genericity can be ex-
pressed in OBQL. However, we will show also that this completeness property
depends on the allowance of duplicates in the result. Indeed, if one insists
on duplicate-free representations, even very simple collections of set values
become inexpressible in OBQL. For example, we will show that the query
asking for all subsets of two elements of a given class is not expressible with-
out duplicates. In contrast to sets, duplicates of tuple values can easily be
eliminated in OBQL, which is not completely unexpected since the core of
OBQL is the relational calculus, which is tuple-based from the outset.

Duplicate-free representations have a number of apparent practical advan-
tages. Obviously, duplicates cause redundancy in the database and are often
undesirable from a faithful data modeling point of view. Another advantage
concerns the efficient answering of queries involving the equality of complex
values. In arbitrary representations, checking for equality of two complex val-
ues requires an expensive comparison of all components. However, if every
complex value is represented by a unique object, checking equality amounts
to one single comparison of the corresponding object identifiers. A third
advantage is efficiency of representation. If a client program asks for a col-
lection of complex values, it is useful if the server program can deliver the
collection in the form of a unique handle to each element. Different handles
to the same structured value, i.e., duplicates, would be very undesirable in
this situation.

Hence, it is desirable to enrich OBQL with an additional primitive for
the creation of duplicate-free value representations. Since the problem of
duplicate elimination exists only for collections of set values, one might sim-
ply add an explicit primitive for constructing such collections. The obvious
candidate for this, first considered by Kuper and Vardi in the context of
the Logical Data Model [KV93], is the powerset operation. Alternatively,
one might propose a quotient construction for creating a unique representa-
tive for each equivalence class of duplicate objects. An operation providing

this functionality is the abstraction operation, first considered by Gyssens,
Paredaens and Van Gucht in the context of the GOOD model [GPVG94].
We will show that these two options for enriching OBQL are equivalent in
expressive power.

However, an important advantage of the abstraction operation over the
powerset operation is that the former is more efficient. Indeed, we will show
that on ordered databases, abstraction is expressible in OBQL without using
while-loops. As a consequence, the abstraction operation can be computed
in polynomial time on a Turing machine. We also show that any arbitrary
computable and generic equivalence relation is reducible within OBQL to
the particular equivalence relation “is a duplicate of” as dealt with by the
abstraction operation. In other words, every reasonable quotient construc-
tion can be reduced to the particular quotient construction provided by the
abstraction operation.

We will conclude with a discussion on related issues. In particular, we will
observe how the problems of object creation, complex values and duplicates
can be understood in the context of other data models and object-based query
languages proposed in the literature. We will also explain the connection
between the complex value queries as considered in this paper and general
object-creating queries, and in particular, explain the distinction between the
notion of duplicate elimination studied in the present paper and the notion
of copy elimination introduced by Abiteboul and Kanellakis [AK89]. We will
also briefly mention further research issues.

2 The object-based data model

In this section, we define a general object-based data model, which serves as
a formal framework capturing the features (relevant to this paper) of many
object-oriented database systems encountered in practice. We will define
database schemes and instances as directed, labeled graphs, and introduce a
simple yet powerful object-based query language, called OBQL. Our formal-
ism closely follows the earlier proposals LDM [KV93] and GOOD [GPVGY94].

It is customary in object-based models to depict a database scheme as
a graph. Thereto we assume the existence of pairwise disjoint sets of class
names, single-valued property names, and multi-valued property names, and

define:

Definition 2.1 A scheme is a finite, edge-labeled, directed graph. The nodes
of the graph are class names, and the edges are triples (B, e, C'), where B and
C' are nodes and the edge label e is a (single- or multi-valued) property name.

A database instance can now be defined as a graph consisting of objects
and property-links, the structure of that graph being constrained by some
database scheme. So we assume the existence of an infinite supply of objects,
and define, for an arbitrary scheme S:

Definition 2.2 An instance over S is a finite, labeled, directed graph. The
nodes of the graph are objects. Each node o is labeled by a class name (o)
of S. The edges are triples (o,e,p), where o and p are nodes and the edge
label e is a property name of S such that (A(0),e, A(p)) is an edge of S. If e
is single-valued, then for each o there is at most one p such that (o,e,p) is
wn the graph.

The set of all objects in an instance labeled by the same class name C
will be called the class C.

Before turning to the object-based query language OBQL, we must first
specify what we mean with the notion of query in the object-based data
model. In the relational model, a query is typically considered a function,
mapping an input database to an output relation [CH80]. This output re-
lation is often materialized as derived information, or used as part of the
input to a subsequent query. Hence, it is natural to view a relational query
alternatively as a function which augments an input database with a new,
derived relation. This view of a query can be readily adopted in the object-
based data model: a query is a function which augments an input instance
with new objects and edges. Correspondingly, OBQL provides two basic op-
erations, one for object creation and one for edge addition. The language is
closed off under composition and while-loops.

Object creation and edge addition are based on the following adaptation
of the relational calculus to object databases. With a scheme S, we can
associate a standard, first-order, many-sorted logic. The class names of S
are the sorts, and for each edge (B,e,C) in the scheme there is a binary
predicate name e of sort (B,C). Given an instance I over S, a sort C' is

interpreted by the class C' in I, and the predicate e(B, C') is interpreted by
the set of all e-labeled edges going from objects of class B to objects of class
C. Now let ®(zy,...,x,) be a formula over S, n > 0, and let C; be the sort
of variable z;. Evaluating {(x1,...,2,) | ®} over I yields an n-ary relation
consisting of all tuples (oq,...,0,) of objects in I satisfying ®. Note that o;
will be in class C;.

The object creation operation:

F=Cle;:xy,...,e5 2, <= P

provides a natural way to augment the database with a representation of the
above n-ary relation. Here, C' is some class name and ey, ..., e, are property
names. The effect of [' on schemes S and instances [is formally defined as
follows:

Definition 2.3

e I['(S) is the scheme obtained by augmenting S with node C' and edges
(C,e;, Cy), fori=1,...,n. (By augmenting a graph G with a node or
edge x, we mean adding x to G provided x does not already belong to

G.)

e ['(I) is the instance over I'(S) obtained from I by adding, for each tuple
(01,...,0n) of objects in I such that ®(o,...,0,) is true in I, one new
object o with label C, together with edges (o,¢€;,0;), fori=1,...,n.

If n = 2, then evaluating formula ® yields a binary relation, which can
be used not only for object creation, but also for edge addition. Indeed, each
pair in the relation can be interpreted as a set of derived edges. These can
be added to the database using the edge addition operation

A= 6(1’1,1‘2) = P,

where e is some multi-valued property name. The effect of A on schemes
and instances is formally defined as follows:

Definition 2.4

o A(S) is the scheme obtained by augmenting S with the edge (C,e,Cy).

6

e A(I) is the instance over A(S) obtained by augmenting I with an edge
(01,€,09) for each tuple (01,09) of objects in I such that ®(oq,05) is
true in I.

Queries can now be expressed in OBQL by means of arbitrary compo-
sitions of object creation and edge addition operations. Furthermore, these
compositions can be iterated using a while-loop construct of the form

while change do op,;...;op, od.

The body of the loop is executed as long as the instance under operation
changes (which might be forever). The instance resulting from the execution
of an OBQL program P on an instance I will be denoted by P(I).

Remarks. We conclude this section with some remarks on specific features
of OBQL.

The definitions of object creation and edge addition allow that the labels
of objects and edges that are added to an instance already exist in the scheme
of that instance. This provision is necessary for adding deriving information
incrementally, e.g., using a while-loop. For example, the following program
computes the transitive closure of a database graph whose objects are all in
the same class and whose edges all have the same label e. The edges of the
transitive closure will get the label e*.

e*(x,y) < e(z,y);
while change do e*(z,y) < 3z : e(x, 2) A e*(2,y) od

A program expressing a query will often create a lot of temporary objects
and edges that are only used for storing intermediate results in the course
of the computation, and should be omitted from the end result. We can
make this formal by dividing object and edge labels (i.e., class and property
names) into three kinds: those that are in the input scheme, those that are
wanted in the ouput, and those that are only auxiliary and are used to label
the intermediate results. It will always be clear from the context which of
the labels are auxiliary; we will never explicitly indicate them.

A number of object-based data models considered in the literature
[GPVG94, HY90, KW93] use an alternative semantics for object creation,
which we will call weak semantics, and which is often natural and useful.

7

Recall Definition 2.3 of the object creation operation. The weak variant of
this operation, written

Cley : xy,. .. €5 1 Ty <wear P,

only adds a new object o (as specified in the definition) if there is not already
a C-labeled object o' with edges (0',e;,0;) in the database. Hence, it is
equivalent to

Cley :xq,... e 2] = PA Tz s eg(x,21) A Aep(x,).

Thus, the weak semantics can be simulated in our semantics. Actually, the
converse is true as well. The converse simulation uses an auxiliary class 7',
structured as an ever-growing stack. The stack is initialized with a bottom
object using the “zero-ary” object addition:

T[] <yeak true.

The object creation
Cler : T1,...,e5 2y = P

is then simulated by first pushing a new object on the stack:
T[previous : t] <yeax —3t" : previous(t', t).

(Here, t and ¢’ are variables of sort T'; the formula states that ¢ is the top of
the stack.) The actual object creation is then performed by

Cler : 1, .. n: T, e t] Egear © A Tt 2 previous(t' t).

In words, the new object must be connected to the top of the stack with a
temporary edge labeled e. This guarantees that it will indeed be created,
regardless of whether there already exists an object with the same eq, ..., e,-
edges, since such an object will be connected to a lower object in the stack.

A final remark concerns the sorts of the logical variables used in object
creation and edge addition operations. In the sequel, when OBQL programs
are shown, we will precede these programs by a wvariable declaration which
indicates the sorts of the different variables that are used. For example, to
declare variables x and y as of sort C' and variable z as of sort B, we will
write

sorts x,y: C; 2: B

before the beginning of a program using variables x, ¥y and z. Note that
variable declarations strictly belong to the “meta language” and are not
formally part of the syntax of OBQL.

3 Representation of complex values

In this section, we show how complex values, in the widely adopted style
of [AB88, AK89], can be represented in the object-based data model, and
establish a completeness result for OBQL in this respect.

We first need the types, which are expressions inductively defined as fol-
lows. In what follows, S is an arbitrary but fixed scheme.

Definition 3.1
1. Every class name of S is a type, called an atomic type.

2. If eq,...,e, are different single-valued property names, and m,...,T,
are types, then [e1 : T1,... e, : o] s a type, called a tuple type.

3. If e is a multi-valued property name, and T is a type, then {e : 7} is a
type, called a set type.

The order in which the different e; : 7; are listed in a tuple type is unimpor-
tant.

The extent of a type over a given instance I over S, which is the set of
all possible values of that type, is now inductively defined as follows.

Definition 3.2
1. The extent of atomic type C' is the class C in I.

2. The extent of tuple type [e1 : T1,...,e, : Ty| is the set of all tuples
[€1: V1, ..., e, v,] such that v; is a value of type ;.

3. The extent of set type {e : T} is the set of all sets of values of type T.

Values of non-atomic types are called complex values.

In data models combining the complex value and the object-based ap-
proach, complex values are “first-class citizens” of the model and are typically
associated to objects according to a so-called type assignment (see the refer-
ences in the Introduction). In contrast, the “pure” object-based data model
defined in the previous section does not explicitly contain complex values.
However, values can be naturally represented using objects. An n-ary tuple
value can be represented by an object with n single-valued properties. A set
value can be represented by an object with a multi-valued property. To make
this idea formal, we need the “dual” notion of a type assignment, which we
call a class assignment:

Definition 3.3 Let 7 be a type. A class assignment for 7 is a mapping o
from T and all types occurring in T to class names, such that:

1. Atomic types (i.e., class names) are mapped to themselves.

2. If a(ley : 11,...,e, 1 T]) = C, then for each i, (C,e;, a(T;)) is an edge
of S.

3. If a({e:1'}) =C, then (C,e,a(r")) is an edge of S.

In other words, a(7) = C' means that C' has the right properties for values
of type 7 to be representable by objects of class C'. Let an arbitrary class
assignment « be fixed. Let I be an instance, let v be a value over I of type
7, and let o be an object in class a(7) in I. We define inductively what it
means for o to represent v:

Definition 3.4

1. If T is atomic, then o represents v if o = v.

2. If T is the tuple type [y : T1,...,e, @ Tp] and v = [e; : v1,... €, :
Un], then o represents v if there are objects oy,...,0, of classes
a(r),...,a(m) respectively such that for each i, (o,e;,0;) in I and

0; represents v;.

10

3. If T is the set type {e : 7'}, then o represents v if for each v' € v there
is an edge (o,e,0') in I such that o' is of class a(1") and represents v',
and conversely, for each o' of class a(1") such that (o,e, d') the value v'
represented by o' is in v.

In the sequel, we will almost never explicitly mention the class assignment
in use if this is clear from the context.

Since we are primarily interested not in single values, but in collections
V' of complex values of a common type, we finally define:

Definition 3.5 A class represents a collection V if each object o in the
class represents a value in the collection, and conversely, each value in the
collection is represented by some object in the class.

We are now ready to present a first result which indicates that the query
language OBQL defined in the previous section is quite powerful. Let S be
a scheme and let 7 be a complex value type.

Definition 3.6 A complex value query of type S — 7 is a function V,
mapping each instance I over S to a collection V (I) of complex values over
I of type 7.

As usual in database applications, we consider only mappings which do not
“interpret” the objects: objects are abstract entities and only their inter-
relationships matter [AU79, CH80]. This requirement, nowadays known as
genericity (e.g., [AV90, HS93]), is formalized by the requirement that the
mapping, viewed logically as a binary relationship, is invariant under permu-
tations of the universe of objects. Furthermore, a complex value query V' is
called computable if the problem: given an instance I and a complex value
v over I of type 7, does v belong to V(I)? is decidable. Finally, V" is called
expressible in OBQL if there is a class name K and an OBQL program P aug-
menting each instance I with the necessary objects and edges such that class
K in P(I) represents V(I). Clearly, every complex value query expressible
in OBQL is computable and generic. The converse holds as well:

Theorem 3.7 FEvery generic computable complex value query is expressible

in OBQL.

11

To prove Theorem 3.7, we first observe that we may, without loss of
generality, restrict attention to types of depth 1, defined as follows:

Definition 3.8 A type has depth 1 if it has the form [e; : Cy, ... e, : Cy) or
{e: C}, where C,CY4,...,C, are class names.

Indeed, if we know that the theorem holds for depth 1 types, then the
general theorem follows by an obvious bottom-up construction.
We next present two lemmas.

Lemma 3.9 The extent of the tuple type ey : Cy, ... e, : Cy] is expressible
in OBQL.

Proof. Our task is essentially to represent the Cartesian product of classes
Ci,...,C, by a new class K. This can be done by the following object
addition:

sorts x1 : Cy; ...; 2, : C,

Kley : @1, ... e 1 xy] < true(zy, ..., z,)

(true(xq,...,z,) denotes an arbitrary tautology with free variables
T1yeny Ty.) [|

Lemma 3.10 The extent of the set type {e : C'} is expressible in OBQL.

Proof. Our task is essentially to represent the powerset of class C' by a
new class K. This can be done by the following program. Properties a; and
ap are temporary. Recall that by the definition of set types, e must be a
multi-valued property name.

sorts x : C; 2,21, 20,219 : K

Kle : x] <= true(x);

while change do
Klay : 21,09 @ 25) <= —3z : Vo 1 e(z,x) < (e(z1,2) V e(z2,7));
e(z,x) < Jz19 @ (a1(2, z12) V az(z, z12)) A e(z12,)
od

K[] <= true

12

In the above proof, the powerset is constructed bottom-up, starting from
the singletons and then taking pairs until all sets are represented. The final
statement adds a representation for the empty set. The representation K
thus obtained will contain duplicates, i.e., different K-objects representing
the same set of C'-objects. This is allowed by Definition 3.5. We will return
to the subject of duplicates in detail in the next section.

We are now ready for:

Proof of Theorem 3.7. Let V be a generic computable complex value
query of type S — 7, where 7 has depth 1. We have to show that V is
expressible in OBQL. Let I be an instance over S.

Since V' is computable, there is an effective algorithm that decides for
each element of the extent of 7 whether it belongs to V(I). Since V is
generic, we can assume that this algorithm is implemented on an input-
order independent domain Turing machine (domTM). The domTM model,
introduced in [HS93], is well-suited for describing database computations. A
domTM is like a normal Turing machine, but has extra capabilities. Apart
from the letters of the finite alphabet, the tape can also contain objects.
Hence, there is no need to encode objects as strings over the alphabet, as
would be necessary if we would use a conventional Turing machine. The
transition function of the machine can refer to the objects in a generic manner
only, using two generic variables and x which can only distinguish whether
two objects are equal or not. The machine has also a register.

Formally, a domTM is a five-tuple (@, %, 0, go, ¢a), where @ is a finite set
of states, ¥ is a finite alphabet, g is the initial state and ¢, is the accepting
state. The transition function § : @ X 31 X ¥y — Q X 3y X ¥y X {L, R},
where ¥; = XU {n} and 3y = XU {n, k}, maps the current state, the current
contents of the register and the contents of the current tape cell to a new
state, a new contents of the register, a new contents of the current tape cell,
and a movement on the tape. The following technical restrictions apply for
transitions 0(q, z,y) = (¢/,2',y',m): y = k only if z = n; n € {z/,y'} only if
n € {z,y}; and k € {2/,y'} only if x € {z,y}. A transition is called generic
if n € {z,y}. A generic transition serves as a template for the infinite set
of transitions formed by letting n (and & if it occurs) range over (different)
objects. Computations of a domTM are now defined in the obvious way.

The input-order independent domTM My, that computes V' gets as input
on its tape a description of an instance I, followed by a description of a value

13

v of type 7 over I. I is written on the tape as a string of objects and edges,
listed in some arbitrary order. An object o of class C' is written as oC. An
edge from o to p with label e is written as oep. The value v is written as
€101 . ..e,0, if 7 is a tuple type, or simply as a string of its elements if 7 is a
set type. Note that we assume that the finite alphabet of My includes the
class and property names of the scheme S.

We can construct an OBQL program Py that expresses V' as follows. On
input I, Py first creates a representation of the extent of 7 in a class K.
Then, for each object o of class K, the computation of My on input I,v,
where v is the complex value of type 7 represented by o, is simulated. If the
computation is accepting, then o is marked with a label accept. Finally, for
each accepted K-object o, an object o' of another class K’ is created and
the necessary property edges are brought over so that o’ represents the same
value (of type 7) as 0. As a result, class K’ represents the collection V' (I),
as desired.

The first part of program Py, expressing the extent of 7, was already
shown in Lemma 3.9 (if 7 is a tuple type) or Lemma 3.10 (if 7 is a set type).
The final part, the creation of class K’, is a straightforward application of
object addition and property addition. Hence, we will focus on the middle
and most important part, the simulation of My,. The techniques used thereto
are inspired by techniques used in earlier completeness proofs [AV90, CH80,
HS93]. In order not to loose focus, in the following exposition we will often
refer to the Appendix of this paper for the precise implementation details
of the simulation. The reader interested in concrete examples of programs
written in OBQL is encouraged to examine this Appendix.

To simulate My, on input /,v, we must create a tape on which I and v
are listed. The nodes and edges of I and, if 7 is a set type, the elements of
v, can be listed in an arbitrary order. However, it is impossible in OBQL to
choose one such order. Therefore, all possible orderings must be generated
and a simulation will be run for each of them. So, for each class C, a
class Listc is created containing all possible lists of all C'-objects, using the
following procedure which is similar in spirit to the powerset construction of
Lemma 3.10. List objects have the standard single-valued properties head
and tail, and an auxiliary multi-valued property contains used to keep track
of the generation.

sorts x,y : C'; 2,21, 20 : Liste

14

Listc[| < true;

Listclhead : z, contains : y, tail : z] <y = x;

while change do
Listc[head : x, tail : zy, contains : y] <y =x A

—contains(z1, x) A =32y @ head(ze, x) A tail(za, 21);

contains(zz, x) < J21 = tail(za, 21) A contains(zy, x)
od

Orderc(z1,21) <= =329 : tail(22, 21)

The last statement marks those lists that contain all C-objects, and which
can thus be viewed as an ordering of the class C', with a loop-edge labeled
Orderc.

We also have to order the edges of input instance I. Once this is done, we
can deduce the orderings of the whole instance as aggregates of the orderings
of the individual classes and properties. This leads to a class Order holding an
object for each possible ordering of the inputs instance. The implementation
details of the ordering of the edges and the construction of the class Order
are given in Appendix Al.

The two-way infinite tape of My will be simulated by the class Tape.
Every Tape-object simulates a tape cell, and has a single-valued property
left, pointing to its left neighbor cell. Of course, at any instant of time, Tape
contains only a finite number of cells, but can grow as needed during the
computation. Tape is initialized to a single cell as follows:

Tape] | < true.

Tape cells can contain objects in the input instance I as well as letters
from the finite alphabet. Therefore, to represent the possible tape symbols
in a uniform way, we populate a “generic” class of Symbol objects. For each
class name C' of S, we create a Symbol object for each object of class C' in
the input instance I as follows:

sorts z : C; z : Symbol
Symbollis : x| < true(x)

Moreover, we create a Symbol object for each alphabet letter ¢ as follows:

sorts [: /¢

15

([] <= true;
Symbol[is :] < true(l)

In order to be able to distinguish easily between Symbol objects representing
input objects and Symbol objects representing alphabet letters, we mark the
former using for each class name C' of S the following edge addition:

sorts z : Symbol; x : C
object(z,z) < Jx @ is(z, x)

(Note that this construction of the class Symbol illustrates how variant types,
also known as union types, can be represented using OBQL.)

The actual contents of the tape cells are represented by the class Content,
which has single-valued properties labeled cell and contains. Every Content-
object represents a pair [cell : ¢, contains : x|, meaning that cell ¢ contains x.
Here, t is a Tape-object and x is a Symbol object. Since a simulation of My,
is to be performed for every ordering of I and every value v, every Content-
object has two more properties, named order and val. The order-edge points
to an Order-object and the val-edge points to the K-object representing the
value.

The construction of the initial configuration of the tape, containing the
input (7, v) for each simulation is shown in detail in Appendix A2.

Before we are ready to start the simulation of the domTM computations
on the input tapes just prepared, we need to initialize some bookkeeping
information. Each computation step will be “timestamped” using a class
Clock, organized as an ever-growing stack. All Content objects that represent
the input configuration of the tape are linked to time zero. We also need a
class Status with properties order, val, state, register, cell, and time, with the
obvious semantics, to keep track of the status of the different computations
at each step.

The simulation of the actual domTM transitions now happens in one big
while-loop. At the beginning of each iteration, the computations that are
still active are marked with their state information. Next, the computations
that come to an end are marked. After that, a new Clock object is created,
provided there are still active computations left. The loop body is completed
with a number of statements performing the actual configuration changes for
each of the state triples on which the domTM transition function is defined.
All the implementation details are provided in Appendix A3.

16

This concludes the proof of Theorem 3.7. [|

4 Duplicate-free representations

In this section, we complement the completeness property of OBQL estab-
lished in the previous section with a result showing that OBQL is no longer
complete if duplicate-free representations are required.

Let 7 be a complex value type. Under a class assignment « with a(7) = C,
objects of class C' in a given instance represent values of type 7. If two
objects represent the same value, they are called duplicates with respect to
7. Definition 3.5 allows duplicates; however, duplicate-free representations
are often useful, as argued in the Introduction and further illustrated by the
following example.

Consider a scheme containing class names Student and Course, with an
edge from Student to Course labeled by the multi-valued property name
takes. In an instance over this scheme, there will be objects labeled Student,
i.e., students, and objects labeled Course, i.e., courses. Each student is
connected to the courses he takes by edges labeled takes. Hence, the class
Student represents the collection V' of the sets of all courses taken by some
student. However, this representation is not duplicate-free since different
students might well take exactly the same courses.

Of course, we do not want to disallow duplicates in this situation. Nev-
ertheless, it might be desirable to also have a representation of V' which
is duplicate-free. Assume we have such an additional class, Set, with in
the scheme an edge from Set to Course labeled contains. In the instance,
each Set-object is linked via contains-edges to precisely the courses of a
set in V. Furthermore, class Set does not contain duplicate objects w.r.t.
{contains : Course}. We can then derive a new single-valued property of
students, named takes_set, by the following edge addition operation:

sorts s : Student; z : Set; ¢ : Course

takes_set(s, z) <= Ve : takes(s, c) <> contains(z, c).

After this operation, each student is linked to the unique Set-object rep-
resenting the set of courses which that student takes. Queries concerning
the equality of sets of courses can now be answered very efficiently. To test

17

whether students take exactly the same courses, it suffices to check whether
they are linked to the same Set-object.

The preceding discussions motivates the following question: is it possi-
ble to produce this duplicate-free class Set by means of an OBQL program?
More formally, is the complex value query, mapping a given student-course
database to the complex value collection of type {contains : Course} con-
sisting of the sets of all courses taken by some student, expressible in OBQL
without duplicates? We will prove in the following that the answer is nega-
tive. This will also show that our proof of Theorem 3.7, which relies on the
allowance of duplicates if set values are involved, cannot be improved in this
respect.

Actually, we will prove that even a much simpler complex value query is
already inexpressible without duplicates. Let S be a scheme and C' a class
name in S. Let e be a multi-valued property name. For a fixed m > 2, the
m-combinations query of type S — {e : C'} maps a given instance I over S to
the subset of the powerset of class C' in I consisting of all sets of cardinality
m.

The proof will exploit the observation made at the end of Section 2 that
every OBQL program can be simulated by another program operating under
the weak semantics for object creation. Hence, without loss of generality,
we will assume weak semantics for object creation for the remainder of this
section. Unlike as we did in Section 2, we will no longer explicitly indicate
weak object creation with ‘<= ea .

This assumption allows us to associate untyped, nested tuple values to
created objects. More concretely, let P be an OBQL program, let I be an
instance to which P is applied, and let J be the result of this application.
We associate to each object o € J a value val(o) in an inductive manner, as
follows:

Definition 4.1
e Ifoisin I, then val(o) := o.

e [f o is not in I, then o must have been created during the application
of P on I, by an object creation operation of the form:

Kley i xy, ... en 2] <= P(xy, ..., 2,)
Then o is created in function of a tuple (01, ...,0,) of objects in J, and
we define val(o) = [ey : val(oy),. .., e, : val(o,)].

18

The following important property follows readily from the weak semantics
for object creation:

Lemma 4.2 Two different objects in the same class have a different associ-
ated value.

In the sequel, it will be convenient to identify an object o in J with the
pair [B, val(0)], where B is the name of the class of 0. (Interestingly, this
identification is analogous to logic programming-based approaches to object
creation [KW93]. We will illustrate this analogy further in Section 6.2.)

A permutation of the objects of an instance I can be canonically extended
to a permutation of the complex values over I. With I and J as above, the
identification just made then allows us to observe that OBQL is BP-bounded
in the sense of [CH80].

Lemma 4.3 If f is an automorphism of I, then f is also an automorphism
of J.

The proof proceeds by a straightforward induction and is left to the reader.
We are now ready for:

Theorem 4.4 The m-combinations query is not expressible in OBQL with-
out duplicates.

Proof. Let S be the scheme consisting of one single class name C' and
no edges. Setting n := m + 2, let I,, be the instance over S with objects
1,...,n. So, I, is a discrete graph of n isolated nodes. As a consequence,
every permutation {1,...,n} is an automorphism of I,,.

For the sake of contradiction, suppose there is an OBQL program P
expressing the m-combinations query. So, for some class name K, class K
in P(.J,,)—which we will denote by K,,—is a duplicate-free representation of
the collection of m-combinations over {1,...,n}. For each o € K,,, there are
exactly m edges labeled e leaving o, arriving in objects of I,,. We will denote
the set of these m objects by set(0). The set of all objects (of I,,) appearing
in val(o) is denoted by base (o).

We next observe that for any object o in K, the permutations of I,
leaving set(o0) invariant are precisely those leaving val(0) invariant. Indeed,
assume f is a permutation of I,, such that f(set(0)) = set(o0). Since f is an

19

automorphism of I,,, f is also an automorphism of .J,,, by Lemma 4.3. Hence,
f (o) is an object in K, with set(f(0)) = f(set(o)). But f(set(o)) = set(o),
so, since K, does not contain duplicates, f(0) = o. By the identification o =
[K, val(o)], we thus conclude that f(val(o)) = val(0). Conversely, assume f
is a permutation of I,, such that f(val(0)) = val(0). But then f(0) = o and,
since again f is an automorphism of .J,,, f(set(o)) = set(f(0)) = set(o).

On the other hand, the permutations leaving val(o) invariant are clearly
those that are the identity on base(o). As a result, the permutations that
are the identity on base(o) are precisely those leaving set(o) invariant. The
number of the former is (n — b)! = (m + 2 — b)!, where b is the cardinality of
base(o), while the number of the latter is (n — m)!m! = 2m!. We thus have
(m +2—0b)! = 2m! and distinguish between the following cases:

e If b > 2 then m+2—b<m and thus (m+2 — b)! <m! < 2m! which
is false.

e Ifb=1then m+2—>b=m+1and thus (m+ 1)l =2mlorm =1
which is false.

e If b =0 then m+2 —b =m+ 2 and thus (m + 2)! = 2m! or (m +
1)(m + 2) = 2 which is only possible if m = 0 which is false.

We have thus arrived at the desired contradiction. [|

It now follows that the student-courses query, which we originally consid-
ered, is not expressible in OBQL without duplicates either. For, if it were,
then the m-combinations query would be expressible without duplicates as
well, contradicting the above theorem. To see the latter claim, consider the
simple m-ary object creation

Kle:zy,...,e:xn) < N\ 2 #aj,

1<i<gj<m

where variables x; are variables of sort C. This operation expresses
the m-combinations query with duplicates, namely, m! duplicates per m-
combination. Since we can view the C-objects as courses and the K-objects
as students, the ability to create a unique object for each set of all courses
taken by some student would allow us to represent the m-combinations with-
out duplicates.

20

5 The abstraction operation

Knowing from the previous section that certain complex value queries are not
expressible in OBQL without duplicates, in the present section we investigate
means to extend OBQL so that the problem goes away.

The two examples we gave in the previous section—the student-courses
query and the m-combinations query—are complex value queries whose result
type is a set type of depth 1. Actually, the duplicate-free representation
problem does not exist for tuple types of depth one. Indeed, it is easy to
express the extent of a depth 1 tuple type without duplicates, as shown in
Lemma 3.9, so that the proof of Theorem 3.7, specialized to complex value
queries resulting in depth 1 tuples, yields expressibility without duplicates.
Furthermore, suppose we would define an extension of OBQL for which a
duplicate-free version of Theorem 3.7 would hold for complex value queries
whose result type is a set type of depth 1. Then by an obvious bottom-up
construction this result would generalize to types of higher depth.

Hence, the “duplicate elimination” problem exists only for collections of
depth 1 set values. There are at least two natural approaches to extending
OBQL to deal with this problem. A first approach, pursuing an analogy
with the tuple case for which we just observed that the problem does not
exist, is to add an operation for expressing the extent of a (depth 1) set type
without duplicates. We will call this operation the powerset operation. A
second approach, inspired by the fact that OBQL is already able to express
all reasonable complex value queries with duplicates, is to add an operation
for producing a duplicate-free representation from another (not necessarily
duplicate-free) representation. We will call this operation the abstraction
operation. We will now develop these two approaches in more detail.

Let S be a scheme, C' a class name in S, and I an instance over S. We
define:

Definition 5.1 The powerset operation
powerset K{e:C}

applied to I results in the addition, for each subset Z of class C, of one new
object o with label K together with edges (o,e,0') to all o' € Z.

21

Now assume furthermore that (C,a, B) is a multi-valued edge in S. For
simplicity, we assume that there is only one edge labeled a leaving C in
the scheme. The relation “... and ... are duplicates w.r.t. {a : B}” is an
equivalence relation which induces a partition in equivalence classes on the
objects in class C of I. We call these the equivalence classes with respect to
{a : B}. We then define:

Definition 5.2 The abstraction operation
abstr K[b] < C/a

applied to I results in the addition, for each equivalence class Z w.r.t. {a : B},
of one new object o with label K together with edges (0,b,0") to all o' € Z.

We can now extend OBQL by allowing powerset operations as basic state-
ments in the language, besides object creation and edge addition. The thus
extended language will be called OBQL + powerset. Similarly, we obtain
the language OBQL + abstr.

As an example, the student-courses query can be expressed without du-
plicates in OBQL + powerset as follows.

sorts k : K; s : Student; ¢ : Course; z : Set

powerset K{e: Course};
Setla : k] <= s : Ve : takes(s, c) <> e(k, c);
contains(z,c) < Ik : a(z, k) A e(k,c)

As another example, the m-combinations query can be expressed without
duplicates in OBQL + abstr as follows.

K'la:xy,...,0: 2] < Nicicjom T 7 755
abstr K[e] < K'/a

From the two above examples and the inexpressibility results of the pre-
vious section, we immediately obtain:

Proposition 5.3 The languages OBQL+ powerset and OB(Q)L+ abstr are
strictly more expressive than OBQL.

22

As already implicitly suggested in the preceding discussion, the expres-
sive power of duplicate elimination as provided by the abstraction operation
equals precisely the expressive power of duplicate-free powerset construction.
Before we prove this formally, we introduce a technique and a lemma, which
will be used in the proof and which seem sufficiently interesting in their own
right to explain them independently.

Recall from Section 2 that objects and edges with “auxiliary” labels are
only temporary and are omitted from the end result of an application of
a program to an instance. However, it is often convenient to be able to
ignore certain temporary objects not only at the end, but also during the
computation. More specifically, let T" be an auxiliary class name, and let
®(t) be a formula determining which objects of class T are no longer needed
(t is a variable of sort T'). We mark these objects by attaching to them a
loop-edge labeled old using the edge addition:

old(t,t) < B(1).

The thus marked objects can then be ignored by using formulas of the form
—old(t,t) AN ®'(t,...). (This technique has been previously used in the liter-
ature [AV90, Theorem 2.4.1].)

The abstraction operation as defined above works on all the objects of a
class C. It is often convenient however to work only on a subset of the class,
determined by some formula ®(z), with = a variable of sort C'. We will write
this generalized version of the abstraction operation, which we will call the
qualifying version, as

abstr K[b] < C/a | ®.

Qualifying abstraction is a useful shorthand but does not increase the ex-
pressive power, as is shown next:

Lemma 5.4 OBQL + abstr is equivalent to OBQL + qualifying abstr.

Proof. Given a program in OBQL+qualifying abstr, an equivalent program
in OBQL + abstr can be obtained by replacing each statement of the form

abstr K[b] < C/a | ®

with the following statements.

23

sorts 2 : K; 2 : K'; ¢ : C

abstr K'[l/] < C/aq;

K[V : 2| <= —old(2',2') ATz - b (', x) A D(x);

b(z,x) < 32" —old (2, 2") NV (2,2") NV (2, 2) A (x);
old(7, ') < true(2’)

|
As illustrated in the above proof, the old-marking technique is useful to
ensure that a simulation works in case the simulated statement would occur
in the body of while-loop, since in this case the auxiliary class names (K’
in the above) need to be reused. We point out that one can also define a
qualifying version of the powerset operation, constructing the powerset only
of the subset of class C' consisting of those objects z satisfying a formula ®(z).
The analogue of Lemma 5.4 for powerset can then be proved analogously.
We are now ready for:

Theorem 5.5 OBQL + powerset is equivalent to OBQL + abstr.

Proof. Given a program P in OBQL + powerset, an equivalent program
in OBQL + abstr can be obtained by the following replacement procedure.
Consider a statement in P of the form

powerset K'{¢': C}.

Recall the OBQL program given in the proof of Lemma 3.10 for representing
the extent of {e : C'} by a class K (albeit with duplicates); we will call this
program Fg,,. Assuming, without loss of generality, that K is not used in P,
we can thus simulate a powerset operation by an application of Py, followed
by an abstraction operation to eliminate the duplicates. Formally, we replace
the above powerset operation with the following statements.

sorts z: K; 2/ : K'; 2" . K"; 2 : C

(insert program Py, here);

abstr K'[b] < K/e | —old(z, 2);

e, x) < 32" —old(2",2") Nb(2', 2") Ne (2", x);
old(z, z) < true(z);

24

Notice the use of qualifying abstraction.

Conversely, let P be a program in OBQL + abstr. An equivalent pro-
gram in OBQL + powerset can be obtained by replacing each abstraction
statement as defined in Definition 5.2, of the form

abstr K[b] < C/aq,
with the following statements.

sorts z: K; 2/ : K'; 2,y :C;v: B

powerset K'{e: C};

Kb : 2] < —old(Z,2) Nz : Vy s e(Z,y) < (Vv :a(z,v) < aly,v));
b(z,x) < 32" : —old(Z,2') NV (2,2") Ne(2, x);

old(7, ') < true(2’)

The first statement creates a unique object for each subset of class C'; the
second statement then selects those that actually represent an equivalence
class w.r.t. {a : B}, as required for the abstraction operation. [|

Corollary 5.6 Every generic computable complexr value query can be ex-
pressed in OBQL + abstr without duplicates.

Although abstraction and powerset are equivalent from an expressiveness
point of view, they are not from a computational point of view. The result
of an application of the powerset operation can have exponential size; in
contrast, the result of an application of the abstraction operation has linear
size, and can in fact be computed efficiently, as we will show next.

Let S be a scheme and C' a class name in S such that there is an edge (C, <
,C) in S. An instance [over S is called C-ordered if the set of pairs (o, p) of
objects of class C' for which there is an edge (0, <,p) in I is a total order on
class C'. Although we know from Proposition 5.3 that abstraction is in general
not expressible in OBQL, it is easily expressible in the special case of ordered
databases, since in this case we can designate a unique representative for each
equivalence class of duplicates by taking the smallest element. Formally, we
have:

Theorem 5.7 On C-ordered instances, abstraction over C' is expressible in
OBQL without using while-loops.

25

Proof. The abstraction
abstr K[b] < C/a

is expressible as follows.
sorts z,y: C;v:B; 2: K

duplicates(z,y) < Yv : a(z,v) < a(y,v);
Kb : x] <= Yy : duplicates(z,y) — x < y;
b(z,y) < 3z : b(z,x) A duplicates(x,y)

Corollary 5.8 Abstraction can be computed in polynomial time on a Turing
machine.

Proof. A Turing machine, when presented an instance on its input tape,
effectively has access to the order on the objects of the instance in which
they are written on the tape. Since every OBQL program that does not use
while-loops can be implemented on a polynomial-time Turing machine in a
straightforward manner, the claim follows from Theorem 5.7. [|

We end this section with a result indicating the generality of the abstrac-
tion operation as a means to perform duplicate elimination. As defined in
Definition 5.2, abstraction can be viewed as a quotient construction w.r.t.
the equivalence relation “... and ... are duplicates.” However, the definition
does not rely in any way on this particular equivalence relation. This inspires
us to define a generalization of the abstraction operation as follows.

Let S be a scheme, C' be a class name in S, and V. be a total generic
computable complex value query of type S — [e; : C,ey : C] such that for
each instance I over S, V. (I)—being a collection of binary tuples (ordered
pairs) of objects of class C—is an equivalence relation on class C. The
generalized abstraction

abstr K[b] < C/V.

applied to an instance I creates a unique new object for each equivalence
class w.r.t. Vo(I), similarly to ordinary abstraction.

We next show that generalized abstraction can be easily expressed in
terms of ordinary abstraction:

26

Theorem 5.9 Generalized abstraction is expressible in OBQL + abstr.

Proof. Consider a generalized abstraction operation of the form just de-
scribed. By Theorem 3.7, there is an OBQL program P~ expressing V.. Let
Equiv be the resulting class of this program. The generalized abstraction is
now expressed as follows.

sorts x,y : C; w: Fquiv

(insert program P- here);
a(z,y) < Jw : e (w,x) A es(w,y);
abstr K[b] < C/a

6 Discussion

We conclude this paper with a discussion on some of the ramifications of the
work presented here.

6.1 Complex values as first-class citizens

A variety of formal object-based query languages with object creation capa-
bilities have recently been proposed in the literature. Some of these languages
are based on a data model were complex values are first-class citizens (e.g.,
[AK89]) so that they do not need the abstraction or the powerset operation.
Unfortunately, whether or not a certain concept is “first-class” in one data
model or another is not formally defined, and in fact often subject of consid-
erable debate. We can clearly illustrate the point however by looking at two
specific models: the relational model, and the nested relational model.

The nested relational data model extends the relational model in that tu-
ple components need not be atomic, but can be relations in turn [PDGG89,
Chapter 7]. In this sense, complex values are first-class citizens in the nested
relational model. There is also the nested relational algebra, which augments
the relational algebra with two operators, nest and unnest, to manipulate
these complex values. Although we have presented our results in the con-
text of a general object-base data model (since the problems which we have
considered were motivated by object-oriented applications) the whole theory

27

has an equivalent relational counterpart. We will not elaborate this claim,
since data model mappings from object-based to relational and vice versa
are well understood (e.g., [HY90]). We will however illustrate the relational
counterparts of object creation and abstraction.

Object creation can be achieved in the relational model by augmenting
the relational algebra with the new operator. When applied to a relation R,
this operator extends R with a new column containing a unique new identifier
for each tuple in R. For example,

a b a b «
new(a c)=|a ¢ |
b c b ¢ v

If we add the new operator to an extension of the relational algebra with
while-loops (such as RQL [CHS82]), we obtain a relational equivalent of the
language OBQL considered in the present paper.

What is the relational counterpart of the abstraction operation? One way
to define it is in the spirit of the student-courses query of Section 4. When
applied to a binary relation R, interpreted as a student-course relation, the
result is another binary relation, interpreted as a set-membership relation,
where each set of all courses taken by some student is represented by a unique
new identifier. For example,

john math

john cs math «
abstr(| mary math) =| ¢ a |

mary cs arts [

ellen arts

By Proposition 5.3 and the equivalence of RQL +new and OBQL, relational
abstr is not expressible in RQL + new.

However, if we now pick up the original motivation for the current few
paragraphs, and move from the relational model to the nested relational
model, it turns out that abstr becomes expressible. To do this, we add the
nest and unnest to RQL, obtaining NRQL, and next NRQL + new, by ex-
tending the new operator canonically to work on nested relations. Relational
abstraction is expressible in NRQL + new simply as

abstr(R) = unnest - new - 1, - nest(R),

28

R nest(R)

john math oL math Ty - nest(R)
john cs Jjohn cs math
mary math mary math cs
mary cs cs ‘ arts ‘
ellen arts ellen ‘ arts ‘
new - 7, - nest(R) unnest - new - 1 - nest(R)

math o math «

cs cs Q
| arts | 3 arts B

Figure 1: Computing abstr(R) in NRQL + new.

as illustrated in Figure 1. To summarize, we hope it has become clear that
abstraction is the operational realization of the ability to represent complex
values (most notably set values) as first-class citizens in the data model.

6.2 Related work

Typically, object-oriented data models of the “pure” variety do not support
complex values on a first-rate basis (see the Introduction). As a result,
many object-based query languages proposed in the literature are essentially
equivalent to OBQL and hence have to deal with the problem of duplicates.
Thereto, they often provide an extra feature in much the same way as the
abstraction operation can be added as an extra feature to OBQL.

Two languages which do not provide such an extra feature are ILOG
[HY90] and O-Logic [KW93]. Both are essentially extensions of Datalog
[U1188] with Skolem functions for object creation. For example, the analogue
of the OBQL object creation

Kley:xy, ... en 2] <= P(xy, ..., 2,)
in these languages is a rule of the form

K5 (xy,..,m0), 20, ., 20) < ®(z0,...,3,)

€1,..1,6n

29

where ell(,...,en is an uninterpreted function symbol. Under this analogy, each

thus created object o is identified with a term of the form fX , (t,... tn),
where the ¢; are other terms which further identify other objects 0;. Note that
this identification corresponds exactly to Lemma 4.2, where such an object
o was shown to be identifiable with the pair [K, val(o)]. By Definition 4.1,
val(o) will equal [e; : wal(oy),...,e, : val(o,)], whence we can conclude
that the two identifications fX , (t1,...,t,) and [K, val(0)] have precisely
the same information content and differ only in syntax. The approaches
to object creation in OBQL and in ILOG or O-Logic are therefore entirely
equivalent. In particular, the latter languages, like OBQL, cannot eliminate
duplicates.

However, F-Logic [KLW93], the successor of O-Logic, does provide the
possibility to specify additional equality axioms to enforce two terms to be
equal in the underlying logical interpretation. For example, Kifer, Lausen
and Wu [KLW93| present an F-Logic program for expressing the powerset,
using an interated pairing construction similar in spirit to the OBQL program
used in the proof of Lemma 3.10. By adding to this program an axiom of the
form pair(x, pair(y, z)) = pair(y, pair(x, z)), the duplicates are equated and
thus eliminated. In this way, F-Logic can express duplicate-free powerset
and hence (by Theorem 5.5) also abstraction.

Two languages which provide an explicit abstraction or duplicate elimi-
nation operation are GOOD [GPVG94] and the algebra of Shaw and Zdonik
[SZ90]. The LDM algebra [KV93] provides an explicit powerset operation.

Languages which provide the ability to non-deterministically choose an
element from a set can also express abstraction, as they can choose a unique
representative for each equivalence class of duplicates. An example is the
language DL [AV91]. Another way to see this is to observe that by repeated
non-deterministic choices, a total order can be constructed so that (by The-
orem 5.7) abstraction can be expressed. Consequently, languages providing
the possibility to perform an action on each element of a set in some non-
deterministic order can express abstraction. Examples are the language TL
[AV90] and some of the languages considered in [HS89).

6.3 Duplicate elimination versus copy elimination

In this paper, we have concentrated on complex value queries, as defined in
Section 3. However, as we observed in Section 2, programs in OBQL (and

30

OBQL + abstr for that matter) in general have the effect of augmenting a
database with derived information in the form of new objects and edges, not
necessarily representing a collection of complex values of some fixed type as
is the case for complex value queries. This effect is, strictly speaking, non-
deterministic, since the identity of the newly created objects is unimportant
(of course this non-determinism is of an infinitely more restricted nature
than the arbitrary non-determinism mentioned at the end of Section 6.2).
Furthermore, just as with complex value queries, we want the effect to be
generic, i.e., to be invariant under permutations of the universe of objects.

The formal concept of general object-based query alluded upon in the
previous paragraph was introduced by Abiteboul and Kanellakis [AK89] as
follows. Let Si, and S,y be two schemes such that S, properly contains
Sin. Denote the set of all instances over a scheme S by inst(.S).

Definition 6.1 An object-based query of type Sy, — Sout @S a binary rela-
tionship @ C inst(S;,) X inst(Sou) satisfying:

1. Q s recursively enumerable;
2. If Q(1,.J) then J restricted to Sy, equals I;
3. Q is invariant under permutations of the universe of objects;

4. If Q(1,.J1) and Q(I,Jy) then there exists a permutation f of the uni-
verse of objects which is the identity on the objects in I such that

f(J1) = J.

Since the abstraction operation is a query in the above sense, not every
query can be expressed by an OBQL program (by Corollary 5.8). In other
words, OBQL is not complete w.r.t. the object-based queries. Is OBQL +
abstr complete? This question was studied by Abiteboul and Kanallakis
[AKS89] in the context of the IQL language, which is essentially equivalent to
OBQL + abstr. They showed that IQL is only complete up to copies.

Formally, let J and J be instances over Sy, and let I be the restriction
of J to Si,. We define:

Definition 6.2 .J is an instance with copies of J if there are n instances
Ji, ..., Jn over Sou such that the following holds:

31

1. For each i, there is a permutation f of the universe of objects which is
the identity on the objects in I such that f(J;) = J;

2. For each v # j, J; and J; are disjoint outside Siy;
8. J=J U U,

Now let @ and @ be object-based queries of type Sin — Sous. We further
define:

Definition 6.3 Q equals Q up to copies if Q(I,J) implies Q(I,.J) for some
instance J with copies of J, and conversely, Q(I,J) implies Q(I,J) for some
J such that J is an instance with copies of J.

Abiteboul and Kanellakis proved:

Theorem 6.4 ([AK]) Every object-based query can be expressed up to
copies in IQL.

The notion of copies just defined should of course not be confused with the
notion of duplicates introduced in Section 4. Copies are complete instances
which are isomorphic with respect to some reference instance I, while dupli-
cates are individual objects which are logically indistinguishable on the basis
of their local properties. Nevertheless, there turns out to be a connection
between the two notions. Recall from Theorem 3.7 that every complex value
query can be expressed in OBQL, albeit possibly with duplicates. Using this
result, we can show that not only OBQL + abstr, being equivalent to IQL,
but already OBQL alone is complete up to copies:

Theorem 6.5 Fvery object-based query can be expressed up to copies in
OBQL.

Proof. We will outline the argument for the particular case that S, consists
of a single class name A and no edges, and S,,; additionally has class name
B and edges (B,a, A) and (B,b, B). The general case is analogous. Let @
be a query of type Sin — Sous. Hence, the effect of (2 on an instance over
Sin (consisting of a set of A-labeled objects) is to add a number of new B-
labeled objects together with a-labeled edges from the new to the old objects
and b-labeled edges between the new objects. We want to show that @) is
expressible up to copies in OBQL.

32

Thereto, we associate a complex value query Q" to @ as follows. Let S/,
be the scheme obtained from S;, by adding two classes, B and Count, and
an edge (Count, next, Count). Given an instance I over S;, and two natural
numbers n and m, denote by I, . the instance over Sj, obtained from I by
adding n new objects labeled B, and adding m new objects labeled Count
organized as a linear list by means of next edges. Furthermore, let 7 be the
complex value type

[a: {[from : B,to: Al}, b: {[from : B,to : B]}].

Given an instance I over Siy, I, ,, (for some n and m) together with a value v
of type 7 over I,’%m describes an instance over Sy, in the obvious way, which
we denote as J(I},,,,v). Finally, let M some fixed Turing machine which
enumerates (). Now the complex value query Q" of type S/, — 7 is defined
as follows: for each I, n and m, Qval(l;z,m) results in the collection of values v
for which M on input I outputs an instance J isomorphic to J(1y, ,,,v) after
m steps.

By Theorem 3.7, Q"¥ is expressible in OBQL. We can now write an OBQL
program expressing () up to copies as follows. On input I, the program visits
all pairs of natural numbers (n,m) in succession (encoded using temporary
objects in the well-known way) and tests at every stage whether Q" (1},) is
non-empty. If the test succeeds, we have in effect a collection of descriptions
of instances J for which Q(7,.J). These descriptions can be collected in an
instances with copies. The details are tedious but straightforward and left
to the reader. [|

In retrospect, this proof of completeness up to copies is very close to the
one Abiteboul and Kanallakis gave for IQL [AK]. However, we have arrived at
it independently and from a somewhat different perspective. Furthermore, we
have proved the result for OBQL, which shows that the abstraction operation
(or, equivalently, duplicate-free set representation) is not needed to achieve
completeness up to copies. This has two consequences as to the connection
between the notions of copies and duplicates announced above.

First, it shows that elimination of copies is at least as strong than elimi-
nation of duplicates. Indeed, Theorem 6.5 implies that the abstraction oper-
ation, viewed as an object-based query, is expressible in OBQL up to copies.
Actually, elimination of copies is known to be strictly stronger than elimi-
nation of duplicates; we will not elaborate on this but refer the interested

33

reader to [VVAGY94] for an overview of the different notions of completeness
for object-creating query languages.

Second, inspection of the Proof of Theorem 6.5 reveals that if OBQL +
abstr is used, then Q" can be expressed without duplicates so that the
instance with copies will contain less copies than would be possible in OBQL.
Hull and Yosikawa [HY90] have made similar observations in the context of
the ILOG language, although they did not recognize duplicates and copies
as distinct notions. Specifically, they claimed that ILOG is complete up to
copies but cannot express the 2-combinations query (using the terminology
of our Section 4) without duplicates. Comparing these findings with the
results of Abiteboul and Kanellakis on IQL, they concluded that “IQL can
eliminate more duplicates than ILOG.” No rigorous proofs were presented.

6.4 Further research

To conclude this paper, we mention some further results which have been
obtained in connection with the present work. Van den Bussche and Van
Gucht [VV] have reexamined the problem of duplicate set values in a setting
where a fixed cardinality bound on set values is known. One of their results
is the following generalization of Theorem 4.4. The m-combinations query
without duplicates, considered in Section 4, can be viewed as a cardinality-
restricted version of the powerset operation defined in Section 5. We can add
this operation to OBQL, obtaining OBQL + powerset,,. Then except for
m = 0 and m = 3, OBQL + powerset, , is strictly more expressive than
OBQL + powerset,,.

Van den Bussche et al. [VVAG94| have characterized the classes of all
object-based queries that can be expressed in OBQL and OBQL + abstr
without copies. It turns out that these classes occur naturally as consist-
ing of those queries for which creation of new objects can be achieved by
construction of untyped, nested tuple values (for OBQL + abstr, nested
set values) over the objects in the input. We have seen that this is indeed
possible in OBQL (see Definition 4.1 and following). Alternative algebraic
characterizations, in the form of extra conditions imposed on object-based
queries, have also been obtained.

Finally, there seems to be a connection between the notion of duplicates
in object-based data models, as considered in this paper, and recent work on
bag databases (bags generalize sets with duplicates). For example, Grumbach

34

and Milo [GM93] present results similar to ours concerning the equivalence
between duplicate elimination and powerset construction in the context of
bags. We conjecture that bag representation and manipulation can be natu-
rally studied in the object-based framework set up in the present paper.

Acknowledgment

Dirk Van Gucht made valuable suggestions concerning the expressive power
of abstraction. Marc Gyssens offered most helpful comments on previous
drafts of this paper. We would also like to thank the referees for their sug-
gestions concerning the presentation of our paper.

References

[ABS88] S. Abiteboul and C. Beeri. On the power of languages for the ma-
nipulation of complex objects. Rapport de recherche 846, INRIA-
Rocquencourt, 1988.

[AFS89] S. Abiteboul, P. Fischer, and H.-J. Schek, editors. Nested Rela-
tions and Complex Objects in Databases, volume 361 of Lecture
Notes in Computer Science. Springer-Verlag, 1989.

[AKS89] S. Abiteboul and P.C. Kanellakis. Object identity as a query
language primitive. In Clifford et al. [CLM89]|, pages 159-173.

[AK] S. Abiteboul and P.C. Kanellakis. Object identity as a
query language primitive. Rapport de recherche 1022, INRIA-

Rocquencourt, 1989. Full version of [AK89], to appear in Journal
of the ACM.

[AU79] A.V. Aho and J.D. Ullman. Universality of data retrieval lan-
guages. In Proceedings of the ACM Symposium on Principles of
Programming Languages, pages 110-120, 1979.

[AV90] S. Abiteboul and V. Vianu. Procedural languages for database
queries and updates. Journal of Computer and System Sciences,
41(2):181-229, 1990.

35

[AVO1]

[Bee90]

[CHS0]

[CH82]

[CLM8]

[GMO3]

[GPVG94]

[HK87]

[HS89]

[HS93]

S. Abiteboul and V. Vianu. Datalog extensions for database
queries and updates. Journal of Computer and System Sciences,
43(1):62-124, 1991.

C. Beeri. A formal approach to object-oriented databases. Data
& Knowledge Engineering, 5(4):353-382, 1990.

A. Chandra and D. Harel. Computable queries for relational
database systems. Journal of Computer and System Sciences,
21(2):156-178, 1980.

A. Chandra and D. Harel. Structure and complexity of relational
queries. Journal of Computer and System Sciences, 25:99-128,
1982.

J. Clifford, B. Lindsay, and D. Maier, editors. Proceedings of
the 1989 ACM SIGMOD International Conference on the Man-
agement of Data, volume 18:2 of SIGMOD Record. ACM Press,
1989.

S. Grumbach and T. Milo. Towards tractable algebras for bags.
In Proceedings 12th ACM Symposium on Principles of Database
Systems, pages 49-58. ACM Press, 1993.

M. Gyssens, J. Paredaens, J. Van den Bussche, and
D. Van Gucht. A graph-oriented object database model. IEEE
Transactions on Knowledge and Data Engineering, 6(4), 1994.

R. Hull and R. King. Semantic database modelling: Survey,
applications, and research issues. ACM Computing Surveys,
19(3):201-260, 1987.

R. Hull and J. Su. On accessing object-oriented databases: Ex-
pressive power, complexity, and restrictions. In Clifford et al.
[CLM89], pages 147-158.

R. Hull and Y. Su. Algebraic and calculus query languages for
recursively typed complex objects. Journal of Computer and Sys-
tem Sciences, 47(1):121-156, 1993.

36

[HY90]

[KL89]

[KLWO3]

[KV93]

[KW93]

[LRV8S]

[PDGG8Y]

[Shi81]

[5290]

R. Hull and M. Yoshikawa. ILOG: Declarative creation and ma-
nipulation of object identifiers. In D. McLeod, R. Sacks-Davis,
and H. Schek, editors, Proceedings of the 16th International Con-
ference on Very Large Data Bases, pages 455-468. Morgan Kauf-
mann, 1990.

W. Kim and F.H. Lochovsky, editors. Object-Oriented Con-
cepts, Databases, and Applications. Frontier Series. ACM Press,
Addison-Wesley, 1989.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Technical Report 93/06,
Dept. Comp. Science, SUNY Stony Brook, 1993. To appear in
Journal of the ACM.

G. Kuper and M. Vardi. The logical data model. ACM Transac-
tions on Database Systems, 18(3):379-413, 1993.

M. Kifer and J. Wu. A logic for programming with complex
objects. Journal of Computer and System Sciences, 47(1):77—
120, 1993.

C. Lécluse, P. Richard, and F. Velez. O,, an object-oriented
data model. In H. Boral and P.A. Larson, editors, 1988 Pro-
ceedings SIGMOD International Conference on Management of
Data, pages 424-433. ACM Press, 1988.

J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The
Structure of the Relational Database Model, volume 17 of FATCS

Monographs on Theoretical Computer Science. Springer-Verlag,
1989.

D. Shipman. The functional data model and the data language
DAPLEX. ACM Transactions on Database Systems, 16(10):140—
173, 1981.

G.M. Shaw and S.B. Zdonik. A query algebra for object-oriented
databases. In Proceedings Seventh International Conference on

Data Engineering, pages 154-162. IEEE Computer Society Press,
1990.

37

[U188]

[VPY1]

[VV]

[VV92]

[VVAG92]

[VVAGO4]

J. Ullman. Principles of Database and Knowledge-Base Systems,
volume [. Computer Science Press, 1988.

J. Van den Bussche and J. Paredaens. The expressive power of
structured values in pure OODB’s. In Proceedings of the Tenth
ACM Symposium on Principles of Database Systems, pages 291—
299. ACM Press, 1991.

J. Van den Bussche and D. Van Gucht. The expressive power
of cardinality-bounded set values in object-based data models.
Theoretical Computer Science. Extended and revised version of
[VVO92]. To appear.

J. Van den Bussche and D. Van Gucht. A hierarchy of faithful
set, creation in pure OODBs. In J. Biskup and R. Hull, edi-
tors, Database Theorey—ICDT 92, volume 646 of Lecture Notes
in Computer Science, pages 326-340. Springer-Verlag, 1992.

J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens.
On the completeness of object-creating query languages. In Pro-
ceedings 33rd Symposium on Foundations of Computer Science,
pages 372-379. IEEE Computer Society Press, 1992.

J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens.
On the completeness of object-creation database transforma-
tion languages. Manuscript, extended and revised version of

[VVAG92], 1994.

Appendix: Proof of Theorem 3.7

A1l. Ordering edges and the whole instance

Having created orderings of the different classes of objects in the input in-
stance I, we also have to order the edges in I. This can be done by creating
for each edge (B, e, C) in the scheme S a new class B_e_C, which we will call
an edge class, using the following object addition:

sorts v : B; 2’ : C

B_e C|from : x,to : 2'] < e(x,2’).

38

In this way, for each e-edge (o, e, 0') in the instance, where o is a B-object and
o' is a C-object, an object representing the pair [from : o, to : 0'] is created.
The class B_e_C' can now be ordered in the same way as the “ordinary”
classes.

Using the created orderings of the classes and properties, we can now
deduce the orderings of the whole instance as aggregates of the individual
orderings. Let {C, ..., C,} be the set of all class names and edge-class names
of S. Then we perform the object creation:

sorts xy : Liste,; ...; x, ¢ Liste,

Order[orderc, : x1,...,orderc, : ©,] < Orderc,(x1,x1) A -+ A Orderc, (T, Tp)

A2. Constructing the initial configuration

The initial configuration of the tape contains the input (I, v) for each simu-
lation. We first write the objects of I on the tape. For each class name C'
of S, we perform the following procedure. The procedure uses an auxiliary
property list of Content-objects which will point to Listc-objects.

sorts ¢,t' : Tape; c: Content; x : Symbol;
o : Order; v: K, y: C,
[: Listc; stop : Stop; z:C

Content[cell : t, order : o,val : v, list : 1] < =3t : left(t',t) A orderc(o,1);
while change do
Stopo[| < e cell(e, t) A=t 2 left(t',t) A3l : list(c,l) A =3z : head(l, x);
contains(c, x) < —Istop A 3t : cell(c,t) A =3t left(t',t) A
Jy3Al : list(c,) A head(l,y) A is(z,y);
Tapelleft : t] <= —Istop A =3t" : left(t',t);
Content[cell : t, order : o, val : v, list : I, contains : x| <
z :is(x, z) A —~Istop A3t left(t, t') A
=37 left(t”,t) A Je - cell(e, ') A order(c,0) A val(e,v) A list(c,[);
Tape[left : t] <= —Istop A =3t : left(t',t);
Content[cell : t, order : o,val : v, list :] <
—Istop A 3t' : left(t, ') A =3t" : left(t",t) A
dc: cell(e, t') A order(c,0) A val(c,v) A 3" : list(c,I") A tail(I',1)
od

39

Note that the last Content-objects created by the above procedure do not
have a contains-property. These “void” objects are harmless and will not
play a role in the further simulation.

To write the edges of I on the tape, we perform, for each edge-class
name, an analogous procedure as for the ordinary class names. At last we
write value v on the tape. If 7 is the set type {e : C'}, then the ordering of
C is used. We omit the details.

A3. Bookkeeping and actual simulation

Before starting the simulation of the computations on the inputs just pre-
pared, some bookkeeping information must be initialized. Each step of the
simulation will be “timestamped” using a class Clock, organized as an ever-
growing stack and initialized to a single object, standing for time zero. All
Content objects that represent the input configuration of the tape are linked
to time zero. So, we have the following object en property additions:

sorts ¢ : Content; cl : Clock

Clock[| < true;
time(c, cl) < true(c, cl)

Furthermore, for each state ¢ of My, we create a class ¢, consisting of a
single object, using the operation ¢[| < true.

The class Status with properties order, val, state, register, cell and time
keeps track of the status of the different computations at each step. Initially,
the state is the initial state gy, and the cell is the first tape cell. The initial
contents of the register does not matter so we leave it unspecified. We thus
have the following initialization:

sorts o : Order; v: K; z : o; t : Tape; cl : Clock
Status|order : o, val : v, state : z, cell : t, time : cl] <
true(o, v, z,cl) A =3t : left(t',)

The simulation of the actual domTM transitions now happens in one big
while-loop. At the beginning of each iteration, the state information of the
computations that are still active can be described by a triple (¢, =, y), where
g€ @, reXU{n}, and y € U {n, k}. This information, which is implicit

40

in classes Status and Content, is made explicit by marking each order-value
pair whose associated computation is still active with a gzy-object as follows.
If z,y € ¥ then we have the statement: respectively)

sorts o : Order; v: K; cl,cl’ : Clock;
s : Status; ¢ : Content; 2y, 2y ¢ Symbol;
2q 1 G, TT T Yy 1y

qrylorder : o,val : v, time : cl] <
—3cl’ = previous(cl', cl) A\ 3s, ¢, zq, 25, TX, 2y, YY
order(s,0) A val(s,v) A time(s,cl) A
order(c,0) A val(c,v) A time(c, cl) A
state(s, zq) A register(s, z,) A is(zg, vx) A
3t @ cell(s,t) A cell(e, t) A contains(c, z,) N is(zy, yy)

If v =nand y € X, then = ranges over all objects in the input instance . In
this case, the clause register(s, z;) in the above statement must be replaced
by register(s, z;) A object(2y, z;). The cases © =y =mn and x =1,y = Kk are
similar and left to the reader.

Next, the computations that come to an end are marked with a Done-
object by including the following statement for each triple (¢, z,y) on which
the transition function is undefined:

sorts s : Status; v: K; cl,cl' : Clock;
o : Order; 2¢ 0 Q; Z:qry
Donelorder : o, val : v, state : z,] < el = =3l = previous(cl’, cl) A

Jz 1 order(z,0) A val(z,v) A time(z, cl)

After that, a new Clock-object is created, provided there are still active
computations left:

sorts cl, cl’ : Clock; o: Order; v: K; d: Done
Clock[previous : cl] <= =3cl" : prev(cl’, cl) A
Jo,v : =3d : order(d, o) A val(d,v)

The loop body is completed with, for each triple (¢, z,y) on which the
transition function s defined, three statements performing the actual con-
figuration change. For example, if §(q,n,vy) = (¢',n,n, L), we have:

41

sorts o : Order; t,t": Tape; cl,cl',cl" : Clock;
s : Status; x : Symbol; v: K;
Z 1 qny; Zg 1 q
Content[order : o, val : v, cell : t, contains : x, time : cl] <
Acl’ : previous(cl, cl') A =3el” = previous(cl”, cl) ATz, s :
order(z,0) A val(z,v) A time(z, cl') A
order(s,0) A val(s,v) A time(s,cl') A cell(s,t) A register(s,x);
Contentlorder : o, val : v, cell : t, contains : x, time : cl] <
Acl’ : previous(cl, cl') A =3el” : previous(cl”, cl) ATz, s :
order(z,0) A val(z,v) A time(z,cl’) A
order(s,0) A val(s,v) A time(s,cl') A —cell(s,t) A
dc @ order(c,0) A val(c,v) A time(c, cl) A cell(c,t) A contains(c, x);
Status[order : 0, val : v, state : z,, register : x, cell : t, time : cl] <
Acl’ : previous(cl, cl') A =3el” : previous(cl”, cl) ATz, s :
order(z,0) A val(z,v) A time(z,cl’) A
order(s,0) A val(s,v) A time(s, cl') A register(s,x) A Jt" : cell(s,t') A left(t',t)

The other cases are similar.
Finally, after the end of the loop, the accepted values v, i.e., those corre-
sponding to computations that have halted in state q,, are marked:

sorts v : K; d: Done; z : q,

accept(v,v) <= 3d : val(d,v) A state(d, z).

42

