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1. INTRODUCTION

In object systems, update procedures are provided by methods, which are applied
to a receiver consisting of a receiving object and some argument objects. Since
methods may call other methods, an update method applied to a certain receiver
may not only update the properties of the receiving object, but may also have side
effects. Hence, at the most general level, we can define an update method as a
computable function mapping a given object base instance and a receiver to some
new object base instance.

Database systems deal with whole collections of data at a time. Hence, in the
context of object databases, it is important to be able to apply an update method
to a collection of receivers rather than to a single one. For example, given a method
to change the salary of an employee, we sometimes want to change the salaries of a
whole group of employees. The purpose of the present paper is to initiate a study
of various strategies for set-oriented application of update methods.

One obvious such strategy is to apply the update to the receivers one after the
other, in some arbitrary order. This sequential application immediately brings up
the problem of order independence: is the outcome of the sequential application
independent of the order chosen? We consider three notions of order independence:
absolute order independence on all possible sets of receivers; key-order independence
on sets of receivers not containing a same receiving object twice with different
arguments; and query-order independence on sets of receivers produced by some
given query. The assumptions made by key-order independence and query-order
independence are often true in practice.

On a very general level, we investigate how update behavior can be analyzed
with respect to order independence in terms of certain schema annotations, which
“color” each class and property name by indicating whether the update creates,
deletes, or uses information of this type. While it is not difficult to formalize what
it means for an update to create or delete information of a certain type, it is much
less obvious how the semantics of “using information” can be axiomatized. We have
studied two possible such axiomatizations, and were able to show in both cases that
the colorings which describe order-independent updates are precisely those that are
“simple,” in a sense to be made precise. This captures the intuition that the update
does not perform potentially conflicting actions. Curiously, it will turn out that the
two “axiomatizations of use” we propose are each other’s dual, in the sense that
the first favors inflationary updates while the second favors deflationary ones.

On a more specific level, we consider update methods implemented in the re-
lational algebra, using a framework inspired by the algebraic model for accessing
object-oriented databases proposed by Hull and Su [Hull and Su 1989]. Methods
in this framework can only update properties of the receiving objects. We ob-
serve that order independence of algebraic updates is undecidable in general, but
it becomes decidable if only positive expressions are used. Specifically, we estab-
lish mutual reductions between the problem of testing for order independence of
an algebraic update and the problem of testing equivalence of relational algebra
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expressions under certain dependencies implied by the relational representation of
object databases. The latter problem is shown decidable for positive expressions by
combining classical techniques from relational database theory. We also present a
sufficient condition for key-order independence which explains many practical cases.

Apart from the sequential strategy for set-oriented application, we also consider
a natural alternative in the algebraic framework. This strategy is parallel in that
it instantiates the parameter in the method, which normally stands for a single
receiver, by the whole set of receivers at once. In this approach, order indepen-
dence is automatically guaranteed. Hence, it is interesting to ask whether every
order-independent algebraic update method can be “parallelized,” i.e., whether for
each such method M there exists another method M’ such that each sequential
application of M yields the same result as the corresponding parallel application
of M'. By observing that sequential application can express transitive closure and
parity, we answer this question negatively. Nevertheless, in the important special
case of key order-independence, parallelization is always possible; we actually show
that for key order-independent updates the sequential and the parallel semantics
coincide.

Our work relates to a lot of other work reported in the literature on database
query and update languages. Recently, Laasch and Scholl [Laasch and Scholl 1993]
studied order independence of updates expressed as sequences of generic opera-
tions such as insert, delete and modify, in the context of object-oriented databases.
They argued that the problem directly links to issues in concurrency control, and
proposed to disallow the use of potentially conflicting operations within an update
sequence so as to guarantee order independence.

But also less recently researchers have pointed at the intricacies involved in set-
oriented application of updates. Most notably, Aho and Ullman [Aho and Ullman
1979] considered sequential and parallel execution strategies for looping constructs
of the form for each ¢ in R do in database manipulation languages which are
closely analogous to the sequential and parallel strategies we consider in the present
paper. They questioned the appropriateness of the sequential strategy, however,
since sequential application is (of course) not always guaranteed to be order in-
dependent. More subtly, Chandra [Chandra 1981] proposed the study of when
and how for-each loops can be given a deterministic semantics, in the context of
a programming language based on relational algebra and relational assignment, as
an interesting research issue. We like to think of our work as first steps in this
direction.

It should be noted that for-each loops have also been used as a potentially non-
deterministic construct, e.g., in the work of Qian [Qian 1991] or in the language
SETL [Schwartz et al. 1986]. In this respect it is also interesting to note that the
parallel strategy as a means to provide an alternative deterministic semantics to
such constructs is very similar in spirit to the “relationally computable” semantics
of a rule in a non-deterministic rule triggering system introduced by Simon and de
Maindreville [Simon and de Maindreville 1988].

To conclude, we must point out that different, “coarser grained” parallel inter-
pretations of for-each loops than the one we have considered up to now also have
received considerable attention in the literature. Abiteboul and Vianu [Abiteboul
and Vianu 1990] defined a parallel semantics for applying an update to a set of
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receivers which first computes the different effects of the update applied to each
receiver separately, and then combines the obtained results by taking the union.
This combination approach is comparable to that of structural recursion [Breazu-
Tannen and Subrahmanyam 1991; Breazu-Tannen et al. 1992] where the different
results of a function parameterized by the elements of a set are collected using a
commutative and associative accumulation operator. Abiteboul and Vianu gave
evidence that as combination operator, a simple union is in principle sufficient.
Nevertheless, the study of combination operators more sophisticated than union
and their relationship to the other semantics is, in our opinion, an interesting issue
for further research. One which seems to be well-behaved is the operator combining
the output databases D1, ..., D, for the different receivers on some input database
D as ﬂz D; U Ul(Dl - D)

After this Introduction, the remainder of our paper is organized as follows. In
Section 2, we introduce the simple object database model we will be working in,
and we define the concept of update method in this context. In Section 3, we
introduce the notion of sequential application and the associated notions of order
independence. Section 4 contains the axiomatic framework for studying update
behavior and order independence, and Section 5 contains the algebraic framework.
In Section 6 we discuss parallel application. We conclude the paper with a discussion
of the practical ramifications of our results.

2. UPDATE METHODS ON OBJECT DATABASES

In this section, we present the basic definitions concerning databases and update
methods.

It is customary in object-based models to depict a database schema as a graph.
Thereto, we assume the existence of disjoint sets of class names and property names,
and define:!

DEFINITION 2.1. An object-base schema is a finite, edge-labeled, directed graph.
The nodes of the graph are class names, and the edges are triples (B, e, C), where
B and C are nodes and the edge label e is a property name. Different edges must
have different labels. If (B,e,C) is an edge in the schema, we call e a property of
B of type C.

An object-base instance can now be defined as a graph consisting of objects and
property-links, whose structure is constrained by some object-base schema. So, we
assume that for each class name C there is a universe of objects of type C, such
that different class names have disjoint universes. For an arbitrary schema S, we
then define:

DEFINITION 2.2. An instance of S is a finite, labeled, directed graph. The nodes
of the graph are objects. Each node o is labeled by its type A(0), which must be
a class name of S. The edges are triples (o, e, p), where o and p are nodes and the
edge label e is a property name of S such that (A(0), e, A(p)) is an edge of S.

IMany of our results also hold for a more involved object data model featuring inheritance and a
distinction between single- and multi-valued properties [Cabibbo 1996].
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Fig. 1. An object-base instance.

The set of all objects in an instance labeled by the same class name C will be called
the class C.

EXAMPLE 2.3. We will use Ullman’s well-known example schema containing
class names Drinker, Bar, and Beer, with Drinker having properties ‘frequents’
and ‘likes’ of types Bar and Beer respectively, and Bar having property ‘serves’ of
type Beer. An instance of this schema is shown in Figure 1. In this and subsequent
figures, objects of some type C' are denoted as C;, C>, and so on. [

We now turn to update methods. An update method has a signature, specifying
the types (class names) of the receiving object and the argument objects, and a
behavior, which for the time being we define simply as some computable update of
the object base instance. Formally, we have the three following definitions:

DEFINITION 2.4. A method signature o over schema S is a non-empty tuple of
class names in S. The first element of the signature is called the receiving class of
0; the remaining positions in ¢ comprise the argument classes.

DEFINITION 2.5. Given a method signature o = [Cp,...,Ck] over S and an
instance I of S, a receiver over I of type o is a tuple of the form [op, ..., 0], where
0g, - - -, 0 are objects in I of types Cy,...,Ck, respectively. The first object op is
called the receiving object; the remaining tuple oy, ..., 0, comprises the arguments
of the receiver.

DEFINITION 2.6. Given a method signature o over S, an update method M of
type o is a computable function which, when given an instance I of S and a receiver
t over I of type o, yields an instance M (I,t) of S.
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Drinkery
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Fig. 2. Example instance I.

Drinkery

Barg Barsp Bars

Fig. 3. The instance add_bar(I,[Drinker;,Bars]), where update method add_bar is defined in
Example 2.7 and instance I is shown in Figure 2.

ExXAMPLE 2.7. On our example schema, consider the following two updates of
type [Drinker, Bar]: add_bar, which adds the argument bar to those frequented by
the receiving drinker, and favorite_bar, which removes all edges from the receiving
drinker to bars currently frequented, and adds a single new one to the argument
bar.

To illustrate these update methods, consider the simple instance I in Figure 2,
consisting of a single drinker and three bars (two of which are frequented by the
drinker). For simplicity, we have left out any beers from this example. Then
add_bar (I, [Drinker;, Bars]) is shown in Figure 3 and favorite_bar (I, [Drinker; , Bar])
is shown in Figure 4. O

3. SEQUENTIAL APPLICATION

In this short section, we introduce the sequential application of an update method
to a set of receivers as well as three different notions of order independence of an
update. In what follows, we fix a schema S, a signature o over S, and an update
method M of type o.

We can apply an update method to a sequence, not a set, of receivers in the

Drinker;

Barg Barsp Bars

Fig. 4. The instance favorite_bar(I,[Drinker;,Bar;]), where update method favorite_bar is de-
fined in Example 2.7 and instance I is shown in Figure 2.
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Drinkery

Barg Bars Bars

Fig. 5. The instance favorite_bar(I,[Drinker;, Bar;],[Drinker;, Bars]), where I is shown in Fig-
ure 2.

obvious way. So, if [ is an instance and s = ti,...,%, is a sequence of distinct
receivers, M (I,s) equals I if n = 0, and equals M(M(I,t1),ta,...,t,) if n > 0,
provided the value of this expression is well-defined (this may fail if, e.g., > is not
a receiver over M (I,t1)).

Sequential application to a set of receivers may now be defined formally as follows:

DEFINITION 3.1. Given an instance I and a set T of receivers, we say that M is
order independent on (I,T) if for any two sequential enumerations s and s’ of T,
we have that M (I,s) = M(I,s').2 In this case we define the sequential application
Mseq(I,T) of M on (I,T) as M(I,s) for an arbitrary sequential enumeration s.

The above definition leads to three global notions of order independence:

(1) Absolute order-independence: If M is order independent on any pair (I,T)
then M is called order independent.

(2) Key-order independence: Call a set of receivers T a key set if, viewing T as a
relation, the first column (holding the receiving objects) is a key for T'. If M is
order independent on any pair (I,T) where in T is a key set then M is called
key-order independent.

(3) Query-order independence: Finally, let @ be a function which maps each in-
stance I to a set Q(I) of receivers. If M is order independent on (I,Q(I)) for
any I then M is called Q)-order independent.

ExaMPLE 3.2. The update add_bar from the previous example is clearly order
independent, but favorite_bar is not. Indeed, continuing Example 2.7,

favorite_bar(I,[Drinker;, Bar;], [Drinker;, Bars])
is shown in Figure 5, while
favorite_bar(I,[Drinker;, Bars], [Drinker;, Bar; ])

equals simply favorite_bar (I, [Drinker;, Bar]) already shown in Figure 4.

However, favorite_bar is key-order independent, and hence also Q-order indepen-
dent for any query () producing a list of drinkers and bars with a unique favorite
bar for each drinker. Such a query might, for example, retrieve for each drinker the
bar serving all beers that drinker likes, if unique and existing. O

If we define update methods as general computable functions, as we did, all of the
notions of order independence defined above are undecidable, by Rice’s Theorem

2If M (1, s) is undefined for some s, then it must be undefined for every other s’.
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[Hopcroft and Ullman 1979]. We will later show however that order independence
is decidable for more restricted kinds of methods. Thereto, we will rely on the
following lemma, which is quite obvious once we recall that any permutation can
be written as a composition of transpositions of adjacent elements.

LEMMA 3.3. Method M is order independent if and only if M is order indepen-
dent on any pair (I,T) where T consists of two elements.

This lemma also holds for key-order independence: we then have to consider sets
T consisting of two elements with different receiving objects. However, the lemma
fails in the case of query-order independence; we will come back to this issue at
then end of Section 5.

4. SCHEMA COLORINGS

In this section, we present the beginnings of a theory of schema colorings. Such
colorings, which could be provided by the programmer or could be inferred from
the specification, describe the behavior of an update by annotating each type of
information in the schema with a subset of the letters ¢, d, or u, thereby indicating
whether the update creates, deletes, or uses information of this type. The main
difficulty which we encounter here is to formalize what it means for an update to
“use” information of a certain type. We investigate two possible definitions, and in
both cases characterize those colorings which describe order-independent updates.

In what follows, we fix a schema S and a method signature over S.

4.1 Preliminaries

Since schemas and instances are graphs, it is useful to introduce the following
terminology:

DEFINITION 4.1. An item of a graph is either a node or an edge of that graph.

Consequently, a graph can be identified with the set of its items.
It is not difficult to formalize what it means for an update to create or delete
information of a certain type:

DEFINITION 4.2. Let X be a schema item. An update method M is said to
create information of type X if there exists an instance I and a receiver ¢ over [
such that M(I,t) contains an item labeled X that is not in I.

Dually, M deletes information of type X if there exists and instance I and a
receiver ¢ over I such that I contains an item labeled X that is not in M (I, t).

In order to define what it means for an update to use information of a certain
type, we introduce the following auxiliary notion:

DEFINITION 4.3. A partial instance is a subset of some instance (viewed as the
set of its items).

So, a partial instance is an instance from which some items have been removed.
Partial instances are different from instances in that they may contain “dangling
edges”: a node may be removed without removing all its incident edges.

The operator G eliminates all dangling edges from a partial instance:
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DEFINITION 4.4. Let J be a partial instance. Then G(J) equals the largest
instance contained in J.

Note that, by viewing a partial instance as a set of items, we can apply set-
theoretic operations such as union and difference to partial instances.
We also need:

DEFINITION 4.5. Let X be a set of schema items and I be an instance of S. The
restriction of I to X is the partial instance obtained by removing from I all items
whose label is not in &, and is denoted by I|x.

To end this preliminary subsection, we introduce the notion of schema coloring
formally:

DEFINITION 4.6. A coloring of schema S is a function s assigning to each item
in S a subset of {u,c,d}.

For some schema item X, if k(X) contains u then we say that X is colored u by &
(and similarly for the other colors).

Note that we can compare colorings according to the subset ordering in the
canonical way, i.e., k C &' if kK(X) C /(X)) for all schema items X.

4.2 Inflationary colorings®

We now introduce our first proposed axiomatization of use. Informally, it expresses
the intuition that when we want to update an instance, we can as well update only
the part of the instance used by the update, and add the part not used afterwards.
Formally:

DEFINITION 4.7. Let M be an update method, and let X be a set of schema
items such that if an edge is in X', then so are its incident nodes, and such that
each class name in M’s signature is in X. Then M is said to use only information
of type X if for any instance I and receiver ¢ over I,

M(I,t) = G(M(I|x,t) U (I —I|x)).

The conditions on X are necessary to guarantee that I|y is always an instance, and
that ¢ is in it, so that the expression M (I]x,t) makes sense.

By the following theorem, we can associate to each update method a unique
coloring which describes its behavior.

THEOREM 4.8. For each update method M there exists a unique minimal color-
ing such that the following conditions are satisfied:

(1) If M creates information of type X then X is colored c.
(2) If M deletes information of type X then X is colored d.

(8) IfU is the set of items in S colored u, then M uses only information of type
Uu.

(4) FEach class name in the method signature is colored u.
(5) If an edge in S is colored u, then so are its incident nodes.

3The title of this subsection will become clear later.
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ProoF. Note that the “full” coloring that assigns all colors to all items satisfies
the conditions of the definition. Note also that the lattice of subsets of the colors
{u, c,d} can be canonically extended to a lattice of colorings. Hence, it suffices to
show that if x; and ko are colorings satisfying the conditions of the theorem, then
SO is K1 N Ko.

Thereto, put kK = k1 Nky. For i = 1,2, let U; be the set of items in S colored u
by ki, and let U be the set of items colored u by k. Note that for any instance I,
(Ilety )ts = I~ Since &y and kg satisfy condition 3, we have

M(I,t) = GM(Ifu,,t) U (I = Ile)) (1)

= G(M (I t) U (T = Thay)). (2)

It is straightforward to check that k satisfies conditions 1, 2, 4 and 5. We can
therefore concentrate on condition 3:

M(I,t) = G(M (I, t) U (I = Ifu)).
By applying equations (1) and (2) in succession, we obtain
M(I,t) = G(M(Ifuy,t) U (I = Ils))
= GGM (Lot ) U Loty — (Lfea) ) U (I = Iesy )
= G(GM e, t) U (T, = Ilee)) U (I = Ilery))
To prove that the graph denoted by the last expression above equals
G(M (TTes ) U (T = Th),
we consider the nodes and edges separately.
For the nodes, the equality follows readily once we observe that the nodes in
(I, — Iw) U (I — I|y,) are precisely those of I — I|y:
G(GM (T, 1) U (T, — ) U (T — Tl,))
= M(Ilu,t) U (Tley, = Ile) U (I = Ius,)
= MI|u,t) U —I|y)
= GM(Iy, 1) U (I = Ify))
For the edges, the crux of the proof is to establish the following equivalence: an
edge e together with its incident nodes n and m belongs to

G(M (e, 1) U (Tety = Iea)) U (I = Iery)
if and only if e, n and m belong simply to
M (I, t) U (T, = Tler) U (I = Tesy)-
Indeed, using this equivalence we can deduce:
e € G(G(IM (I, t) U (Tlety = Ilea)) U (T = Iles,))
& en,m € GIM(Iu,t) U (Il = Iler)) U (T = I, )
< e,n,me M(I|u,t)U(I|ul _I|L{)U(I_I|M1)
< en,m € M(I|y,t) U —Iy)
S eeGMI|y,t)u I —Iw)).
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To prove the needed equivalence, the only-if direction of this equivalence is trivial.
To show the if-direction, we can concentrate on the case e € (I|y, — I|y). Indeed,
the other cases are trivial: M (I|y,t) is already an instance, so the operator G
has no effect on it, and (I — I|y,) is outside the scope of the application of G
altogether. In particular, then, e € Iy, and hence n,m € I|y, since k; satisfies
condition 5. As a consequence, n and m are not in (I — Iy, ) and hence must belong
to M (1|, t) U (I, — Ilee). We can therefore conclude that e, n and m belong to
G(M(Iu,t) U (I, — Iu)), as had to be shown.

In conclusion, the intersection of all colorings of S satisfying the conditions of
the theorem is the unique minimal coloring stated in the theorem. O

The unique coloring associated to an update M by Theorem 4.8 will be referred
to simply as the minimal coloring of M. The minimal coloring is clearly a semantic
property of an update; it is undecidable whether a given coloring is the minimal
coloring of a given method.

A consequence of our axiomatization of “use” is that updates whose minimal col-
oring is “simple” are inflationary.* More precisely, we have the following definition
and proposition:

DEFINITION 4.9. A coloring is called simple if each item has at most one color.

PROPOSITION 4.10. Let M be an update method. If the minimal coloring of M
is simple then M is inflationary, i.e., I C M(I,t) for each instance I and receiver
t over I.

PROOF. Let the minimal coloring of M be k. We prove the following technical
lemma:

LEMMA 4.11. If a node in the schema is colored d by &, then it is also colored
u. If an edge is colored d by k, then either it is also colored u or one of its incident
nodes is colored d.

This lemma clearly implies the proposition to be proven: if k is simple, it can-
not color anything d and hence M will never delete any information, i.e., M is
inflationary.

To establish the truth of the lemma, let I/ be the set of items in .S colored u. The
proof of the first statement is straightforward: if X is a node in the schema colored
d, then the minimality of x implies the existence of an instance I and a receiver ¢t
such that I contains an object n of type X that is not in M (I,t). If X would not
be colored u, then n would be in I — I and hence in G(M (I|y,t) U (I — I|y)),
which equals M (I,t) by condition 3 of Theorem 4.8; a contradiction.

To prove the second statement, assume there is an edge in S, labeled e, which
is colored d but not u. Then there exists an instance I and a receiver ¢ such that
I contains an edge * = (n,e,m) not in M(I,t). Since e is assumed not in U,
x is in I — I|yy and hence in M (I|y,t) U (I — I|y). We must show that at least
one of the labels A(n) and A(m) of n and m is colored d. Assume the contrary;
then n and m belong to M(I,t) and thus to M (I|y,t) U (I — I|y). Hence, z is in
G(M(Iy,t) U(I —I|y) = M(1,t); a contradiction. O

4Whence the title of the present subsection.
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The intuition behind Lemma 4.11 is that by deleting a node, we have implicitly
used it as well; this implication is a logical consequence of the way we axiomatized
“use” in Definition 4.7. The same implication holds for edges, except that for edges
there is one exception in which we can delete an edge without using it: if a node
is deleted, then of course its incident edges must be deleted as well (otherwise the
result would not be a proper graph), and such “automatic” deletions of edges are
not considered uses by Definition 4.7.

Lemma 4.11 specifies in fact a necessary condition for a coloring to be “sound”
in the following sense:

DEFINITION 4.12. A coloring is called sound if it is the minimal coloring of some
update method.

It is then natural to ask what exactly are the conditions for a coloring to be
sound. We can prove the following characterization:

PROPOSITION 4.13. A coloring is sound if and only if it has the following prop-
erties:

(1) If a node in the schema is colored d by k, then it is also colored u. If an
edge is colored d by k, then either it is also colored u or one of its incident
nodes s colored d.

(2) If an edge is colored c, then its incident nodes are colored u or c.

(8) If a node B is colored d then, for each incident edge (B,e,C) or (C,e, B)
in the schema that is neither colored d nor u, C' is colored u.

(4) At least one node is colored u.

(5) If an edge is colored u, then so are its incident nodes.

PRrOOF. For the only-if direction, consider the minimal coloring of some update
method M. Property 1 has already been proven in Lemma 4.11; properties 4 and
5 are clear.

To see property 2, consider a schema edge (A, e, B) colored c¢. Then there exists
an instance I and a receiver ¢ such that M (I,t) contains an edge = (n,e, m) not
in I, with n and m objects of type A and B respectively. Since z is in M (I,t), it
is also in G(M (I|u,t) U (I — I|y)) and hence in M (I|y,t) U (I — I|y). But z is not
in I, so z is in M(I|y,t). Hence, n and m must also be in M (I|y,t). If A is not
colored u, then n is clearly not in I]y. If A is not colored ¢ either, then n cannot
be in M (I|y,t) either, contradiction. We conclude that A must be colored u or c.
An identical reasoning applies to B.

The proof of necessity for property 3 is a little bit more involved. Suppose B is a
schema node colored d, and suppose, for the sake of arriving at a contradiction, that
an incident schema edge (B, e, C) exists that is neither colored d nor u, and such
that C is not colored u.> Note that C' # B because B is colored u (by property 1,
since it is colored d). There exists an instance I and a receiver ¢ such that n is in
I — M(I,t) for some node n of type B. Note that, since B is colored u, n is also in
Iy — M(Iu,t).

5The case of a schema edge (C, e, B) is completely analogous.



Applying an Update Method to a Set of Receivers . 13

Observe that there can be no e-labeled edges incident to n in I. Indeed, such
an edge would not be in M (I,t) (since n is not) which is impossible because e is
not colored d. Moreover, there can be no C-labeled nodes in I. For, suppose such
a node m would be present. Then consider the instance I' obtained from I by
adding the edge (n, e, m). By the previous observation, we know that n € M (I',t).
However, since e is not colored u, I}, = Iy, whence n ¢ M(I},,t) = M(Iy,t). By
the “axiom of use” M (I',t) = G(M(I};,t)U(I' —1I};), n would thus not be in M (I',t)
(but we know it is).

Now consider the instance I’ obtained from I by adding an object m of type C' (we
just observed that I does not contain such objects). By the previous observation,
we know that n € M(I',t). However, since C' is not colored u, I/, = Iy, whence
n ¢ M(Ij;,t) = M(Iy,t). Again by the axiom for use we conclude that n ¢ M (I',t);
a contradiction.

For the if-direction, let k be a coloring having the properties of the proposition.
Note that by these properties, £(X) for any schema node X cannot be {d} or {c,d}.
We can construct an update method having « as its minimal coloring as follows.
The signature of the method may be arbitrarily fixed as long as all its elements are
colored u. Regardless of the particular receiver to which it is applied, the update
performed by the method is the following:

—For each node X in the schema, fix distinct objects o, off, and o of type X,

and perform the following action depending on the value of k(X):

(1) {c}: Add oZ.

(2) {c,u}: Test if oY is present; if so, add o .

(3) {d,u}: Provisionally delete o . By this we mean that o3 and all its incident
edges are removed on condition that the following two tests fail for each
schema edge (X,e,Y) or (Y, e, X) incident to X:

—if e is not colored d but is colored u, test for the presence of any edges
labeled e incident to off .
—If e is neither colored d nor u, test for the presence of any Y -labeled nodes
(note that by property 3, such nodes are colored u).
(4) {c,d,u}: Here we do both actions of the cases {c,u} and {d,u}.

—For each edge X = (A, e, B) in the schema, fix distinct objects of and 0§ of type
A, and 0§ and of of type B, and perform the following action depending on the
value of k(X):

(1) {c}: Provisionally create the edge (0§, e,05). By this we mean that the edge
is added, as well as 0§ and of if not yet present, except when A is not colored
c and of is not yet present, or B is not colored ¢ and of is not yet present;
in that case we do nothing.

(2) {d}: In this case we know that at least A or B is colored d. If A is colored
d, provisionally delete of; else, provisionally delete of.

(3) {c,d}: Here we do both actions of the cases {c} and {d}.

(4) {c,u}: Testif (of, e, 05) is present; if so, provisionally create the edge (0§, e, 05).

(5) {d,u}: Remove the edge (05,e€,05).

(6) {c,d,u}: Here we do both actions of the cases {c} and {d,u}.

—For each schema node X with x(X) = {u}, we have not yet prescribed an action.
If some of the actions described so far that have to be performed test for the
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presence of certain objects of type X, we do nothing extra. Otherwise, test for
the presence of oy ; if not present, go into an infinite loop.

—Also for each scheme edge (A, e, B) with x(e) = {u}, we have not yet prescribed
an action. If some of the actions described so far that have to be performed test
for the presence of certain edges of type e, we do nothing extra. Otherwise, test
for the presence of (0, e,05); if not present, go into an infinite loop.

Let us verify that the conditions of Theorem 4.8 are satisfied by M and k. Con-
ditions 1 and 2 are clear: M never creates (deletes) information of any type un-
less that type is colored ¢ (d). Condition 4 is equally clear, and condition 5 is
a given property of k. Remains condition 3, for which we have to verify that
M(I,t) = G(M(I|y,t) U(I —1I|y)). We verify both inclusions.

For the inclusion from left to right, consider first a node n of type X in M(I,t).
We make the following case analysis:

—n does not equal 0, oé( , or 0¥, and neither of for some edge label e and i €

{1,...,4}. In this case the inclusion is clear: n was already in I because M never
adds a node like n; if n is not in I — Iy, it is in I|y; and thus in M (I|y,t) because
M never removes a node like n.

—n = oX. If n was already in I, the inclusion is again clear: if n is not in I — I}y, it
is in Iy and thus in M (I4,t) because M never removes oX . If n is not in I then
X must be colored ¢ and we distinguish between the following two possibilities
for the value of k(X):

—{c}: Then oY is always added and hence is in M (I|y,t). There is, however, one
possible caveat: M (I|y,t) might have gone into an infinite loop because some
node or edge x is not present in I|y (cf. the last two items in the description of
M’s behavior). However, this is not the case, because M (I,¢) did terminate,
so z is present in I; but then x is also present in Iy, because we have taken
care in the definition of the behavior of M to test for the presence of items
only if they are of a type colored u.®

—{c,u} or {c,d,u}: Then 0¥ has only been added because o

then o is also in I|; and hence n is in M (I|y,t) as well.

X

. isin I. However,

—n = 0% . Then n was already in I because M never adds o3 . If X is not colored
d, the inclusion is again clear. If X is colored d (whence also u), the presence of
n in M (I,t) implies the presence in I of one of the following two possibilities:
—An edge, incident to n, not labeled d but labeled u. This edge will also be
present in I|y; and hence n will also be in M (I|y,t).
—A node labeled u. Again this node will also be present in I];; so that n is also
in M(Iy,t).

—n = 0X. Then n was already in I, since M never adds o;X. Hence, if n is not in
I —I|y, it is in Iy and thus also in M (I, t) since M never deletes oX

u -

6The same possible caveat applies to various other places in this part of the proof; the reason why
it does not pose a problem is always the same.

Strictly, we should also account for the case where M (I,t) does not terminate. But then again
this will be because of the absence of a certain node or edge which will then certainly be absent
in I|y as well; hence M(I|y,t) will not terminate either in this case.
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—n = 0f or 0§ for some label e of a schema edge (A, e, B). These cases are analogous
to the case n = of.

X

c -

—n = 0§ or of. These cases are analogous to the case n = o

Continuing our verification of containment from left to right, consider now an
edge z in M (I,t), of type (A4, e, B). We make the following case analysis:

—x = (0§, e,05). If e is not colored ¢, z plays no special role for M and the inclusion
is clear. So now assume e is colored c¢. If A and B are colored ¢, x is always
added by M and the inclusion is trivial. If A (B) is not colored c, then it must
be colored u by property 2. If z was already in I, the inclusion is again clear
because M never deletes z, 0§, or of. If 2 was not in I, its creation has succeeded
because 0§ (0§) is already in I. But then 0§ (0§) is also in I|y, so that z will also
be in M (I|y,t).

—= is incident to of or o5. Then z only plays a role in M when x(e) is {d} or
{c,d}, and A (B) is colored d and z is incident to of (0§). In that case, = has
not been deleted because the provisional deletion of of (05) did nothing. In an
earlier case n = o}, we saw that then the provisional deletion will neither do
anything when working on I|,. Hence z is also in M (I|y,t).

— is incident to o} for some class name X. This case is analogous to the previous
one.

—All other kinds of edges x will neither be added not deleted by M, so for them
the inclusion is clear.

For the inclusion from right to left, we can argue as follows. First, we already
noted earlier that if M (I|y,t) does not terminate, then neither does M (I,t). Fur-
thermore, if an item that plays a special role in M’s behavior is present in M (I, t),
this means it has been added or it has not been deleted. Since the decisions made
by M to add or to delete are based entirely on tests involving items colored u, the
outcomes of these tests will be the same regardless of whether M is applied to Iy
or to I. Hence, M (I|y,t) is contained in M (I,t). Finally, I — I| is also contained
in M(I,t), since items not colored u are never deleted by M. The only exception
are edges labeled d but not u; but such edges are only deleted by M because their
incident nodes are deleted. Hence, the G operator will remove these edges.

To conclude the proof we must argue that « is indeed minimal for M. By in-
specting M’s behavior, we see that the color u cannot be omitted from x(X) for
schema items X for which M performs tests on the presence of items of type X.
Indeed, the outcome of these tests would become negative and certain deletions or
additions, made in M (I,t), would not be made in M (I|y,t), violating condition 3
of Theorem 4.8. Similarly, for schema items X colored {u} but not involved in such
tests, M goes into an infinite loop in the absence of certain items of type X; by
removing the color u, M (I, t) would not terminate in cases where M (I,t) would.
Finally, the colors ¢ and d clearly cannot be omitted either, as M creates (deletes)
information of the types colored ¢ (d). O

Properties 2 and 3 of Proposition 4.13 are quite intuitive. Property 2 expresses
that you cannot create an edge without checking first for each incident node that it
is already present (in this case the node is used), except when we create the node at
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the same time. Property 3 expresses that you cannot delete a node without deleting
its incident edges; if we want to avoid deleting edges, we must do the deletion of
the node only if a test for the presence of incident edges fails. But testing for the
presence of incident edges implies that we use them; if we want to avoid this usage,
we can more drastically test whether there are any C-nodes at all (in this case C
is used), and do the deletion only if this test fails.

Let us now return to our original motivation: order independence. The colorings
describing order-independent updates can be characterized as follows.

THEOREM 4.14. Let k be a sound coloring. All update methods having K as their
minimal coloring are order independent, if and only if k is simple.

ProoOF. For the if-implication, let M be an update method having  as its min-
imal coloring. By Proposition 4.10, M is inflationary, so

I'C M(I,t) (3)
for any instance I and receiver ¢t. Furthermore,
Ty = M(I,t)]u. (4)

Indeed, (3) implies I|yy € M(I,t)|u, and this inclusion cannot be strict since any
information in M (I,t) but not in [ is colored ¢ and thus not u because & is simple.

We now use these two observations to prove that M is order independent. By
Lemma 3.3 it is sufficient to show that M (M (I,t),t") = M(I,t) U M(I,t") =
M(M(I,t"),t) for any pair {¢,t'} of receivers. We can deduce:

M(M(I,t),t)
= GM(M(I, ), t") U (M(I,t) = M(I, £)]u))
G(M (T, t") U (M(T,t) = )

G(M(Ify,t') U M(I,1))
M(I|y,t") UM(I,t)
= M|y, t")U (I —Iy)UM(,t)
G(M (I, ') U (I = Ilar)) U M(I,t)
= M(I,t")UM(I,t).

For the only-if direction, assume & is not simple. The soundness of x can be
used to deduce that at least there is a node R colored (1) {u,d}, (2) {u,c,d},
or (3) {u,c}, or an edge (R,a, A) colored (4) {u,d}, (5) {u,c,d}, or (6) {u,c}.
For each of these cases we will give a method of type [R, A] which is not order
independent, having  as its minimal coloring. We start with the method associated
to k according to the proof of Proposition 4.13. We then adapt this method to one
of the six possible cases as follows:

(1) If there are exactly two objects of type R, delete the receiving object.
To see that this update is not order independent, apply it to instance {n,m},
where n and m are objects of type R, and the set of receivers {n,m} x {n,m}.
(2) As in the previous case, but if the test fails add two new objects to class R.
To see that this update is not order independent, use the same instance and
set of receivers as in the previous case.
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(3) If there are not exactly two objects of type R, do nothing. Otherwise, if the
receiving object is equal to some fixed object, add two new objects to class R;
otherwise, add only one.

To see that this update is not order independent, use the same instance and
set of receivers as in the previous case.

(4) If there is an edge with label a between receiving and argument object, delete
all other a-edges.

To see that this update is not order independent, apply it to an instance of the
form R -+ A <~ R on the set of receivers {[n,m] | (n,a,m) € I}.

(5) As in the previous case, but if the test fails add an a-edge between receiving
and argument object and delete all other a-edges.

To see that this update is not order independent, use the same instance and
set, of receivers as in the previous case.

(6) If there are no a-edges, add one between receiving and argument object.
To see that this update is not order independent, apply it to an instance of the
form R A R on the set of receivers {[n,m] | n of type R, m of type A}.

O

ExampPLE 4.15. Recall the example schema (Example 2.3). To illustrate The-
orem 4.14, consider the update method of type [Drinker] which adds to the bars
frequented by the receiving drinker all those serving a beer he likes. The minimal
coloring of this method assigns {u} to the nodes Drinker, Bar, and Beer and the
edges labeled ‘likes’ and ‘serves,” and assigns {c} to the edge labeled ‘frequents’.
This coloring is simple, and the method is indeed inflationary and order indepen-
dent. O

4.3 Deflationary colorings

We have also investigated an alternative axiomatization of use, which we present
next. Informally, it expresses the intuition that items of information that are needed
by the update cannot be removed without changing the result of the update. For-
mally:

DEFINITION 4.16. Let X’ be a set of items in the schema S. A method M is said
to use only information of type X if for any instance I, any receiver ¢ over I, and
any item z in I whose label is not in X, M(G(I — {z}),t) = G(M(I,t) — {z}).

Notice how conceptually different the above definition is from our first Defini-
tion 4.7. In a sense, the first definition is more global while the second is more local.
The two definitions are also formally different, as shown in the following example.
In a sense, the two definitions are each other’s dual in the way they treat deletion
and creation of information.

ExaMPLE 4.17. Consider the method which deletes all objects of a certain class
X. If this method uses only information of type A according to Definition 4.7, X
must be in X', but this is not true under Definition 4.16.

On the other hand, consider the method which always adds some fixed object of
type X. Now it is according to Definition 4.16 that X must be in X', but no longer
under Definition 4.7. O
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It turns out that one can repeat the entire development of the previous subsection
under the new Definition 4.16. First, we have:

THEOREM 4.18. The exact same statement of Theorem 4.8 also holds when the
meaning of the term “use” is that of Definition 4.16.

We omit the proof; it is along the same lines as that of Theorem 4.8 but tech-
nically easier. For the remainder of this section, the meaning of “use” in formal
propositions, theorems, and proofs is always that of the new Definition 4.16.

We will also prove the verbatim analog of Theorem 4.14, and again formulate
a soundness criterion. The curious duality alluded upon above will have as effect
that simple colorings under the new definition describe deflationary rather than
inflationary updates.

The following proposition is the analog of Proposition 4.10. While for the old
axiomatization of “use”, we have seen in Lemma 4.11 that, roughly, one cannot
delete information without using it, we now see in Lemma 4.20 that for the new
axiomatization, one cannot create information without using it. Indeed, the state-
ment of Lemma 4.20 is exactly that of Lemma 4.11 with ‘d’ replaced by ‘c’. This
formalizes the duality already alluded upon with Example 4.17.

PROPOSITION 4.19. Let M be an update method. If the minimal coloring of M
(as given by Theorem 4.18) is simple then M is deflationary, i.e., M (I,t) C I for
each instance I and receiver t over I.

PRrROOF. The proof is technically quite different from that of Proposition 4.10.
Let the minimal coloring of M be k. We prove the following technical lemma:

LEMMA 4.20. If a node in the schema is colored ¢ by k, then it is also colored
u. If an edge is colored c by K, then either it is also colored u or one of its incident
nodes s colored c.

This lemma clearly implies the proposition to be proven: if k is simple, it can-
not color anything ¢ and hence M will never create any information, i.e., M is
deflationary.

To prove the first statement of the lemma, assume X is a node in S colored ¢ but
not u. The minimality of x implies the existence of an instance I and a receiver
t such that M(I,t) contains an object n of type X that is not in I. Since X is
assumed not colored u, we have

M(G(I - {n}),b) = G(M(I,?) — {n})

for any instance I, node 7 labeled X in I, and receiver £ over I. Applying this to
I' :=TU{n}, n, and ¢, we obtain

M(I,t) =G(M(I',t) — {n}).

But M(1,t) contains n while the right-hand side of the equation clearly doesn’t; a
contradiction.

To prove the second statement, assume there is an edge in S, labeled e, which
is colored ¢ but not u. Then there exists an instance I and a receiver ¢ such that
M (I,t) contains an edge z = (n,e,m) that is not in I. Since e is not colored u,
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we have M (G(I — {z}),t) = G(M(I,t) — {z}) for any instance I, edge 7 labeled e
in I, and receiver  on I. Applying this to I' := I U {n,m,z}, x, and ¢, we obtain
M(IU{n,m},t)=G(M(I',t) —{z}). If n and m would be in I, then the left-hand
side of this equation would equal M (I,t), which contains z, while z is obviously
not contained in the right-hand side of the equation. Consequently, either n or m
is not in I. But since these nodes are in M (I,t) one of their labels must be colored
c. O

Would the duality have been perfect, one would now expect the soundness cri-
terion under the new axiomatization of use to be the soundness criterion under
the previous axiomatization (Proposition 4.13), where we replace the first property
(coming from Lemma 4.11) by the property stated in the dual Lemma 4.20. How-
ever, the duality is not so perfect. The point is that Lemma 4.20 already provides
a weak form of property 2 required by Proposition 4.13, and it turns out that the
latter property itself is no longer necessary. This is shown by the following example.

ExXAMPLE 4.21. Consider a schema with two class names A and B and a prop-
erty e of A of type B. Consider the coloring assigning {u,c} to A, {c} to e, and 0
to B. This coloring is not sound under Definition 4.7 (it does not satisfy property 2
from Proposition 4.13), but it is sound under Definition 4.16. Indeed, as one can
verify, it is the minimal coloring of the update that checks to see if some fixed
object n? of type A is already present; if not, it adds n“, together with edges to all
present B-nodes. Definition 4.7 considers these B-nodes to be used by the update,
but Definition 4.16, by its more “local” nature, does not.

As new soundness criterion we get:

PROPOSITION 4.22. A coloring is sound if and only if it has the following prop-
erties:

(1) If a node in the schema is colored ¢ by &, then it is also colored u. If an edge
is colored ¢ by K, then either it is also colored u or one of its incident nodes is
colored c.

(2) If a node is colored d, then all its incident edges are colored u or c, or the
other node incident to such an edge is colored u.
(3) At least one node is colored u.

(4) If an edge is colored u, then so are its incident nodes.

The proof of the only-if direction has already been given for the first property in
Lemma 4.20, is clear for the last two properties, and is analogous to the proof
of Proposition 4.13 for the remaining property (which is identical in both propo-
sitions). The proof of the if-direction requires no new ideas beyond those of the
proof of the if-direction of Proposition 4.13; the only extra complication is for edges
colored c; these are dealt with as already illustrated in Example 4.21.

We can conclude this section with the verbatim analog of Theorem 4.14:

THEOREM 4.23. Let k be a sound coloring. All update methods having k as their
minimal coloring are order independent, if and only if k is simple.
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PRrROOF. The only-if implication is proven analogously to that of Theorem 4.14.
Assume k is not simple. Then by Proposition 4.22, we only have to consider the
same six possibilities as in the proof of Theorem 4.14, namely of a node or an edge
colored {u,c}, {u,d}, or {u,c,d}. The same six examples used in that proof also
apply to the present setting. Again, these methods have to be adapted to the colors
of other items in the scheme. Thereto we merely have to replace the case of a node
colored ¢ by that of a node colored d in the obvious way.

For the if-implication, let M be an update having & as its minimal coloring. By
Lemma, 3.3 it is sufficient to show that M (M (I,t),t") = M(M(I,t"),t) for any pair
{t,t'} of receivers. Let {z1,...,zn} be the set of all items of the partial instance
I —M(I,t). The labels of all these items and edges are colored d and therefore not
u because & is simple. Hence, M (G(I —{z1}),t") = G(M(I,t') —{z1}). Subtracting
{z2} from both sides followed by applying G yields

GM(G(I = {z}),t') = {x2}) = GG(M (I, ') = {21}) — {2})
and thus
M(G(I = {21, 22}),#) = GM(L,#) — {1, 22}).
We can repeat this reasoning for all other items z; (2 < i < n) eventually results in
M(G(I = (I = M(LH)), ) = GM(Lt') — (I — M(L,t')))
which can be rewritten as
M(M(I,t),t"y=M(I,t)NM(I,t).
Hence, by symmetry, M (M (I,t),t') = M(M(I,t'),t) as had to be proven. 0O

4.4 A conclusion on colorings

The specification of update behavior on a language-independent level is a notori-
ously difficult problem. Our results in this section show that it is not impossible to
solve when the updates have a uniform behavior (i.e., are inflationary or deflation-
ary). We would also like to make clear that we do not intend to claim that colorings
based on only three kinds of update behavior (creation, deletion, and usage) are
rich enough for the purpose of specification. Indeed, although we find our results
rather satisfying from a theoretical point of view, their practical usefulness remains
limited (but see Section 7 for some practical implications). A study of schema an-
notations which can distinguish more kinds of update behavior is a challenging and
interesting issue for further research.

5. A MODEL OF ALGEBRAIC UPDATE METHODS

In this section, we consider a more specific framework of update methods imple-
mented in the relational algebra, inspired by the algebraic model of object-oriented
database access introduced by Hull and Su [Hull and Su 1989].

5.1 Preliminaries

It is well-known (e.g., [Lyngbaek and Vianu 1987; Hull and Su 1989; Hull and
Yoshikawa 1990]) that object-base schemas and instances can be naturally viewed
as relational database schemas and instances. Formally, assume that all class names
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and property names are attribute names. Following the standard convention, we
will omit the set braces from relation schemes, writing {4, B, C} simply as ABC.
Now consider a given object-base schema S. The relational database schema cor-
responding to S contains for each class name C in S the unary relation scheme C.
The domain Ag of C is the universe of all objects of type C. Furthermore, for each
edge (C,a, B) in S, there is a binary relation scheme Ca; the domain A, of a is Ap.
As integrity constraints, the schema contains inclusion dependencies Ca[C] C C[C]
and Cala] C B[B] for each edge (C,a,B) in S. Note that every relational instance
of this schema will also satisfy the disjointness dependencies C[C] N C'[C"] = ( for
each pair of different class names C' and C', because we agreed in Section 2 that
different class names have disjoint universes of objects.
The following proposition is clear:

PROPOSITION 5.1. The object-base instances of S correspond precisely to the
relational database instances of the relational database schema corresponding to S.

Henceforth, we will blur the distinction between an object-base schema or instance
and its relational representation.

We can now use the relational algebra to derive relations from object-base in-
stances. The algebra we will be using is the standard one [Ullman 1988] consisting
of the binary operators union (U), difference (—) and Cartesian product (x), and
the unary operators equality selection (c4—p), projection (74, ,...,4,) and renaming
(pa=B). We will also be using a weaker algebra, called the “positive” algebra:

DEFINITION 5.2. The positive algebra consists of the operators union, Cartesian
product, equality selection, projection and renaming, plus the non-equality selection

(0axB).

Note that the positive algebra does not include the difference operator.
Following standard practice we will use natural joins (X) and theta-joins (%4) as

abbreviations of the well-known combinations of Cartesian product, selection, and
renaming.

It is well-known [Abiteboul et al. 1995] that equivalence (or satisfiability) of ar-
bitrary relational algebra expressions is undecidable. However, the standard inter-
pretation of “equivalence” is that two expressions over some schema are equivalent
if they have the same value on every possible instance of that schema, disregarding
any integrity constraint on instances that may be present. In our setting, such
integrity constraints are indeed present: as explained above, object-base instances
satisfy certain inclusion and disjointness dependencies. We regard two expressions
as equivalent if they have the same value on every object-base instance; we are not
interested in relational instances that do not represent an object-base instance.

The preceding discussion motivates the following lemma. It implies that equiva-
lence over object-base instances is undecidable as well.

LEMMA 5.3. Testing equivalence of relational algebra expressions over arbitrary
relational instances can be reduced to testing equivalence over object-base instances.

PRrROOF. Let S be an object-base schema and let R = AB be a classical binary
relation scheme, where A and B are attribute names with the same infinite domain
D. Consider the standard finite satisfiability problem: given a relational algebra
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expression E over R, does there exist a relation instance r such that E(r) # 07?
We reduce this problem to satisfiability over object-base instances of S. Since F;
and E» are equivalent if and only if (E; — E2) U (Es — E}) is not satisfiable, this
reduction suffices to prove the lemma.

We first show how a binary relation can be represented by an object-base instance.
Assume S contains class names C' and D and edges (C, A4, D) and (C,B,D).” A
relation 7 = {(a1,b1),...,(an,b,)} can be represented by an object-base instance
I of S where

—the nodes labeled D are {ai,...,an,b1,...,bp};
—the nodes labeled C' are n abstract nodes {t1,...,ty};
—the edges are all those of the form (¢;, 4, a;) and (¢;, B,b;) fori =1,...,n.

In such an instance I, the expression 74 g(C'A X CB) evaluates to r. Hence, an
expression E over R is satisfiable if and only if the expression E’ over S obtained
from E by replacing each occurrence of R by w4, 5(CA X CB) is satisfiable. O

5.2 Algebraic update methods

We are now ready to define our algebraic model of update methods. We consider
methods which can only update the properties of the receiving object. They cannot
remove existing objects or create new ones. The updates are performed via a sim-
ple assignment statement, the right-hand side of this statement being a relational
algebra expression parameterized by the receiver of the method.

Formally, we have the following definitions. We fix an object-base schema S in
what follows.

DEFINITION 5.4.

(1) Let 0 =[Cy,...,Ck] be a method signature. An update expression of type o
is a unary relational algebra expression over the relation schemes in S and the
special unary relation schemes self and arg; for 1 < ¢ < k, where the domain
of self is A¢, and the domain of arg; is A¢, for 1 <i < k.

(2) Let E be an update expression of type o. Let I be an instance of S and let
t = [oo,.-.,0r] be a receiver of type o over I. Then E(I,t) is defined as the
result of evaluating E on I, where the special relation self is interpreted as the
singleton {0p} containing the receiving object, and where arg; is interpreted as
the singleton {0;} containing the ith argument, for 1 <i < k.

(3) Let a be a property of the receiving class Cy. An algebraic update statement
on a of type o is an expression of the form a := E, where F is an update
expression of type o.

(4) An algebraic update method of type o is a set of algebraic update statements
of type o containing at most one update on each property.

(5) Finally, if M is an algebraic update method of type o, I is an instance of .S,

and t is a receiver of type o over I, the result of applying M to (I,t) is defined
as the instance obtained from I by replacing, for each statement a := F in

"The lemma can also be proven under the assumption of a single class name C and a single edge
(C,e,C).



Applying an Update Method to a Set of Receivers . 23

M, all edges labeled a leaving the receiving object by edges to all elements of
E(I,¢).

ExAMPLE 5.5. In writing examples of algebraic methods, we will abbreviate the
class and property names from our example schema by their first letter (Bar and
Beer are abbreviated as Ba and Be).

The method favorite_bar of Example 2.7 can be implemented simply as f :=
arg,, and the method add_bar as f := m(self sel?iD Df)U arg,. The method of

Example 4.15 can be implemented as

= X @ X X .
f = mp(self ARS Df)U g, (self ARS Dl o) Bas)

In practice, syntactic sugar such as path expressions can be used to write algebraic
update methods more concisely. [

In order for M(I,t) to be a well-defined instance of S, each statement a := E
in M must respect the integrity constraints of S. More precisely, if B is the type
of property a, then we must have E(I,t) C B(I) for any instance I and receiver
t. Not surprisingly, in view of Lemma 5.3, this property of expressions E is un-
decidable. However, by using “many-sorted” expressions, well-definedness can be
syntactically guaranteed, and this without loss of expressive power [Van den Buss-
che and Cabibbo 1998]. Another, pragmatical, solution is to use only expressions
E of the form E' N B. Hence, well-definedness does not really pose a problem in
practice.

Let us now turn to the issue of order independence of algebraic methods. Our
main result of this section is the following.

THEOREM 5.6. The problem of deciding equivalence between relational algebra
expressions (over arbitrary relational instances) is reducible to the problem of de-
ciding order independence of algebraic methods.

Conversely, method order independence is reducible to expression equivalence un-
der functional, inclusion, and disjointness dependencies.

ProoF. We first reduce expression equivalence to method order independence.
By Lemma 5.3, it suffices to reduce equivalence over object-base instances to order
independence.

Let S be an object-base schema, and let F; and Es be two expressions over S.
Without loss of generality we assume E; and FEs to have the empty result scheme.
Augment S with a class name C having two properties a and b of type C. The
following update method M of type [C] is order independent if and only if E; and
E»> are equivalent:

a =

b :=if Ca=C X pca(C)
then if E; # () then self else )
else if F> # () then self else ().

In proof, assume E;(I) is empty but E5(I) is not for some instance I. Let I’ be
obtained from I by adding two objects o and o' in class C' with all 8 possible a-
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and b-edges between them. Then in M (M (I',0),0"), there is no b-edge leaving o,
but in M (M (I',0'),0) there is. Hence, M is not order-independent.
Conversely, if F; and E5 are equivalent then the update to b simplifies to

b:=if E; # () then self else 0,

which makes M order-independent since F; does not depend on C' and its proper-
ties.

We next reduce method order independence to expression equivalence. Let M be
an update method with receiving class C, containing update assignments a := E,,
for each a € A where A is some set of properties of C.

If I is an instance and the unary singleton relations self, arg,, ..., arg, together
hold a receiver ¢, then the relation C'a in the instance M (I,t) can be expressed as

WC,a(Oa C;é[)jelf self) U pself%C(self) X Eq.

Denote this expression by E,[t]. Now denote by E. the expression obtained from
E,[t] by replacing each occurrence of Cb, where b € A, by Ey[t], and let self’, arg',

.., arg), together hold a second receiver ¢'. Then the relation C'a in the instance
M(I,tt") can be expressed as

7TC7a(Ea[t] C;ébsdelf’ self’) U pself’ﬁC(selfl) X Ezlz'

Call this expression E,[tt']. By reversing the process, we obtain an expression
E,[t't].

By Lemma 3.3, M is order independent iff for each a € A, the expressions E,[tt']
and FE,[t't] are equivalent. However, in testing the equivalence, care must be taken.

Indeed, only object-base instances must be considered. This is dealt with by
imposing the inclusion and disjointness dependencies corresponding to the object-
base schema.

Moreover, only interpretations of the relations self, self’, argy, ..., arg), must
be considered which assign them (7) at most one element; (ii) at least one element;
and (iii) different receivers ¢ and ¢'. Requirement (i) is dealt with by imposing the
functional dependencies self : ) — self and arg; : ) — arg; (and similarly for self’
and arg}). Requirements (%) and (iii) are dealt with by modifying the expressions
so as to yield the empty result if they are not satisfied. This can be done by taking
the Cartesian product with

mp(self X arg, X -+ x arg,, X self' x arg} x -+ x arg},) x
Y "YU l M If').
Uroarg, | n arg) Um(sclf | 31 self)
O

The first part of the above theorem implies the following undecidability results.
In the next section, we will use the second part of the theorem to obtain decidability
results in the special case of “positive” methods.

COROLLARY 5.7. The following problems are undecidable:

(1) Given an algebraic method M, is M order independent?



Applying an Update Method to a Set of Receivers . 25

(2) Given an algebraic method M, is M key-order independent?

(8) Given a relational algebra query @ over the object-base schema and an al-
gebraic method M, is M @ -order independent?

PrOOF. Problem 1 follows immediately from the first part of Theorem 5.6 and
the undecidability of equivalence of relational algebra expressions. Inspection of
the proof of Theorem 5.6 shows that the reduction from expression equivalence to
method order independence also works for key-order independence. Hence prob-
lem 2 follows as well. We leave it as an exercise for the reader to reduce order
independence to query-order independence. From this, problem 3 follows. [

To conclude the present subsection, we present a sufficient condition for key-order
independence in the general case.

PROPOSITION 5.8. An algebraic method M is key-order independent if each of
its update expressions does not access the relations corresponding to the properties
updated by M.

Instead of proving this proposition formally, which is straightforward, we note that
the condition is only sufficient for key-order independence, not for absolute order
independence. Indeed, the update a := arg satisfies the condition but is not order
independent (only key-order independent).

EXAMPLE 5.9. The method favorite_bar satisfies the condition of Proposition 5.8
(see Example 5.5) and is indeed key-order independent. Observe that add_bar does
not satisfy the condition (it both accesses and modifies relation Df) but is still
order independent; this shows that the condition is only sufficient. [

Proposition 5.8, trivial as it may be, covers many practical cases; more examples
of its applicability are given in Section 7.

5.3 Positive update methods

An important special kind of algebraic method is the “positive” one:

DEeFINITION 5.10. An algebraic method is called positive if all relational algebra
expressions used in it are positive (in the sense of Definition 5.2).

Since positive algebra expressions always express monotone queries, positive meth-
ods always express monotone updates, i.e., if I C J then M(I,t) C M(J,t).
The following example shows that positive methods can still delete information.

EXAMPLE 5.11. The method delete_bar of type [D, Ba] which deletes the argu-
ment bar from those frequented by the receiving drinker is positive, as it can be
implemented as

= 7r(sel X D X arg).
f £ ( fself:D f#arg 9)

O
Our main positive result concerning algebraic update methods is the following:

THEOREM 5.12. Order independence and key-order independence of positive al-
gebraic methods are decidable.
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PRrOOF. The proof is based on the following lemma, whose complete proof is
given in Appendix A.

LeEmMA 5.13. Containment (whence also equivalence) of positive relational al-
gebra expressions under functional dependencies and full inclusion dependencies is
decidable.

The theorem is implied by this lemma and the reduction from order independence
to equivalence of relational algebra expressions given in the proof of the second part
of Theorem 5.6. To see this, note the following facts concerning this reduction:

(1) The reduction preserves positivity: if the method to be checked for order
independence is positive, then so are the generated expressions to be checked
for equivalence.

(2) The reduction can readily be adapted for key-order independence. It suffices
to omit, in the large final expression of the proof of Theorem 5.6, the term

Ule mp(arg; 52 ) arg};), so that the expressions to be evaluated become
arg;#arg;
empty from the moment the two receivers have the same receiving object.

(Recall that Lemma 3.3 also holds for key-order independence.)
(3) The dependencies involved in the reduction are covered by those mentioned

in Lemma 5.13. Hence, the lemma yields the decidability of order independence
and key-order independence.

O

It remains open whether the following problem is decidable:

Open problem. Given a positive relational algebra query @ over the object-base
schema and a positive algebraic method M, is M Q-order independent?

The reason why our techniques fail to solve this problem is that they crucially
rely on Lemma 3.3, which fails for query-order independence. More precisely:

PROPOSITION 5.14. The following statement does not hold for every positive
algebra query Q@ and positive algebraic method M :

M is Q-order independent iff M is order independent on any pair (I,T)
where T is a two-element subset of Q(I).

In fact, none of the two implications (if and only if) holds in general.

PrOOF. Consider a schema with a class name C' having two properties a and b
of type C. We give counterexamples disproving the two implications.

We first disprove the if-direction. Consider the update M of type [C, C] deleting
the argument object from the a-properties of the receiving object, on condition that
relation Ca contains at least two tuples. We can express M as a positive algebraic
method as follows:

a = if #Ca > 2 then m,(self l}lid o Ca ?&N arg) else 0.
self= a#arg
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Consider furthermore the query
Q :=if #Ca > 3 then Cb else 0.

Note that a query of the form if #Ca > 2 then F else 0 (or #Ca > 3) can indeed
be expressed positively; for example, the former as

mp(mc(Ca) C;DSC, po—crme(Ca) Umy(Ca) E;Dja, PasaTo(Ca)) X E.

Under these assumptions, it follows that M (I,t1t2) = M(I,t2t;) for any instance
I and pair of distinct receivers t1,t2 € Q(I). Indeed, if Q(I) is non-empty then
#Ca is at least 3. Hence, applying M to (I,¢1) amounts to deleting ¢; from Ca,
after which #Cla is still at least 2, so that applying M to (M (I,t1),t2) amounts to
deleting to from C'a. Clearly this is equivalent to first deleting ¢, and only then ¢y,
so that M(I, tltg) = M(I, tgtl).

However, M is not (J-order independent. Indeed, consider an instance I where re-
lation Ca equals {(c1,a1), (c2,a2), (c3,a)} and Cb equals {(c1,a1), (c2,a2), (c3,0)}
with a # 8. In M (I, (c1,a1)(c2,a2)(c3,3)), object ¢3 has no a-properties, while in
M(I, (cs3,8)(c1,a1)(c2,a2)), it still has « as a-property. Hence these two sequential
applications differ.

We next disprove the only-if direction. Consider the update M of type [C, C, C]
which assigns to a all the b-properties of the receiving object, and adds the first
argument to the b-properties (the second argument is not used). We can express
M as a positive algebraic method as follows:

a := mp(self sel]Ed:C Cb);
b := mp(self X o Cb) U arg,.

self=

Consider furthermore the three-fold Cartesian product of C' with itself as a query
Q.
Then M is Q-order independent. Indeed, if I contains less than two objects, then
Q(I) returns no more than one receiver, and the application is trivially order inde-
pendent. If I contains more than one object, applying M to (I, Q(I)) sequentially
(regardless of in which order) will result in the instance in which every object has
all other objects as a- and b-properties.

However, there is an instance I and a pair of distinct receivers t1,t2 € Q(I)
such that M (I,t1t2) # M(I,t2t1). Indeed, consider the instance I containing two
objects 01 and o0, having no a- or b-properties. Consider the following pair of
receivers t1,t2 € Q(I): t1 = (01,01,01) and t2 = (01,02,01). In M(I,#1t2), relation
Ca equals {(01,01)}, while in M (I,t2t1) it equals {(01,02)}. Hence, M(I,t1ts) #
M(I,tat). O

6. PARALLEL APPLICATION OF ALGEBRAIC UPDATE METHODS

In this section, remaining in the algebraic framework, we study an alternative,
“parallel” way of applying an update method to a set of receivers.

An update expression F occurring in an algebraic update method can access the
different components of the receiver using the special unary singleton relations self
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and arg;. However, suppose we prefer to store the entire receiver in one single
relation rec over the scheme selfarg, ...arg,. This is equivalent; it suffices to
substitute in E ‘self’ by ‘msey(rec)’ and ‘arg;’ by ‘Targ, (rec).’

Using this relation rec suggests a natural semantics for applying the update to
a set of receivers: we instantiate rec not by a single receiver but by the whole set
at once. However, in order to do so in a sensible way, we must take care that
arguments belonging to different receiving objects are not mixed up. Thereto, we
keep a copy of the receiving object self throughout the evaluation of the expression.
So, the simple substitutions described in the previous paragraph will not do.

This motivates the following definition:

DEFINITION 6.1. Let E be an update expression. Then par(E) is the relational
algebra expression over the relation schemes in the object-base schema plus the
relation scheme rec = selfarg, ... arg; obtained by modifying E as follows:

—Each relation scheme R occurring in E is replaced by msey(rec) x R;
—self is replaced by 7, (rec), and each arg; is replaced by Tseif, arg, (eC);

—each projection w4, ... 4, is replaced by Ter a,,...,4,3

P p?
—each Cartesian product is modified in a natural join on the common attribute

self .

Note that the result scheme of par(E) is that of E to which the attribute self is
added. For instance, if C' is the receiving class and the update expression F is
over a property a of type B of C, then the result scheme of par(E) is selfa, whose
domains are C' and B, respectively.

The result of applying a method M in parallel to an instance I and a set 1" of
receivers over [ is now defined in the obvious way:

DEFINITION 6.2.

(1) Let E be an update expression. Then par(E)(I,T) is defined as the result
of evaluating par(E) on I, where the relation rec is interpreted by T'.

(2) The result of applying M in parallel to (I,T), denoted Mpa,(I,T), is defined
as the instance obtained from I by replacing, for each statement a := E in M
and for each receiving object og occurring in 7', all edges labeled a leaving ogy
by edges to all objects linked to og in par(E)(I,T).

The parallel semantics just defined coincides with the ordinary semantics in the
case of a single receiver, as stated in the following proposition. The proof is straight-
forward.

PROPOSITION 6.3. For any algebraic update method M, instance I and receiver
t’ Mpar(Iv {t}) = M(Ia t)'
The following example illustrates parallel application and contrasts it against

sequential application.

ExaAMPLE 6.4. Consider the scheme consisting of one class name C and two
edges labeled e and tc. Let M be the method of type [C,C] having the single
statement

tc := mwe(self sel;q:C Ce) U me(self 86154:0 Ctc tcEC’ po—c (Ce)).
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This method is order independent. Let I be an instance containing only e-edges,
and let T be the set of receivers C' x C. Then the sequential application Mgeq(I,T')
computes the transitive closure of I in the tc-edges, while the parallel application
Mpar(I,T) simply duplicates each e-edge with a ¢c-edge. Indeed, par(E) (E being
the expression assigned to tc) equals

Tsetf e (Tserf (rec) X (wgey(rec) x Ce)) U

self =self
self=C
Tself e (Tserf (TeC) D (mseif (rec) x C'te) D, posco (mseif (rec) x Ce)),
self =C te=C'

which on an instance without tc-edges is equivalent t0 Tseir e (Tsers (TeC) l;ﬂ o
self =
Ce). O

The above example suggests that parallel application is less powerful than sequen-
tial application, since sequential application can express transitive closure while
parallel application, by definition, does not have more power than the relational
algebra (which cannot express transitive closure).®

When we restrict attention to key sets of receivers, however, parallel and sequen-
tial application are equivalent, as stated by the following theorem.

THEOREM 6.5. If M is key-order independent, then Mseq(I,T) = Mpar(I,T) for
any instance I and key set of receivers T'.

ProOOF. Let E be an update expression occurring as the right-hand side of one
of the statements in M. We refer to Lemmas 6.6 and 6.7 stated and proven below.

To see how the theorem follows from these lemmas, consider a statement a := FE
in M, and assume that C' is the receiving class. By Lemma 6.6, relation Ca in
Mgeq(I,T) equals

Ca(I) - mca | ({t(self)} e Ca(I)) U paeip—c | J{t(self)} x E(I,1),
teT teT

which, by Lemma 6.7, equals relation Ca in My, (I,T). O
LEMMA 6.6. If T = {t1,...,tn}, then for each i with 1 <i <n,
E(M(I,ty...t;1),t;) = E(I,t;).

PROOF. Let a := E be the statement in M having E as its right-hand side, and
let C' be the receiving class. The objects to which the object ¢;(self) is linked by
a-edges in Mgeq(I,T) are the same as those in M(I,t;) and in M (I,t; ...t;), since T
is a key set and M is key-order independent. In M(1,t;), these can be computed as
E(I,t;);in M(I,t;...t;), these can be computed as E(M (It ...t;—1),t;). Hence,
E(I,t;)=E(M(I,t1...t;i—1),t;) as had to be proven. [

LEMMA 6.7. par(E)(I,T) = e {t(self)} x E(I,t).

8With a similar technique, using sequential application one can also express the parity test, another
problem not solvable using the relational algebra [Abiteboul et al. 1995].
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PRrROOF. A straightforward induction on the structure of E. By way of example
we show how the difference operator is handled.

par(Ey — Ex)(I,T) = par(E1)(I,T) — par(Es)(I,T)
= (J{tGself)} x By (I,t)  — | J{t(self)} x Ea(I,1)

ter teT
= U{t(self)} x (E1(I,t) — Ex(1,t)).
teT

The first equality holds by definition; the second by induction. To prove the third,
the inclusion from left to right is straightforward. For the inclusion from right to
left, let

s € (J{t(self)} x (Bu(I,t) — Ba(I,1)).
teT
Then s = to(self) x so with sg € Ey(I,t9) — E2(1, ), for some ¢y € T. So s clearly
is in (J,eqp{t(self)} x Ei(I,to). Now assume s is also in |J,cp{t(self)} x Ex(1,to).
Then sg € E2(1,ty), for some t, € T with ty(self) = to(self). But since T is a key
set, the latter can only hold when ¢, = o, which would then imply so € E2(1, o),
a contradiction. [

The parallel application of algebraic update methods can be implemented much
more efficiently than the sequential application. Indeed, the result of the parallel
application is defined in terms of one single relational algebra expression per prop-
erty to be updated; this expression can be optimized and is then executed only once.
This is not possible in the sequential application, where the application to a set
of n receivers results in the evaluation of n separate relational algebra expressions.
Hence, we believe Theorem 6.5 is an interesting result.

7. PRACTICAL IMPLICATIONS

In this section, we show that our theory can be applied in a practical SQL context
and that it can explain a variety of update phenomena in that context.

We begin by noting that the object-based data model we have been using can
very well be applied in the classical relational setting as well. A tuple ¢ in some
relation R can be interpreted as an object of type R. An attribute ¢t.A can then be
interpreted as a property of . We can also interpret a relation P whose attributes
include the primary key of relation R as a foreign key, as well as the primary key
of another relation S, as a property (R, P,S). So a tuple (ki,ks) in P would be
interpreted as an edge (t1, P, t2), where #; is the tuple in R identified by key k; and
to is the tuple in S identified by key k.

Now consider a relation Employee(Empld, Salary, Manager) holding informa-
tion about the salary and the manager of employees, and a list Fire(Amount)
of amounts. Suppose we want to delete all employees whose salary occurs in Fire.
We can do this in two different ways:

(1) Using a standalone, set-oriented SQL statement:

delete from Employee where Salary in table Fire
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(2) Using a cursor-based delete in programmed SQL:?

for each t in Employee do
if Salary in table Fire
delete t from Employee

These two solutions work in entirely different ways. The set-oriented statement,
in a first phase, identifies all tuples to be deleted; only in a second phase they
are effectively removed. The cursor-based update directly removes a tuple to be
deleted before inspecting the next one. Because the cursor-based update is order
independent, the two end results are the same.

We can readily see that the cursor-based update is order independent using
schema colorings (since we are deleting information we would use the deflation-
ary semantics of colorings). Indeed, the relation Employee from which we delete
is not used in the if-condition, so Employee has color {d}. No items other than
Employee objects are deleted, so no other schema item is colored d. Nothing at
all is created (inserted), so no schema item is colored c. Of course, some schema
elements are used, more specifically the class Fire, the property Salary, and the
the class D we would use to represent the type of this property, so these items have
color {u}. We thus have a simple coloring, which guarantees order independence
by our Theorem 4.23.

An example in which Employee would be colored both d and u is when we try a
cursor-based update to delete all employees for which the salary of their Manager
occurs in Fire:

for each t in Employee do
if exists (select
from Employee E1
where E1.Empld = Manager and E1.Salary in table Fire)
delete ¢t from Employee

Now we delete from Employee and at the same time use Employee information
in the if-condition of the update. The resulting double color for Employee makes
that we can no longer use Theorem 4.23 to conclude order independence; in fact
the above update is order dependent, because an employee will not be deleted if
his manager was visited and deleted before him. The cursor-based solution is thus
wrong for this case.

In contrast, the set-oriented statement

delete from Employee
where exists (select *
from Employee E1
where E1.Empld = Manager and E1.Salary in table Fire)

is still correct, as it would again first identify the employees to be deleted, and only
then remove them all together.'? In effect, this statement actually uses an extremely

91n this and the following examples we will not be worried here about the precise syntax for cursor
manipulation and use an abstract syntax instead.
10A referee pointed out that some of the earlier SQL implementations did not in fact follow
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simple underlying update which is trivially order independent: this update merely
removes its parameter ¢ from relation Employee. The whole point is that the
complete set T' of parameters is computed before the actual deletions are applied.
We thus see that the set-oriented delete statement in SQL is very nicely explained
by our theory as the application of a trivial, order-independent, removal update to
a precomputed set of receivers.

Analogous examples can be given with insertions instead of deletions. Once we
move to modifications, however, we can no longer use our coloring framework to
analyse update behaviors, since modifications both delete and insert at the same
time, and our results on simple colorings apply only to updates that are either
deletion-only (deflationary) or insertion-only (inflationary). Hence, we move to the
algebraic framework.

As a first example of a modification, consider again the relation Employee, along
with a relation NewSal(Old, New) specifying new salaries. Suppose we want to give
each employee a new salary as specified in NewSal. This can be achieved by the
standalone set-oriented update statement

update Employee (A)
set Salary = (select New

from NewSal

where Old = Salary)

or by the cursor-based update

for each t in Employee do (B)
update ¢
set Salary = (select New
from NewSal
where Old = Salary)

Both solutions are correct; in particular, the cursor-base update is key-order inde-
pendent. To see how this naturally falls out of our theory, in the algebraic frame-
work we would model this update as consisting of the following single algebraic
update statement working on a receiver [self, arg,]:
Salary := wyew(arg;, MW NewSal) (B")
arg,=0ld
This update is then applied to the set of receivers {[t(Empld),t(Salary)] | t €
Employee}. Note that this is a key set, and thus Proposition 5.8 can be applied to
guarantee order independence, since relation Employee (in which property Salary
is stored) does not occur in the expression on the right-hand side of the statement.
An example of a cursor-based modification that is order dependent is when we
would try to give each employee the new salary his manager would have gotten by
the previous update, as follows:

for each t in Employee ()
this two-phase semantics, using instead an order-dependent semantics equivalent to that of the

cursor-based deletion. We have tested the SQL implementation of two current (1998) DBMSs and
fortunately they no longer have this problem.
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update ¢
set Salary = (select New
from Employee E1, NewSal
where E1.Eid = Manager and Old = E1.Salary)

This solution is order dependent (and thus wrong) because we get different end
results for the new salary of some employee depending on whether or not we have
already visited his manager. In the algebraic framework, this update is now modeled
by the following algebraic update statement applied to each receiver [t(Empld)] with
t € Employee:

Salary := 7New (self self:bgmpld Employee SGZMT:OM NewSal) (@)
Importantly, both algebraic updates (B’) and (C') above are positive, and thus the
algorithmic procedure from our Theorem 5.12 is able to correctly discriminate be-
tween update (B) being order independent and update (C') being order dependent.

Note that a correct solution to the above-specified update problem is to use the
following set-oriented statement:

update Employee
set Salary = (select New
from Employee E1, NewSal
where E1.Eid = Manager and Old = E1.Salary)

This solution is correct again because the changes are made only after all the new
salaries are computed.

In effect, the algebraic update statement underlying the above SQL statement
is extremely simple: it is simply Salary := arg;, which is trivially key-order inde-
pendent. The key set of receivers to which it is applied is computed by the SQL
query

select Empld, New
from Employee, Employee E1, NewSal
where E1.Fid = Manager and Old = E1.Salary

We thus see that the set-oriented update statement in SQL is very nicely explained
by our theory as the application of a trivial, key-order independent, modification
update to a precomputed key set of receivers.

To conclude this section, we situate our parallel semantics for algebraic updates
within the SQL context. Recall updates (A) and (B) above. Both have the same
end result, but update (A) is much more efficient because it computes the changes
to be made in one global query, which can be optimized and executed once. In
contrast, update (B) performs a separate query for each individual tuple. Now
recall that update (B) is key-order independent. Our Theorem 6.5 states that
we can equivalently use the parallel semantics. Now the nice observation is that
this parallel semantics corresponds to update (A). To see this, recall the algebraic
update statement for (B):

Salary := Tnew(arg;, X NewSal)

arg,=0ld
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Then the parallel version of the expression on the right-hand side is

Tself ,New (Tself ,arg, (T€C) P (mseif (rec) x NewSal)).

argy =O0ld
Since relation rec is nothing but the Employee relation in this case, where self
corresponds to Empld and arg, to Salary, the above expression simplifies to

T Employee X NewSal
EmpId,New( pLoy Salary=Old )7

or in SQL,

select Empld, New
from Employee, NewSal
where Salary = Old

This is exactly the key set of receivers computed by update (A)!

We thus see that our Theorem 6.5 provides a “code improvement” tool which,
given a cursor-based update program that is key-order independent and that is
equivalent to a set-oriented update statement, can automatically find this statement
(which is much more efficient).

APPENDIX
A. APPENDIX

This section (included at the explicit request of one of the referees) is devoted
to the proof of Lemma 5.13, the main result needed to characterize decidability
of a number of problems in the context of positive update methods. Since pos-
itive expressions can be viewed as conjunctive queries extended with union and
non-equality, we consider a generalization of the classical problem of containment
of conjunctive queries, with three different extensions: (i) union, (ii) non-equality,
and (iii) functional and full inclusion dependencies. Testing for containment of con-
junctive queries is well-known to be decidable [Chandra and Merlin 1977; Aho et al.
1979], and extensions incorporating union [Sagiv and Yannakakis 1980], selection
for inequalities [Klug 1988], or the presence of functional and inclusion dependen-
cies [Johnson and Klug 1984] are equally well-known. However, we need to prove
that these generalizations can be combined together, and that the comprehensive
problem remains decidable. For more information on relational database theory we
refer the reader to Abiteboul, Hull, and Vianu [Abiteboul et al. 1995].11

Before we proceed, we need to introduce some terminology and notation. In
what follows, we fix a relational scheme S = {Ry,..., R,}. We fix also a finite set
Y of functional and full inclusion dependencies, of the following forms. Functional
dependencies (fd) have the form R; : X — A, where X is a set of attributes and A is
a single attribute. Full inclusion dependencies (ind) have the form R;[A; ... A;] C
R;[B; ... By, where R; is a k-ary relation, that is, By ... By is ezactly the scheme
of Rj.

1A result similar to Lemma, 5.13, supporting only a weak form of union but allowing a weak form
of negation, was presented by Chan [Chan 1992]. We believe that our approach based on classical
database theory techniques sheds new light on Chan’s results, which were proven using ad-hoc
techniques.
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The notion of containment and equivalence (denoted by C and =, respectively)
of queries are as usual. For the set ¥ of dependencies, we write Cy. (=x) to denote
containment (equivalence) of queries under the set ¥. We say that ¢ Cy ¢ if
q(I) C ¢'(I) for every instance I that satisfies the dependencies in X. Similarly,
q=x ¢ if q(I) = ¢'(I) for every instance I that satisfies 2.

Since we are interested in querying relational database schemas corresponding
to object-base schemas, we consider typed relational schemes and typed positive
queries. Specifically, we assume that the database is defined with respect to a
number of disjoint domains, and that each attribute of each relation is associated
with a domain. In writing queries, variables are associated with domains; variables
of a domain A can occur only in the positions for the attributes of the same domain.

Positive expressions are defined as follows. For each domain A, we assume the
existence of two pairwise disjoint sets V{ and V¥ of distinguished and undistin-
guished variables associated with A. Moreover, we let VA = V{ UV and define
on it a total order < such that the variables in V{ always precede those in V. A
conjunctive query q is a specified by means of the functions s,d, u,v,c, and n, as
follows.

—s(q) is a finite tuple (x;...x,) of distinct distinguished variables, called the
summary of ¢; we write d(q) to denote the set {z1,...,z,};

—u(q) is a finite set {y1,...,ym} of undistinguished (existentially quantified) vari-
ables; we write v(g) to denote the set d(q) U u(q);

—c(q) is a finite set of conjuncts, each conjunct being a literal of the form R(z1, ..., zp),
where R is a h-ary relation in S and, for each 1 < i < h, the variable z; is in
both v(g) and Va,, where A; is the domain associated with the ith attribute of
R;

—n(q) is a finite set of non-equalities, each non-equality being of the form z; # z;,
where z;, z; are variables both in v(¢) and in the same set Va, for a domain A.

Following Klug [Klug 1988], we say that g is an equality conjunctive query if n(q) = 0
(no non-equalities in ¢). A positive query @ is a finite set of conjunctive queries
having the same summary, interpreted as the union of these queries. The functions
s, d, u, and v are extended in the natural way to positive queries.

The result of applying a conjunctive query ¢ to an instance I, denoted g(I), is
defined as usual, referring here to “typed valuations.” A typed valuation 0 for q is a
mapping from v(g) to values, with the condition that variables in Va are associated
with values in the domain A. It is clear that a valuation contributes to ¢(I) if
and only if it allows to satisfy the conjuncts in ¢(¢) and the non-equalities in n(q).
We say that a valuation 6 for ¢ gets the tuple ¢t = 6(s(q)) in ¢(I) if: (i) for each
conjunct R(z1,...,2n) € c¢(q), it is the case that 6(z1,...,2,) € I(R), and (ii) for
each z; # z; € n(g), it is the case that 6(z;) # 6(2;). A similar terminology and
notation can be used for a positive query Q.

The problem of equivalence of two positive queries @)1, Q)2 is easily reduced to
the problem of containment of a conjunctive query in a positive query. Indeed,
Q1 =s Q> if and only if Q; Cx Q2 and Q2 Cx Q1. Moreover, if Q; = ¢l U...Uqg¥
(where each ¢; is conjunctive) then Q; Cx Q- if and only if ¢} Cx Q2 for 1 <i < k.
Therefore we will concentrate on this simpler problem.
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First of all, we face the problem of union and non-equality.

The problem of testing containment of equality conjunctive queries was solved by
Chandra and Merlin [Chandra and Merlin 1977]. Their Homomorphism Theorem
says that, given two equality conjunctive queries q1, g2, it holds ¢; C ¢» if and only
if there is a homomorphism from ¢, to qi, that is, a mapping ¢ from v(g2) to v(g1)
such that ¥ (c(¢g2)) C ¢(¢q1) and ¥ (s(g2)) = s(g1). The intuition is that the conjuncts
in ¢; can be seen as tuples in a “magic” canonical instance I;, where each variable
corresponds to some (distinct) constant, and its summary to a “magic” tuple ;.
Then, ¢ is contained in go if and only if ¢; € ga(I4)-

As pointed out by Klug [Klug 1988], the Homomorphism Theorem fails with re-
spect to conjunctive queries with inequalities, because looking at a single canonical
instance does not provide a correct test for containment. However, containment
can be still decided by looking at a set of “representative” instances in place of
a single one. We develop here the framework with respect to non-equalities (#)
rather than inequalities (<).

Consider a conjunctive query ¢ and a valuation 6. We say that 6 is non-equality
preserving for q if for each z; # z; € n(g), it is the case that 6(z;) # 6(z;). Then,
two non-equality preserving valuations 6,60, for ¢ are said to be equivalent if, for
each pair z;, z; of variables in v(g), it is the case that 6;(z;) = 6:1(%;) if and only
if 02(z;) = 02(z;). By choosing an arbitrary representative from each equivalence
class, we obtain a set O, of representative non-equality preserving valuations for g.
Note that, if n is the number of distinct variables in v(q), it is possible to define the
set O, referring to just n distinct values, from the corresponding domains. Hence
only a finite number of different valuations have to be considered. Once this set
is chosen, the representative instances for q are the “magic” instances given by
f(c(q)), one for each 8 € ©,. The representative set r(q) for q is the following set
of representative instance-tuple pairs:

r(q) = {(0(c(q)),0(s(q)) | 0 € ©,)}.

THEOREM A.1 (Kruc [KLua 1988]). Let g1, q2 be two conjunctive queries with
non-equalities. Then, ¢ C qo if and only if s € q2(I) for each pair (I,s) in the
representative set r(q1) of qi.

The problem considered by the above theorem is decidable, since it requires to
evaluate only a finite number of conjunctive queries.

Sagiv and Yannakakis [Sagiv and Yannakakis 1980] considered the problem of
testing containment of equality positive queries (that is, unions of equality con-
junctive queries), proving that equality conjunctive queries are contained only in a
trivial way, that is, that an equality conjunctive query ¢ is contained in an equal-
ity positive query @ if and only if there is an equality conjunctive query ¢’ € @
such that g C ¢’. This implies that a single “magic” canonical instance suffices for
testing containment in this case. In the presence of inequalities as well, Klug [Klug
1988] proved that this technique can be combined with that of the representative
set. Specifically, he proved that, given a conjunctive query ¢ and a positive query
@, g C @ holds if and only if, for each pair (I, s) in the representative set r(g) of g,
there is a query ¢' € @ such that s € ¢'(I). Again, the problem remains decidable.

We now consider the management of dependencies in this framework. The tech-
nical tool we use is a typed chase process: the standard chase process [Maier et al.
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1979; Aho et al. 1979; Johnson and Klug 1984] accounts for functional and inclusion
dependencies, while a typed management of variables accounts for the disjointness
of domains. The process of chasing a query consists in successive modifications to
its conjuncts: intuitively, the canonical instance associated with the query is modi-
fied to “enforce” the satisfaction of the dependencies. In presence of non-equalities,
sometimes a contradiction is reached (e.g., a non-equality of the form z # z) mean-
ing that the query is unsatisfiable over instances satisfying the dependencies; this
fact will be denoted by L. The chase is based on the successive applications of the
following rules.

fd rule Let 0 = R: X — A be a functional dependency over R, and let R(u), R(v)
be conjuncts in ¢(q) such that u[X] = v[X] and u[A] # v[A]. Let x be the least
variable in {u[A],v[A]} under the ordering <, and y be the other one. Call #
the substitution that maps y to = and is the identity elsewhere. The result of
applying o to R(u), R(v) in q is the query 0(q) if x # y & n(q), and L otherwise.

ind rule Let o = R[X] C S[Y] be a full inclusion dependency over R, let R(u) be
a conjunct in ¢(g), and suppose that ¢(g) does not contain the conjunct S(v),
where v = u[X]. The result of applying o to R(u) in q is the query ¢’ such that
s(q') = s(q), u(g') = u(qg), n(¢') = n(qg), and ¢(q') = c(q) U {S(v)}.

We denote the result of chasing a conjunctive query ¢ with respect to a set ¥ of
dependencies by chasex;(q). It is worth noting that the chase process, with respect
to functional and full inclusion dependencies, always terminates. Moreover, the
process satisfies the Church-Rosser property, meaning that the results of different
terminal chasing sequences are identical [Abiteboul et al. 1995]. Finally, we note
that, given a valuation € for a conjunctive query g, it is the case that 6(c(chasex(q)))
represents an instance that satisfies the dependencies in X.

Our main result, concerning the containment of a conjunctive query in a positive
query under a set of dependencies, relies on the two following lemmas. Intuitively,
we want to reduce the problem of containment constrained by a set of dependen-
cies to an unconstrained problem of containment, eventually referring to chased
queries. The following lemma specializes a result by Johnson and Klug [Johnson
and Klug 1984] to functional and full inclusion dependencies, but also generalizes
it to conjunctive queries containing non-equalities.

LEMMA A.2. Let q be a conjunctive query and X be a set of functional and full
inclusion dependencies. Then, ¢ =y, chasex(q).

ProOF. We proceed by induction on the length n of a terminal chasing sequence
on ¢ with respect to . In such a sequence, we denote by chases;(g) the partial
chase obtained after the ith application of a chase rule. We claim that, for 1 <
i < m, it is the case that chasel ' (q) =s chasek(q) (where chase%(q) = ¢ and
chase$(q) = chasex(q)).

The induction hypothesis clearly holds for n = 0 (meaning chasex(q) = q).
Suppose it holds for chase’{l(q). There are two cases, depending on whether the
ith chase rule application involved an fd or an ind.

Suppose it was the fd ¢ = R : X — A to R(u), R(v), with u[X] = v[X] and
u[A] # v[A]. Let z be the least variable in {u[A],v[A]} under the ordering <, and
y be the other one. Call 6 a substitution that maps y to = and is the identity
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elsewhere. Then, if z # y € n(chasel " (¢)), then chase&(q) was the unsatisfiable
query L, otherwise it was the query O(Chaseg_l(q)). In the former case, it can be
shown that chasegl(q) is unsatisfiable as well on instances that satisfy ¥, and the
equivalence holds. In the latter case, consider an instance I that satisfies ¥ and
a valuation v that gets a tuple ¢ in chasel *(¢)(I). Then, since v(u),v(v) € I(R)
and I satisfies o, it is also clearly the case that v(0(u)),v(6(v)) € I(R), and hence
v gets the tuple t in chasek(q)(I) as well. To prove the converse inclusion, consider
a valuation v that gets a tuple ¢ in chasek (q)(I); it is then clear that the valuation
v' obtained from v by also mapping y to v(z) gets t in chasek, *(¢)(I).

On the other hand, suppose that the ith chase rule application involved the ind
o = R[X] C S[Y] to R(u), and let v be the tuple over S such that v[Y] = u[X].
In this case, chasel(q) has been obtained from chasel '(g) by introducing the
conjunct S(v). Now, consider an instance I that satisfies ¥ and a valuation v that

gets a tuple ¢ in chasek; *(q)(I). Since v(u) € I(R) and I satisfies o, it is also clearly

the case that v(v) € I(S), and hence v gets t in chasei,(q)(I) as well. To prove the
converse inclusion, consider a valuation v that gets a tuple ¢ in chases.(q)(I); the
same valuation v can be used to get ¢ in chasel ' (¢)(I). O

LEMMA A.3. Let q be a conjunctive query, QQ a positive query, and X a set of
functional and full inclusion dependencies. Then, g Cs @ if and only if chases(q) C
Q.

PRrROOF. The if part follows from Lemma A.2. For the converse inclusion, by
Theorem A.1 it suffices to show that, for each pair (I,s) in the representative set
r(chasex(q)), it is the case that s € Q(I). For, consider the pair (I,,s,) obtained
by a valuation v € O pesey(q)- It is clear that I, satisfies ¥. By the assumption,
q(L,) € Q(I,), and hence s, € Q(I,). O

Lemma 5.13 now follows. Indeed, Lemma A.3 suggests the reduction from the
problem of containment of a conjunctive query ¢ in a positive query ¢ under a
set of dependencies ¥ to the problem of containment of a conjunctive query in a
positive query. The latter problem is decidable by Theorem A.1. The observation
that chasex(q) is indeed computable, since ¥ contains only a finite set of functional
dependencies and full inclusion dependencies [Abiteboul et al. 1995], concludes the
proof.
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