
Information Systems Vol. 24, No. 7, pp. 569-595, 1999
0 1999 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0306-4379199 $20.00

Pll: SO306-4379(99)00033-2

TYPED QUERY LANGUAGES FOR DATABASES CONTAINING QUElaES+

FRANK NEVEN’, JAN VAN DEN BUSSCHE’, DIRK VAN GUCHT~, and GOTTFRIED VOSSEN~

‘Limburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
21ndiana University, Computer Science Department, Lindley Hall 401B, Bloomington, IN 47408, USA

31nstitut fiir Informatik, Universit%t Miinster, Steinfurter StraDe 109, D-48161 Miinster, Germany

(Received 18 April 1999; in final revised form 6 September 1999)

Abstract - This paper introduces and studies the relational meta a@ebm, a statically typed ex-
tension of the relational algebra to allow for meta programming in databases. In this meta algebra
one can manipulate database relations involving not only stored data values (as in classical relational
databases) but also stored relational algebra expressions. Topics discussed include modeling of ad-
vanced database applications involving “procedural data”; desirability as well as limitations of a strict
typing discipline in this context; equivalence with a first-order calculus; and global expressive power
and non-redundancy of the proposed formalism. 01999 Elsevier Science Ltd. All rights reserved

Key words: Databases, Query Languages, Stored Procedures, Meta Programming

1. INTRODUCTION

Various advanced database systems, such as active and object-oriented systems, as well as
the data dictionaries of standard relational database systems, provide the functionality of “stored
procedures”. The potential functionality of such systems was already envisaged by Stonebraker
and his collaborators in the ’80s [21, 221. However, little work has been done on formal models
providing logical foundations for such systems. Indeed, current systems approaches treat stared
procedures simply as string values. Only the special case of “schema querying” has received a
significant amount of attention (e.g., [8, 141).

The purpose of the present paper is to contribute towards these needed logical foundations,
by proposing and studying an extension of the relational algebra to allow for meta programming.
The proposed relational meta algebra, denoted by MA, extends the relational algebra with four
new operators for computing with relations in which not only ordinary data values, but also
relational algebra expressions can be stored. The first new operator is extract, used to extract
subexpressions from stored expressions. The second is rewrite, used to rewrite subexpressions
according to certain patterns (as is familiar from algebraic query optimization). The third is wrap,
used to convert data values to relational algebra expressions.

The fourth and most important new operator of MA is eval, used to dynamically evaluate
stored expressions. A fundamental property one wants to achieve is type safety of eval, in the
sense that this dynamic evaluation never results in a run-time error. To guarantee type safety,
the operators extract and rewrite are carefully calibrated so that they preserve syntactical
correctness and so that the type of the expressions resulting from their manipulations is determined
statically.

The type system we put on MA is an adaptation of the simple two-level type system dis-
cussed by Sheard and Hook in the context of Meta-ML [20]. We type ordinary relations by their
width, relational algebra expressions by the type of their result relations, and relations containing
relational algebra expressions by typing the columns as containing either ordinary data values or
expressions of a designated type. Expressions of MA, finally, are again typed by the type of their
result relations (which may contain expressions).

tRecommended by Nicole Bidoit

569

570 FRANK NEVEN et al.

The contents of this paper are summarized as follows. We begin by recalling the necessary
definitions concerning relational databases and relational algebra, and introduce our extension
of the relational database model to allow for stored relational algebra expressions in relations
(Section 2). Then we introduce the operators of Md (Section 3) and give examples of interesting
queries definable in MA (Section 4). After that, we investigate the expressive power of our
formalism (Section 5). Specifically, we establish the following results:

1. We present a many-sorted first-order calculus whose “safe” fragment is equivalent to MA,
thus extending Codd’s classical theorem on the equivalence of relational algebra and calculus
[9]t. This result is a generalization of Ross’ [18], who worked in a model allowing only relation
names, not general algebra expressions, to be stored in relations.

2. We illustrate an interesting limitation on the expressive power of MA, due to its inherently
typed nature: there are computationally extremely simple queries, well-typed at the input
and output sides, which are nevertheless not definable in MA, intuitively because their
computation requires untyped intermediate results (which cannot be represented by a meta
algebra computation). The equivalence with the calculus allows an elegant model-theoretic
proof of this observation.

3. We show that MA is a conservative extension of the relational algebra, in the sense that as
far as queries over ordinary relations (not containing stored expressions) are concerned, MA
is no more expressive than the relational algebrat.

4. We give a rigorous proof of the intuitively clear fact that eval is a primitive operator: it
cannot be simulated using the other operators. This stands in contrast to the situation in
a complete programming language such as Lisp [l], where eval is clearly definable in Lisp
without eval and thus not primitive. Also the other operators of MA are shown to be
primitive.

The present paper is a follow-up on an earlier paper by three of us [25]. There, we studied the
expressive power of evaluating stored relational algebra programs in a completely untyped setting.
Relational algebra programs were encoded in data relations, and the standard operators of the
relational algebra were used to manipulate these “program relations”. This approach resulted in a
powerful, but difficult to use, query language called the reflective rebtional algebra (%?A). Our main
result was that by adding eval to the relational algebra much more queries on classical relational
databases become definable. This stands in contrast to the conservative extension property of MA
with respect to the standard relational algebra we prove here. In fact, our motivation for the work
reported in this paper was the desire to understand the situation where typing and type safety are
mandatory, and to design a formalism that is more programmer-friendly than Rd.

Two obvious directions for further research left open by our work are (i) to experiment with
how our model for typed meta database programming can be applied in practice; and (ii) to better
understand the precise expressive power of the relational meta algebra. Concerning (i), it could
be interesting to try to integrate our model into the SQL3 or OQL context. Concerning (ii), a
concrete open problem is whether or not the query “give all expressions of maximal length stored
in relation R” is expressible in the relational meta algebra.

2. RELATIONS, EXPRESSIONS, AND META RELATIONS

2.1. Relational Databases and Relational Algebra

Assume a sufficiently large supply of relation names is given, where each relation name has an
associated arity (a natural number). To denote that relation name R has arity n we write R : n.
A database schema is a finite set of relation names.

tGeneralizations of Codd’s theorem to extensions of the relation model have always been a popular research topic
(e.g., [13, 15, 2, 11, 51).

*Analogous conservative extension properties are known for complex object databases [17, 26, 231 and spatial
databases [161.

Typed Query Languages for Databases Containing Queries 571

Assume further a universe V of data values is given. A relation of arity n is a finite subset of
V”. An instance of a database schema S is a mapping Z on S which assigns to each relation name
R : n E S a relation Z(R) of arity n.

Fix a schema S. We denote the set of relational algebra expressions over S by A. Each
expression has an arity; as for relation names, to denote that expression e has arity n we write
e : n. Formally:

 For each u E V, {(u)} : 1 is in A.

 Each S : n E S is in A.

 If ei : n and es : n are in A, then so are (ei U es) : n and (ei - es) : n.

 If ei : nl and e2 : ns are in d, then so is (ei x e2) : n1 + n2.

 If e : n is in A, then so are

- cTi,j(e) : n, where i,j E (1,. . . ,n}; and

- Til,...,i, (e) : p, where ii,. ..,i, E {l,..., n}.

Given an instance Z of S, an d-expression e : n over S evaluates to a relation of arity n, which
we denote by [e]‘, in the well-known manner:

 [{ (~)}]r is the constant one-column one-tuple relation {(v)}

. [RI= := Z(R).

0 [el U e2]’ := [ei]’ U [e&r.

0 [ei - e2]’ := [ei]’ - 1[e2]‘.

 [cl x es]‘:= {(Z1,...,Znl,Y1,...,Ynz) I (xi,... ,xnl) E I[e#, (Y~,...,Y~~) E I[e211zl.

0 [oi=j(e)]' := {t E [e]' 1 t(i) = t(j)}.

 ([nil ,..., i,(e)]’ := {(t(il), . . . , t(&)) I t E l[el’}.

For selection and projection, the notation “t(i)” stands for the value of tuple t in column i.

Example 1 Suppose S = (5 : 2, T : 2). Consider the d-expression e : 2 = ~i,4~72=s(S x T) over
S. For any instance 1 of S, which assigns concrete binary relations Z(S) and Z(T) to S and T,

the binary relation [e]’ equals the composition of Z(S) and Z(T).
Value selection can be expressed by combining the other operators: for example, oi=~~~s,,~(S)

can be expressed as 7ri,2oi=s(S x {(‘John’)}). 0

Note that in a projection ri ,,.,., i,, p is allowed to be 0, in which case we obtain a nullary
relation. A nullary relation can contain the empty tuple, or it can be empty; these two cases are
usually taken to represent the Boolean values true and false. Hence, nullary expressions can be
used to express Boolean queries.

2.2. Extending the Model

We want to extend the basic relational database model to allow not only data values, but also
relational algebra expressions to be stored in relations. Thereto, the simple type system based on
arities has to be extended first:

Definition 1 A type is a tuple T = [ri, . . . , rn], where each ri is either the symbol 0, or is of the
form (m), where m is a natural number. In the first case, we say that i is a data column of r; in
the second case, we say that i is an expression column of r.

572 FRANK NEVEN et al.

We can now define typed tuples, and relations, containing expressions as follows:

Definition 2 Let S be a schema, and let 7 = [ri , . . . , TJ be a type. A tuple of type T over S is a
tuple (21, . . . , zn), such that for each i = 1,. . . , n:

 if TV is 0 then xi is a data value (i.e., an element of V).

a if ri is (m) then xi is an d-expression over S, of arity m.

A relation of type T over S is a finite set of tuples of type r over S.

Note that a relation of type [0, . . . , 0] (n zeros) is an ordinary relation of arity n.
In the kind of systems we intend to model, there will be two kinds of relations. First, we have

ordinary relations containing only data values; the schema consisting of the names of these relations
is called the object-level schema. Second, we have relations containing both data values and d-
expressions over the object-level schema; the schema consisting of the names of these relations is
then called the meta-level schema. Formally:

Definition 3  A meta-level schema is a finite set of relation names, where each relation name
has an associated type. To denote that a relation name R has type r we write R : r.

 Let M be a meta-level schema, and let S be a schema disjoint from M (i.e., having no
relation names in common). An instance of M over S is a mapping J’ on M which assigns
to each relation name R : T E M a relation of type 7 over S. The pair (S,M) is called a
combined schema, in which S is referred to as the object-level schema.

 Finally, an instance of a combined schema (S, M) is simply the union of an instance of S
and an instance of M over S. We refer to such unions as combined instances.

Example 2 Let S be the schema of some database which is queried by several users, such as
that of a bookstore on the Internet. Queries are represented as d-expressions over S. Suppose we
want to monitor the usage made of the database by the users. Then we may want to maintain a
meta-level relation Log of type [0, (n)], containing pairs (u,q), where u is a usernarne and q is a
query u has posed. The expression column (n) indicates that we focus on queries of some fixed
arity n. In this simple example, the object-level schema is S; an instance of S gives the concrete
contents of the relations named in S. The meta-level schema M contains Log (and possibly other
meta-level relation names); an instance of M over S gives the concrete contents of the relation
Log (and possibly of others). 0

3. THE RELATIONAL META ALGEBRA

The relational algebra is a core language for defining queries on ordinary instances. We now
want to have a similar formalism for defining queries on combined instances.

First, note that the five operators of the relational algebra can be canonically extended to work
on meta-level relations as well as on ordinary, object-level relations. For instance, if R : [(3), (3)]
is the name of a relation storing pairs of expressions of arity 3, we can write ol,z(R) to retrieve
those pairs from R with identical first and second components. However, the relational algebra
operators do not recognize stored expressions as such; they are treated as abstract data values.

Hence, the five relational algebra operators are a good start, but additional operators are
needed. We propose four new operators: extract, to extract subexpressions out of stored ex-
pressions; rewrite, to rewrite (subexpressions of) stored expressions; wrap, to convert data values
into expressions; and eval, to dynamically evaluate stored expressions. So, extract, rewrite and
wrap work syntactically on stored expressions, while eval works semantically. Adding these four
operators to the relational algebra yields what we believe is the functionality one should expect
from a core meta query language.

3.1. Syntax

Typed Query Languages for Databases Containing Queries 573

We now formally define the expressions of the relational meta algebra. Each expression has a
type, derived from that of its subexpressions; to denote that expression e has type r we write e : r.

Definition 4 Fix a combined schema (S, M). The set MA of relational meta algebra expressions
over (S, M) is the smallest set satisfying:

1. For each v E V, {(w)} : [0] is in MA.

Each relation name S : n E S is in MA, and is of type [0, . . , 0] (n zeros).

Each relation name R : T E M is in MA.

If ei : T and e2 : T are in MA, then so are (ei u ez) : T and (ei - ez) : T.

5. If ei : r and ez : w are in MA with r = [q,. . ,T,] and w = [wi,. . ,wm], then so is
(el x e2) : [71,.,.,7n,wlr...,wm],

6. If e : 7 is in MA with T = [ri, . . , T,], then so are

7.

8.

 ui=j (e) : 7, where i, j E { 1, . . . , n} such that q = rj; and

0 x. 21 ,,,,, i, (e) : [ql, . . . , -rip], where ii, . . . , i, E { 1, . . . , n}.

If e : r is in MA with r = [q,.. . ,T,] and i is a data column of rt, then wrapi :
[q, . . , T,, (l)] is in MA.

If e : T is in MA with r = [ri, . . . , ~~1 and i is an expression column of 7, then the following
expressions are also in MA:

extract+,(e) : [q, . . . , T,, (m)], where m is a natural number;

rewrite-onei,,+ and rewrite-alli,,,o(e), both of type [ri, . . . , T~,T~], where Q -+
p is a rewrite rule over S with respect to T (to be defined shortly); and

evali(e) : [ri, . . . ,ra,, 0,. . . , 0] (t zeros), where L is given by 7-i = (L).

3.2. Rewrite Rules

To finish the above definition we need to define the system of rewrite rules on which the rewrite
operators are based. Thereto the classical notion of a term rewrite rule [12] must be adapted to
our setting.

Let S be a schema and let r = [ri, . . . , T,,] be a type. Let C C { 1,. . . , n} be the set of expression
columns of T, and for j E C let ej be given by rj = (tj).

Definition 5 A rewrite rule over S with respect to r is a rule of the form a: + p, where a and p
are d-expressions of the same arity, over the augmented schema S U {Oj] j E C}. Here, each  j
is an expression variable of arity -l?j. We call LY and p patterns with respect to r.

An expression variable  j is formally nothing but a specially reserved relation name of arity ej;
intuitively it should be thought of as a placeholder for subexpressions of arity ej.

tRecall Definition 1 for the notions of data and expression column.

574 FRANK NEVEN et al.

3.3. Semantics of the Relational Meta Algebra

In the context of a given combined instance K of (S, M), an MA-expression e : r over (S, M)

evaluates to a relation [el’ of type 7. We only define [ejK for cases 7 and 8 of Definition 4; the
first 6 cases are completely analogous to the semantics of the standard relational algebra.

 [wrapi(e := ((51,. . . ,x,, (a) I (21,. . . ,G) E [eBK}.

0 [extracti,,(e)J’ := {(xi,. . . ,zn,z)] (21,. . . ,z,) E [eBK and 2 is a subexpressiont of zi
that is of arity m}.

0 [rewrite-onei,,+p(e)j K := {(Xi ,...,%X) I (Xl,... ,x,) E [e]” and z is obtained from xi
by replacing one occurrence of f(o) as a subexpression in xi by f(P)}. Here f is the mapping
on the expression variables occurring in the rewrite rule defined by f(Clj) := xj.

0 [rewrite-alli,,,p(e)l K is defined similarly, but now every occurrence of f(o) in xi is re-
placed by f(P).

 [evali(e)lK := {(a,. . . ,G,YI, . . . , ye) I (xl,. . . ,A E ielK and (~1,. . . ,ye) E [xi]‘}.

Note that each operator extends each tuple with the result for that tuple, so that the relationship
between input and output is preserved.

An MA-expression e : T over (S, M) defines a mapping [e] from the set of combined instances
of (S, M) to the set of relations of type 7. Such a mapping is called a query over (S, M) of type 7.

We now give some examples to illustrate the definition of the semantics of the basic operators
of the meta algebra.

Example 3 We use the combined schema (S, M), where S = {S : 2,T : 2, U : 2) and M = {R :
[0, (4), 0, (2)]}. Let K be a combined instance where K(R) equals

a Q=z(S) x al=a(T)
b 01=4(S x T) U (S x S)
c 7r_2_3_4u2=~04=5~S x CT x 25’))

1. wrap,(R) equals

a 01,2(S) x m=n(T)
b CQ=~(S x T) U (S x S)

d S (a)
e u (b)

C ~1,2,3,4~2=6~4=5(s x 0’ x s)) f s cc)

2. extractz,r(R) equals

a (~1=2 (S) x m=2(T) d S a1=2(S) x 01=2(T)
b (~1=4(S x T) U (S x S) e U q=4(S xT)U(S x S)
b q=4(S x 2’) U (S x S) e U o1,4(S x T)
b q=4(S x T) u (S x S) e U SxS
b u1=4(S x T) U (S x S) e U SxT
c 7F1,2,3,4~2=@4=5(S x (T x S)) f S ?,2,3,4c2=6°4=5(s x (T x s))

C ?T1,2,3,4f.72=6g4=5(S x (T x S)) f S T x s

~. TBy subexpcpresaion we mean direct and indirect ones. So the subexpressions of ?~~,JcT~=~(Rx S) are the expression
itself; az,a(R x S); R x S; R; and S.

Typed Query Languages for Databases Containing Queries 575

3. rewrite-on*,o,+T(R) equals

a a1,2(S) x c%z(T) d s m=z(T) x m=z(T)

C T1,2,3,4~2=6~4=5(s x (T x s)) f s r112,3,4f12=6u4=5(T x (T x s))

c nl,2,3,@2=6a4=5(S x (T x s) f s r1,2,3,4fl2=6fl4=5(s x (T x T))

4. rewrite-allZ,O,+T(Rf equals

a m,z(S) x ck2p7 d S cn=z(T)x a1,2(T)

b al=*(S x T)U(S x S) e Ii UI=~(SXT)U(SXS)
C ~1,2,3,4~2=6flkS(s x (T x s)) f s ~1,2,3,4fl2=6~4=5(T x (T x T)) _

5. The above results are independent of the values K(S) and K(T). This is of course not so for
the eval operator, which evaluates expressions over the object-level relations. For example,
if K.(S) and K(T) are the following relations

then evalz (R) equals

a akz(S) x akz(T) d S x
b cq=4(S x T) U (S x S) e U x
b CQ,~(S x T) U (S x S) e U x
b aIc4(S x T) U (S x S) e U x
b ~_q=~(s x T) U (S x S) e U x
b 01z4(S x 2’) U (S x S) e U x
b aIz4(S x T) U (S x S) e U x

c ~1,2,3,4~2=6fl4=5@ x (T x 8) f s x

c r1,2,3,4u2=6u4=5(S x (T x s)) f s x

3.4. Derived Operators

-
21

5

X

Y
2

Y
X

X

2
- cl

We next exhibit a variety of derived operators that can be expressed in the meta algebra in
a similar way operators like semi-join and division can be expressed in the standard relational
algebra. These derived operators illustrate the expressive power of the meta algebra and will turn
out useful in various contexts considered below.

We first define the construct operator which constructs new relation algebra expressions from
relation algebra expressions stored in relations. This derived operator is very convenient for manip-
ulating relation algebra expressions, as is illustrated in the examples in the next section. Moreover,
this operator is used heavily in its most simplest form in the proof of Theorem 4.

At first sight, the pattern matching mechanism of the meta algebra seems rather limited, since
O-variables in patterns can only be instantiated by A-expressions occurring as components in
tuples in relations. Therefore, we introduce a more liberal notion of patterns where variables can
be instantiated by arbitrary d-expressions, and define extract, rewrite-one and rewrite-all
operators with such patterns.

Finally, building further on the previous derived operators, we define derived operators selecting
tuples matching some pattern. Clearly, the latter operators are useful to check whether a certain
d-expression occurs as a subexpression of a component of some tuple; they are used as such in the
examples of the next section.

576 FRANK NEVEN et al.

34.1. construct

The first operator constructs new relational algebra expressions from relational algebra expres-
sions stored in relations. Let R : T be a relation with r = [TI ,...,r,J,andletcr:mbeapattern
over S with respect to T. Then construct,(R) is the relation of type [rr , . . . , TV, (m)] consisting of

all tuples (21,. . . , z,, fz, ,..., Zn (a)), where (m, . . . , 2,) E R and f is the mapping on the expression
variables occurring in (Y defined by f ( j) := xj .

Example 4 Let R be as in Example 3. Then construct(n,,o(b,.u,)(R) equals

a &2(S) x 01=2(T) d s (m,z(S) x %2(q) r-l (S x S)

b 01=4(S x T) U (S x S) e U (01=4(S X T) U (S X S)) fl (u X v)
C T1,2,3,4~2=6~4=5(s x (T x s)) f ’ (~1,2,3,4~2=6~4=5(s x (T x s)) n (s ’ s,

ad construct,, 402=3p4 x •~1 (R) equals

a Ol,Z(S) x c71=2(T) d s ~1,4(72=3(s x s)
b 01=4(S x T) u (S x S) e U m,402=3(U x U)

C fll,2,3,4(T2=6g4=5@ x (T x s)) f s rl,402=3(s x s) 0

The construct operator can be expressed in the meta algebra. For any v E V, define v, : m
as the relational algebra expression

i(v)] x {(v)] x *. . x {(V,\~
m times

We then denote by evm the meta algebra expression

7r4extracts:mrewrite-onez:(V)+XI(V~) wrap, (Uu)])

of type [(m)] which constructs the relation {(v,)}. The operator construct,(R) now equals

Kl,...,n,n+2rewrite-alln+l:~~~~ (R x e”,).

For any relational algebra expression e, we denote by (e) the expression

7rsconstruct,({(v)}),

for some arbitrary data value v. We denote the induced operator by (.). This derived operator
will be used in the proof of Theorem 4.

3.4.2. Generalized Patterns

Next we generalize patterns with new expression variables: so-called *-variables. These expres-
sions variables are instantiated by arbitrary subexpressions, in contrast to the O-variables which
are only instantiated by expressions occurring as components of tuples in relations.

So assume given additional expression variables of all possible arities, denoted by a possibly
subscripted *. Generalizing Definition 5, a generalized pattern over a schema S with respect to a
type T is a relational algebra expression over the augmented schema S U {Oj] j E C} U V, where
V is a set of *-variables. A generalized rewrite rule over S with respect to r is of the form cx + p,
where cx and p are now generalized patterns such that all *-variables in ,f3 occur in Q, C and the
 j are as in Definition 5.

We now define extract, rewrite-one and rewrite-all operators in terms of these generalized
patterns and show that they can be simulated in the meta algebra.

Let R : T be a relation with r = [rr, . . . , T,], let i be an expression column of 7, and let (Y : m be
a generalized pattern. Then extracti,, is the relation of type [rr , . . . , r,, (m)] consisting of all
tuples (xl,. . . ,cc,,f(a)), where (XI,. . . , z,) E R and f is a mapping on the expression variables
of (Y such that

Typed Query Languages for Databases Containing Queries 577

 f(a) is a subexpression of xi;

 * and f(*) are of the same arity, for each * in a; and

 f(Oj) = xj, for each j E C.

Example 5 Let S = {S : 2, T : 2) and let R be the following relation of type [(2), (4)]:

T ol,z(T) x m=z(S)

s a~,r(T x S) u (T x T)

Then extracts,,,=,(*)(R), where the arity of * is 2, yields the following relation:

T 01=2(T) x al=z(S) m=zG?

T 01=2(T) x (~1=2(S) m=2(S)


The operator extractiza(R) can be expressed in the meta algebra. Suppose (Y contains the
*-variables *r , . . , , *? where for each j = 1,. . . , r, *j is of arity sj. Let R’ be the expression

extracti,,Y . . . extracti,,,extracti,,(R).

Then extract+,(R) is expressed by

Tl ,...,n+l~n+T+l=n+lconstruct,l(R*),

where CY’ is obtained from CY by replacing each *j by &+j.
Let R : r be a relation with r = [rr, . . . , ~~1, let i be an expression column of r and let (Y + ,kl be

a generalized rewrite rule over S with respect to 7. Then rewrite-onei,,+ is the relation of

type [rr, . . . , I-~, ~~1 consisting of all tuples (XI,. . . , zn, z), where (21,. . . ,z,) E R, f is a mapping
on the expression variables occurring in Q: such that

 f(a) is a subexpression of xi;

 * and f(*) are of the same arity, for each * in a; and

 f(oj) = x~j, for each j E C, and

z is obtained from xi by replacing one occurrence of the subexpression f(o) in zi by f(P).
The restriction that all *-variables of p also have to occur in (Y makes sure that each mapping

f on the variables of cr uniquely determines f(P).

Example 6 Consider relation R from Example 5 again. Then

where the arity of * is 2, equals

T 01,2(T) x 01=2(S) m=z(S) x 01=2(S)
T a1,2(T) x w2(S) s x (T1=2(S)

T 01=2(T) x m=2(S) 01=2(T) x 01=2(S)
T a1=2(T) x 01=2(S) 01,2(T) x S
S ol=d(T x S) u (T x T) o1=4(S x S) U (T x T)
S alz4(T x S) u (T x T) cq=d(T x S) U (T x T)
S CJ~,~(T x S) u (T x T) cq,r(T x S) U (S x T)
S alza(T x S) u (T x T) ul=d(T x S) U (T x S)

578 FRANK NEVEN et al.

and the expression rewrite-one2:o,x*~crI=z(0,)x* (R), where the arity of * is 2, yields

T 01z4(T x S) U (T x T) ‘%4(fll=2(T) X s) u (T X T)

T 0rc4(T x S) u (T x T) ul=4(T x S) U (m=z(T> x T) 0

To show that a rewrite operation involving generalized rewrite rules can be expressed in the
meta algebra, consider rewrite-onei,,+.p(R), where *I,. . . , + are the *-variables that occur in
a+pandforj=l,... , T, *j is of arity sj. Let R* be the expression

extractiZSp . . . extracti,,, (R),

Then rewrite-onei,,+ is expressed by

~l,...,n,n+T+1rewrlte-onei:cr’~8~ (R*)>

where cr’ (p’) is obtained from (Y (p) by replacing each variable *j by  ,+j.
Let R : T be a relation with r = [rr, . . . , ~~1, let i be an expression column of r and let (Y + ,f3 be

a generalized rewrite rule over S with respect to 7. Then rewrite-al&,,+(R) is the relation of

type [rr, . . . , T,, q] consisting of all tuples (~1,. . . , ST,, z), where (21,. . . , xc,) E R, f is a mapping
on the expression variables occurring in (Y such that

 f(o) is a subexpression of xi;

 * and f(*) are of the same arity, for each * in a; and

 f(Oj) = zj, for each j E C, and

x is obtained from xi by replacing all occurrences of the subexpression f(a) in xi by f(P).

Example 7 Consider relation R from Example 5. Then rewrite-allz:*+s(R), where the arity
of * is 2, equals

T
T
T
T
S
S -

al=2(T) x m=z(S)

al,z(T) x m=z(S)

01,2(T) x m=z(s)

a4T) x m=2(s)

al,4(T x S) u (T x T)
al=4(T x S) U (T x T)

cr1z4(T x S) u (T x T)

Now rewrite-alli,,,~(R) is expressed by

Tl ,...,n,n+r+lrewrite-alli:a’-tp’(R*),

where Q’ (j3’) is obtained from (Y (p) by replacing each variable *j by  ,+j, and R’ is as above.

34.3. Matching

Our last two derived operators are straightforward abbreviations of expressions using extract.
For a relation R : [TI, . . . , T,]

1. Define
matchi,, := ~1 .. . ‘IF~(T~=~+~ extracti:, (R).

This operator selects all tuples t for which the pattern (Y matches t(i).

2. Define
submat+:, := ~1 *..~,,extracti:,(R).

This operator selects all tuples t for which the pattern (I! matches a subexpression of t(i).

Note that the definitions stated above do not give immediate rise to efficient implementations;
there are more direct ways to implement matching and sub-matching. A similar remark applies to
the other derived operators presented in this section.

Typed Query Languages for Databases Containing Queries 579

4. APPLICATIONS OF THE RELATIONAL META ALGEBRA

In this section we discuss several applications of the meta algebra which also serve to illustrate
its expressive power. To this end, we will first introduce an example situation already hinted upon
in Example 2.

4.1. An Example

Consider the schema S of a bookstore database which can be queried by users over the Internet.
The bookstore puts relations it gets from publishers into this database, but the database admin-
istrator does some integration of these relations into views before the database goes on-line. The
bookstore provides access to several such predefined views; at the same time, it wants to monitor
the usage made of the database by users.

More specifically, let schema S contain publisher-specific information such as the following:
Publisher A has a distinct relation for each subject area he is active in, e.g., ACompSci for computer
science books, AMath for mathematics, APhys for physics and so on. Each of these relations keeps
track of subarea, author, title, price, and ISBN. Publisher B provides one relation BSubject for
information on subject, area and ISBN; another relation BBook specifies ISBN, price, title, and
author. So S = {ACompSci, AMath, APhys, BSubject, BBook, . . . }.

We assume querying is done through a predefined form into which selection criteria can be
entered. The form provides access to views such as all computer science books, all books, all
database books, etc. Views definitions and queries over these views are naturally formalized as
d-expressions over S. For example, the view regarding ‘databases’ could be defined as follows:

n3,2,4,5m= ‘databases’ (ACompSci)

u r5,6,4,3 (%I computer science’ Q2= ‘pers. pros. long. 1 (BSubject W BBook)

U ul= ‘computer science 1 u2= ‘info. systems’ (BSMct W BBook))

Similarly, the view regarding ‘all’ could have the following definition:

7rs,s,4,s(ACompSci) U Ag,6,4,3(BSubject W BBook).

Notice that we make use of shorthand notations here; for example, the natural join is not formally
part of the relational algebra but is a well-known short-hand.

For the purposes mentioned above, the bookstore maintains the meta schema M = { Views,
Log}, where both meta relations are of type [0, (4)]. V’ sews contains pairs (n,e) where n is the
name of a view and e is the expression (of arity 4) defining the view. Whenever a user poses a
query, such as “show all books by author Smith”, an entry in relation Log is made, which contains
pairs (u, q) where u is the name of a user and q is a query u has posed.

4.2. View Management Queries

We now give several examples of how to use the meta algebra to express view management
queries. For the sample application described above, suppose that publisher A changes the name
of relation ACompSci to AC’S; a corresponding update of all entries in relation Views can be done
by

~1,3reWTite-a112:ACompS~~~ACS(Views).

The next query retrieves all views that do not use relations from publisher B:

Views - U (submatchs,R(Views)),
RER

where R denotes the set of all relations from publisher B. With the following meta algebra query
we can select those pairs of views that evaluate to the same relation, based on the current state of
the database:

7h,3(Views X Views) - 7F1,3evalsconstruct(02-04)U(04_0a)(Views x Views)

580 FRANK NEVEN etal.

This query constructs an expression computing the symmetric difference of two views and evaluates
it. The resulting pairs are of views that are distinct; hence the application of the difference operator
to get the equal (i.e., non-distinct) pairs.

Adding, a new view can be done easily. If e is the definition of a new view called ‘logic’, then
we add (‘logic’) x ((e)) to Views.

Now suppose publisher A ships, in a meta-relation Updates, pairs of the form (en, R), where
R is the name of a relation coming from publisher A, and eR is an expression that evaluates to a
new content for relation R. For example, a pair in relation Updates could be

ACompSci - ({(‘AI’)} x (...) x . ..)u({(‘Java’)} x (...) x ...) , ACompSci.

To find out which views will be affected by these updates, provided they have not yet been applied,
we can use the following meta algebra query:

~~e~a12~6,gconstruct(o~-~~)~(o,-~,)a2#4rewrite-a117:0~~0~

rewrite-all6:0,_,0, (Updates x Updates x Views).

This query tentatively replaces each relation appearing in a view definition by its updated version.
Then the old and the new view are compared in the same way as already done earlier.

Similar techniques can be used to express query expansion: given a set of queries over the
views, expand the view names by their definition. We leave this as an exercise to the reader.

Finally, suppose we want to compute all pairs (z, y) such that z is an expression stored in Views
and 31 : 2 is a subexpression of z occurring at least twice in x. The naive attempt

n2,303,4extract2,2extract2,2(Views)

is incorrect; to distinguish different occurrences of the same subexpression we have to mark them
in some way. This can be done using rewrite-one. Assume we have some dummy relation name
D E S of arity 0. An occurrence x of a subexpression can now be “marked” by rewriting it into
x x D. So if mark is the following meta algebra expression:

~2,3,4reWrlte_One2:O,-to,xD extract2:2 (Views),

then the wanted query is expressible as

~1,2o3#6a2=6ai,4(mark x mark).

4.3. Queries on Queries

We next illustrate how the meta algebra can be used to query the queries stored in the Log
relation, in order to find out the behavior of the users of the Internet site.

If we want to see for every user u the results of all queries posed by u (as recorded in Log)
evaluated on the current instance, we simply write

m3456eva12(~%). 1 7 3 9

To determine all queries that gave no result, we use

r2(Log) - .rrzevalz(Log).

To find out all users that used relation ACompSci in a query but never relation AMath, the
following expression can be used:

7risubmatCh2:~oompsc~(LOg) - 7~ SUblllatCh2:AMath (Log).

The following query expression will return the union of the results of the queries posed by user
Jones:

Typed Query Languages for Databases Containing Queries 581

To obtain the intersection of the results of the queries posed by Jones, the following can be done.
Let adorn be the relational algebra expression that computes the active domain of the database.
Then the query is expressed by

~3,4,5,sevalZcT1=lJonesl(LOg) - ~4,5,6,7eva13construct,d,,-o,al=lJ,,,,~(Log).

The next query retrieves the items that occur as a result in at least two queries posed by Jones:

~s,7,3,~eva15constructo,no,~1=~Jones~A1=3h2f4(~~g X Log).

The last query returns all the data values appearing as constants in queries asked by Jones:

~4~3=5(eXtraCt2:lal=lJ,,,,~ (Log) x wrap1 (adorn)).

5. EXPRESSIVE POWER OF THE RELATIONAL META ALGEBRA

5.1. An Equivalent Calculus

Codd’s classical theorem [3, 9, 241 says that the queries expressible in the relational algebra are
precisely the queries definable in first-order logic (in this context referred to as the relational calcu-
lus). We now show how this equivalence can be extended to the meta algebra by introducing MC,
the relational meta calculus. This equivalent calculus will also prove to be helpful in establishing
properties of the expressive power of the meta algebra (see Sections 5.2 and 5.3).

Fix a combined schema (S, M). Our calculus uses two kinds of variables: data variables and
expression variables. Data variables will range over V (the universe of data values). Expression
variables have an associated arity and range over the d-expressions over S of that arity.

Terms are defined as follows:

 data variables and data values are terms of sort 0;

 an d-expression over the augmentation of S with a finite set of expression variables is a term
of sort (n), where n is the arity of the expression; and

 an expression of the form {(z)}, where 2 is a data variable or a data value, is a term of sort
(1).

Atomic formulas can be of one of the following forms:

. S(Zl,... , x,), where S : n E S and each xi is a data variable;

 R(h 9. . . , t,), where R : [I-I,. . . , T,J E M and each ti is a term of sort Q;

 tl = t2 and tl < t2, where tl and t2 are terms of the same expression sort;

 rewrite-one(tl, tz, t3, t4) and rewrite-all(tl, t2, t3, t4), where tl,. . . , t4 are terms such that
tl and t4, and t2 and t3 have the same expression sort, respectively; and

0 eval(t, x1 , . . . ,x,), where t is a term of sort (n) and ~1,. . . ,x, are data variables.

Formulas, finally, are built from atomic formulas in the standard manner using Boolean connectives
and quantifiers. The set of all formulas is denoted by MC.

Assume given an MC-formula cp, a combined instance K = (2, ,7) of (S, M), and a valuation
p of the free variables of cp mapping data variables to data values and expression variables to d-
expressions over S of the right arity. The truth of cp in K: under p, denoted by K + cp[p], is defined
in the standard way given the following semantics for the above terms and predicates:

 the term p({ (x)}) equals the constant d-expression {(p(z))};

582 FRANK NEVEN et al.

 ti 5 ts means that p(ti) is a subexpression of p(ts);

 rewrite-one(ti, ts, ts, td), respectively rewrite-all(ti, ts, ts, td), means that I is ob-
tained from p(tl) by replacing one, respectively every, occurrence of p(t2) in p(tl) by p(t3);
and

0 eval(t,zi, xc,) means that (21,. . .  2,) is in the result of evaluating [p(t)lz.

An MC-formula cp with free variables ~1,. . . ,zn of sorts 71 , . . . , r,,, respectively, defines the query
4 of type [ri, . . . , TJ defined by q(K) = {(p(xl), . . . , p(zc,)) 1 KI k I&]}. Of course this is only
well-defined if q(K) is finite for every K. However, a syntactical restriction called safety can be put
on MC-formulas such that finiteness is guaranteed. Our definition of safety is a natural extension
of the definition given by Ullman [24] for the classical relational calculus.

Definition 6 A meta calculus formula is safe if:

 It does not contain V;

 Any subformula of the form cp V +!J is such that cp and $J have the same free variables;

 Let CT be a maximal subformula of the form & A . . . A 6,. (Maximal in the sense that there
is no longer subformula of the form 6 A (T or 0 A a.) Then we must be able to deduce that
every free variable of (T is limited using the following deduction rules: If z is a data variable
then x is limited if

1. x occurs free in one of the 6s that is not negated (i.e., not of the form T<) and that is
not x = y or eval;

2. one of the 6s is of the form x = w, where w E V;

3. one of the 6s is of the form z = y and y is already limited;

4. one of the Ss is of the form {(z)} = y, where y is already limited; or

5. one of the 6s is of the form eval(t, yi, . . . , ym), where x is one of the ys and all variables
occurring in t are already limited.

If 2 is an expression variable, then x is limited if

6. x occurs free in one of the 6s that is not negated (i.e., not of the form -0 and that is
not of the form tl = tz, tl 5 t2, rewrite-one, rewrite-all, or eval;

7. one of the 6s is of the form tl = tz or t2 = tl, where x occurs in tl and all the variables
occuring in tz are already limited;

8. one of the 6s is of the form tl 5 t2, where x occurs in tl and all the variables of tz are
already limited;

9. one of the 6s is of the form {(y)} = x, where y is already limited; or

10. one of the Ss is of the form rewrite-one(ti, t2, t3, t*) or rewrite-all(ti, tz, t3, td), where
x occurs in t4 and all variables occurring in tl, t2 and t3 are already limited.

Before we prove that the meta algebra and the safe meta calculus are equivalent we show how
some of the example queries in Section 4 can be expressed in this calculus.

Example 8 The query that changes in each view definition the name of relation ACompSci to
AC’S:

cp(x, y) s (3z)(Views(x, z) A rewrite-all(z, ACompSci, ACS,y)).

The query that retrieves the pairs of views that evaluate to the same relation:

cp(x, y) E (%)(3w)(Views(x, w) A Views(y, w) A (tlZ)(eval(v, Z) c) eval(w, Z))).

Typed Query Languages for Databases Containing Queries 583

The query that selects all users that have used the relation A CompSci in a query but never relation
AMath:

cp(z) z (3y)(ACompSci 5 y A Log(z,y)) A T@y)(AMath 5 y A Log(z,y)).

The query that returns the intersection of the results of the queries posed by user Jones:

p(Z) = (Vy)(Log(Jones, y) + eval(y, 3)).

We now show:

Theorem 1 The meta algebra and the safe meta calculus are equivalent.

Proof. It is very easy to construct for every meta algebra expression an equivalent safe meta
calculus formula. The proof goes along the lines of the well known proof that the standard relational
algebra can be expressed in the safe relational calculus [9, 241 and is therefore omitted.

The essential part of the proof of the other direction is the construction, for any safe calculus
formula cp(%), of an algebra expression dom, such that on any instance K and for any valuation p,
K t= cp[p] implies p(P) E [dam,]‘. In the well-known proof of the simulation of the standard
relational calculus by the standard relational algebra, dom, is simply the expression computing
the active domain. In our case, however, new expressions can be generated by calculus expressions,
so the definition of dom, is a bit more complicated.

Let cp be a meta calculus formula. Define dom$’ as the meta algebra expression that computes
the union of the set of data values in the active domain with the set of data values occurring in cp.
Let p be the maximum arity of a term occurring in ip, let T be the set of all terms occurring in (p,
and let Tground be the set consisting of all ground terms that are subexpressions of terms occurring
in cp. For j = 1,. . . ,p, define the meta algebra expression dome)” of type [(j)] by

dom$hl := u{(e) 1 e : (j) E Tground}

u U{T~(R) 1 R : [q, . . , Q] E M, d E (1,. . , lc} and re = (j)}.

For i > 1, define the meta algebra expression dom$i+’ of type [Cl] by

dome$+’ := U{r,+i evali (dom, @)Ti) 1 c E (1,. . . ,p} andlcE{l,...,C}};

define the meta algebra expression domg)3i+1 of type [(l)] by

dom(‘)>i+i := dom(%i
‘p z u Uecl nzextracti:i (dom$‘)‘“)

u Uf=‘=, aqrewrite-onel:o,,o,(dom(l)‘i x dornte)li x dom$)li)
$),i u /J:=‘=, 7r4rewrite-alli:bz..+b3(dom,

U x2wrapi (dom$i)
x dornk)>” x domz):i)

u U(i)Yi,

where U(l)>i is the union of the expressions (t(el, . . . , e,)) such that t(q). . . ,z,) : 1 E T, n > 1,
and for each e = 1, . . , n, XI is an expression variable of sort (je) and et E domz’)Pi. Finally, for
i > 1 andj =2,... ,p, define the meta algebra expression dom$)Vit’ of type [(j)] by

dorn(d,i+’ := dorn(hi
‘p

U &, 7r2extracti:j(dom$)yi)
U lJf=‘=, n4rewrite-onei,o,,o,(dom(j)>i x domte)li x domte)li)

t),i U & ‘= , ?rdrewrite-alli,b,+o,(dom,
u u(j),i

x dam!)>” x dam!)?“)

584 FRANK NEVEN et al.

where U(j)li is the union of the expressions (t(er, . . . ,e,)) such that t(q, . . . ,zn) : j E T, n 1 1,
andforeachC=l,... , n, xe is an expression variable of sort (j,) and et E damp)‘“.

Let m be the number of occurrences of variables in cp. Then define for j = 1,. . . ,p: dom$) :=
dom$‘“. If r = [rl, . . . , ok] then define domi as the meta algebra expression domz x . . . x domz .

A proof of the following lemma can be found in Appendix A.

Lemma 1 For any safe MC-formula cp(x~, . . . , xk), where each xi is of type ri, and for any

valuation p, if lc + cp[p] then p(x:i) E [dam;]” for all i E (1,. . . , k}.

For each safe meta calculus formula v(Z), we construct a meta algebra expression elp such that
for every instance K and for every valuation p: Ic b cp[p] # p(z) E [e91K. W.l.o.g., we assume only
terms that are variables appear in atomic formulas that are not equalities and that all variables
appearing in the same occurrence of an atomic formula are different. Furthermore, we assume that
all equalities are of the form z = t where x is a variable and t is a term. In the following, every
variable xj is of sort (ij).

We transform all subformulas c by the following inductive process:

1. If (T = R(Z), where R E S U M, then e, := R.

2. Ifo=ze=t(xr,...,z,) then

e, := 7ri ,...,n+lul=n+2constructtr (dom$(io)‘...‘(““)l),

where t’ is the pattern obtained from t by replacing each xj by  j+i.

3. If IJ = x1 5 22 then e, := Ts,rextracti:i, (domii2)1).

4. If u = rewrite-one(xr ,zs, xs, 24) then

5. If c = rewrite-all(zi, x2, x3, x4) then

e, := rewrite-alll,02-t,g(domjp(il)~(i2)~(i~)~(~~)l).

6. If o = eval(xc, ~1,. . . , yn) then e, := evalr (dom$(io)l).

7. If (T = lu’(xi, . . . ,x,) then e, := dornl”)*...*(““)l - e,!.

8. If~=(TiV~sthene,:=e,,Ue,,. 0

Remark 1 It follows from the above proof that any meta algebra expression is equivalent to one
where every rewrite operator uses patterns that consists of only boxes; i.e., every rewrite operator
is of the form rewrite-onei:nj+b, or rewrite-alli:oj+n,.

5.2. Limitations of the Typed Approach

The meta algebra and the meta calculus are strictly typed formalisms. It is impossible to define
relations with columns containing expressions of different arities. However, we can give an example
of a natural and simple query that seems to have the property that computing it really requires
such untyped intermediate results:

Theorem 2 Let R : [(l)] E M. Let q be the query of type [(l)] defined as follows: given an
instance Ic, q(K) is the set of eqreaaions in K(R) that are of the form x1(. . .). This query is not
definable in the meta algebra.

Typed Query Languages for Databases Containing Queries 585

Proof. The equivalence of the meta algebra with the meta calculus allows an elegant model-
theoretic proof of this theorem. The d-expressions over a schema S form a structure (in the sense
of mathematical logic [lo]) consisting of the relation names in S as constants, the operators as
functions, and the relations 5 (subexpression), rewrite-one, and rewrite-all. This structure is
many-sorted: for example, we do not have one single function x but rather have a separate one
x,,, of sort ((n), (m)) + (n + m) for all arities n and m.

Now suppose, for the sake of contradiction, that there is an MC-formula ‘p defining the query
q from the theorem. Since the query is independent of the object-level instance we can as well
assume that all object-level relations are empty. Hence, we may assume without loss of generality
that cp neither uses data variables, object-level relation names, nor eval.

So ‘p is essentially a first-order logic formula, evaluated over the above-described structure of
d-expressions, call it E, expanded with a relation R of sort (1). Let n be strictly larger than the
arity of any term occurring in cp. Then ‘p looks only at &I <n, the restriction of E to sorts (m) with
m < 12.

Define the following function f on d-expressions e: f(e) is obtained from e by replacing each
occurrence of a subexpression of the form ~1 (e’), where e’ is n-ary, by rz(e’), and conversely,
replacing each occurrence of a subexpression of the form rz(e’), where e’ is n-ary, by ~1 (e’). This
function is an automorphism of El<,. It maps ~1 (Sn) to 7rz(Sn) and back, where S” stands for
s x ... x S (n times).

Hence, on an instance in which R consists of the two expressions rri (Sn) and 7r2 (P), the query
defined by cp will either contain both expressions in the result, or none of them, since first-order logic
formulas cannot distinguish between automorphic elements. This yields the desired contradiction,
since ~2 (Sn) is not of the form xi (. . .). 0

Theorem 2 offers the most challenging direction for further research. How can our formalism
(in particular its type system) be generalized so that queries of the kind mentioned in the theorem
become expressible, at the same time not giving up on type-safety of eval?

Note that Theorem 2 may be compared to a similar situation in the design of computationally
complete query languages. The language QL, proposed and studied by Chandra and Hare1 [6],
is an adaptation of the relational algebra designed to work with “untyped” relations of variable
width, to which a while-loop construct is added. QL is computationally complete. If, however,
the ordinary “typed” relational algebra is extended with while-loops, one gets a language whose
expressiveness remains within PSPACE [7, 31.

Another situation to which Theorem 2 may be compared to is that of the lambda calculus.
Functions on the natural numbers, encoded as functions on Church numerals, are typed. But
again the computation of many such functions requires intermediate results that are untyped: in
the untyped lambda calculus all partial recursive functions are definable, while in the simply-
typed lambda calculus only a restricted class of functions, the so-called extended polynomials, are
definable [4, 191.

5.3. Non-Redundancy

A natural question to ask is whether the meta algebra is non-redundant, i.e., whether each
operator provided in the meta algebra is primitive (not expressible using the other operators).

As a matter of fact, we obtain the following theorem.

Theorem 3 The meta algebra is not redundant.

Regarding primitivity of the five relational algebra operators, it is easily seen and well known
that each of them is primitive within the standard relational algebra. Of course this does not
automatically imply primitivity within the meta algebra. The latter follows nevertheless because
the meta algebra admits a conservative extension property which we prove in the next section.
In Appendix B we give detailed, but technical, proofs of the primitiveness of wrap, extract,
rewrite-oneand rewrite-all.

We now show the primitivity of eval. The equivalence with the meta calculus allows for an
elegant model-theoretic proof. We make use of the structure & of d-expressions introduced in

586 FRANK NEVEN et al.

Section 5.2. Let S = {E : 2,U : 1) and M = {& : [(0)]}. Define the instance Z of S by
Z(E) = {(1,2)} and Z(U) = ((1)). F or any natural number m, define the instance L7;” over
M by Jrm(Q) = {~0(7ri(P) n U)} and define ,Yzrn by &m(Q) = {n0(7r2(Em) rl U)}. For any
natural number m and i E { 1,2} define the combined instance Icy = (1, J’Yji”). Then, for all m,
[evall(Q)]KCI; # [evah(Q)I . G

We now proceed like in Section 5.2. Suppose, for the sake of contradiction, that there is an
M&expression cp without eval that expresses the query eval(Q). By Theorem 1 there exists an
equivalent MC-sentence cp. Moreover, ‘p does not contain eval. So cp is a first-order logic formula
over & expanded with the relations E, U and Q. Let n be strictly larger than the arity of any term
occurring in cp. Then cp looks only at E] .+, the restriction of & to sorts (m) with m < n.

Define the following function f on d-expressions e: f(e) is obtained from e by replacing each
occurrence of a subexpression of the form ~1 (e’), where e’ is nary, by 7r2 (e’), and conversely,
replacing each occurrence of a subexpression of the form 7r2 (e’), where e’ is n-ary, by ~1 (e’). This
function is an automorphism of El<,. It maps ne(~i(P) n U) to 7rg(n2(En) n U) and back.

The structures (&lcn, Icy) and (E]cn, Kz) are isomorphic via f’, where f’ is the identity on Z
and is defined as f on d-expressions. Since first-order logic cannot distinguish between isomorphic
structures, we have that cp holds in the instance Icy if and only if cp holds in the instance Icy.
This yields the desired contradiction.

5.4. Conservative Extension

In this section, we prove that the meta algebra provides no power above that of the relational
algebra if only classical queries not involving meta-level relations are under consideration. More
concretely, we show:

Theorem 4 Let S be a schema and let q be a query over (S, 0) of type [0 , . . . ,O] (n zeros). If q is
definable in the meta algebra then q is already definable in the relational algebra.

We prove this theorem in two lemmas. To state the first lemma, we introduce the following
notions. Let V be a schema consisting of unary relation names only. We call such a schema
a “dummy schema”. Dummy relation names will serve aa representatives of relational algebra
expressions of the form {(v)} with v E V. Let v = [VI,. . . , vm] be a type. A column assignment
of 2) in v is a function y : V -+ (1,. . . , m} such that for every D E D, y(D) is a data column.
A column sequence of Y is a sequence il, . . . ,i,, with ii,. . . ,i, E (1,. . . ,m}. We denote the
type [vii,. . . , Q,] by xi, ,..., i, (v). Let 7 be a column assignment of D in 7, and let S be a column
sequence of V. For any meta-relation R of type v containing d-expressions over the schema S U 27,
define the following relation of type ra(v):

AYY6(R) := na(R’),

where

R’ := {(x)1,x.> I hr..., ~~)~Randforeachi=l,...,m,
xi is obtained from xi by replacing each occurrence of a name D E 23

by the expression { (x~(~))}}

If Z is an instance of S then we extend Z to an instance Zn of S U 27 by setting ID(D) := 0 for
each D E 23. We denote the relational algebra extended with the (e) operator by d(‘)t.

Lemma 2 Let e : T, with T = [TI , . . . , ~~1, be a meta algebra expression over (S, 0). There exists

 a dummy schema V,;

 a natural number m,;

tThe operator (e) is defined in Section 3.4.1.

Typed Query Languages for Databases Containing Queries 587

. an A(‘)- expression w, : u, with u = [ul, . . . , urn.], over the combined schema (S U ID,, 0);

0 a column assignment ^le of VD, in u;

 a column sequence S, of v such that ~6. (u) = T;

 a finite set A, of d-expressions over S U D e ;

such that for any instance Z of S

 [e]’ = Are,‘e ([we]“‘); and

 for every expression column j, [rj(w,)IIZD E_ A,.

Proof. The proof proceeds by induction on the structure of e. Suppose e is an MA-expression
as in the lemma, for which we assume the lemma already holds. Let V, be the set of all data
values that appear as constant expressions in expressions in A,, let E be an equivalence relation
on 27,) and let 77 be a partial, injective function from E-equivalence classes into V,. We call (E, 77)
an instantiation of e. For any D E Ver if the value of n on D’s equivalence class in E equals
v E V,, then we also write n(D) = w. If n is undefined on D’s equivalence class, then we also
write q(D) = 1. Intuitively, if v(D) = w, then D is a representative of the constant expression
{(v)}, and if ~(0) = -I_, then D is a representative of a constant expression {(v’)} for some data
value v’ appearing in the database but not in V,. The equivalence relation E then specifies which
dummy relation names represent the same constant expression. We now define =E,rl as the smallest
equivalence relation on d-expressions over S U 2 3, such that:

 For D,D’ E V,, if (DID’) E E, then D =Q D’.

 For D E Ve and r~ E V, if q(D) = v, then D =E,,, {(v)}.

 For expressions er and e2 and any unary d-operator op, if el =E,,, es, then op(er) =E,r)
op(e2).

 For expressions ei, es, es, e4 and any binary d-operator op, if ei =E,,, es and es =E,17 e4,
then el op es =E,,, es op e4.

We then introduce the following notations:

 The sequence consisting of all selection operators in

he(~)=r.py I CD, D’) E El

or

is denoted by a&.

@,~(D)+.(D’) I P, D’) E We x De) - El

 For any D E VD, such that q(D) = I, we denote the sequence consisting of all selection
operators in

{“r.(D)#v Iv E vel

by a$,. If v(D) # 4 we define $,,D as -,(,)(D)=~(D).

 The sequence consisting of all oG,~ with D E V, is denoted by 0;.

We can now start with the actual proof. In the following, we denote the jth element of a
column sequence 6 by S(j). The cases where e = {(v)} or e = R, with R E S, are trivial.

5 8 8 FRANK NEVEN et al.

 e = wrapi (e’) : Define w, := we’ x (D’), where D’ $! D,,; m, := m,t + 1; D, := D,, U {D’};

foreachj=l,...,ndefine

for each D E De define

?e(D) :=
&I (4 if D = D’,
Ye, (D) otherwise;

and define A, := A,, U {D’}.

 e = q,...,i, (e’): we := w,l; m, := p; D, := D,,; for j = 1,. . .,p, define S,(j) := 6,,(ij);
ye := ^lef ; and define A, := Ael.

 e = e l U e 2: We assume the following:

- S,, = 6,, (if not, we rearrange columns in w(e2));

- me, = me2 (supp ose me, < mea, then take a new dummy relation name D and redefine
we, as we1 x (D) x . . . x (D) (me2 - me, times)); and

- De, n De, = 8.

Define we := we, U w e ,; m e := me,; De := De, U D,,; 6, := he,; ^fe := ye1 U y e s ; and
A, := A,, u A,,.

 e = el x e2: We assume D,, rl De, = 8. Let el be of arity ni and es of arity ns. Define
we:=wel xwea;me:=mel+mea;De:=De,UDe,;fori=1,...,nl+n2,define

6,(i) :=
{

$1:; + me, ;: ;i5;ISJ;9< n1 + n2;
ez z - -

for each D E De define

‘Ye(D) ‘=
I

ifDED
s:[gi + me, if D E DI:I

and define A, := A,, U A,,.

 e = U+j(e’): If i and j are data columns this is easy. So suppose i and j are expression
columns with pi = rj = (C), define we as

E, q an instantiation of e’, ti : L E A,, , t2 : L E A,, , and tl z&v t2}.

Define me := meI ; De := D,I ; Se := de! ; 7e := yei; and define A, := A,, ,

 e=er-es: Asinthecasee=eiUes,wecanassumethat6,, =bea,mel =m,,and

De, n De, = 0. Let I denote the set of data columns in r. Then define we as

wel - m,...,m.,

(

yjiE, &, (i)=V$ +d., (4 Cwel Xwe,)nnWc6 eI (i)=m.* +d,,(i)(el xez) ’
i+zI 1

Define me := me,; De := De,; 6, := deli +/e := “/el; and A, := A,, .

 e = rewrite-onei,,,p(e’): By R emark 1 we can assume that (Y =  j and /3 =  k. Let
ri = (!I), Tj = (es), and rk = (&). Define w, as

U{&&ob,, (i)=tlu6,,(j)=t*~6,,(k)=ts(We’) x Ti,p’ts 1 tl : l1 E Ael,

t2 : e2 E &I, t3 : L3 E A,!, and E, n is an instantiation of e’},

Typed Query Languages for Databases Containing Queries 589

where

T ;;p*t, = U{(f) 1 t’ is obtained by replacing in tr

a subexpression t by t3 for some t =E,r) ts}.

Define m, := rn,! + 1; D, := D,I; for lc := 1,. . . , n, define

define ^/e := ~~1; and define A, as the union of AL with all the T~v~2yt3s that appear in w,.

e = rewrite-all: similar to the previous case.

e = extracti,,(Let ri = (Q. Define w, as

U(ob,,(i)=t(w) x Tt I t : C E &),

where Tt = {(t’) 1 t’ : m is a subexpression of t}.

Define m, := m,l + 1; D, := II,); for k := 1,. . . , n, define

define qua := “/et ; and define A, as the union of A,, with all the Tts that appear in w,.

e = evali(e’): Let 7-i = (.!), and let the arity of e’ be n’; so n = n’ + C. Define D, := De! ;
m, := rn,, + e; for k := 1,. . . ,n’, define be(k) := &t(k), and for k := 1,. . . ,l, define
&.(n’ + k) := met + k. Define 7e := “/et and A, := A,). Let t : .l be a relational algebra

expression over S U D,. We construct an A(‘) -expression w6 such that for any 1:

AyeSde ([wi]“‘) = [evaliA7=y6. (lade, (+t(we,)]rD)]‘.

The construction goes by induction on the structure of t.

- t = (v) or t E S: define w6 as g6,,(i)=t(w,, x t);

- t = D: define WE as 7rl ,...) m,r ,-l., (D)~Cr,l (i)d We’ ;

- t = nil,...,& (t’): define wf a m,..., me, ,il+m,, ,..., i,+m,t~$;

- t = uj=j’(t’): define W E a ~ g j j+ m ,,= j’+ m ,, w $;

- t = t l x t 2 . Let the arity of tr be ml and let the arity of tz be m2. Define WE as

me1
Tl,..., m,,+m~,2m,,+m~+l(..., 2m,,+m~+m2 (7 fJi=i+m,, +m1 (US’ x w?).

i=l

- t = tl - t2. Let the arity of t be m. Define wi as

m,r
wil - 7r l,...,m,,+m (7 cJi=i+m,, +m@S1 x @).

i=l

Now, define we as lJ(w6) t : L E A,)}.

We prove a normal form for A(‘).

590 FRANK NEVEN et al.

Lemma 3 Assume every meta-level relation is of a type having only expression columns. Then
every A(‘) -expression e is equivalent up to reordering of columns+, to a union of “base expressions”,
of the form & x ret where f2, is a relational algebra expression and re is of the form (tl) x . . . x (tn).

Proof. The proof proceeds by induction on the structure of e. The lemma trivially holds for the
base case where e = S with S E S U M, e = {(w)} with v E V, or e = (e’). In the following, El,
&2 and E’ are sets of base expressions.

 If e = U & U U E ’ then e is clearly in the right form.

 If e = U E x U E’ then e is equivalent to

 If e = ril,,..,i, U E’ then e is equivalent to

U-iw,Qe’) x wr(e’) I e’ E &‘I,

where
S1 = {ij 1 j E (1,. . . , p} and ij is a data column}

and
S2 = {ij 1 j E (1,. . . , p} and ij is an expression column}.

 If e = ai=j (U E’) then e is equivalent to

U{Oi=j(l,) X Ter (e’ E E’}

if i and j are data columns; otherwise, e is equivalent to

U{lef X gi=j(T&) 1 e’ E E’}.

 Ife=U&l-U&th en it suffices to show that the difference of two sets of base expressions can
be represented by a set of base expressions. Since U &I - U &2 can be written as iJ{el - U &2 I
el E El}, we only have to show that el - U &2 is equivalent to a set of base expressions. We
prove the latter by induction on the size of &z.

- If 82 = (e2) th en el - e2 is equivalent to ((k& - a,,) x r,,) U (L e l x (r e l - T ,~)).

- If E2 = {b 1,. . . , bn} then el - EZ can be written as (el - {bl, . . . , b,_l}) - b,. By the
inductive hypothesis, this is equivalent to {cl, . . . , c,} - b, for some base expressions
Cl, c,. This expression can then be rewritten as (~1 - bn) U . . . U (c , - b,); by the
inductive hypothesis we get the result. 0

Proof of Theorem 4. Let q be defined by the meta algebra expression e. By applying Lemma 2 and
Lemma 3, e is equivalent to a union of base expressions e’. Now, since the output of e contains no
expression columns, e’ is equivalent to a relational algebra expression. 0

Acknowledgements - This work was supported by NATO Collaborative Research Grant 960954. Frank Neven is a
Research Assistant of the Fund for Scientific Research, Flanders. A preliminary version of this work was presented
at the 17th ACM Symposium on Principles of Database Systems, Seattle, WA, 1998.

t Note that reordering of columns is expressible using projection.

Typed Query Languages for Databases Containing Queries 591

REFERENCES

[l] H. Abelson, G. .I. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. MIT Press,
second edition (1996).

[2] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects. The VLDB
Journal, 4(4):727-794, Originally INRIA Research Report 846, 1988 (1995).

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley (1995).

[4] H.P. Barendregt. The Lambda Calculus. Elsevier, North-Holland (1984).

[5] C. Beeri and T. Milo. On the power of algebras with recursion. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., SIGMOD Record, 22(2):377-386, ACM
Press (1993).

[S] A. Chandra and D. Harel. Computable queries for relational data bases. Journal of Computer and System
Sciences, 21(2):156-178 (1980).

[7] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and System
Sciences, 25(1):99-128 (1982).

[8] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order logic programming. Journal of
Logic Programming, 15(3):187-230 (1993).

[9] E. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor, Data Base Systems, pp.
65-98, Prentice-Hall (1972).

[lo] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press (1972).

[ll] M. Gyssens, J. Paredaens, and D. Van Gucht. A grammar-based approach towards unifying hierarchical data
models. SIAM Journal on Computing, 23(6):1093-1137 (1994).

(121 J.-W. Klop. Term rewriting systems: a tutorial. Bulletin of the EATCS, 32:143-183 (1987).

[13] A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate functions.
Journal of the ACM, 29(3):699-717 (1982).

[14] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. On the logical foundations of schema integration and
evolution in heterogeneous database systems. In S. Ceri, K. Tanaka, and S. Tsur, editors, Deductive and
Object-Oriented Databases, volume 760 of Lecture Notes in Computer Science, pp. 81-100, Springer-Verlag
(1993).

[15] G. Ozsoyoglu, Z.M. Ozsoyoglu, and V. Matos. Extending relational algebra and relational calculus with set-
valued attributes and aggregate functions. ACM Transactions on Database Systems, 12(4):566-592 (1987).

[16] J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial database queries. In
Proceedings 13th ACM Symposium on Principles of Database Systems, Minneapolis, Minnesota, pp. 279-288,
ACM Press (1994).

[17] J. Paredaens and D. Van Gucht. Converting nested algebra expressions into flat algebra expressions. ACM
Transactions on Database Systems, 17(1):65-93 (1992).

[18] K. Ross. Relations with relation names as arguments: algebra and calculus. In Proceedings 11th ACM Sympo-
sium on Principles of Database Systems, San Diego, California, pp. 346-353, ACM Press (1992).

[19] H. Schwichtenberg. Definierbare Funktionen im X-Kalkiil mit Typen. Arch. Math. Logik Grundlagenforsch.,
17(3-4):113-114 (1975).

[20] T. Sheard and J. Hook. mpe Safe Meta-Progmmming. Manuscript, Oregon Graduate Institute (1994).

[21] M. Stonebraker et al. QUEL as a data type. In B. Yormark, editor, Proceedings of SIGMOD 84 Annual
Meeting, volume 14:2 of SIGMOD Record, Boston, Massachusetts, pp. 208-214, ACM Press (1984).

[22] M. Stonebraker et al. Extending a database system with procedures. ACM ‘I+ansactions on Database Systems,
12(3):350-376 (1987).

[23] D. Suciu. Bounded fixpoints for complex objects. Theoretical Computer Science, 170(l-2):283-328 (1997).

[24] J. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Computer Science Press (1988).

[25] J. Van den Bussche, D. Van Gucht, and G. Vossen. Reflective programming in the relational algebra. Journal
of Computer and System Sciences, 52(3):537-549 (1996).

[26] L. Wong. Normal forms and conservative extension properties for query languages over collection types. hwnal

of Computer and System Sciences, 52(3):495-505 (1996).

592 FRANK NEVEN et al.

APPENDIX A

Proof of Lemma 1. The proof proceeds by induction on the nesting depth of maximal conjunctions
in cp. The base case of this induction is that of a conjunction consisting of atomic formulas only,
which we can directly treat as a special case of the general case.

Since cp is safe, for each free variable z in each maximal conjunction e of cp, there exists a proof
for the limitedness of x. We next define the depth of x in u with respect to this proof. If x is
shown to be limited by an application of rule j then we just say that x is derived by rule j. We
say that

 x is of depth 1 if x is derived by rule (1) or (6) and 6 is an atomic formula, or x is derived
by rule (2), or x is derived by rule (7) with ti = x and ts a ground term;

 x is of depth n + 1

- if x is derived by rule (1) or (6), 6 is of the form 61 V &J, and n + 1 is the maximum of
the depths of x in 61 and Sp;

- if x is derived by rule (1) or (6), S is of the form (3y)6’, and n + 1 is the the depth of z
in 6’;

- if x is derived by rule (3), (4) or (9) and y is of depth n;
- if x is derived by rule (5) and the maximal depth of a variable in t is n;
- if x is derived by rule (7) or (8) and the maximal depth of a variable in t2 is n;
- if x is derived by rule (lo), where the maximal depth of a variable in ti, t2 or ts is n.

Clearly, the depth of every variable is bounded by the number of occurrences of variables in cp.
Let u be a subformula of cp consisting of conjunctions that cannot be enlarged. W.l.o.g., we as-

sume only terms that are variables appear in atomic formulas that are not equalities. Furthermore,
we assume that all equalities are of the form x = t where x is a variable and t is a term.

We now show that if K: + o[p] then p(x) E [dom>n ’] , for every variable x of sort r and
depth n. We do not have to discuss variables that are derived by rules (1) or (6) where 6 is a
disjunction or is of the form (3~) . . .: we then already may assume that p(z) E [dam;“]‘.

1. If z is a data variable of depth 1, then p(x) is a data value that occurs in the active domain,
or p(x) appears as a constant in cp. Hence, p(x) E [domO,“]K.

2. If x is an expression variable of sort (e) that is of depth 1, then p(x) is an d-expression that
occurs in the active domain, or p(s) occurs in cp. Hence, p(z) E [domF)“]K.

Let n be a natural number greater than 1.

1. If z is a data variable of depth n + 1 then we consider the following cases:

 If x is derived by rule (3), then p(x) = p(y) E [dcnn~“]K G]domo,‘n+‘]K.

 If x is derived by rule (4), then {(p(x))} = p(y) and p(y) E [dom$?*“]K. Hence,
p(x) E [rs(evali (domg’.“))]” c [dom$nf’]K.

 If x is derived by rule (5), then clearly p(x) E [dom$“f’]‘C.

2. If z is an expression variable of sort r that is of depth n + 1, then we consider the following
cases:

 If x is derived by rule (7), then p(x) = tz(p(xl), . . . ,p(xn)), where for each i = 1,. . . ,n,
xi is of sort pi and p(zi) G [dam;+]‘. By definition of Ur*12, p(x) E [VT1n]K E

sn+1 n [dam;] .

Typed Query Languages for Databases Containing Queries 593

 If x is derived by rule (8), then z 5 y appears as a conjunct in (T, p(z) is a subexpression
of p(y), and p(y) E [domL’ln], where y is of sort 7’. By definition of dom>n+l, p(s) E

r,n+1 K
IIdom, n .

 If z is derived by rule (9), then p(x) = (p(y)) and p(y) E [dom$“ln. Hence, p(x) E
[rzwrap, (dom$“)lK c [dom’,‘“+‘Px.

 If z is derived by rule (lo), then rewrite-one(yl,yz,ys,x) or rewrite-all(yl,yz,ys,z)
appears as an atomic formula in cr. By definition of dom2n+1, p(x) E [dam;“+‘]. 0

APPENDIX B

We now show the primitiveness of the wrap, extract, rewrite-one and rewrite-all operators.
In the following, if op denotes an operator of MA, then MA - {op} denotes the fragment of MA
without the operator op.

B.1 Wrap

We start with wrap:

Lemma B.l Let e : r be an expression of MA - {wrap} over an empty meta-level schema, let
7 = [71) . . . , T-J be a type, and let C = { 1, . . . , n} be the set of expression columns of r. Then there

exists a finite set A, of d-expressions such that for every instance K: and j E C, [rj(e)lK C A,.

Proof. The proof proceeds by induction on the structure of e. If e = el op e2, where op is U or
x,thenA,:=A,,UA,.. Ife=el-ezthenA,:= A,,. If e = op(el), where op is o or x then
A, := A,, . If e = extracti:, then

A, := A,, U {s 1 s : m is a subexpression of s’ and s’ E A,, }.

If e = rewrite-onei:,+ then, by Remark 1, we can assume that a =  j and ,f3 = Ok. Define

A, := A,, u {sq 1 s1 : l, E A,, , 272 : L2 E A,, , s3 : t2 E A,, , s4 : Ll E A,, , and
sq is obtained from s1 by replacing one occurrence of s2 by sg },

where the ith column and the jth column of el are of arity !I and Lz respectively. The case where
e = rewrite-alli:,,p(el) is similar to the previous one. 0

Let S be the object-level schema {S : 1) and let the meta-level schema be empty. Suppose
there is an expression e of MA - {wrap} that is equivalent to wrap,(S). Then choose a v E V
such that {(v)} $Z A,, where A, is as defined in the previous lemma. Let ic, be the instance where
K,(S) = {(v)}. Then (v) E [wrap, (S)~“‘, but {(v)} $ [e]“” 2 A,. Hence, e cannot be equivalent
to wrapI(

B.2. Extract

We now show the primitivity of the extract-operator.
Let S = {S : l}, and M = {R: [(2)]}. D e ne fi f or each natural number n the relational algebra

expression e, : 2 a5

7r17r1R1.. .7rl(S) x s. . /
n times

Let K, be the combined instance where [SgKn = 0 and [RI”” = {e,}. Clearly, [extractl:l(R)lKn
is the relation

594 FRANK NEVEN et al.

en 7r17r17rl.. .7rl(S) . 4

n times
en ?rI?r]T1.. .7r,(S) . ,

n-l times
.
en mm(S)
en m(S)
e, S

The following lemma says that this cannot be the case for an expression in MA - {extract}, thus
proving that extract is primitive.

Lemma B.2 Let e be an expression of MA - { ex t ract}. There exists a constant c, such that for
every natural number i, if

7rlX17rl * . .7rl(S)
. 4 (1)

i times

occurs as an entry of a tuple in IelK” then i < ce.

Proof. The proof proceeds by induction on the structure of e.

 If e = S, e = {(o)}, or e = R then c, := 1.

 If e = ei op es, where op is x or U, then ce := max{c,,,c,,}.

 Ife=ei-ezthenc,:=c,,.

 If e = op(e’), where op is C, r, eval, or wrap, then ce := c,).

 Let e = rewrite-allj,,,~(e’), with e’ : [TI,. . . ,r,].If rj # (l), we set ce := cet. If rj = (l),
but /3 is not of the form

(i) ‘ITl’lTl’lTl . ..ni(S). or
/

m times

(ii) 7rl?T17Tl . . . rl(Ok), with 1 < k 5 n,
. /

m times

(note that m can be zero) again ce := cer.

If rj = (1) and P is of the form (i), then ce := cef + m. If /I is of the form (ii) and rk # (l),
again ce := cet. Finally, if rk = (I), then ce := cet + cet + m.

 The case e = rewrite-onej,,+(e’) is analogous. 0

B.3 Rewrite-One

We next consider the rewrite-one operator. To this end, let S = {S : 1, R : l}, and let
M = {Q : I(l)]}. For each natural number n, define e, : n as the relational algebra expression

R x (R x (R x (. . . x (R x R) . . .) .
. 4

n times R

Define Kc, as the combined instance where [REX” = IIS]lK” = 0 and [QpKc” = {(e,)}. It readily

follows that [rewrite-onei,n,s(Q)]K” contains n tuples. The following lemma shows that for

any expression e of MA - {rewrite-one}, the number of tuples in [e]“’ is always bounded by
some constant independent of n, thus proving primitivity of rewrite-one.

Lemma B.3 Let e be an expression of MA - {rewrite-one}. There exist natuml numbers c,
and fe, and a sequence of numbers (di) such that

Typed Query Languages for Databases Containing Queries 595

1. the number of tuples in IelK” is less than or equal to c,;

2. the number of different data values occurring in I[elK” (in data or expression columns) is less
than or equal to fe; and

3. for each i, for each t in i[elKC”, and for each expression column j, the number of different
subexpressions of arity i in t(j) is less than or equal to dt.

Proof. The proof proceeds by induction on the structure of e

. If e = {(‘u)}, e = R, or e = S, then ce := 1, fe := 1 and di := 0 for all i.

 If e = Q, then c, := 1, fe := 0 and

d;:= ;
{

if 1 5 i 5 n;
otherwise.





8.4.

If e = ei U e2, then c, := c,, + ce2, fe := fe, + fez, and dd := max{di, ,d$,} for all i.

If e = el - e2, then c, := c,, , fe := fe,, and db := dk, for all i.

If e = el x e2, then c, := c,, . c,, , fe := fe, + fez, and dt := max{d%, , d:,} for all i.

If e = op(e’), where op is u or X, then c, := ~~1, fe := fe,, and di, := d$ for all i.

If e = wrap(e’), then c, := C,I, fe := fet, di := max{d$, l}, and di := d:, for all i > 1.

Let e = rewrite-allj,,,o (e’), where e’ is of arity n. Let f be the number of data values
occurring in /3, and let di be the number of different subexpressions of ,B of arity i, for each
i. Then c, := c,!, fe := fe, + f, and di := dk, + di for all i.

If e = extractj:,(e’), then ce := d? . c,t, fe := _fel, and d: := d$, for all i.

Let e = evali(e’), and let the i-th column of e’ be of type (m). Then c, := cej . (fet)m,
fe := ft!, and di := d$, for all i. 

Rewrite-All

Let Ic, be defined as in Section 5.4. Then

I[rewrite-alll,R,s(Q)In”

equals the relation

12 times R n times S

The following lemma shows that this cannot be the case for an expression of MA- {rewrite-all},
thus proving primitivity of rewrite-all.

Lemma B.4 Let e be an expression of MA - {rewrite-all}. There exists a natural number c,

such that for all n 2 1 every entry in each tuple of [e]lK” contains less than c, occuwences of S.

Proof. The proof proceeds by induction on the structure of e.

 If e = {(v)}, e = R, e = S, or e = Q then c, := 0.

0 If e = rewrite-onei:++.p(e’), s is the number of occurrences of S in p, and k is the number
of expression variables in S, then ce := max{ s + k . cet, cet }.

 If e = extracti,,(then c, := c,).

 If e = ei op e2, where op is U, x, or -, then c, := max{c,,,c,,}.

 If e = op(e’), where op is g, 7~, eval, or wrap, then ce := eel. 0

