Tree-structured object creation in database
transformations

Jan Van den Bussche

August 27, 2007

Abstract

Within the class of “determinate” object-creating database transfor-
mations, identified by Abiteboul and Kanellakis, a natural proper subclass
consists of the so-called “constructive” transformations. A determinate
transformation is constructive if its input-output pairs satisfy a condition
discovered by Jan Paredaens. In this note we point out that when object
creation is “tree-structured,” as is the case in tree-structured data models
such as XML, determinate transformations are always constructive.

DEDICATED TO JAN PAREDAENS
FOR HIS 60TH BIRTHDAY

1 Introduction

In tree-structured data models, such as in the XML data model [16, 1], it is de-
sirable that transformations can be expressed that are object-creating, meaning
that the result of a transformation can contain objects (in this case, tree nodes)
that do not appear in the input database. Indeed, the standard XML query
language XQuery [17] allows the expression of object-creating queries by means
of the element construction operation.

Well before the rise of the XML data model, however, general database
transformations (possibly object-creating, and possibly non-deterministic) were
already studied by Abiteboul and Vianu [4, 5], and Abiteboul and Kanellakis
[3] introduced the class of “determinate” transformations as those that are non-
deterministic only in the choice of the id’s of the new objects. Abiteboul and
Kanellakis also introduced a very natural query language, called IQL, for ex-
pressing general determinate transformations. IQL is equivalent to the relational
algebra extended with three programming constructs: object creation; assign-
ment to relation variables; and while-loops. At around the same time, another
equivalent language, called GOOD, was introduced by Jan Paredaens and his
collaborators [11].

Not all determinate transformations are expressible by an IQL program,
however. There even exist single input-output pairs of database instances that

cannot be realized by any IQL program. This situation motivated Jan Paredaens
to formulate a condition on pairs (I, .J) of database instances that is necessary
and sufficient for J to be an output of some GOOD (or IQL) program applied
to I [7]. This condition states the existence of an extension homomorphism
from the group of automorphisms of I to the group of automorphisms of J,
and generalizes to object creation Jan Paredaens’s earlier result on the BP-
completeness (Bancilhon-Paredaens) of the relational algebra [14, 8, 10]. Later,
the naturalness of the extension homomorphism condition was confirmed when
it was shown that the IQL-expressible transformations are precisely those de-
terminate transformations all of whose input-output pairs admit an extension
homomorphism [15].

The developments just described happened largely before the rise of the XML
data model. In this note, we ask ourselves what happens when object creation
is tree structured, i.e., the newly created objects in the output form a tree, the
leafs of which are labeled by objects from the input (a precise definition will be
given later). XML is clearly tree-structured. We will show that in that case,
the gap between determinate and IQL-expressible vanishes, i.e., the extension
homomorphism condition is always satisfied for tree-structured object creation.

2 Database transformations

We recall some essential definitions in this section, largely taken from our earlier
paper [15]. For background and motivation for these definitions, see Abiteboul,
Hull and Vianu [2].

It is assumed that an infinite collection of relation names is given. To each
relation name R a natural number «(R) is associated, called the arity of R,
such that each number is the arity of infinitely many relation names. A database
schema is a finite set of relation names.

It is furthermore assumed that a countably infinite universe U of abstract
data elements, called objects, is given.

An instance I of a database schema S is a finite relational structure of type
S, consisting of a finite subset |I| of U, called the domain, and a mapping on S,
assigning to each relation name R of S a relation R’ on |I| of rank a(R) (i.e., a
subset of |I|*()), called the content of R. The set of all database instances of
the schema S is denoted by inst(S).

Let S and Souy be two database schemas. A determinate transformation
from Sy to Sous is an input-output relationship @ C inst(Si,) X inst(Sout)
satisfying the following three properties:

1. If Q(I, J) then |I| C |J|;
2. If Q(I,J) and f is a permutation of U, then also Q(f(I), f(J)), where

by f(I) we mean the database instance obtained from I by applying f
pointwise to all objects occurring in I;

3. If Q(I,J1) and Q(I, Jo), then Jo = f(J;) for some permutation f of U
that is the identity on |I|.

/_\bl
al) / \

a2 \ b3 /b2

Figure 1: Instance I consists just of the two a’s. Instance J adds the four b’s
together with the arrows (stored in a binary relation). There does not exist an
extension homomorphism from Aut(I) to Aut(J).

The first requirement above is technical but harmless. The second one is a
classical consistency criterion [10, 6] known as genericity [13]. The third, finally,
expresses the determinacy property [3].

For a database instance I, we denote by Aut([]) the set of all permutations
f of |I] for which f(I) = I; such permutations are called automorphisms of I.
The set Aut(I), with the operation of composition, forms a group structure.

A crucial concept, introduced by Jan Paredaens [7], now is the following. Let
I and J be database instances such that |I| C |J|. An extension homomorphism
from Aut(I) to Aut(J) is a group homomorphism A : Aut(l) — Aut(J) such
that for each f € Aut(I), the permutation h(f) is an extension of f, i.e., h(f)
agrees with f on |I].

We now call a determinate transformation @ constructive [15] if for every
input-output pair (I,J) of @, there exists an extension homomorphism from
Aut(I) to Aut(J). An example (due to Serge Abiteboul [3]) of a pair of instances
(I, J) that does not admit an extension homomorphism is shown in Figure 1.
As a consequence, no transformation that contains (I ,J) as an input-output
pair can be constructive.

3 Tree-structured transformations

Note that the output of the non-constructive example from Figure 1 has an in-
trinsic cyclicity to it. That observation, and the recent interest in tree-structured
data models such as XML, motivates us to study tree-structured transforma-
tions as a special class of determinate transformations. We first define this class
formally and then prove that tree-structured determinate transformations are
always constructive.

Definition 1 Let J be an instance of some database schema S, and let T € S
be a binary relation name. We call J tree-structured by T if J has the following
two properties:

1. Let V equal the set of objects occurring in T”, and consider this binary
relation T as a directed graph on vertex set V. Then T must look like a
set of rooted trees; more specifically, every verter must have at most one
incoming edge, and there must be no cycles.

2. For every relation name R € S different from T, every tuple in the relation
R’ must contain at most one occurrence of a vertex, i.e., an object from
V.

The first property in the above definition is, we hope, intuitive. The intuition
behind the second property is that the tuples in the relations other than 7' serve
as “annotations” or “labels” for the various tree vertices. We can formalize labels
as follows:

Definition 2 Let J be a database instance, tree-structured by T. Let x be a
vertex of J. A label of x is any triple of the form (R, i,t), where

e R is a relation name of J’s database schema, with R # T;
o tis a tuple in R’ in which = appears;

e i is the position in T where x appears; and

e i is the subtuple of t obtained by omitting x.

When two T-vertices have precisely the same set of labels, we call them
duplicates. We call J duplicate-free if there are no duplicate leafs in J, where
a leaf is a vertex without outgoing edges in T

Our central notion is now the following:

Definition 3 Let Q be a determinate transformation from Siy to Sous, and let
T be a binary relation name in Sout. We call @ tree-structured by T if for
every input-output pair (I,J) of Q, the output J is tree-structured by T, with
vertex set equal to |J| — |I| (i.e., the set of newly created objects), and J is also
duplicate-free.

The requirement that J be duplicate-free is mainly for technical reasons. A
transformation that is not duplicate-free can be easily made so by adding addi-
tional auxiliary nodes and labels.

The purpose of this note is to point out the following:

Theorem 1 FEvery tree-structured determinate transformation is constructive.

4 Proof

To prove the theorem, we recall some further definitions [15].

Let D be a subset of U. The set HF (D) of hereditarily finite sets (HF-sets)
with ur-elements in D [9] is the smallest set with the property that each finite
subset of D UHF(D) is itself an element of HF (D).

An HF-instance I is defined as an ordinary instance, the only difference
being that the domain |I| is a subset of U U HF(U) instead of U. The set of
all HF-instances of some database schema S is denoted by HFinst(S). If f is
a permutation of U and I is a HF-instance, then f(I) denotes the HF-instance
obtained from I by applying f pointwise to all objects appearing in I, even if
they appear within HF-sets.

For database schemas Sy, and Sout, an HF-transformation from Si, to Sout
is a partial function @ : inst(Sin) — HFinst(Sout) such that for each I for which
Q(I) is defined, we have

L [Q()| € [I| UHF(|I]); and
2. for any permutation f of U, also Q(f(I)) is defined, and equals f(Q(I)).

An ordinary instance I is said to be isomorphic to an HF-instance I’ if there
is a bijection f from |I| to |I’| such that f(I) = I’. Then a determinate trans-
formation) from S;, to Sous is said to be isomorphic to an HF-transformation
Q' from Sy, to Seut, if Q' is defined precisely on all instances I for which there is
an output instance J such that Q(I, J), and all such J are isomorphic to Q'(I).

We now recall the following connection between constructive transformations
and HF-transformations:

Proposition 1 ([15]) A determinate transformation is constructive if and only
if it is isomorphic to some HF-transformation.

Hence, in order to prove our theorem, it suffices to show that every tree-
structured transformation is isomorphic to some HF-transformation. Thereto,
let @ be a tree-structured transformation and let Q(I, J). Note that J is tree-
structured; we are going to define, for each vertex = of J, the stamp of x by
bottom-up induction as follows. Let L be the set of labels of x. Now if = is a
leaf, then the stamp of z is the ordered pair (L,(). If z is not a leaf, we may
assume by induction that the stamps for its children have already been defined;
let C be the set of all those children’s stamps. Then the stamp of x is the
ordered pair (L, C).

We now observe that we can consider a stamp to be a HF-set with ur-
elements in |I|. Indeed, ordered pairs, triples, and tuples, can be unambigu-
ously represented by HF sets [12]. The same is true of natural numbers, so
the numbers ¢ that occur in labels can also be represented. Finally, by num-
bering the relation names of Sy, we can represent the relation names that
occur in labels also by numbers. Now denote by J’, the HF-instance obtained
from J by replacing each vertex by its stamp, and define the HF-transformation

Q' by Q'(I) := J'. Since Q is determinate, Q' is well-defined, i.e., the def-
inition of Q’(I) does not depend on the chosen J. Moreover, @' is a valid
HF-transformation, by the genericity of Q. Furthermore, by definition, it is
clear that @ is isomorphic to Q'. We thus have our desired HF-transformation
and the theorem is proved.

References

1]
2]

3]

XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, April 2005.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

S. Abiteboul and P.C. Kanellakis. Object identity as a query language
primitive. Journal of the ACM, 45(5):798-842, 1998.

S. Abiteboul and V. Vianu. Procedural languages for database queries and
updates. Journal of Computer and System Sciences, 41(2):181-229, 1990.

S. Abiteboul and V. Vianu. Datalog extensions for database queries and
updates. Journal of Computer and System Sciences, 43(1):62-124, 1991.

A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In
Conference Record, 6th ACM Symposium on Principles of Programming
Languages, pages 110-120, 1979.

M. Andries and J. Paredaens. On instance-completeness of database query
languages involving object creation. Journal of Computer and System Sci-
ences, 52(2):357-373, 1996.

F. Bancilhon. On the completeness of query languages for relational data
bases. In Proceedings 7th Symposium on Mathematical Foundations of
Computer Science, volume 64 of Lecture Notes in Computer Science, pages
112-123. Springer-Verlag, 1978.

J. Barwise. Admissible Sets and Structures. Springer-Verlag, 1975.

A. Chandra and D. Harel. Computable queries for relational data bases.
Journal of Computer and System Sciences, 21(2):156-178, 1980.

M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht. A
graph-oriented object database model. IFEFE Transactions on Knowledge
and Data Engineering, 6(4), 1994.

P. Halmos. Naive Set Theory. Van Nostrand Reinhold, 1960.

R. Hull and C.K. Yap. The format model, a theory of database organiza-
tion. Journal of the ACM, 31(3):518-537, 1984.

[14] J. Paredaens. On the expressive power of the relational algebra. Informa-
tion Processing Letters, 7(2):107-111, 1978.

[15] J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On the
completeness of object-creating database transformation languages. Jour-
nal of the ACM, 44(2):272-319, 1997.

[16] Extensible markup language (XML) 1.0 (second edition). W3C Recom-
mendation 6 October 2000.

[17] XQuery 1.0: An XML query language. W3C Working Draft 20 December
2001.

