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Abstract

We investigate topological properties of subsets S of the real plane,
expressed by first-order logic sentences in the language of the reals aug-
mented with a binary relation symbol for S. Two sets are called topo-
logically elementary equivalent if they have the same such first-order
topological properties. The contribution of this paper is a natural
and effective characterization of topological elementary equivalence of
closed semi-algebraic sets.

1 Introduction and summary

By viewing subsets of the real plane R? as binary relations over the real
numbers, we can use first-order logic in the language of the reals, augmented
with a binary relation symbol S, to express properties of such sets. For
example, to express that a set S contains a straight line one would write the
sentence

(Ja)(3b)(Fe) (Vx)(Vy)(ax + by + ¢ =0 — S(x,y)), (%)
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or to express that the set contains a disk as a subset, one would write

(30) (Fyo) (3r # 0)(V2) (Vy) (& — z0)* + (y — y0)* < 1% = S(z,y)). (1)

In this paper, we are interested in such first-order properties that are
topological, in the sense that they are invariant under homeomorphisms of
R?. The sentence () above gives an example of this; a semi-algebraic set
contains a disk if and only if its topological interior is non-empty, and this is
a purely topological property of the set. In contrast, the sentence (x) is not
topological.

Often, one is only interested in a certain class C of sets; then a property
is called topological with respect to C if for any two sets A and B in C, if B
is the image of A under a homeomorphism of R?, then either A and B both
satisfy the property, or neither A nor B do.

There is not much understanding yet of the class of those first-order
sentences that are topological. One of the natural questions that arise in this
respect is that of understanding topological elementary equivalence. Two
sets from some class C are called topologically elementary equivalent (with
respect to C) if they satisfy precisely the same first-order properties that are
topological with respect to C.

In this paper, we focus on the class of semi-algebraic sets. A subset of
R? is called semi-algebraic if it is first-order definable in the structure of the
reals as a binary relation over the reals. We moreover restrict attention to
semi-algebraic sets that are closed in the ordinary topological sense.

We have been able to find a natural characterization of topological ele-
mentary equivalence of closed semi-algebraic sets in R?. Our characterization
is based on a known topological property of semi-algebraic sets [5], namely
that locally around each point they are “conical”. We partition the points
in the semi-algebraic set according to the types of their cones. Roughly, our
characterization then says that two closed semi-algebraic are topologically el-
ementary equivalent if and only if the cardinalities of the equivalence classes
of their partitions match.

A corollary of our characterization is that topological elementary equiva-
lence is a decidable property of closed semi-algebraic sets. Another corollary
is that topological elementary equivalence is the same as topological elemen-
tary equivalence with respect to first-order sentences in which no arithmetic,
but the order predicate, is allowed.



Our proof of the characterization involves various techniques. For the
if-direction we show that there is a topological first-order sentence that ex-
presses that the cone around a point has some specific type. For the only-if
direction we show that two closed semi-algebraic sets with matching equiv-
alence classes can be transformed into one and the same “canonical” semi-
algebraic set. The transformation rules used in this transformation are shown
to produce topologically elementary equivalent semi-algebraic sets. The proof
of the latter uses a recent collapse theorem on the expressiveness of first-order
logic over the reals by Benedikt, Dong, Libkin and Wong [2], and involves
reduction techniques inspired by those introduced by Grumbach and Su [9].

This paper is organized as follows. Definitions are given in Section 2.
The partition of a closed semi-algebraic set according to the cone types of
its points is described in Section 3. The main results are formulated in
Section 4. The proof of the main result is given in Section 5. Two corollaries
are presented in Sections 6. Concluding remarks are given in Section 7.

2 Preliminaries

In this section, we give the basic definitions we will be using concerning
semi-algebraic sets and topological first-order sentences.

Closed semi-algebraic sets. The standard structure (R,0,1, +, x, <) of
the real numbers will be denoted simply by R.} A semi-algebraic set in R?
is a subset of R? that is first-order definable in R viewed as a binary relation
over the reals. Henceforth the adjective ‘in R?’ will be implicitly understood
and therefore omitted.

First-order logic. We will work in the language L = (0,1, +, x, <, S),
being the expansion of the language of the reals with the binary relation
symbol S.2 A subset A of R? can be naturally viewed as an L-structure,

IThe main result of this paper remains valid if constants for all real numbers are added
to the language.

2In some proofs we also use formulas in the language of the reals expanded with two ad-
ditional unary relation symbols, as well as formulas in restrictions of the previous languages
where 0, 1,4, and x are not used. In all these cases, similar definitions and notations are
used.



namely the expansion (R, A) of R with A. Hence, the truth of an L-sentence
©(S) in (R, A) will simply be denoted by A = (S). The sentences (x)
and (f) from the Introduction are examples of L-sentences. Note that, since
semi-algebraic sets are first-order definable in R, the question of A = ¢(95),
given ¢(S) and a definition of a semi-algebraic set A, is effectively decidable,
because the first-order theory of R is decidable [17, 4, 15].

Homeomorphism-invariance and equivalence. We call two subsets A
and B of R? homeomorphic if there is a homeomorphism h of R? such
that h(A) = B. A sentence ¢(S) is called invariant under homeomor-
phisms (abbreviated as H-invariant) if for any two homeomorphic semi-
algebraic sets A and B, (A E ¢(S)) < (B | ¢(S)). Finally, two subsets A
and B of R? are called H-equivalent if for each H-invariant sentence ¢(S),
(A 0(S)) & (B E «(5))

Of course, homeomorphic semi-algebraic sets are also H-equivalent, but
the converse does not hold. For example, we will see later that if A consists
of a single closed disk, and B consists of two separate closed disks, then A
and B are H-equivalent.

Isotopy-invariance and equivalence. It is known (e.g., [6, 13, 16]) that
any orientation-preserving homeomorphism of R? is isotopic to the identity
mapping of R?. We will therefore, for reasons of convenience, refer to an
orientation-preserving homeomorphism of R? as an isotopy of R?. The pro-
totypical example of a homeomorphism that is not an isotopy is a reflection.
As a matter of fact, every homeomorphism of R? either is an isotopy, or is
isotopic to a reflection.

We call two subsets A and B of R? isotopic if there is an isotopy h of
R? such that h(A) = B. Hence, when A and B are homeomorphic, either
A is actually isotopic to B, or A is isotopic to the mirror image of B. For
example, Figure 1 shows two (semi-algebraic) sets that are mirror-images of
each other but that are not isotopic. They can be thought of as a left hand
and a right hand, where the arm and the thumb have thickness and the wrist
and the other fingers have no thickness.

A sentence ¢(S) is called invariant under isotopies (abbreviated as Z-
invariant) if for any two isotopic semi-algebraic sets A and B, (A | ¢(S)) <
(B | ¢(9)). Finally, two subsets A and B of R? are called Z-equivalent if



Figure 1: Two homeomorphic, but not isotopic semi-algebraic sets.

for each Z-invariant sentence p(S), (A E ¢(5)) < (B E ¢(9)).

Of course, isotopic semi-algebraic sets are Z-equivalent, but, as mentioned
above, the converse is not true. Note that H-invariance implies Z-invariance,
and that Z-equivalence implies H-equivalence.

Examples. The sentence () from the Introduction is a typical example of
a non-topological sentence: it is neither Z-invariant nor H-invariant.

The sentence (T) from the Introduction, expressing that the topological
interior is not empty, is H-invariant (and hence also Z-invariant), and so is

(Fr) (Vo) (Vy) (S(x,y) = 2 +y* < 72),
expressing that the set is bounded, as well as

(3z)(3y) (S(z,y) A (3 # 0)
V) (V) (z = 2')° + (y —¢)* <2 A S, y) = (@ =z ny =),

expressing that the set contains isolated points.

Consider a sentence expressing that for each point p in the set all suffi-
ciently small circles around p intersect the set in one or two points only. Such
a sentence is true in a semi-algebraic set exactly when the set consists exclu-
sively of lines that do not intersect. This is not true for arbitrary subsets of
R?: it is possible to homeomorphically distort a straight line segment so that
sufficiently small circles around a certain point intersect the set infinitely
often. However, since our definition of H-invariance restricts attention to
semi-algebraic sets, this sentence is H-invariant.

Another natural topological property of sets one might want to express
is topological connectivity; however, this property is not first-order, not even
when restricting attention to semi-algebraic sets [2, 9].



3 The point-structure of a closed semi-algebraic
set in R?

In this section, we define the “point-structure” of a closed semi-algebraic set
in R?. This definition is based on a known topological property of semi-
algebraic sets, namely that locally around each point they are conical [3, 5].

More precisely, if we denote the closed ball in R? with center p and
radius € (¢ > 0) by B?(p,e) and its bordering sphere by S'(p,s), Theorem
9.3.5 of [3], specialized to R?, reads:

Property 1 Let A be a semi-algebraic set in R?. For every non-isolated
point p of A there exists an € > 0 and an homeomorphism h of B*(p, <) such
that

(i) d(h(q),p) = d(q,p) for each q € B*(p,¢),?

(ii) h restricted to S'(p,€) is the identity,

(iii) h(AN B?(p,e)) is a cone with top p and base AN S'(p,e).

Also for every isolated point p of a semi-algebraic set, there exists an
e > 0 such that B*(p,e) N A = {p}, so in this case we could regard it to be
locally homeomorphic to a cone with an empty base.

If Ais a closed semi-algebraic subset of R?, the set AN S'(p,e) from
(iii) of Property 1 is a closed semi-algebraic subset of S*(p, ). Since a semi-
algebraic set in R? is the disjoint union of a finite number of semi-algebraic
sets that are homeomorphic to the open unit disk, to the open unit interval
or to a point (see Theorem 2.3.6 in [3]), AN S!(p,e) has one of the following
forms:

(1) the complete circle S*(p, ),

(2) a finite number of closed arc segments and points on S*(p, £), or

(3) empty.

3d(p,q) denotes the Euclidean distance between the points p and q.



Figure 2: A closed semi-algebraic set A and the cone of its points p repre-
sented by the circular list (LLRLR).

Case (1) corresponds to interior points of A, case (3) to isolated points
of A. We use the following finite representation for these subsets of circles.
A complete circle S'(p,¢) is represent by the letter F' (for “full”). For (2),
we use a circular list over the alphabet {L, R} which describes the subset of
S'(p,e) in a complete clockwise turn by using an L for a point (this point
corresponds to a “line” in the semi-algebraic set) and an R for a closed arc
segment (an arc segment corresponds to a “region” in the semi-algebraic set)
starting from an arbitrary point outside the subset to be described. For the
case of an empty set, we use the empty circular list () to represent it.

Property 1 is illustrated in Figure 2. There, the cone of the point p in A
has the representation (LLRLR).

The above discussion gives rise to the following definition of “the cone”
of a point in closed semi-algebraic set in R?.

Definition 1 Let A be a closed semi-algebraic set in R? and let p be a
point of A. We define the cone of p in A to be the representation of any set
AN S (p,e), where ¢ satisfies the conditions of Property 1.

A semi-algebraic set A in R? also behaves conically towards infinity. To
see this, we embed R? as the zy-plane in R?* and map A from this embedded
plane onto the sphere S%((0,0,1),1), that rests on the zy-plane, in the direc-
tion of its north pole (0,0, 2). If we then add the north pole to this set as the
point at infinity of the semi-algebraic set, rotate the sphere such that (0,0, 2)
becomes the origin, and stereographically project back on the xy-plane, then



we can look at the cone of (0,0) in the resulting semi-algebraic set as the
cone of the point at infinity in A.

This implies that for a semi-algebraic set A, there exists an € > 0 such
that {(z,y) | 22 + y*> > &2} N A is homeomorphic to {(Az,\y) | (z,y) €
S'((0,0),e) NAAX > 1}. We can indeed view the latter set as the cone with
top oo and base S*((0,0),2) N A. Remark that the cone of co in A is () if
and only if A is a bounded subset of R2.

More formally, consider the embedding e of R? in R? that maps (z,y) to
(x,,0). Let o be the reflection of R? defined by (x,y, z) — (242, y+2,2—2).
Finally, let i : e(R?) U {oo} — S2((0,0,1),1) be the homeomorphism of
that maps the Alexandrov one-point compactification of e(R?) stereographi-
cally onto the sphere S?((0,0,1),1), i.e., h(z,y,0) = 4+$;1+y2 (z,y, x2;ry2) and
h(co) = (0,0, 2).

Definition 2 Let A be a closed semi-algebraic set in R%. We define the cone
of oo in A to be the cone of the point (0,0) in the set e~ (A~ (c({(0,0,2)}U

h(e(A)))))-
We now prove that Definitions 1 and 2 are sound.

Proposition 1 Let A be a closed semi-algebraic set in R? and let p be a
point of A.

(a) The notion of the cone of p in A is well-defined.

(b) The notion of the cone of oo in A is well-defined.

Proof. (b) The mapping e, the reflection o and the homeomorphism h are
semi-algebraic functions. e (A~ (a({(0,0,2)}Uh(e(A)))\{oc})) is therefore
a semi-algebraic subset of R? (see, e.g., [3]). It is also closed. This reduces
the proof of Case (b) to that of Case (a).

(a) Let p be a point of the closed semi-algebraic set A. If p is an isolated
point of A, this is trivial.

Assume that p is not an isolated point of A. We have to prove that any two
values €1 and e, that satisfy the conditions of Property 1 give rise to the same
finite representation. Let £; and £, be such values and let h; and hy be cor-
responding homeomorphisms of which Property 1 guarantees the existence.

8



Assume ¢; < &5. Because of condition (i) of Property 1, ho(A NS (p, 1)) is
the intersection of S'(p,e;) and the cone hy(A N B%(p,3)). The latter has
AN S (p,ey) as its base. Therefore, the homothety with center p and factor
g2/, maps ho(AN S'(p,e1)) to AN S'(p,e,). Homothetic subsets of circles
are clearly represented in the same way. Condition (¢) of Property 1 implies
ha(St(p,e1)) = SY(p,e1). So, hy induces an homeomorphism of S'(p,é1).
To complete the proof, it suffices to show that h, is orientation-preserving.
This follows directly from a classical result by J.W. Alexander (see, e.g., [13],
page 81): A homeomorphism of B?(p,ss) that is the identity on S'(p,e,) is
isotopic to the identity mapping, and therefore orientation-preserving. [ |

Let C be the set of all possible cones. We define:

Definition 3 Let A be a closed semi-algebraic set in R2. The point-structure
of A is the function IT(A) from A U {oco} to C that maps each element to its
cone.

The following are topological properties of closed semi-algebraic sets.
Property 2 Let A be a closed semi-algebraic set in R2.

(i) TI(A)~" is empty on all but a finite number of cones,
(ii) TI(A)~" is infinite or empty for the cones (R), (LL), and F,

(1ii) the number of points in A with a cone different from (R), (LL), or F
s finite.

Proof. The semi-algebraic sets depicted in Figure 1 has infinitely many
points with cone (R), (LL), and F. This proves part of (ii). Then, clearly,
(i) and (ii) follow from (iii). To prove (iii), we consider a Nash-stratification
(see, e.g., Chapter 9 of [3]) A = U, A;, where each A; is diffeomorphic to a
point, to ]0, 1] or to ]0, 1[?, and such that A; N'A; # 0 for i # j implies that
A; C 4; and dim(4;) < dim(4,).* All points in a 1-dimensional A; in this
stratification therefore have

44 is the topological closure of A. The dimension of a set diffeomorphic to ]0, 1[" is n
(see [3]).



~ @
Ma(p) = (R)  Ma(p) = (LL)  TLi(p)=F

Figure 3: Regular points of a closed semi-algebraic set.

1. cone (LL) (if A; is not adherent to a 2-dimensional stratum), or
2. cone (R) (if A; is adherent to one 2-dimensional stratum), or

3. cone F' (if A; is adherent to two 2-dimensional strata).

Because the points in a 2-dimensional stratum also have cone F', removing
from A the points with cone F', (LL) and (R) results in a subset of the 0-
dimensional strata of A. There are finitely many 0-dimensional strata. [ |

Further on, we will refer to the points with a cone different from (R),
(LL), or F as the singular points of the semi-algebraic set. (iii) of Property 2
shows that a closed semi-algebraic set has only a finite number of singular
points. Non-singular points are also called regular points (for an illustration
see Figure 3). (ii) of Property 2 shows that there are infinitely many regular
points if there are any.

Definition 4 Let A and B be closed semi-algebraic sets in R?. We say that
I1(A) is isomorphic to II(B) (denoted by IT(A) =2 II(B)) if there is a bijection
f from AU {oo} to BU {oo} with f(co) = oo, such that II(A) =II(B) o f.
4 The main results

The main result of this paper is a characterization of Z-equivalence in terms
of point-structure isomorphism:

Theorem 1 Let A and B be closed semi-algebraic sets in R?. A and B are
T-equivalent if and only if TI(A) = TI(B).

10



The proof will be given in the next section. A corollary of the theorem is
a similar characterization of H-equivalence:

Theorem 2 Let A and B be closed semi-algebraic sets in R? and let o be
some fized reflection of R®. A and B are H-equivalent if and only if TI(A) =
[I(B) or II(A) =2 II(o(B)).

Proof of Theorem 2. Assuming Theorem 1, we have to prove that A
and B are H-equivalent if and only if A and B are Z-equivalent or A and
o(B) are Z-equivalent. The if-implication follows from the fact that every
homeomorphism of R? is either an isotopy or isotopic to o [6, 16].

For the only-if-implication, assume on the contrary that A and B are
H-equivalent and that there exist Z-invariant sentences ¢(S) and ¢'(S) such
that A = ¢(S), B = ¢(S), A E ¢'(S), and o(B) [~ ¢'(S). Consider the
sentence ¢(S) defined by

?(S) = (0(5) V&' (a(9))) A (£'(S) V e(a(9))).

It can be easily shown that a sentence is H-invariant if and only if it is
invariant under o and it is Z-invariant. Clearly, @(S) is invariant under o.
It can also be easily verified that it is Z-invariant. So, ¢(S) is H-invariant,
and A = ¢(S) but B £ ¢(S). This contradicts the assumption. |

Examples.

e One disk and two separate disks have isomorphic point-structures: the
points on the border have (R) as cone, and the points in the interior
have F' as cone. As a consequence of Theorem 1, they are Z-equivalent,
hence also H-equivalent. This example shows that topological connec-
tivity of semi-algebraic sets is not expressible by a first-order sentence.

e Although all points on the unit circle and all points on the x-axis have
the same cone (namely, (LL)), these semi-algebraic sets do not have
isomorphic point-structures. Indeed, in the former set the cone of oo
is () (in other words, this semi-algebraic set is bounded), while in the
latter set the cone of 0o is (LL).

11



Figure 4: Two closed semi-algebraic sets that are H-equivalent but not Z-
equivalent.

e Figure 4 shows two semi-algebraic sets that are not Z-equivalent. In-
deed, the cone of the center point in the left set is (LLLRLLRLR),
while that on the right is (LLLRLRLLR). The two semi-algebraic sets
are of course H-equivalent since they are mirror images of each other.
We point out that it is possible that two mirror images are still Z-
equivalent; for instance, the two semi-algebraic sets shown in Figure 1
have isomorphic point-structures.

In classical logic, if A and A" are elementary equivalent and B and B’ are
elementary equivalent, then the disjoint union of A and B and the disjoint
union of A" and B’ are also elementary equivalent. The following corollary
shows that this property carries only partially over to our setting.

Corollary 1 Let A, A', B and B' be closed semi-algebraic sets in R? such
that ANB=A"NnB =0.

(i) If A and A" are Z-equivalent and B and B' are T-equivalent, then AUA’
and B U B’ are T-equivalent.

(i1) If A and A" are H-equivalent and B and B’ are H-equivalent then AUA’
and B U B' are not necessarily H-equivalent.

Proof. Theorem 1 implies (i). For (ii), take A, A’, and B to be the semi-

algebraic set on the left of Figure 4, and take B’ to be the one on the right.
|

5 The proof

In this section we give the proof of Theorem 1.

12



b —— b [

Figure 5: The transformation rules: (a) strip-cut, (b) strip-paste, (c) line-
cut&paste.

Transformation rules. The crucial tool in the proof consists of the fol-
lowing three transformations rules that locally change closed semi-algebraic
sets:

Strip-cut: The strip-cut transformation, shown in Figure 5(a), locally cuts
a strip in the semi-algebraic set in two.

Strip-paste: The strip-paste transformation, shown in Figure 5(b), is the
inverse of strip-cut.

Line-cut&paste: The line-cutépaste transformation, shown in Figure 5(c),
locally cuts two lines in the semi-algebraic set and connects the corre-
sponding loose ends. An isolated part D of the semi-algebraic set may
be present between the lines, which will come free after the cut&paste.

Note that the line-cut&paste transformation is its own inverse.
A fundamental property of the transformation rules is:

Proposition 2 Let A and B be closed semi-algebraic sets in R?. If B is
obtained from A by a strip-cut, a strip-paste, or a line-cutépaste transfor-
mation, then A and B are I-equivalent.

Proposition 2 is proven in a number of steps:

13
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Figure 6: Weak forms of the three transformation rules: (a) weak strip-cut,
(b) weak strip-paste, (c) weak line-cut, (d) weak line-paste.

1. First, a variation of Proposition 2 is proven for weak versions of the
three transformation rules (Lemma 1). These weak transformations are
illustrated in Figure 6. The difference between the weak strip-cut and
weak strip-paste (arrows (a) and (b) in Figure 6) and the strip-cut and
strip-paste is a hole in one of the strips. Line-cut&paste is split in a
weak line-cut (arrow (c) in Figure 6) and a weak line-paste (arrow (d)
in Figure 6). Here the difference is an additional circle.

2. The gap between the weak rules and the original rules is then closed
via the notions of 2-reqular and I1-regular semi-algebraic set (Lemmas 2
and 3).

Lemma 1 Let A and B be closed semi-algebraic sets in R?. If B is obtained
from A by a weak transformation rule, then A and B are I-equivalent.

Proof. We first prove the lemma for weak strip-cut and its inverse, weak
strip-paste.

Assume, for the sake of contradiction, that there exist closed semi-algebraic
sets A and B that differ by one weak strip-cut transformation but that are

14



Figure 7: Construction of D(Ry, Rs) in the rectangular area c.

not Z-equivalent. So there exists an Z-invariant first-order sentence ¢(S)
such that A = ¢(S) and B £ ¢(S). Consider the decision problem MA-
JORITY about two finite sets of reals Ry and Ry: MAJORITY (R, Ry) is true
if and only if Ry C Ry and |R;| < 2|Rs|. We will prove the existence of a
formula ¥ 4(x,y, Ry, Ry) in the language of the reals with two unary relation
symbols, R, and Ry, and two free variables, x and y, that defines a subset
DA(Ry, Ry) = {(z,y) | Ya(x,y, Ri, R2)} of R? such that Dy (Ry, Ry) = ¢(9)
if and only if MAJORITY(R;, Ry) is true. This yields the desired contradic-
tion since a collapse theorem on the expressiveness of first-order logic over
the reals by Benedikt, Dong, Libkin and Wong shows that MAJORITY is
not expressible in this language [2]. The reduction technique we thus use is
inspired by work of Grumbach and Su [9].

Obviously, the part Ry C R, can be tested in first-order logic. For given
Ry = {ry,...,m} and Ry = {a1,...,ap} with 0 < r < --- < r, and
0<a <--+ < apy, we construct within the fixed rectangular part o of R2,
where the weak strip-cut takes place, a closed semi-algebraic set D(R;, Rs)

15



consisting of interconnected strips.

This construction is similar to constructions by Grumbach and Su (in [9])
and is illustrated in Figure 7 for n = 6 and m = 4. The construction is as
follows. Take a rectangular subarea o’ of a. Let (by, sg) be the left bottom
corner of o/ and let h and w be its height and width. Then sets R} =
{s0,.--,sn} and R, = {bo, b1, ..., bm,bmi1,--.,bom}, with s; = so + r;h/rp
(0 < i < n), by =by+ aw/2a, and by; = b+ w/2 (0 < i < m) are
constructed. Then, the following closed strips of D(R;, Ry) are constructed:

1. the filled convex quadrangle with corners (b;,s;), ((b; + biy1)/2,s;),
(bi+1,8j+1), ((bi+1 + bi+2)/2,8j+1) for0<i<2m—1and 0 < ] <n
and for i = 7 =0,

2. the filled convex quadrangle with corners (bapm—1, 5;), ((bam—1+bam)/2, s;),
(b2m, $j+1), (bam, (5 + $j11)/2) for 0 < j <m,

3. the filled convex quadrangle with corners (bo, (s; + $j4+1)/2), ((b1 +
bg)/2, Sj+2), (bl, Sj+2), (bg, Sj+1) for 0 < ] <n-—1.

Finally, a number of additional closed strips are added in the area o'\’ (as
illustrated in Figure 7) to complete the construction of D(R;, Ry). Remark
that the complete construction of D(R;, Ry), as described above, starting
from Ry and R, can be expressed by a formula in the language of the reals
with two unary relation symbols to represent the sets R, and Rs.

We then glue D(R;, R2) to the part of A outside the strip-cut area c.
In this part A and B are identical. We thus obtain a semi-algebraic set
D4(Ry, R), which can be described by a formula over R; and R,. The
construction is such that D(Ry, Ry) is isotopic to the left part of Figure 6(a)
if MAJORITY(Ry, Ry) is true, and isotopic to the right part of Figure 6(a)
otherwise. Hence, in case of majority D4(R;, Ry) is isotopic to A, and in
the other case it is isotopic to B. Since ¢(S) is Z-invariant and distinguishes
between A and B, can use ¢(S) to express MAJORITY.

For the weak line-cut and the weak line-paste the lemma can be proven
with the same technique. The border of D(R;, Ry) is used, rather then
D(Ry, Ry) itself. ]

Definition 5 A bounded semi-algebraic set in R? is called 2-reqular if is
not empty and all of its points have either F' or (R) as cone. A bounded
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semi-algebraic set in R? is called 1-regular if it is not empty and all of its
points have (LL) as cone.

Lemma 2 Let A and B be closed semi-algebraic sets in R? and let O be an
open disk in R?.

1. If AN O is 2-regular, then replacing AN O in O by any other 2-regular
semi-algebraic set, yields a semi-algebraic set that is T-equivalent to A.

2. If ANO is 1-reqular, then replacing AN O in O by any other 1-regular
semi-algebraic set, yields a semi-algebraic set that is T-equivalent to A.

Proof. We only give the proof for the 2-regular case; the 1-regular case is
analogous.

For any 2-regular semi-algebraic set B, define v(B) to be the number of
connected components of B minus the number of holes in B. It can be easily
shown that B can be transformed by a finite number of applications of weak
strip-cut and weak strip-paste either to the disjoint union of v(B) disks, if
v(B) > 0, or to one disk with 1 —(B) holes, if y(B) < 0. This is illustrated
in Figure 8 (a) for v =1 and in Figure 8 (b) for v = —1.

Since weak strip-cut and weak strip-paste preserve ~, the lemma thus
follows from Lemma 1, when we restrict attention to replacing A N O by a
set with the same value for ~.

Now suppose, for the sake of contradiction, there are 2-regular semi-
algebraic sets B; and By with different values for v for which the lemma
does not hold. In other words, there exists an Z-invariant sentence ¢(S)
such that A(B;) = ¢(S) and A(B2) [~ ¢(S), where A(B) denotes the semi-
algebraic set obtained from A by replacing ANO by B. Define the following
subset of Z (the integers):

Z2 ={y(B) | (R, A(B)) E o(S)}.

If we can show that Z;‘ =0 or Z:} = Z, this will contradict the assumption
that v(B;) € Z, and v(By) ¢ Z and complete the proof.

Thereto, for any set V' of integers, consider the decision problem CARDy
about two finite sets of reals Ry and Ry: CARDy (Ry, Ry) is true if and only
if |[Ry| — |Rs| € V.
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Figure 8: Transformation of (a) a set with v = 1 to a disk, and (b) a set
with v = —1 to a disk with two holes.

A collapse theorem of Benedikt, Dong, Libkin and Wong implies that if
CARDy is expressible by a sentence in language of the reals, it is express-
ible by a sentence ¢y (R, Ry) in the restricted language (<, Ry, Rs) (i.e., it
is expressible without using the symbols 0,1, 4+ and x) and in which the
quantifiers range over the elements of Ry U Ry [2].

By means of an Ehrenfeucht-Fraissé game argument [7], we will show that
this implies V =0 or V = Z.

Suppose, for the sake of contradiction, that there exists a set V, and
integers e and d such that e ¢ V and d € V' and such that CARDy (R, R»)
is expressible by a sentence 1y (Ry, Ry). We will give the proof for the case
0 < d < e. Other cases are proven similarly.

Let n be the quantifier depth of 1)y ( Ry, Ry). Consider the finite structures
A, and B, with A,(R1) = {a1,..., a2}, A,(Ry) = {b1,...,bon, ... ban .},
B,(Ri) = {al,...,a}, Ba(Ry) = {bf,... bha,..., 050 4} Assume that
these sets are mutually disjoint and that a1 < -+ < a, < by < -+ < bonye
and a} < -+ <a;, <b) <+ <Dbhyuy Clearly, ¥y (Ry, Ry) evaluates to true
on B, and to false on A,.
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Figure 9: Construction of D(Ry, Ry) in O for Ry = {rg,...,r5} and Ry =
{80, Ceey 84}.

It is well-known that player II can win the n-round game on two ordered
structures of size larger than 2" (see e.g. [10]). Therefore A, (R;) and B, (R;)
are indistinguishable by a formula of quantifier depth n. The same holds for
A, (R2) and B, (Ry) and for their disjoint unions.

To complete the proof of this lemma, it remains to show that CARD 74 is
expressible in the language of the reals. This can be proven by a technique
similar to the one of the proof of Lemma 1. Given R; and R, we construct
within O a 2-regular semi-algebraic set D(Ry, Ry) (as illustrated in Figure 9)
such that D(Ri, ) = ¢(S5) if and only if CARDza holds. We omit the
details.

The closed semi-algebraic set A(D(Ry, Ry)) can be described by a formula
over Ry and Ry. The construction is such that v(D(Ry, Ry)) = |R1| — |Ral.
Hence, since we already know that A(D(Ry, Ry)) is Z-equivalent to A(B)
for any other 2-regular set B with v(B) = |R;| — |R2|, we can use ¢(S) on
A(D(R, Rp)) to decide CARD za(Ry, Ry). |

Lemma 3 Let A be a closed semi-algebraic set and O be an open disk in R2.
If ANO consists of a part D surrounded by a circle, then replacing ANO in
O by a circle and D outside this circle, yields a set that is T-equivalent to A.
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Figure 10: Illustration of the proof of Lemma 3.

Proof. Suppose, for the sake of contradiction, that there is a set A violating
the lemma. Let A’ be the set obtained from A by moving D outside the circle.
Denote this circle by C'. Since A violates the lemma there is an Z-invariant
sentence p(S) such that A = ¢(S) and A" |~ ¢(5).

Consider the decision problem PARITY about a finite set of reals R:
PARITY(R) is true if and only if |R| is even. We will prove the existence
of a formula 14(z,y, R) in the language of the reals with one unary re-
lation symbol, R, and two free variables, x and y, that defines a subset
DA(R) = {(z,y) | Ya(z,y, R, Ry)} of R? such that D4(R) E ¢(S) if and
only if PARITY(R) is true. This yields the desired contradiction, since the
collapse theorem by Benedikt et al. mentioned earlier shows that PARITY is
not expressible in this language. The construction here is quite different from
the ones used in the proofs of Lemmas 1 and 2. It is illustrated in Figure 10.

Let R = {ry,...,rp}, with 1/4 = r; < --- < 1, < 1 (without loss of
generality). Let p be a point in O and let € be such that B?*(p,e) C O. We
construct a closed semi-algebraic set D4(R) which is the disjoint union of
the following parts:

e for each i = 1,...,n, the circle with center p and radius r;/e;

e a semi-algebraic isotopic deformation of A such that D fits in the inner
circle and the part of A outside O is outside B?(p,¢), from which we
remove the image of the circle C.
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This semi-algebraic set can be described by a first-order formula over R.
Obviously, within the disk B?(p,¢) in D4(R), D is surrounded by n circles.

By going from the outside to the inside, we can repeatedly cut pairs of
circles using the weak line-cut transformation. Every cut produces a pair of
nested circles. By an isotopy we can bring these nested circles into one open
disk O" in R2. We distinguish two possibilities:

e If n is even, this cutting process eventually leaves D unsurrounded. By
Lemma 2 we can replace the nested circles in O' by a single circle and
we obtain a semi-algebraic set isotopic to A’

e If n is odd, this leaves D surrounded by a single circle. We now replace
the nested circles in O’ by one single pair of nested circles, and apply one

final weak line-paste operation to obtain a semi-algebraic set isotopic
to A.

We have thus shown that if n is even, D4(R) is Z-equivalent to A’, and if n
is odd, B(R, A) is Z-equivalent to A. Hence, ¢(S) can be used on D4(R) to
decide PARITY(R).

|

We can now give the

Proof of Proposition 2. We only give the proof for the line-cut&paste
transformation. The proof for the strip-cut and the strip-paste transforma-
tion is similar. The proof is illustrated in Figure 11. First, the semi-algebraic
set is isotopically deformed. The weak line-cut&past is applied (second ar-
row). Third, Lemma 3 is applied. Fourth, Lemma 2 is applied. The last
arrow in the figure comprises three applications of weak line-cut&paste. B

The transformation process. Having our tools, as furnished by Propo-
sition 2, in place, we now show:

Proposition 3 Let A and B be closed semi-algebraic sets in R? such that
[I(A) = II(B). Then A and B can be transformed, by a finite sequence of
strip-cut, strip-paste and line-cutépaste transformations and isotopies, into
one and the same semi-algebraic set.
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Figure 11: The proof of the line-cut&paste transformation.

Proof. Since II(A) = II(B), there is a bijection f from AU{oco} to BU{o0}
that maps points to points with the same cone. In particular, f maps the
singular points in A to the singular points in B with matching cones.

Let Sing(A) be the set of singular points of A together with the point at
infinity, co. For each pin Sing(A) and its corresponding point f(p) in Sing(B)
we proceed as follows. From each R, i.e., each region, in the cone of p we cut
out a bounded lobe coming out of p, using the strip-cut transformation. If
at least one L appears in the cone of p, we choose one such L in the cone of
p, i.e. a line [ ending in p, and then use line-cut&paste to connect [ and the
next line (in the clockwise order around p) into a loop starting and ending
in p. We continue this process in the clockwise order around p until all lines,
or all lines but one (in case their number is odd), form loops. We hereby
make sure that no isolated parts of the semi-algebraic set become trapped in
these loops. We perform the same transformations around f(p) in B, starting
from a line I that corresponds to the same L in the cone of f(p) in B. If the
number of lines in the point p, and thus in f(p), is even, we obtain a “flower”
around p and f(p). If the number is odd, we obtain a “flower with a stem”.
This stem is necessarily connected to another flower.

As “residual material” of the process we get isolated, bounded, regular
parts. This material can be transformed to a single closed disk, a single
circle, or the disjoint union of a closed disk and a circle, depending on which
cones appear in the residue. If a flower with points of type (LL) is present,
the circle can even be absorbed by this flower, and similarly for the disk.
In case no L appears in the cone of all singular points, the circle cannot be
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absorbed. In this case, we can make sure that no part of the semi-algebraic
set is located in the interior of the circle (using Lemma 3).

After this process, all connected components are situated in the same
area of R%.

The only way in which the resulting semi-algebraic sets can still differ
is that stems can connect different flowers. We can interchange stems by
isotopically bringing them into a parallel position (this is possible since all
stems are in the same area) and by then using a line-cut&paste transforma-
tion. This finally yields isotopic semi-algebraic sets.

An illustration of the transformation process is given in Figure 12. [ |

We are finally ready for:

Proof of Theorem 1. The if-implication (IT(A) = TI(B) implies that A
and B are Z-equivalent) is immediate from Propositions 2 and 3.

For the only-if implication, assume IT(A) 2 TI(B). Then there exists
at least one cone for which A has a different number of points than B. It
is therefore sufficient to show that there exists a first-order sentence that
expresses that a closed semi-agebraic set has exactly n points having some
fixed cone ¢. Since the cone of a point in a semi-algebraic set is invariant
under isotopies (this can be shown using the techniques used in the proof
of Proposition 1), such a sentence is certainly Z-invariant. It clearly suffices
to show that there exists a formula ¢.(z,y, S) that expresses that the point
(x,y) has cone c in S.

If ¢ = F, the wanted sentence is (Ic # 0)(Va') (V') ((z' —2)? + (v —y)% <
e? — S(a',y")). If ¢ = (), this sentence is (Je # 0)(Vaz')(Vy')(0 < (2’ — z)% +
(Y —y)? <e® = =S8, y)).

For other cones, the definition of the desired formula is based on the
following topological property of semi-algebraic sets in R2. This property
is a consequence of the property that semi-algebraic sets are locally conical
around each point, including co. The proof of the lemma follows directly
from Property 1 and the proof of Proposition 1.

Lemma 4 Let p be a point of a closed semi-algebraic set in R%. There exists
an g9 > 0 such that for every e, with 0 < £ < €y, the cone with top p and base
S'(p,e) N A is isotopic to the one with base S'(p,e0) N A. There also exists
an g9 > 0 such that for every e, with € > ey, the cone with top (0,0) and
base S1((0,0),e) N A is isotopic to the one with base S*((0,0),59) NA. ®
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Figure 12: Two semi-algebraic sets with isomorphic point-structures and
their transformation into the same set. After the first step, lobes have been
cut out. After the second step, loops have been formed. In the third step,

stems are interchanged in the bottom-right set to obtain a semi-algebraic set
isotopic to the bottom-left one.
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Figure 13: The intersection of a closed semi-algebraic set with a circle.

By this lemma, it is sufficient to show that there is a sentence ¢.(z, y, €, S)
that expresses that the circle with radius € and center (z,y) has an intersec-
tion with the semi-algebraic set that corresponds to the cone c. The desired
formula is then, as a consequence of the previous lemma, (Jg0)(Ve)(0 < & <
g0 = Yz, y,¢,9)).

If the intersection is not empty or the complete circle it is a finite union
of points and closed arc segments, as already explained in Section 3. Such
an intersection is illustrated in Figure 13. The intersection corresponds to a
non-empty circular list (aq - - - «,,) with «; € {L, R}. o; = R corresponds to
an arc-segment on the circle that is completely determined by its end points
a; and b; (b; comes after a; in a clockwise sense). «; = L is a single point
a; = b; on the circle.

The following sentence then describes the intersection of the set S, with
the circle S*((z,y),e) upto an isotopy of S*((x,y),¢):

(Ja1z) (3aiy) (Fb12) (3b1y) -+ - (3anz) (any) (Fbnz ) (Fbny)
(V") (Fy) (' — )2 + (v — y)> =
((( ?:1 Between(w,y),s (1‘,7 y/, Qg iy, bixa bzy)) <~ S(IL", yl))/\
(Viz, Between g, (@', ¥, biz, biys Q((i41) mod n)as A((i+1) mod n)y))

o =S y))),

where Between , ) - (2', ¥, 21, y1, 2, y2) abbreviates the formula that expresses
for points (2',y'), (z1,y1) and (x2,y2) on S'((x,y),e) that (z',%) is equal
to (z1,y1) or to (x2,ys) or is located between the clockwise ordered pair
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of points ((x1,41), (z2,y2)) of S'((x,y),¢). The formula Between, ). (2,3,
x1, Y1, T, Y2) can be written as a disjunction over all possible positions of
(z1,71) and (z9,y») in the four quadrants of S'((z,y),¢).

The disjunct for the case where both (z1,y;) and (x2, ;) are in the first
quadrant of S*((z,y), ) looks like

(x <z <2' <z ANy<y, <y <uy)V
(<o <o <Ny <y <y <yp)V
(x<a'<ap<zANy<y <y, <Y).

In this formula, the first disjunct takes care of the case where (5, y2) comes
after (x1,7;) in the first quadrant (in the clockwise sense). The two other
disjuncts cover the other case.

This completes the proof. [ |

6 Two corollaries
Theorems 1 and 2 have two interesting corollaries. The first one is:
Theorem 3 7Z- and H-equivalence are decidable.

Proof. Theorems 1 and 2 show that a decision algorithm for Z-equivalence
implies a decision algorithm for H-equivalence.
A decision algorithm for Z-equivalence is as follows:

VA = @; VB = @;
for each cone c do
Ac:={p € AU {oc} | II(A)(p) = c};
Be :={p € BU{oo} [II(B)(p) = c};
if =(|A¢| = |Be| A (00 € Ae ¢ 00 € B.)) then return false;
Va=VaUAe Vg :i=VpUBg;
if Vi = AU{oo} AV = BU{oc} then return true
od.

The algorithm tests whether IT(A) = II(B).
It should first be noted that all possible cones can be effectively enumer-
ated, e.g., by starting with the cone F', and then enumerating all circular
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lists over the set {L, R} in some order. The sets A, and B, can be first-order
defined over the semi-algebraic sets A and B (see the only-if direction in the
proof of Theorem 1) and hence are themselves semi-algebraic.

The test |Ac| = |Bc| can be performed as follows. Either c is F, (R),
or (LL), in which case the test amounts to testing that A. and B, are both
empty or both not empty. This is a test obviously expressible in first-order
logic and therefore decidable for semi-algebraic sets by Tarski’s theorem [17].
If ¢ is another kind of cone, then both A. and B, are finite and symbolic
algorithms for the first-order theory of the reals [1, 15, 4] can effectively
enumerate them. The for-loop always terminates since in each closed semi-
algebraic set only a finite number of cones can appear (see (i) of Property 2).

|

In order to formulate the second corollary, we call two semi-algebraic
sets Z-equivalent under < if they cannot be distinguished by a Z-invariant
sentence in the restricted language (<, S) (i.e., not using the symbols 0,1, +
and X).

We have:

Theorem 4 Two closed semi-algebraic sets in R? are I-equivalent if and
only if they are T-equivalent under <. The same holds for H-equivalence.

To prove this corollary we need an analogue of Lemma 4 in terms of rect-
angles instead of circles. This analogue is not straightforward since the num-
ber of degrees of freedom is higher in the case of rectangles. Let Recty y 4
denote the rectangle that has (z,y) and (2',y') as diagonally opposite corner
points.

Lemma 5 Letp be a point with coordinates (z,,Yy,) of a closed semi-algebraic
set A in R?. There exist xy, yo, T1, Y1 such that xg < x, < 1 and yy < y, < yi
and such that for every xg, vy, *1,y; with o < xy < x, < 2] < 1 and
Yo < Yy < Yp < Y < yi1, the cone with base Recty, yo .z N A and top p
is isotopic to that with base Rectyy 4 oy N A. There also exist g, Yo, T1, Y1
such that vy < xy and yo < y; and such that for every xj, vy, x|, y; with
2y < 2o < 21 <2y and yy < yo < y1 < Yy the cone with base Recty yo 2, 5 NA

and top the origin is isotopic to the one with base Recty o o1 M A.
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Proof of Lemma 5. Let A be a closed semi-algebraic set in R2. The
desired rectangles will be derived from a refinement of Collins’s Cylindrical
Algebraic Decomposition (CAD) of R? with respect to A.

Collins proves that, given some first-order definition of A, there exists a
CAD C of R? such that each cell in C entirely belongs to A or to the com-
plement of A [4] (see also [1]). The cells in C belong to stacks that are built
on an CAD C, of the z-axis induced by C (the so-called induced CAD [1]).
C, is a partition of the z-axis in which each class is a point or an open in-
terval (possibly unbounded). The stacks on points in the induced CAD C,
consist of a finite number of points (0-dimensional cells) and vertical open
intervals (1-dimensional cells). All singular points of A are 0-dimensional
cells of C (the reverse is not true). The stacks on an open interval I of C,
are open curve segments (1-dimensional cells which are functions on I) or
open regions (2-dimensional cells). We can refine this CAD in the extrema
and points of inflection of these 1-dimensional cells by refining C, in the x-
coordinates of the extremal points and points of inflection, by building the
appropriate stacks on these new points and on the splitted intervals of C,.
This yields a cell decomposition C" in which each 1-dimensional cell is vertical
or is a constant, a monotonic concave or a monotonic convex function of x.
The induced CAD of C' will be denoted by C’,.

As an illustration, in Figure 14, the twenty five cells ¢, ..., co5 of C' for
the semi-algebraic set {(z,y) | 2?2 + y* <1V (y =0 Az > 1)} are indicated.
C', consists of seven cells. ¢3, ¢i1, ¢13 and ¢y are the 0-dimensional cells of
C'. Only the cell ¢g; contains a singular point of the set.

We next show how the values of zg, z1, o and y; can be chosen, given C’,
for a singular point p = (x,,y,) of A. p belongs to the stack of C' that is
built on {z,} € C';. Let dy be the distance between z, and the next smaller
single point cell in C',, if it exists, or else let dy be 1. Similarly, let d; be the
distance between z, and the next larger single point cell in C’, if it exists or
else let dy be 1. Take zy = z, — dy/2 and z; = x, + dy/2. Let ey be the
distance in the y-direction between p and the 0-dimensional cell of C' with
next smaller y-coordinate if such a cell exists or let ey be 1 otherwise. Let
e; be the distance in the y-direction between p and the 0-dimensional cell
of C" with next larger y-coordinate or 1 if such a cell does not exist. Take
Yo =1Yp —€0/2 and y; =y, + €1 /2.

In Figure 14, Rectyg o214, 1S shown in dashed lines for {p} = co1.
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Figure 14: An example of a CAD of R?.

For all zj, yp, ), y) with 2y < zf < 2, < 2] < 2y and yo < y) < yp <
y1 < y1, Recty 4 or o contains no other 0-dimensional cell of C' except for
the cell {p}. Every vertical 1-dimensional cell with endpoint in p intersects
Rectyy o a4 exactly once. For every non-vertical 1-dimensional cell the same
is true because they are monotonic functions of  within the interval [z, z4].
The 2-dimensional cells of C' that are adherent to p are wrapped between
1-dimensional cells that arrive in p. Let py,---,p, be the intersection points
of Rectyy 41 ot o With the 1-dimensional cells of C’ (given in clockwise order).
Let qq,...,qr be the corresponding intersection points of the 1-dimensional
cells with Rectyg yoz1.00- 16 18 now clear that there exists an isotopy h of R?
that maps the line segment pp; to the line segment pg; for ¢ = 1,...,k and
that maps the rectangle segment p;p(i41) mod x Of Rect% by, tO the segment

4iq(i+1) mod k Of Rectyy yo 2 for o =1,... k. h therefore maps the cone with
top p and base Rectyr v 40 v M A to the one with base Recty oz 4, N A
The second part of the lemma can be proven in a similar way. [ |

Proof of Theorem 4. The only-if implication is trivial. For the if-implication,
assume A and B are not Z-equivalent. Then I14 and Il are not isomorphic,
and thus there exists at least one cone for which A has a different number
of points than B. We follow the same argumentation as in in the proof of
Theorem 1: we show that there is a sentence over (<, S) that expresses that
a point p has a certain cone ¢ in S.
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The intersections of the rectangles Recty: v o\ around p = (z,, y,) with
A, as they appear in Lemma 5, are empty, the complete rectangle, or they
consist of a finite number of closed rectangle segments and points. Clearly,
in the two former cases, the cone of p is (), respectively F. We will now
show that, for the latter case, a description of this intersection by means
of a circular list of R’s (for closed rectangle segments) and L’s (for points)
following one clockwise turn exactly coincides with the cone of p as defined
in Section 3.

Indeed, let h by an isotopy of R? that maps all small enough squares
with center p to circles with center h(p). For h(p) in h(A) there exists a
go > 0 satisfying the conditions of Property 1. For each ¢ with 0 < ¢ < g,
the description of h~1(S'(h(p),£)) N A in terms of R’s and L’s is the cone
of h(p) in h(A). Since cones are preserved by isotopies, it also the cone of
p in A. From Lemma 5, it follows that therefore the description of every
Rectyr o1 o 4 M A s the cone of p.

To complete the proof it therefore is sufficient to show that there is a
sentence Y. (z,y,z',y’, S) over (<, S) that expresses that Rect,, ., has an

intersection with S that corresponds to the cone c. Indeed, the sentence

(F0) (F21) (Fyo) (Fy1) (Vo) (V) (Vo) (V1)
(xO S x{) < pr < xll S ) /\yO S y(l) < yp < yi S U1 — wc(xi)ay{]axllayias))

then expresses that p has cone c.

Clearly, the intersection of a closed semi-algebraic set S with a line seg-
ment parallel to the z- or y-axis can be described by a sentence in the re-
stricted language (<, S). The desired sentence 9.(z,y, 2, ', S) is a conjunc-
tion of four such sentences. [ |

7 Concluding remarks

In this paper, we have focused on closed semi-algebraic sets. However, the no-
tion of point-structure, fundamental to our development, can also be defined
for general semi-algebraic sets in R?. Unfortunately, due to the possible pres-
ence of components of the interior of semi-algebraic sets with mixed borders
(open and closed), our transformation-based proof (in particular Proposi-
tion 3) does not carry over to this more general setting in a straightforward
way.
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We are also looking at other dimensions. In dimension one, the notions of
Z-equivalence and H-equivalence coincide with isotopic and homeomorphic.
Generalizations to higher dimensions seem feasible. Indeed, the local cone
structure around points in a semi-algebraic set, which provided the main
inspiration for our work, also holds there.
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