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1. Introduction

A simple yet powerful way of modeling spatial data is using semi-algebraic sets.
A subset of n-dimensional Euclidean space Rn is called semi-algebraic if it can be
defined by a Boolean combination of polynomial inequalities. The present article
is particularly concerned with sets in the plane, R2. First-order logic over the reals
with arithmetic, order, and an extra binary predicate S, denoted here by FO[R], then
becomes a spatial query language, fitting in the well-known framework of constraint
query languages introduced by Kanellakis et al. [1995]; Kuper et al. [2000]. For
example, “is the set S bounded?” can be expressed in FO[R] as ∃b∀x∀y(S(x, y) →
(−b < x < b ∧ −b < y < b)). We will consider only sets that are closed in the
ordinary topology on R2. This assumption is of great help from a technical point
of view, and is harmless from a practical point of view.

A property of spatial datasets is called topological if it is invariant under topo-
logical transformations of the plane. More precisely, whenever the property holds
for some A, it must also hold for any other A′ that is the image of A under a home-
omorphism of the plane (a bijection f : R2 → R2 such that both f and f −1 are
continuous). For example, the above-mentioned property “the set is bounded” is
topological, as is “the set is a plane curve”, and “the set has three connected com-
ponents”. In contrast, properties like “the set contains a straight line segment” and
“the set is a perfect circle” are not topological. Apart from our interest in topological
properties as a natural and mathematically well-motivated class of properties, they
are also practically motivated by geographical information systems [Egenhofer and
Franzosa 1991, 1995; Egenhofer and Mark 1995; Laurini and Thompson 1992].

Given the above setup, a natural question is to understand exactly which topo-
logical properties are first-order, that is, expressible in FO[R]. For example, “the
set is a plane curve” is first-order [Paredaens et al. 1994], but properties involving
topological connectivity are not [Benedikt et al. 1998; Grumbach and Su 1997;
Kuper et al. 2000]. It is undecidable whether a given FO[R]-sentence is topological
[Paredaens et al. 1994]. Yet, this leaves open the possibility to syntactically capture
topological FO[R]—indeed a syntactic characterization has been a target of earlier
work on the topic [Paredaens et al. 2000; Kuijpers and Van den Bussche 1999].
This is what we do in the present article.

Our starting point is the work by two of us and [Paredaens et al. 2000], which
considers the more basic question of understanding topological elementary equiv-
alence: when are two sets indistinguishable by means of topological FO[R]-
sentences? A characterization was discovered in terms of the cone types occurring
in the two sets. Specifically, semi-algebraic sets are topologically well-behaved in
that locally around each point they are “conical” [Bochnak et al. 1998]. The cone
of a point consists of the lines and regions arriving in the point, and can thus be
represented as a (circular) string of L’s (lines) and R’s (regions). The characteriza-
tion states that two sets are topologically elementary equivalent if and only if they
have the same number of occurrences of every cone.

This characterization immediately suggests “Cone Logic” [Kuijpers and Van den
Bussche 1999]: a topological query language that allows to express boolean combi-
nations of properties of the form “there are at most k occurrences of cones satisfying
property γ ”. Here, γ is any first-order property of cones viewed as circular strings.
The first-order properties of strings are well-known to be the star-free regular lan-
guages [Thomas 1997]. It is tempting to conjecture that Cone Logic exactly captures
topological FO[R], and indeed the confirmation of this conjecture is the main result
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of the present article. Before our result was first announced [Benedikt et al. 2004],
the conjecture had only been confirmed for the special case of sets consisting of
regions only, that is, without L’s in cones, or of sets consisting of a single cone
only [Kuijpers and Van den Bussche 1999].

Our proof of our main result develops extensively the idea of coding planar sets
by finite structures [Kuijpers and Van den Bussche 1999]. This coding may well
have other applications. Our proof also introduces new invariance arguments. These
arguments show that first-order properties of structures enhanced with some form
of “decoration”, but invariant under the particular choice of decoration, are in fact
expressible without referring to the decoration at all. Compare this to the famous
example by Gurevich [Abiteboul et al. 1995, Exercise 17.27, Ebbinghaus and Flum
1995, Proposition 2.5.6], where the decoration is a total order. In that example, the
decoration is shown to be indispensable. In contrast, we will encounter kinds of
decorations that are indeed dispensable. Finally, our proof not surprisingly relies on
the collapse theorems for constraint queries on finite structures [Otto and van den
Bussche 1996; Benedikt et al. 1998]; as a matter of fact, the characterization we
prove can be viewed as a lifting of collapse from finite structures to infinite sets.

Our proof also yields some variations and generalizations of the main result.
For example, if one is interested in semi-linear sets only (i.e., sets definable using
linear polynomials only), then Cone Logic still captures the first-order topological
properties. Also, the result generalizes to o-minimal expansions of the reals [Van den
Dries 1998].

In closing, we should also mention previous work on topological properties not
of single sets, but of ensembles of sets [Papadimitriou et al. 1999; Segoufin and
Vianu 2000]. This also covers the case of sets not necessarily closed, because such
a general set A can be represented by three closed ones, namely A, ∂ A − A, and
∂(∂ A − A); here, X denotes the closure of a set and ∂ X denotes its boundary. Even
in the case of just two sets, [Grohe and Segoufin 2002] showed that topological
elementary equivalence can no longer be characterized by looking at cones only.
Yet, they were able to provide a characterization in the special case of collections
of sets with “regular” points only. It would be interesting to lift this characteri-
zation to the level of queries, just like we have done here for the case of single
sets.

The article is organized as follows. In Section 2, we introduce the basic notions,
in particular, we explain what is meant by a topological FO[R]-sentence, how cones
come into the picture, and how cones can be coded by finite words. In Section 3,
we recall cone logic and present our main result. In Section 4, we introduce a slight
generalization of “flower normal form” [Paredaens et al. 2000], a normal form for
spatial datasets that is useful for proving our main result. In Section 5, we introduce
a representation of datasets (in flower normal form) by finite structures which we
call “codes”. In Section 6, we prove a crucial invariance lemma. In Section 7, we
put everything together to obtain the proof of our main result. In Section 8, finally,
we discuss some ramifications of our work.

2. Preliminaries

2.1. SPATIAL DATA. In this article, a spatial dataset (or just dataset) is de-
fined as a semi-algebraic set in R2 that is closed in the ordinary topological sense.
More concretely, this is a set that can be defined as a union of sets of the form
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FIG. 1. A dataset and the cone of one of its points.

{(x, y) ∈ R2 | P1(x, y) ≥ 0 ∧ · · · ∧ Pm(x, y) ≥ 0}, where each Pi is a polynomial
in the variables x and y with integer coefficients. When all Pi ’s are linear, the set
is called semilinear.

First-order logic over the vocabulary (0, 1, +, ×, <, S), with S a binary relation
symbol, is denoted by FO[R]. An FO[R]-formula ϕ can be evaluated on a dataset A
by letting variables range over R, interpreting the arithmetic symbols in the obvious
way, and interpreting S(x, y) to mean that the point (x, y) is in A.

To formalize what it means for two datasets A and B to be topologically the
same, we use the notion of isotopy. The intuition behind an isotopy is a continuous
deformation of the plane. Formally, an isotopy is a homeomorphism of the plane
that is “isotopic” to the identity. Here, a homeomorphism of the plane is a bijection
from R2 to itself that is continuous and whose inverse is continuous as well. Two
homeomorphisms f and g are isotopic if there is a function F : R2 × [0, 1] → R2

such that

(1) for each t ∈ [0, 1], the function Ft : R2 → R2 defined by Ft (p) = F(p, t) is a
homeomorphism;

(2) F0 is f and F1 is g; and
(3) F(p, t) is continuous in t .

Sets A and B are then called isotopic if there is an isotopy h such that h(A) = B.
An FO[R]-sentence ϕ is now called topological if whenever datasets A and B are

isotopic, then ϕ(A) = ϕ(B). Here, ϕ(A) obviously denotes the result of evaluating
ϕ on A; generally in this article we will use the notation ψ(C) for the evaluation of
a logic formula ψ on a structure C appropriate for ψ ; if ψ is a sentence, the result
is a truth value; if ψ has free variables, the result is a relation.

We remark that a more relaxed notion of “being topologically the same”, is to
simply require that B is the image of A under a homeomorphism rather than an
isotopy. The only difference between the two notions is that the latter considers
mirror images to be the same, while the former does not. Indeed, every homeo-
morphism either is an isotopy itself, or is isotopic to a reflection [Moise 1977]. All
the results we will present under isotopies have close analogues under homeomor-
phisms. Essentially, in these analogues, we do not distinguish between a dataset
and a reflection of it.

2.2. CONES. A known topological property of semi-algebraic sets [Bochnak
et al. 1998] is that locally around each point they are conical. This is illustrated
in Figure 1. Formally, for a point p and a real ε > 0, denote the closed disk
with center p and radius ε by D(p, ε), and denote its bordering circle by C(p, ε).
Then, for every nonisolated point p of a dataset A, there exists an ε > 0 such that
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D(p, ε) ∩ A is isotopic to the set consisting of all straight line segments between
p and all points on C(p, ε) ∩ A. The latter set is known as the cone with top p and
base C(p, ε) ∩ A; we thus refer to the cone of p in A.

Every dataset A is also conical around infinity. Formally, there exists an ε > 0
such that {(x, y) | x2+ y2 ≥ ε2}∩ A is isotopic to {λ·(x, y) | (x, y) ∈ C((0, 0), ε)∩
A ∧ λ ≥ 1}. We can indeed view the latter set as the cone with top ∞ and base
C((0, 0), ε) ∩ A, and call it the cone at ∞ in A.

We will identify cones with circular lists. The only exception is the cone having a
full circle as its base (which appears around interior points); this cone is represented
by the single letter F . Any other cone can be represented by a circular list of L’s
and R’s (for “line” and “region”) which describes the cone in a complete clockwise
turn around the top. For example, the cone of Figure 1 is represented by (LLRLR).
The cone with empty base (which appears around isolated points) is represented
by the empty list ( ).

There are only three cones that can occur infinitely often in a dataset: F , (LL)
(the cone around points on curves), and (R) (the cone around points on the smooth
border of a region). We call these the regular cones; all other cones are called
singular. Because datasets are semi-algebraic, the points with a singular cone are
always finite in number. These points are called the singular points of the dataset.

3. The Characterization

We will establish a characterization of the properties of datasets expressible by
topological FO[R]-sentences. Our characterization will be in terms of conditions
on the cones occurring in the datasets, as well as on the number of such cones.

Given that cones are circular strings over the alphabet {L , R} (except for the
special cone F), it is convenient to use standard formal language theory to define
properties of cones. Specifically, recall that a star-free regular expression over a
finite alphabet � is an expression built up from the atoms �∗, ε, and a, for a ∈ �,
using the operations union, difference, and concatenation. Such expressions define
string languages, that is, sets of strings over �, in the obvious way (the symbol ε
denotes the empty string). If a string s is in the language defined by e, we also say
that s satisfies e.

But these expressions can also be used to define sets of circular strings. It suffices
to agree that a circular string satisfies expression e if it equals the circularization of
a normal string satisfying e. For example, the expression L R∗L defines all cones
that have only two L’s, and these L’s must be consecutive. Here, the subexpression
R∗ can be viewed as a shorthand for �∗ − �∗L�∗ with � = {L , R}.

This leads us to a natural topological query language called “Cone Logic” or
CL for short. A CL-sentence is a Boolean combination of atomic conditions of the
following possible forms:

(1) F , meaning that there exists a point in the dataset with cone F (in which case
there will automatically be infinitely many such points).

(2) F(∞), meaning that the cone at infinity is F .
(3) |e| ≥ n, with e a star-free regular expression over {L , R} and n a natural

number, meaning that there are at least n points in the dataset whose cone is
not F and satisfies e.

(4) e(∞), meaning that the cone at infinity is not F and satisfies e.
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FIG. 2. A single flower and a flower pair.

Note that properties of datasets expressed in CL are always topological. Every
CL-sentence can be equivalently expressed in FO[R]:

PROPOSITION 3.1. For each CL-sentence ψ , there exists an FO[R]-sentence ϕ
such that ψ(A) = ϕ(A) for each dataset A.

PROOF. It is an easy exercise to express the conditions F and F(∞) in FO[R].
To express a condition |e| ≥ n, we need to be able to express that the cone of a
point (x, y) satisfies e. This can be done by induction on the structure of e, using
expressions similar to the ones known [Paredaens et al. 2000] for expressing that
the cone of a point equals a given string.

Our main result is that CL actually characterizes the topological
FO[R]-sentences:

MAIN THEOREM. For each topological FO[R]-sentence ϕ, there exists a Cone
Logic sentence ψ such that ϕ(A) = ψ(A) for each dataset A.

For simplicity of presentation, in proving our characterization, we will restrict
attention to bounded datasets, so that the point at infinity can be ignored. Incor-
porating infinity makes the proof technically more complicated, but it involves no
new insights.

4. Flower Normal Form

A rather drastic restriction is to datasets in what we call flower normal form. Such
a dataset, called a flower dataset for short, consists of a number of connected com-
ponents, of two possible kinds: single flowers, and flower pairs. Both are illustrated
in Figure 2.

A single flower is a connected dataset with exactly one singular point, where
every R in the cone is a small “lobe” emanating from the point but meeting no
other R’s. Necessarily, every line emanating from the point also arrives somewhere
else in the point, that is, all lines are self-lines. Note that a self-line is visible as two
L’s in the cone of the singular point, so a single flower has an even number of L’s
in the cone.

A flower pair consists of two single flowers, except that some of the lines cross
between the two singular points. These cross lines must be consecutive: between
two emanating cross lines there cannot be a self-line. Note that a cross line is visible
as one L in the cone of each of the two singular points. Paired flowers need not
have an even number of L’s in their cone.

The justification for flower normal form comes from the notion of topologi-
cally elementary equivalence, or t.e.e. Two datasets are t.e.e. if no topological
FO[R]-sentence distinguishes between them. We recall:
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THEOREM 4.1 [PAREDAENS ET AL. 2000]. Two datasets are t.e.e. if and only
if they have the same cone at ∞, and every other cone occurs exactly the same
number of times in both sets (a finite number for singular cones, or infinitely often
for regular cones).

Using the above theorem, every bounded dataset A can be transformed into
a flower dataset t.e.e. to A [Paredaens et al. 2000], provided A does not have any
“abnormal” regular points. Here, we say that A has abnormal regular points if either
(i) it contains points with cone (R), but all singular points have cones consisting
exclusively of L’s; or (ii) it contains points with cone (LL), but all singular points
have cones consisting exclusively of R’s. An example of case (i) is a dataset made
up entirely of lines, except for an additional separate disc. An example of case (ii)
is a dataset made up entirely of two-dimensional regions, except for an additional
separate circle.

So, in proving our Main Theorem, we can focus on flower datasets, provided we
give an argument that allows us to dismiss datasets with abnormal regular points.
The following lemma provides such an argument.

LEMMA 4.1. If CL captures topological FO[R] on the class of datasets without
abnormal regular points, then CL captures topological FO[R] on the class of all
datasets.

PROOF. In the definition of abnormal regular points we gave earlier, let us refer
to case (i) as “R-abnormal”, and to case (ii) as “L L-abnormal”. Also, let us refer
to datasets without abnormal regular points as “normal” datasets. Note that the
three properties “A is R-abnormal”, “A is L L-abnormal”, and “A is normal” are
expressible in CL. For example, L L-abnormality is expressed as

|LL| ≥ 1 ∧ |L| = 0 ∧ |LLLL∗| = 0 ∧ |�∗ R�∗L| = 0

with � = {L , R} and where, as already noted earlier, L∗ can be viewed as a
shorthand for �∗ − �∗ R�∗.

For any dataset A, let cleanup(A) be the dataset obtained from A by removing
all connected components consisting of regular points only. Clearly, cleanup(A) is
always normal.

For any topological FO[R]-sentence ϕ, we can write a topological FO[R]-
sentence ϕ• such that for any R-abnormal dataset A, we have ϕ(A) =
ϕ•(cleanup(A)). Indeed, we can use the sentence

∃x0, y0 ∃ε > 0 : D((x0, y0), ε) ∩ S = ∅ ∧ ϕ′

where we recall that D((x0, y0), ε) denotes the closed disk with center (x0, y0) and
radius ε, and where ϕ′ is the sentence obtained from ϕ by replacing each subformula
of the form S(x, y) by the formula

S(x, y) ∨ (x, y) ∈ D((x0, y0), ε).

Likewise, we can write a topological FO[R]-sentence ϕ◦ such that for any
L L-abnormal dataset A, we have ϕ(A) = ϕ◦(cleanup(A)). Indeed, we do as for ϕ•,
except that we replace each subformula S(x, y) by the formula

S(x, y) ∨ (x, y) ∈ C((x0, y0), ε)

where we recall that C((x0, y0), ε) denotes the bordering circle of D((x0, y0), ε).
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We next introduce the “singular” fragment of CL: this is the fragment of CL
that considers singular points only. This can indeed be viewed as a fragment of CL
because being singular is definable in CL: a point is singular if and only if its cone
is not F and satisfies the star-free regular expression singular := �∗ − (L L ∪ R)
(with � = {L , R}). So, singular CL-formulas use only conditions |e| ≥ n where e
is of the form e′ ∩ singular (or expressions equivalent to those).

On normal datasets, singular CL is actually equivalent to CL. Indeed, the con-
dition F can be expressed in singular CL as |singular ∩ �∗ R| ≥ 1. Furthermore,
since regular points occur infinitely often if they occur at all, a general condition
|e| ≥ n is always equivalent to

|e ∩ singular| ≥ n ∨ |e ∩ LL| ≥ 1 ∨ |e ∩ R| ≥ 1.

Now on normal datasets, the condition |R| ≥ 1 is equivalently expressed in singular
CL as |�∗ R�∗ ∩ singular| ≥ 1. Likewise, |LL| ≥ 1 is expressed as |�∗L�∗ ∩
singular| ≥ 1.

Also, note that singular CL-sentences cannot distinguish A from cleanup(A).
Now let ϕ be a topological FO[R]-sentence. Let ψ be a CL-sentence equivalent

to ϕ on normal datasets. By the above, we may assume without loss of generality
that ψ is a singular sentence. Let ψ◦ and ψ• be singular CL-sentences equivalent,
on normal datasets, to ϕ◦ and ϕ• respectively. Then, the following CL-sentence is
equivalent to ϕ on all datasets, thus proving the lemma:

(the set is normal ∧ ψ)
∨ (the set is LL-abnormal ∧ ψ◦)
∨ (the set is R-abnormal ∧ ψ•)

Indeed, ψ◦ is equivalent to ϕ on LL-abnormal datasets A, because

ϕ(A) = ϕ◦(cleanup(A)) = ψ◦(cleanup(A)) = ψ◦(A).

The last equivalence holds because ψ◦ is singular and thus cannot distinguish A
from cleanup(A). That ψ• is equivalent to ϕ on R-abnormal datasets is argued
analogously.

5. Codes and Drawings

The general outline of our proof of the Main Theorem is as follows:

(1) By the discussion in the previous section, we can restrict attention to flower
datasets.

(2) We represent flower datasets by abstract finite structures, which we call codes. A
code contains information about the cones of the singular points in the dataset,
plus an additional connectivity relation between lines in cones.

(3) We show how to rewrite a topological FO[R]-sentence ϕ into a first-order
sentence ψ about codes.

(4) By t.e.e. (Theorem 4.1), ϕ is actually invariant under the particular way the lines
in the dataset are connected. Using this invariance, the connectivity relation is
eliminated from ψ .

(5) This essentially leaves us with a CL-sentence, and we are done.
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FIG. 3. The single flower of Figure 2 is a drawing of the single cycle shown here. The lines indicate
the planar matching G.

In the present section, we perform the Steps (2) and (3) outlined above. We
begin by formally defining codes. A code is a disjoint union of components, of two
possible forms: “single cycles” and “cycle pairs”. A single cycle represents a single
flower, and a cycle pair represents a flower pair.

Single Cycles. Up to isomorphism, a single cycle is a finite structure with domain
{1, . . . , n}, for some natural number n ≥ 1. Every element is labeled with L or R,
in such a way that the number of L’s is even. The structure also includes the total
order < on {1, . . . , n}. Furthermore, the structure includes a matching G on the
L-labeled nodes. (Recall that a matching on a set X is the symmetric closure of a
bijection from one half of X to the other half.) Moreover, the matching G must be
planar in the following sense: If i < j < k < 
, then it is forbidden that G(i, k)
and G( j, 
) both hold.

Note that a cycle is not cyclic at all, but we still use the name because cycles will
always have a circular interpretation: we will never need to distinguish two cycles
that are the same up to rotation. In particular, there is an obvious notion of a single
flower Y being a drawing of a single cycle C , which we do not define formally,
but illustrate in Figure 3. When Y is a drawing of C , then Y is a drawing of every
rotation of C as well.

Cycle Pairs. A paired cycle is like a single cycle, with two modifications. First,
the number of L’s need not be even. Second, instead of G being a planar match-
ing on all of the L’s, a nonempty set of consecutive L’s now remains unmatched.
Here, we consider two L’s to be consecutive if there is no other L in between
(there may be R’s), where “between” has the circular interpretation where we
lay out all elements 1, 2, . . . , n on a circle with 1 following n in clockwise
order.

More formally, we call a set X of L-labeled elements in a cycle of n elements
consecutive if we can pick an element x1 ∈ X in such a way that in the sequence

x1 := x1, x1 + 1, . . . , n, 1, 2, . . . , x1 − 1,

all elements of X come before any other L-labeled elements. If x1, x2, . . . , xk is the
subsequence of x1 consisting of all elements of X , then we call that subsequence
a consecutive enumeration of X . When X consists of all L’s in the cycle, there
are k different consecutive enumerations, but if X does not consist of all L’s, the
consecutive enumeration is unique.

Now a cycle pair is a disjoint union of two paired cycles that have precisely
the same number of unmatched L’s, where additionally, we extend G to match
the set of as-yet unmatched L’s of the one cycle to the set of as-yet unmatched
L’s of the other cycle. Moreover, these cross matches must be “order-reversing”,
in the following sense. Let X be the set of consecutive L’s in the one cycle that
is matched to the set Y of consecutive L’s in the other cycle. Then, we must be
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FIG. 4. The flower pair of Figure 2 is a drawing of the cycle pair shown here.

able to give consecutive enumerations x1, x2, . . . , xk and y1, y2, . . . , yk of X and
Y respectively, such that G contains the pairs

(x1, yk), (x2, yk−1), . . . , (xk, y1).

Clearly, the cross matches by G model the cross lines in a paired flower, and
again there is an obvious notion of a flower pair being a drawing of a cycle pair,
illustrated in Figure 4.

Codes. A code is now defined as a disjoint union of single cycles and paired cycles.
We denote the vocabulary of codes, consisting of the unary relation symbols L and
R, and the binary relation symbols < and G, by �.

A flower dataset A is called a drawing of a code C if A has a separate drawing
for every single cycle and every cycle pair of C , and nothing more. In that case, we
also say that C is a representation of A.

The following proposition demonstrates the utility of codes. While it represents
the first important step in our proof of the Main Theorem, it is also interesting in
itself: it shows that topological FO[R]-queries can be supported by a standard finite
relational database representation of the spatial dataset.

PROPOSITION 5.1. For any topological FO[R]-sentence ϕ, there exists a first-
order sentence ψ over � such that for every flower dataset A, and every represen-
tation C of A, we have ϕ(A) = ψ(C).

PROOF. An embedded code is a code embedded in R, so the abstract nodes
happen to be real numbers. An embedded code is called well embedded if within
each component, the ordering on the nodes as real numbers agrees with the order
given by the cycles. Moreover, all nodes belonging to one component must be
either all smaller or all larger (in the real order) than all nodes belonging to another
component, and in a cycle pair all nodes of one of the cycles are all smaller than
all nodes of the other cycle.

Until now, FO[R]-formulas were always understood to be over the vocabulary
(0, 1, +, ×, <) of R, expanded with a binary relation S to address the spatial dataset
to be queried. But in the following lemma we use FO[R]-formulas on embedded
codes, where we expand R not with S but with �. We refer to such formulas as
FO[R]-formulas over �.

The proof of the proposition hinges on the following:

DRAWING LEMMA. There exists an FO[R]-formula draw(x, y) over � such that
for any well-embedded code C, the set {(x, y) ∈ R2 | (x, y) ∈ draw(C)} is isotopic
to a drawing of C. If C is not a well-embedded code, then draw(C) is empty.

We will present the proof of this lemma separately in Section 5.1.
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Consider now the composed query ϕ ◦ draw. By the natural-active collapse
theorem [Benedikt et al. 1998], we can equivalently express ϕ ◦draw by an FO[R]-
sentence χ over � in which the quantifiers range over the nodes of C only. Moreover,
the query is order-generic: for any embedded �-structure C , and for any monotone
bijection ρ of R, we have ϕ(draw(C)) = ϕ(draw(ρ(C))). Hence, by the generic
collapse theorem [Otto and van den Bussche 1996; Benedikt et al. 1998], we can
further reduce χ to a first-order sentence ψ just over �. In other words, ψ sees just
the abstract code, not the actual embedding, were it not that it still sees the real
order on the nodes, in addition to just the local orders given within the cycles.

In order to understand this obstacle better, let us formally define an ordered code
as a code expanded with a total ordering ≺. The total order ≺ must agree with
the local orders < of the separate cycles. Moreover, the nodes of one connected
component must come in ≺ either all before or all after the nodes of another
connected component, and in a cycle pair, the nodes of one of the paired cycles
must come in ≺ all before the nodes of the other paired cycle. If an ordered code
C ′ has been obtained from a normal code C in such a way, we call C ′ an “ordering”
of C .

The notion of ordered code captures precisely the real orders among the nodes that
are possible in a well-embedded code. We thus have already proved the following
weaker version of the proposition to be proved:

For any topological FO[R]-sentence ϕ, there exists a first-order sentence
ψ over (�, ≺) such that, for every flower dataset A, every representation
C of A, and every ordered code C ′ that is an ordering of C , we have
ϕ(A) = ψ(C ′).

Now observe that in particular, the above implies that ψ is invariant under the
particular way a code has been ordered into an ordered code. Formally, for any two
different orderings C ′ and C ′′ of some normal code C , we have ψ(C ′) = ψ(C ′′).
We call ψ ordering-invariant.

Hence, the proposition is proved if we can prove the following lemma, which we
will do in Section 5.2:

LEMMA 5.1. For every ordering-invariant sentence ψ over (�, ≺), there exists
a sentence ψ0 over �, such that for every ordered code C ′ and every normal code
C such that C ′ is a ordering of C, we have ψ0(C) = ψ(C ′).

5.1. THE DRAWING LEMMA. In this section, we prove the drawing lemma. For
the purpose of this proof, we denote the order that appears in the vocabulary � by
<� and the natural order of R by <. In formulas below, we also use the traditional
abbreviations ≤� and ≤. We remark that all formulas that we describe below belong
to FO[R].

The formula draw(x, y), that defines a drawing of a given well-embedded code,
performs two construction steps. In the first step, the given well-embedded code is
re-arranged such that in the second step, this re-arranged code can be drawn in R2

in a straightforward manner. Now, we describe these two steps in detail.

Re-arrangement of an Embedded Code. Re-arrangement of a well-embedded
code leaves its single cycles unaltered, but for each cycle pair it cyclically shifts
the consecutive L-elements of the first (with respect to <) paired cycle of the pair,
that are connected via G to the second paired cycle, to the end of the cycle and the
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FIG. 5. Part (a) shows a well-embedded code consisting of a single cycle and two paired cycles
(separated by the dotted lines). The filled dots represent elements of L and the open dots elements of
R. The connecting lines indicate the relation G. In (b), the re-arrangement of the code of (a) is shown.
Here, the closed and open dots and lines represent the relations L ′, R′ and G ′.

consecutive L-elements of the second paired cycle of the pair, that are connected
via G to the first paired cycle, to the beginning of the cycle. This is illustrated in
Figure 5. Part (a) of this figure shows a well-embedded code consisting of a single
cycle followed by a cycle pair. Part (b) of Figure 5 shows the rearrangement of the
code shown in (a). The first paired cycle of the cycle pair is cyclically shifted such
that the the two L’s that connect with the second paired cycle of the pair appear at
the end. Similarly, the second paired cycle is cyclically shifted such that the two
L’s that were at the end are now at the beginning of the cycle.

More formally, re-arrangement of a well-embedded code produces, for given
relations L , R, G and <�, the unary relations L ′ and R′ and the binary relation
G ′ as described below. To begin with, we need FO[R]-formulas that isolate the
single cycles and the first and second paired cycles in cycle pairs. Hereto, we use
formulas ψ

single
min,max(x, y), ψfirst

min,max(x, y) and ψ second
min,max(x, y), respectively, that return

couples consisting of the minimal and maximal elements of these cycles. The
formula ψmin(x), given by ¬∃z(z <� x) defines the set of minimal elements of all
single and paired cycles, and ψmax(x), given by ¬∃z(x <� z) defines the set of
their maximal elements. The formula ψmin,max(x, y) given as ψmin(x) ∧ ψmax(y) ∧
¬∃z(ψmin(z) ∧ x < z ∧ z < y) describes the set of couples of minimal and
maximal elements of all single and paired cycles of a well-embedded code. The
formula ψ

single
min,max(x, y) can then be written as ψmin,max(x, y)∧∀u∀v((G(u, v)∧ x ≤

u ∧ u ≤ y) → (x ≤ v ∧ v ≤ y)). The formula ψfirst
min,max(x, y) can be written

as ψmin,max(x, y) ∧ ∃u∃v(G(u, v) ∧ x ≤ u ∧ u ≤ y ∧ y < v) and the formula
ψ second

min,max(x, y) can be written in a similar way.
Next, we specify formulas λfirst

min,max(x, y) and λsecond
min,max(x, y) that define the first

and last of the consecutive L’s, respectively in the first and second paired cycle of a
cycle pair, that are connected via G to the other paired cycle in the pair. Hereto, let
γ ◦(u, v, x) be the formula L(x)∧u ≤ x ∧x ≤ v ∧∃y(u ≤ y∧ y ≤ v ∧G(x, y)) that
defines all x in L between u and v that are connected via G to some y in L that is also
between u and v . Let γ −(u, v, x) be the formula L(x)∧u ≤ x∧x ≤ v∧¬γ ◦(u, v, x)
that defines all x in L between u and v that are connected via G to some y that is
not between u and v . Based on these formulas, we can write formulas γ ◦

min(u, v, x),
γ ◦

max(u, v, x), γ −
min(u, v, x) and γ −

max(u, v, x) that specify the smallest and largest x
between u and v that satisfy γ ◦(u, v, x), respectively γ −(u, v, x). Furthermore, let
γmin(u, v, x) and γmax(u, v, x) be formulas that respectively define the smallest and
largest x in L between u and v .
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The formula λfirst
min,max(x, y) can then be written as

L(x) ∧ L(y) ∧ ∃u∃v(ψfirst
min,max(u, v) ∧ u ≤ x ∧ u ≤ y ∧

x ≤ v ∧ y ≤ v ∧ (λ1(u, v, x, y) ∨ λ2(u, v, x, y))),

where λ1(u, v, x, y) defines in the closed interval [u, v] the appropriate x and y
when the consecutive L’s that are connected via G to the second paired cycle are
not interrupted by other L’s and where λ2(u, v, x, y) covers the case where they
are interrupted by the other L’s. In the first case, λ1(u, v, x, y) simply specifies for
x and y the first and last L , whereas in the second case, λ2(u, v, x, y) specifies x
to be the first L after the maximal element satisfying γ ◦ and specifies y to be the
last L before the minimal element satisfying γ ◦. More specifically, λ1(u, v, x, y)
can be written as

∀z∀z′∀z′′((γ −(u, v, z) ∧ γ −(u, v, z′) ∧ z ≤ z′′ ∧ z′′ ≤ z′ ∧ L(z′′))
→ γ −(u, v, z′′)) ∧ γ −

min(u, v, x) ∧ γ −
max(u, v, y)

and λ2(u, v, x, y) can be written as

∃z∃z′∃z′′(γ −(u, v, z) ∧ γ −(u, v, z′) ∧ γ ◦(u, v, z′′) ∧ z ≤ z′′ ≤ z′))
∧ ∃u′(γ ◦

max(u, v, u′) ∧ γ −
min(u′, v, x)) ∧ ∃v ′(γ ◦

min(u, v, v ′) ∧ γ −
max(u, v ′, y)).

We remark that for x, y satisfying λsecond
min,max(x, y), x < y can hold (in case of λ1

defining them) or y > x (when λ2 defines them). The formula λsecond
min,max(x, y) can

be expressed in a similar way.
We are now ready to define the re-arrangement L ′, R′, G ′ of the code given by

the relations L , R, G, and <�.
The formula ϕL ′(z) that defines the set L ′ is of the form ϕ

single
L ′ (z) ∨ ϕfirst

L ′ (z) ∨
ϕsecond

L ′ (z). Here, ϕ
single
L ′ (z) is given as ∃u∃v(ψ single

min,max(u, v) ∧ u ≤ z ∧ z ≤ v ∧ L(z))
and adds the L’s in a single cycle unaltered to L ′. The formula ϕfirst

L ′ (z) that cyclically
shifts L in the first paired cycle of a cycle pair such that the L’s that are connected
by G to the second cycle are brought to the end (with respect to <) can be written as

∃u∃v∃x∃y(ψfirst
min,max(u, v) ∧ λfirst

min,max(x, y) ∧ u ≤ x ∧ u ≤ y ∧ x ≤ v ∧ y ≤ v ∧
∃z′((L(z′) ∧ u ≤ z′ ∧ z′ ≤ y ∧ 3(y − u)z = (v − u)z′ + y(u + 2v) − 3uv) ∨

(L(z′) ∧ y < z′ ∧ z′ ≤ v ∧ 3(v − y)z = (v − u)z′ + 3vu − y(2u + v))).

This formula cyclically shifts the L elements in the interval [u, v] such that all
elements in the closed subinterval [u, y] are squeezed into the interval [ u+2v

3 , v]
whereas the elements in the half open interval (y, v] are squeezed into the interval
(u, 2u+v

3 ] (by leaving a gap, this cyclic shift is guaranteed to be injective). We remark
that the “re-arrangement” of L into L ′ is such that these sets may consist of different
real numbers (that are located within the same interval, however).

The formula ϕsecond
L ′ (z), that cyclically shifts L in the second paired cycle such

that the consecutive L’s that connect with the first paired cycle are brought to the
beginning, can be expressed in a similar way.

The formula ϕR′(z) that defines R′ and expresses how the elements of R are
cyclically shifted is obtained using the same cyclic shifts as for ϕL ′(z). The formula
ϕG ′(x, y) that defines the binary relation G ′ can be obtained in a similar way,
considering that G ′ is such that if two numbers belonging to L were linked by
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FIG. 6. Illustration of the the result of draw when applied to the well-embedded code given in
Figure 5 (b).

G, the corresponding points in L ′ should be linked by G ′. This concludes the
description of the re-arrangement of a given well-embedded code.

Drawing of a Re-arranged Code. Once we have re-arranged the well-embedded
code, we can write the formula draw(x, y) over the above-defined relations L ′, R′
and G ′. The way draw(x, y) works is as follows. The re-arranged code is embedded
on the x-axis of the plane R2 and singular points are created on the line y = −1
in the middle between the minimal and maximal x-values in a cycle. Lines are
drawn between the points on the x-axis that belong to L ′ and the singular point
corresponding to its cycle. Triangular strips are drawn between the points on the
x-axis that belong to R′ and the singular point corresponding to its cycle. Finally,
the connections given by G ′ are drawn above the x-axis. The idea is that for every
pair of reals (a, b) belonging to G and with a < b, two line segments are drawn:
the first segment through a and parallel to the line y = x and the second through b
and parallel to the line y = −x . The result of draw(x, y), applied to the re-arranged
code shown in (b) of Figure 5 is illustrated in Figure 6.

More formally, draw(x, y) can be written as

drawL ′(x, y) ∨ drawR′(x, y) ∨ drawG ′(x, y),

where drawL ′(x, y), drawR′(x, y) and drawG ′(x, y) take care of drawing the differ-
ent parts as described informally above. The formula drawL ′(x, y) can be written as

∃u∃v∃z
(

ψmin,max(u, v) ∧ L ′(z) ∧ u ≤ z ∧ z ≤ v

∧ x = y
(

z − u + v
2

)
+ z ∧ −1 ≤ y ∧ y ≤ 0

)
.

The description of drawR′(x, y) is less straightforward. First, we describe an
interval around each element of R′ on which a triangle can be constructed safely.
The formula σ (x, ε) defines for a point x , the value of ε as follows: if x belongs
to R′, ε is one-third of the minimum of the distances of x to the next bigger and
next smaller (with respect to <) element of L ′ or R′, if at least one such element
exists, or ε is 1 if there is no next bigger and no next smaller element or if x doesn’t
belong to R′. The formula drawR′(x, y) can then be written as

∃u∃v∃z∃ε

(
ψmin,max(u, v) ∧ R′(z) ∧ σ (z, ε) ∧ u ≤ z ∧ z ≤ v ∧ y ≤ 0

∧ x − y
(

z − ε − u + v
2

)
− (z −ε) ≥ 0∧ x − y

(
z + ε − u + v

2

)
− (z +ε) ≤ 0

)
.
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Finally, the formula drawG ′(x, y) can be written as

∃u∃v
(

G ′(u, v) ∧ u < v ∧
((

y = x − u ∧ u ≤ x ∧ x ≤ u + v
2

)

∨
(

y = −x + v ∧ u + v
2

≤ x ∧ x ≤ v
)))

.

Within one single or paired cycle, links determined by G ′ are nested or next to each
other. Therefore, these links are drawn disjointly. Because, we have re-arranged
codes, also intercycle links given by G ′ are drawn without causing intersections.
Remark that, using drawG ′ , this would not be the case for the original code (see,
e.g., Figure 5(a)). This concludes the description of draw(x, y). Remark that also
in the drawing part of the proof, all of the given formulas belong to FO[R].

Finale. To conclude the proof, we have to show that the result defined by draw(x,
y) when applied to a well-embedded code C , is isotopic to a drawing of C . It is
clear that in the strip given by −1 < y ≤ 0 only regular points are drawn by
drawL ′(x, y) and drawR′(x, y). Indeed, lines are drawn disjointly, and for regions
the safety margin expressed by σ (x, ε), guarantees that the triangular regions don’t
intersect lines or other regions. As argued before, also drawG ′(x, y) produces only
regular points in the half-plane above the x-axis. On the x-axis, lines drawn by
drawL ′(x, y) and drawG ′(x, y) are joined in elements of L ′. So, the only singular
points produced by draw(x, y) are on the line y = −1. It is clear that there is
exactly one singular point for every single and paired cycle appearing in the code C .
Furthermore, these singular points have cones corresponding to the cones described
in the given code C . In this respect, it is important to remark that the singular points
have to be located below the x-axis, to guarantee that the coded cones are drawn in
a clockwise fashion. By cyclically permuting codes in clockwise direction, as done
in the rearrangement, the resulting clockwise cones are not affected. The inter-cycle
links are drawn as given by G ′ and thus as given by G. The output of draw(x, y)
applied to C is therefore isotopic to a drawing of C .

It is possible to write an FO[R]-expression over L , R, G and <� (in the style of
ψmin(x), ψmax(x), . . . above) that verifies that cycles appear one after the other in
R (as specified in the definition of wellembedded), and that x <� y implies x < y.
Let ϕw.e. be this sentence that expresses well-embeddedness. The conjunction of
draw(x, y) and ϕw.e. is then the wanted formula, since it returns the empty set when
C is not a well-embedded code and a drawing of C when it is a well-embedded
code. This concludes the proof.

5.2. PROOF OF LEMMA 5.1. We will use the well-known Ehrenfeucht–Fraı̈ssé
method [Abiteboul et al. 1995; Ebbinghaus and Flum 1995, 1984; Leonid 2004],
which we briefly introduce. Consider some arbitrary finite vocabulary ϒ of relation
symbols, and let r be some natural number. Up to logical equivalence, there are only
a finite number of first-order formulas over ϒ that have quantifier rank r . Now given
any ϒ-structure U , we can consider the set of all quantifier-rank-r sentences that
hold in U (up to logical equivalence). This finite set is called the r-type of U and is
denoted by r -type(U ). We can also view r -type(U ) as a sentence of quantifier rank
r itself, namely, as the conjunction of all its elements. It is known that if another
structure W satisfies r -type(U ), then r -type(U ) = r -type(W ). In this case, we also
say that W and U are r -equivalent, denoted by W ≡r U . A well-known method to
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show that two structures W and U are r -equivalent is to show that the Duplicator
has a winning strategy in the r -round “Ehrenfeucht–Fraı̈ssé game” on W and U .
We will not recall the definition of this game, and refer to the above-cited textbooks.

The Ehrenfeucht–Fraı̈ssé method can be used to prove Lemma 5.1 as follows.
Let r be the quantifier rank of the given sentence ψ . Suppose that we can prove
that there exists a natural number m such that for any two codes C and D such that
C ≡m D, there exist orderings C ′ and D′ of C and D such that C ′ ≡r D′. Then,
it is not difficult to show that the following sentence ψ0 satisfies the lemma. The
construction of ψ0 is as follows. For any code C , define class(C) as the set of all
codes D such that D′ ≡r C ′ for some orderings C ′ and D′ of C and D. Then,

ψ0 :=
∨

C |=ψ

∨
D∈class(C)

m-type(D),

where the first disjunction is over all codes C for which some ordering C ′ satisfies
ψ (denoted for convenience by C |= ψ). Note that, since there are only finitely
many possible m-types over the vocabulary �, the seemingly infinite disjunction is
actually finite.

So, it remains to prove that there exists a natural number m such that for any two
codes C and D such that C ≡m D, we can find orderings C ′ and D′ of C and D
such that C ′ ≡r D′. We do this as follows. Both in C ′ and in D′, order all single
cycles before all cycle pairs. Within the single cycles, we order as follows. Let
T1, . . . , T
 be some enumeration of all possible r -types of single cycles. Then we
put all the single cycles of type T1 first (in some arbitrary order), then those of type
T2, and so on, until T
. Next come the cycle pairs. Again we order these according
to some arbitrarily fixed enumeration of the possible r -types of cycle pairs. How
the two paired cycles in every separate cycle pair are ordered, we do not specify
yet.

Let us refer to the m-round game on C and D as the “unordered game”, and to
the r -round game on C ′ and D′ as the “ordered game”. We are given a winning
strategy for the Duplicator in the unordered game, and have to develop one for the
ordered game.

The ordered strategy basically follows the unordered strategy. By taking m at
least r , we may assume that when the Spoiler in the unordered game chooses a
node from some component C1 of C , then the Duplicator responds with a node
from some component D1 of D such that C1 ≡r D1. Since components of different
r -types are ordered in the same manner in C ′ and D′, the Duplicator has no difficulty
preserving the order ≺ among nodes belonging to components of different r -types.
To be able to preserve the order among nodes belonging to components of the same
r -type T , we take m at least 2r . From C ≡m D we then know that there are at
least 2r components of type T in C and D, and hence in C ′ and D′. That in turn
guarantees that the Duplicator can hold it up for r rounds in the ordered game on
the two subsequences of components of type T . (For more background on winning
the EF-game on total orders, we refer to the above-cited textbooks.)

It remains to specify how the Duplicator can preserve the order among the two
paired cycles in a cycle pair. Consider a cycle pair P in C , consisting of the two
paired cycles C1 and C2. Suppose the Spoiler in the ordered game chooses for the
first time a node x from P , and suppose x belongs to C1. In the unordered game,
the Duplicator will respond with a node y from a cycle pair Q in D, consisting of
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two paired cycles D1 and D2, and suppose y belongs to D1. Then, in C ′, we order
C1 before C2, and in D′, we order D1 before D2. The Duplicator is now safe in the
ordered game to follow the unordered strategy on P and Q.

This concludes the proof of Lemma 5.1.

6. Invariance Arguments and Word Structures

Lemma 5.1 from the previous section is an example of an invariance argument, of
which we will see several more in this Section. In general terms, invariance can be
defined as follows.

Let ϒ1 and ϒ2 be two disjoint finite relational vocabularies, and let ϒ = ϒ1 ∪ϒ2.
Two ϒ-structures that agree on ϒ1 are called variants. Let C be a class of ϒ-
structures. An ϒ-sentence ψ is called ϒ2-invariant over C if it does not distinguish
between any two variants belonging to C. We say that ϒ2-invariant FO collapses
over C if every first-order sentence that is ϒ2-invariant over C can be equivalently
written as a first-order sentence over the vocabulary ϒ1 only.

In this terminology, Lemma 5.1 states that ≺-invariant FO collapses over the
class of ordered codes. Later in this Section, we will prove an invariant collapse
result that will be a crucial tool for performing the final steps of our proof of our
main theorem. But we begin with a helpful general lemma.

6.1. THE PUSHDOWN LEMMA. We recall that the Gaifman graph [Gaifman
1982; Ebbinghaus and Flum 1995; Leonid 2004] of any relational structure C is the
graph whose nodes are the elements of C , and where there is an edge {x, y} if x and
y occur together in some tuple of some relation of C . A “connected component”
of C then is a substructure of C formed by the elements of a connected component
of the Gaifman graph of C . Also, we call C “connected” if C’s Gaifman graph is
connected.

In the following lemma, ϒ = ϒ1 ∪ ϒ2 as above.

PUSHDOWN LEMMA. Let C be a class of connected ϒ-structures. Let U be the
class of disjoint unions of structures in C. Suppose that within U , the predicate
“x and y belong to the same connected component” is definable by a first-order
sentence. Then every sentence ψ that is ϒ2-invariant over U is equivalent, within
U , to a boolean combination of conditions of the form |θ | ≥ n, with θ a first-order
sentence that is ϒ2-invariant over C. Such a condition means that there are at least
n connected components of the structure that satisfy θ .

PROOF. Let γ (x, y) be a formula expressing that x and y belong to the same
component. Denoting the quantifier rank ofψ by qr(ψ), let r := max{qr(ψ), qr(γ )+
2}. Let ≈ be the equivalence relation on C defined as the transitive closure of the
union of the relation of r -equivalence and the relation “is a variant of”.

If we replace, in a structure U in U , some connected component by an ≈-
representative, we obtain a structure indistinguishable from A by ψ . Note that the
representative copy is also connected, because connectedness is expressible using
quantifier rank r by ∀x∀yγ (x, y). Furthermore, suppose that a structure A in U has
at least r components that are ≈. Then adding one more ≈-representative is again
indistinguishable from A by ψ .

The ≈-equivalence class of a component can be defined by the disjunction δ of
all r -types of its ≈-representatives. This δ is ϒ2-invariant over C. We conclude that
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ψ can be described by a disjunction of conjunctions of conditions of one of the
forms |δ| = i , for 0 ≤ i < r , or |δ| ≥ r .

6.2. WORD STRUCTURES. Fix a finite alphabet �. Up to isomorphism, a word
structure over � is a finite structure with domain {1, . . . , n}, for some natural
number n ≥ 1. Every element is labeled with a letter of �, and the structure also
includes the total order < on {1, . . . , n}. There is a clear correspondence between
word structures and finite strings over �.

Note that the cycle structures we introduced in Section 5 are nothing but word
structures over the alphabet {L , R}, equipped with an additional relation G. Indeed,
the invariant collapse result we will present in this Section is in general about word
structures over an arbitrary alphabet � that are equipped with an additional planar
matching G on all the elements of the structure. Here, “planar” has the same meaning
as in Section 5: If i < j < k < 
, then it is forbidden that G(i, k) and G( j, 
) both
hold.

INVARIANCE LEMMA. G-invariant FO collapses over the class of word struc-
tures equipped with a planar matching.

The lemma follows from three other lemmas, which we can phrase after hav-
ing introduced some more notation and some more definitions. For simplicity, we
will refer to “G-invariant over words equipped with a planar matching” simply as
“planar-invariant”.

We use the following notation for vocabularies. For words over an alphabet �,
we use LW� = � ∪ {<} and for words equipped with a planar matching we
use LWM� = � ∪ {<, G}. From <, we can easily define predicates Min(x) and
Max(x) for the first and the last position of the word, and the binary successor
relation suc(x, y):

Min(x) ≡ ¬∃y(y < x),
Max(x) ≡ ¬∃y(x < y),

suc(x, y) ≡ x < y ∧ ¬∃z(x < z ∧ z < y).

Furthermore, for subsets � of �, we use the notation �(x) as an abbreviation for∨
a∈� a(x).
For an LWM� sentence ψ , we denote by M(ψ) the set of words equipped with

planar matchings that satisfy ψ , and by W (ψ) we denote the set of words obtained
from M(ψ) by omitting the planar matchings. If ψ is planar-invariant, then M(ψ)
is completely determined by W (ψ). Further, note that W (ψ) only contains words
of even length. For an LW� sentence θ , we denote by W (θ ) the set of words w
satisfying θ . In general, the set W (θ ) can contain words of even and words of odd
length. It is well known that W (θ ) is always a regular language [Thomas 1997].

To prove the invariance lemma, we have to show that for each planar-invariant
LWM� sentence ψ there exists an LW� sentence θ such that W (ψ) = W (θ ) ∩
(��)∗. The main idea is to show that W (ψ) for a planar-invariant LWM� sentence
ψ is regular and contains counters of a very restricted kind only. The proof is then
completed by showing that a regular language W ⊆ (��)∗ with these restrictions
on the occurrence of counters is of the form W ′ ∩ (��)∗ for an LW� definable
language W ′. We start with some terminology on counters. In the following, we
assume familiarity with the basic facts on finite automata [Hopcroft and Ullman
1979].
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FIG. 7. Pattern for two-stage counter.

Let ↔W be the relation defined by u ↔W v if u ∈ W and v ∈ W , or u /∈ W
and v /∈ W . Nerode’s congruence for W , denoted ≡W , is defined by u ≡W v if
uw ↔W vw for every w ∈ �∗.

Let A = (S, �, sin, δ, F) be a deterministic finite automaton (DFA). A loop of
A is a pair (s, v) with s ∈ S and v ∈ �∗ such that δ(s, vn) = s for some n > 0.
The smallest such n is called the period of (s, v), and |v| is called the progression
of (s, v). A counter of A is a loop (s, v) such that δ(s, v) �= s, that is, a loop of
period at least 2. An (n, m)-counter is a counter with period n and progression
m. We extend this to sets of natural numbers and use, for instance, the expression
(2, odd)-counter to denote a (2, m)-counter for some odd m.

The concept of loops and counters can directly be adapted to languages (rather
than automata) by saying that a pair (u, v) with u, v ∈ �∗ is a loop of a language
W if there exists n > 0 such that uvn ≡W u. A counter of W is a loop (u, v) of
W such that u �≡W uv . For a regular language W , this is equivalent to saying that
(δ(sin, u), v) is a counter (respectively, loop) of the minimal DFA AW for W . The
word u is called the offset of the counter.

We say that (u, v, x, y) is a two-stage counter of W if

—(u, v) is a counter of W ,
—(ux, y) and (uvx, y) are loops of W and one of them is a counter, and
—ux �≡W uvxy.

All the languages we consider contain counters of period 2 only. In the minimal
DFA for such a language, a two-stage counter corresponds to the pattern depicted
in Figure 7, where s is reachable via u from the initial state and

—(s, v) is a (2, |v|)-counter, that is, s �= t ,
—(s0, y) or (t0, y) is a (2, |y|)-counter, i.e., s0 �= s1 or t0 �= t1, and
—s0 �= t1.

To show that W (ψ) only contains very restricted kinds of counters, we introduce
two special kinds of planar matchings. We call G a chain matching if it satisfies

ψchain ≡ ∀x, y((Min(x) ∧ Max(y) → G(x, y)) ∧
(G(x, y) → (Min(x) ∨ Max(x) ∨ suc(x, y) ∨ suc(y, x)))),

and a parenthetical matching if it satisfies

ψpar ≡ ∀x, y(Min(x) ∧ Max(y) → G(x, y)) ∧
∀x0, x1, x2, x3(suc(x0, x1) ∧ suc(x2, x3) → (G(x0, x3) ↔ G(x1, x2))).

Figures 8 and 9 show the unique matchings of these kinds for words of length
6. By Wchain(ψ) and Wpar(ψ) we denote the set of words obtained considering only
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FIG. 8. Chain matching.

FIG. 9. Parenthetical matching.

chain matchings or only parenthetical matchings, that is, Wchain(ψ) = W (ψ∧ψchain)
and Wpar(ψ) = W (ψ ∧ ψpar).

With this notation we can now formulate the three lemmas that we need for the
proof of the Invariance Lemma.

LEMMA 6.1. For ψ an LWM� sentence, Wchain(ψ) is regular and only contains
(2, odd)-counters.

LEMMA 6.2. For ψ anLWM� sentence, if Wpar(ψ) is regular and only contains
(2, odd)-counters, then Wpar(ψ) does not contain a two-stage counter.

LEMMA 6.3. If W is a regular language containing only (2, odd) counters and
no two-stage counter, then there is an LW� sentence θ such that W = W (θ ) ∩
(��)∗.

Before we prove these three lemmas, we show how to conclude the invariance
lemma from them.

PROOF OF INVARIANCE LEMMA. If ψ is a planar invariant LWM� sentence, then
Wchain(ψ) = Wpar(ψ) = W (ψ). Hence, one can conclude from Lemmas 6.1 and
6.2 that W (ψ) satisfies the conditions of Lemma 6.3 and thus can be written as
W (ψ) = W (θ ) ∩ (��)∗ for an LW� sentence θ . So θ is the desired formula—
recall that word structures equipped with planar matchings have universes of even
cardinality.

In the proofs of Lemmas 6.1–6.3, we make intensive use of the following well
known result.

THEOREM 6.1 [MCNAUGHTON AND PAPERT 1971]. A regular language W ⊆
�∗ is definable in LW� if, and only if, it is counter-free.

Now we can proceed to the proofs of the lemmas.

PROOF OF LEMMA 6.1. Let �̄ = {ā | a ∈ �} be a disjoint copy of the alphabet
� and �alt = � ∪ �̄. The idea for the proof is to consider the language obtained
from Wchain(ψ) by replacing every second letter with the corresponding letter from
�̄. This language can then be defined in LW�alt and is thus counter-free. Then, one
shows that the only counters that can be introduced by the operation of projecting
the �̄-letters back to the corresponding �-letters are (2, odd)-counters.

More formally, let the natural projection π : �∗
alt → �∗ be the homomorphism

defined by π (a) = π (ā) = a for a ∈ � and let Walt(ψ) ⊆ �∗
alt be the language

obtained from Wchain(ψ) by replacing in each word every second letter by the
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corresponding letter from �̄:

Walt(ψ) = {w ∈ (��̄)∗ | π (w) ∈ Wchain(ψ)}.
For example, the word obtained in this way from the chain matching in Figure 8 is
a0ā1a2ā3a4ā5.

Claim 1. Walt(ψ) is LW�alt-definable and thus regular and counter-free.

Reason. We construct from ψ an LW�alt sentence ψalt such that Walt(ψ) =
W (ψalt). The claim then follows from Theorem 6.1. We only give the construction
of ψalt, the correctness can easily be shown by induction. Let ψalt = ψ̄ ∧ α where
α states that the letters from � and from �̄ alternate, beginning with � and ending
with �̄,

α ≡ ∀x, y(suc(x, y) → (�(x) ↔ �̄(x))) ∧
∀x[(Min(x) → �(x)) ∧ (Max(x) → �̄(x))],

and ψ̄ is obtained from ψ by substituting

—a(x) ∨ ā(x) for a(x), and
—(suc(x, y) ∧ �̄(x) ∧ �(y)) ∨ (suc(y, x) ∧ �̄(y) ∧ �(x)) ∨ (Min(x) ∧ Max(y)) ∨

(Max(x) ∧ Min(y)) for G(x, y).

Claim 2. Wchain(ψ) does not have (odd, odd)-counters.

Reason. If (u, v) is an (n, m)-counter of Wchain(ψ) with n and m odd, then there
exists w such that either uw ∈ L and uvnw ∈ L or uvw ∈ L and uvn+1w ∈ L , but
only one of uw and uvnw has even length, and only one of uvw and uvn+1w has
even length.

Claim 3. If Wchain(ψ) has a (2n, m)-counter with n > 1, then Wchain(ψ) has an
(n, even)-counter.

Reason. If (u, v) is a (2n, m)-counter of Wchain(ψ) with n > 1, then (u, vv) is an
(n, 2m)-counter and hence an (n, even)-counter.

Claim 4. Wchain(ψ) has no (n, even)-counter.

Reason. Assume that (u, v) is an (n, 2m)-counter of Wchain(ψ) and let u′v ′ ∈
(��̄)∗(ε+�) such that π (u′) = u and π (v ′) = v . We claim that (u′, v ′) is a counter
of Walt(ψ), contradicting Claim 1. In the proof of this, we use that π (x ′) ∈ Wchain(ψ)
iff x ′ ∈ Walt(ψ) for each x ′ ∈ (��̄)∗.

Since (u, v) is a counter of Wchain(ψ), we know there exists w such that
uw �Wchain(ψ) uvw . Let w ′ be such that u′v ′w ′ ∈ (��̄)∗ and π (u′v ′w ′) = uvw .
Then u′w ′ ∈ (��̄)∗ because v ′ has even length. Therefore, u′w ′ �Walt(ψ) u′v ′w ′.
It remains to verify that (u′, v ′) is a loop of Walt(ψ).

Let w ′ ∈ (� ∪ �̄)∗ be arbitrary and set w = π (w ′). Again, since v ′ has even
length, we know that u′w ′ ∈ (��̄)∗ iff u′v ′nw ′ ∈ (��̄)∗. Either both words are not
in (��̄)∗, which means that they both are not in Walt(ψ), or we obtain the following
equivalences verifying that (u′, v ′) is a loop:

u′v ′nw ′ ∈ Walt(ψ) ⇔ uvnw ∈ Wchain(ψ) ⇔ uw ∈ Wchain(ψ) ⇔ u′w ′ ∈ Walt(ψ).

This finishes the reasoning for Claim 4.
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From Claim 1, it follows that Wchain(ψ) is regular. From Claims 2–4, it follows
that Wchain(ψ) only contains (2, odd)-counters.

PROOF OF LEMMA 6.2. Let �fold be the set of all column vectors over � with two
rows, called folded letters. Words over this alphabet are called folded words. For
simplicity, when u = a0 · · · an−1 and v = b0 · · · bn−1 are words of the same length,

then we write
[ u

v

]
for

[
a0

b0

] [
a1

b1

]
. . .

[
an−1

bn−1

]
. When u is a word, we write ←−u for the

reverse of u. The unfolding of a word
[ u

v

]
, denoted λ(

[ u
v

]
), is the word u←−v .

A word w equipped with a parenthetical matching G corresponds in a natural
way to a folded word. This folded word is obtained by reversing the second half
of w and writing it below the first half of w . In this way, two positions that are in
the same column of the folded word are positions that are linked by G in w . For
example, the folded word corresponding to the parenthetical matching from Figure 9

is
[

a0

a5

] [
a1

a4

] [
a2

a3

]
. We denote the language obtained by applying this operation to

all words in W (ψ) by Wfold(ψ).

Claim 1. Wfold(ψ) is counter-free.

Reason. We show how to construct a LW�fold sentence ψfold defining Wfold(ψ).
The claim then follows from Theorem 6.1. The idea for the construction of ψfold is
that a position i in a word w is coded by a pair of positions ( j, j ′) in a folded word
where j ′ ∈ {0, 1}. More precisely, when 2m is the length of w , then i corresponds
to (i, 0) when i < m and to (2m − (i + 1), 1) when m ≤ i < 2m. This means that
for each variable x in ψ we have to use two variables x and x ′ in ψfold where x ′
only ranges over 0 or 1. Observe that this is only possible when the folded word
is of length at least 2; the other words, whereof we have only a finite number, are
dealt with separately. More precisely, the overall formula is of the form:

ψfold ≡ (∀xMin(x) ∧
∨

ab∈Wpar(ψ)

[ a
b

]
(x)) ∨ (ψ̂fold ∧ ∃x¬Min(x)).

where the first disjunct takes care of the folded words of length 1 and ψ̂fold, to be
specified, of the other words.

To construct ψ̂fold, we use the following auxiliary formulas, which allow us to
state that a position is 0, 1, and 0 or 1, respectively.

τ0(x ′) ≡ Min(x ′),
τ1(x ′) ≡ ∃y(Min(y) ∧ suc(y, x ′)),
τ (x ′) ≡ τ0(x ′) ∨ τ1(x ′).

Now, ψ̂fold is defined inductively as follows:

—For ψ ≡ a(x), let ψ̂fold ≡ ∨
b∈�((

[ a
b

]
(x) ∧ τ0(x ′)) ∨ (

[
b
a

]
(x) ∧ τ1(x ′))).

—For ψ ≡ x < y, let ψ̂fold ≡ (x ′ < y′ ∨ (τ0(x ′) ∧ x < y) ∨ (τ1(y′) ∧ y < x)).
—For ψ ≡ G(x, y), let ψ̂fold ≡ x = y ∧ (τ0(x ′) ↔ τ1(y′)).
—For ψ ≡ ∃xϕ, let ψ̂fold ≡ ∃x, x ′(τ (x ′) ∧ ϕ̂fold).
—For ψ ≡ ϕ ∨ χ , let ψ̂fold ≡ ϕ̂fold ∨ χ̂fold and for ψ ≡ ¬ϕ, let ψ̂fold ≡ ¬ϕ̂fold.
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Claim 2. If Wpar(ψ) has a two-stage counter, then it has a two-stage counter
(u, v, x, y) such that |v| = |y|, |x | is even, and |u| = |z| for some z with
uxz �Wpar(ψ) uvxyz.

Reason. First, note that |u| = |z| and |v| = |y| imply that |x | is even because
either uxz or uvxyz is of even length since uxz �Wpar(ψ) uvxyz.

For the following steps, we use that all the counters in Wpar(ψ) are (2, odd)-
counters by assumption. We start by adapting the two-stage counter such that
|u| = |z|:

—If |u| < |z|, then let v = v1v2 such that |z| = |uvnv1| for some n ≥ 0. We
replace u by uvnv1 and v by v2v1. If n is odd, then we replace x by v2x , and if
n is even, then we replace x by v2vx .

—If |z| < |u|, then we replace z by ynz for some even n such that |ynz| > |u| and
then proceed as in the first case.

The property |v| = |y| can easily be achieved since we can replace v and y by
any odd multiple without destroying the two-stage counter. In particular, we can
replace v by v |y| and y by y|v|.

To finish the proof of Lemma 6.2, we now show that the existence of a two-
stage counter in Wpar(ψ) induces a counter in Wfold(ψ), contradicting Claim 1. To
simplify notation, we set W = Wpar(ψ). Let u, v, x, y, z be as in Claim 2 with
x = x1x2 such that |x1| = |x2|. Since (u, v, x, y) is a two-stage counter of W , we
know that (u, v) is a counter of W and that (ux, y) and (uvx, y) are loops of W . By
assumption, W only contains counters of period 2 implying that the period of each
loop in W is at most 2. Thus, we get for each k that uv2k ≡W u and uv2k+1 ≡W
uv , and we can conclude further that uv2k xy2k ≡W ux and uv2k+1xy2k+1 ≡W
uvxy. Since z was chosen such that uxz �W uvxyz we obtain uv2k xy2k z �W
uv2k+1xy2k+1z and since �W is symmetric we get uvk xykz �W uvk+1xyk+1z for
each k.

Now define the folded words α =
[

u←−z
]
, β =

[
v←−y

]
, and γ =

[
x1←−x2

]
. Then for

each k we have λ(αβkγ ) = uvk xykz and hence αβkγ �Wfold(ψ) αβk+1γ for each
k because uvk xykz ∈ W iff αβkγ ∈ Wfold(ψ). Since W is regular by assumption,
≡W is of finite index. Thus, there are k ≥ 0 and n > 1 such that αβk ≡W αβk+n

and therefore (αβk, β) is a counter of Wfold(ψ).

PROOF OF LEMMA OF LEMMA 6.3. We construct from the minimal DFA A =
(S, �, sin, δ, F) for W a new DFA A′ = (S ∪ S × S, �, s ′

in, δ
′, F ′) accepting

a counter-free language W ′ such that W = W ′ ∩ (��)∗. At the beginning, A′
simulates A. As soon as it has processed a word u such that (u, v) is a counter of
W , it goes to a pair of states (s, t), where s is the state reached after reading u, and t
is the state reached in A after reading uv . Starting from this state, A′ simulates the
product automaton A × A. A state (s1, s2) is accepting in A′ if s1 or s2 is accepting
in A.

Formally, let Sc be the set of all states from S such that (s, v) is a counter for
some v . For every s ∈ Sc we fix such a v , denote it by vs , and set ts = δ(s, vs). The
components of A′ are defined as follows:
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—s ′
in = sin if sin /∈ Sc and s ′

in = (sin, tsin ) if sin ∈ Sc.

—δ′(s, a) = δ(s, a) for all s ∈ S and a ∈ � such that δ(s, a) /∈ Sc,
δ′(s, a) = (δ(s, a), tδ(s,a)) for all other s ∈ S and a ∈ �, and
δ′((s, t), a) = (δ(s, a), δ(t, a)) for all s, t ∈ S.

—F ′ = F ′
0 ∪ F ′

1 with F ′
0 = F ∪ (F × S) and F ′

1 = (S × F).

Claim 1. W ′ ∩ (��)∗ = W

Reason. Denote by W ′
0 and W ′

1 the languages accepted by A′ with final states from
F ′

0 and F ′
1, respectively. The claim directly follows from the next two observations.

—W ′
0 = W , which is a direct consequence of the definition of δ′.

—W ′
1 only contains words of odd length, that is, W ′

1 ⊆ (��)∗�, which can be
seen as follows. Let w ∈ W ′

1, that is, δ′(s ′
in, w) = (s, t) ∈ S × F for some s ∈ S

and t ∈ F . Choose w ′, w ′′ ∈ �∗ such that w = w ′w ′′ where w ′ is the shortest
prefix of w such that δ′(sin, w ′) ∈ S × S. Let s0 = δ(sin, w ′) and v = vs0 . By the
construction of A′, we obtain that w ′vw ′′ is accepted by A and thus is of even
length. We know that A only contains (2, odd)-counters and hence |v| is odd.
Therefore, w ′w ′′ = w is of odd length.

Claim 2. For each counter (s ′, y) of A′ and each w with δ′(s ′
in, w) = s ′, the pair

(w, y) is not a counter of W ′.

Reason. Let (s ′, y) be a counter of A′ and let w be such that δ′(s ′
in, w) = s ′. We

distinguish two cases.
First case, s ′ ∈ S. Then, by definition of counter and the construction of A′,

δ′(s ′, vi ) ∈ S for every i , that is, (s ′, v) must be a counter of A. But then s ′ would
be in Sc and hence not be reachable in A′.

Second case, s ′ = (s0, t0) ∈ S × S. Assume that ((s0, t0), y) is an (n, m)-counter
of A′. Then, by definition of counter, δ′((s0, t0), yn) = (s0, t0) and |y| = m. By
definition of A′ we get δ(s0, yn) = s0 and δ(t0, yn) = t0, that is, (s0, y) and (t0, y) are
loops in A. Since W only contains (2, odd)-counters we get that δ(s0, y2) = s0 and
δ(t0, y2) = t0. Furthermore, since ((s0, t0), y) is a counter of A′, either δ(s0, y) �= s0
or δ(t0, y) �= t0, that is, either (s0, y) is a counter of A or (t0, y) is a counter of A.

Let s1, t1 ∈ S be such that δ′((s0, t0), y) = (s1, t1). By construction of A′, we
know there exists a counter (s, v) in A and words u, x with w = ux such that
δ(sin, u) = s, δ(s, x) = s0, and δ(ts, x) = t0. If s0 �= t1, then (u, vs, x, y) is a
two-stage counter of W , contradicting the assumption.

Otherwise, we have s0 = t1. We can conclude that t0 = s1 as follows: t0 =
δ(t0, y2) = δ(t1, y) = δ(s0, y) = s1. This means δ′((s0, t0), y) = (t0, s0). For every
word z, we have that if δ′((s0, t0), z) = (s ′

0, t ′
0), then δ′((s1, t1), z) = δ′((t0, s0), z) =

(t ′
0, s ′

0) (and vice-versa). Thus, for each z, we have wz ∈ W ′ iff wyz ∈ W ′ because
(s ′

0, t ′
0) is a final state iff (t ′

0, s ′
0) is. Hence, (w, y) is not a counter of W ′.

Claim 3. W ′ is counter-free.

Reason. Assume that (w, y) is a counter of W ′. Then (wyk, y) is a counter of W ′
for each k and thus, since A′ is finite, (δ′(s ′

in, wyk), y) is a counter of A′ for some
k. This contradicts Claim 2.
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6.3. MATCHING PAIRS. We will also need a version of the Invariance Lemma
that can be applied to cycle pairs. In accordance with the Invariance Lemma, we
will formulate this version for the natural generalization of the notion of cycle pair,
that is over an arbitrary alphabet rather than just {L , R}, and in which the planar
matching G is on all the elements of the structure. We call these structures matching
pairs. For the sake of completeness, we give the formal definition, which parallels
the definition we have given for a cycle pair.

A paired word is like a word structure equipped with a planar matching, but
instead that G is a planar matching on all of the elements, a nonempty set of
consecutive elements now remains unmatched. Here, “consecutive” has again the
circular interpretation where we can consider the first element a successor of the
first element (and thus the last a predecessor of the first). Unless it consists of all
elements, a set X of consecutive elements has a unique “first” element, which is
the element whose predecessor is not in X . We can enumerate the elements of
X successively starting from the first element of X ; we call this the consecutive
enumeration of X . If X consists of all elements, any of the n possible successive
enumerations of the elements is considered to be a consecutive enumeration.

Now a matching pair is a disjoint union of two paired words that have precisely
the same number of unmatched elements, where additionally, we extend G to
match the set of as-yet unmatched elements of the one cycle to the set of as-yet
unmatched elements of the other cycle. Moreover, these cross matches must be
“order-reversing”, in the following sense. Let X be the set of consecutive elements
in the one cycle that is matched to the set Y of consecutive elements in the other
cycle. Then we must be able to give consecutive enumerations x1, x2, . . . , xk and
y1, y2, . . . , yk of X and Y respectively, such that G contains the pairs

(x1, yk), (x2, yk−1), . . . , (xk, y1).

PAIR INVARIANCE LEMMA. G-invariant FO collapses over the class of match-
ing pairs.

PROOF. To prove the lemma, we encode matching pairs as words with matching
and then we apply the results obtained in the proof of the Invariance Lemma. To
be able to use these results, we have to make sure that the encoding produces chain
matchings and parenthetical matchings. This is achieved by simply concatenating
the paired words, and replacing the letters from the first word with the corresponding
letters from a disjoint copy �̄ of �, while keeping the matching. Note that, as
matching pairs are unordered, there are two possible encodings.

We use the same vocabularies as before but with different names LP� = LW�
andLPM� = LWM� to emphasize that we are working with different structures, i.e.,
matching pairs. For anLPM� sentence ψ , let M P(ψ) be the set of matching pairs in
which ψ is true. For a set L of matching pairs, we denote by M(L) the corresponding
set of encodings as words with matching, obtained in the way described above.

It is not difficult to see that for an LPM� sentence ψ there exists an LWM(� ∪ �̄)
sentence ψ ′ with M(ψ ′) = M(M P(ψ)). The sentence ψ ′ can be obtained from ψ
by replacing

—a(x) with (ā(x) ∨ a(x)) for each a ∈ � and

—x < y with x < y ∧ (�(x) ↔ �(y)),
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FIG. 10. Two matching pairs corresponding to a chain matching and a parenthetical matching. The
comma merely serves as a visual cue to separate the two paired words.

and by adding a conjunct requiring that all the �̄ letters are before the � letters:

(∃x�(x)) ∧ (∃x�̄(x)) ∧ ∀x, y(�̄(x) ∧ �(y) → x < y)

Now one can observe that the matchings produced by this coding include chain
matchings and parenthetical matchings, as indicated in Figure 10. Hence, if ψ is
invariant, we get Wchain(ψ ′) = Wpar(ψ ′) = W (ψ ′) and thus, by Lemmas 6.1, 6.2,
and 6.3, there is an LW(� ∪ �̄) sentence φ′ with W (φ′) = W (ψ ′).

To obtain the desired LP� sentence φ, we first transform φ′ into an LP� formula
θ (z) for a variable z that does not occur in φ′. The purpose of z is to distinguish the
two words. The formula θ (z) is obtained as follows. We use the abbreviation x ‖ y
for x ≮ y ∧ x �= y ∧ x ≯ y, to denote that x and y do not belong to the same paired
word. We obtain θ from φ′ by replacing

—ā(x) by a(x) ∧ ¬(x ‖ z),
—a(x) by a(x) ∧ x ‖ z, and
—x < y by x < y ∨ (x ∦ z ∧ y ‖ z).

Then, we define φ = ∃zθ (z).

6.4. APPLICATION TO CYCLES. For the sake of generality and elegance, we have
stated and proved the Invariance and Pair Invariance Lemmas for word structures, or
matching pairs, with a planar matching defined on all the elements of the structure.
We will need to apply these lemmas, however, to single cycles and to cycle pairs,
where the planar matching is defined on the L’s only. We next show that this is not
a problem.

COROLLARY 6.1. G-invariant FO collapses over single cycles, and over cycle
pairs.

PROOF. We will give the proof for single cycles; the argument for cycle pairs
is analogous.

Let ψ be a G-invariant sentence over single cycles. First of all, we note that it is
sufficient to show that ψ can be equivalently written as a G-less sentence θ , over
the class of those single cycles that have at least one (and thus at least two) L’s.
Indeed, then ψ is equivalent over all single cycles to the G-less sentence

((�x L(x)) ∧ ψ ′) ∨ ((∃x L(x)) ∧ θ ),

where ψ ′ is the sentence obtained from ψ by replacing every atomic subformula
of the form G(u, v) by false.
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Let r be the quantifier rank of ψ . Let � be set of all possible r -types of word
structures over the alphabet {L , R}. We are going to abstract single cycles, which
are word structures over the alphabet {L , R} equipped with a planar matching on
the L’s, by word structures over the alphabet � equipped with a planar matching on
all elements. Specifically, given a single cycle C with at least one (and thus at least
two) L’s, we define the structure abs(C) as follows. The elements of abs(C) are
the L-labeled elements of C . The order < is inherited from the original order. The
relation G is exactly as in C . To define how the elements are labeled, we partition
the word structure of C into segments, as follows:

—Let i be the first L-labeled element of C . The segment belonging to i is the initial
segment that ends just before the second L .

—Let k be the last L-labeled element of C . The segment belonging to k is the final
segment that begins with k.

—Let j be any other L-labeled element of C . The segment belonging to j begins
with j and ends just before the next L .

Then, each element of abs(C) is labeled by the r -type of the segment it belongs to.
We now make the following claims:

(1) There exists an LWM�-sentence ϕ such that for any single cycle C , we have
ψ(C) = ϕ(abs(C)).

(2) For any LW�-sentence ϕ, there exists a G-less sentence θ such that for any
single cycle C , we have θ (C) = ϕ(abs(C)).

Assuming that these claims hold, the lemma follows readily. Indeed, the sentence
ϕ obtained from Claim 1 is G-invariant, because ψ is. Hence, by the Invariance
Lemma, we may assume without loss of generality that ϕ is G-less. Claim 2 then
gives us the desired sentence θ .

Proof of Claim 1. Following the Ehrenfeucht–Fraı̈ssé-method, it suffices to prove
that there exists a natural number m such that for any two single cycles C and C ′,
if abs(C) ≡m abs(C ′), then C ≡r C ′. Indeed, if this is so, then we can use the
following sentence for ϕ: ∨

C |=ψ

∨
C ′≡r C

m-type(abs(C ′)).

We show that actually m = r does fine, using the EF-game. We are given a
winning strategy for the Duplicator on the “abstract game”, this is the r -round game
on abs(C) and abs(C ′), and need to develop a winning strategy for the Duplicator
on the “LR game”, this is the r -round game on C and C ′. Suppose the spoiler picks
an L-labeled element x in C . Then, x is also an element of abs(C); let x ′ be the
response by the Duplicator in the abstract game. In particular, x ′ and x have the same
label. Now x ′ is also an element of C ′, and the Duplicator uses this as his response
in the LR game. Note that since x and x ′ have the same label in the abstractions,
the word segments belonging to x in C and to x ′ in C ′ are r -equivalent. Hence,
when the spoiler picks an R-labeled element z in C , the Duplicator can respond as
follows. Let x be the L-labeled element in C whose segment z belongs to. Let x ′
be the response the Duplicator would make to x in the LR game. Then, we know
that the segment belonging to x ′ in C ′ is r -equivalent to the segment belonging to
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x . So, in the “mini EF-game” on these two segments, the Duplicator has a response
z′ to z. It is this z′ that the Duplicator will respond with in the LR game.

PROOF OF CLAIM 2. This is rather easy. The segment belonging to an L is FO-
definable, and statements of the form “the structure has r -type T ” are expressible
in FO as well. We can thus directly define abs(C) from C in first-order logic.

7. From Implementations to CL-Sentences

Fix a topological FO[R]-sentence ϕ. A sentence ψ obtained from Proposition 5.1
for ϕ will be called an implementation of ϕ. If it were not for the relation G in
codes, an implementation of ϕ is fairly close to a C L sentence. Specifically:

PROPOSITION 7.1. Suppose ϕ has an implementation that does not mention the
relation G. Then ϕ is equivalent to a CL-sentence.

PROOF. Let us define a “G-less code” as a code sans the G relation. Obviously,
an implementation ψ that does not mention G views a code as a G-less code. Now
a G-less code is nothing but a disjoint union of word structures over the alphabet
{L , R}, where there is one component for each singular point in the dataset the code
represents. So, ψ has pretty much the same view on a dataset as a CL-sentence has;
more correctly, as a “singular” CL-sentence, as defined in the proof of Lemma 4.1,
but we saw there that singular CL is a fragment of normal CL.

There is still one important difference, however, between a G-less implementa-
tion and a CL-sentence: the latter sentence views the cones of the points as circular
strings, whereas the implementation views them as linear strings. On the other
hand, we know that ψ is actually invariant under rotation of the word structures,
because the very notion of drawing is invariant under rotation. Here, by a rota-
tion of an n-letter string w = a1 · · · an , we mean any of the n possible strings
ai ai+1 · · · ana1a2 · · · ai−1, with i ∈{1, . . . , n}.

To formalize this invariance of ψ under rotation, we need to go through a number
of rather tedious but very straightforward steps. First, we introduce the notion of a
cone structure. These are like word structures over {L , R}, except that instead of a
linear order <, there is a ternary relation B (for “between”). Specifically, B(x, y, z)
holds if y comes before z in the following sequence:

x, x + 1, . . . , n, 1, 2, . . . , x − 1.

There is a clear correspondence between cone structures and (oriented) circular
strings over {L , R}, that is, cones.

We can actually represent word structures by cone structures, provided we equip
the latter with an extra unary relation first which labels precisely one element of the
structure. We call such structures “pointed” cone structures. Indeed, we circularize
the given word structure by replacing < by B, and label the original first element
by first. Denoting the pointed cone version of a word structure w by w�, it is
very easy to see that for every sentence θ about word structures there exists a
sentence θ� about pointed cone structures, such that for any word w , we have
θ�(w�) = θ (w).

We can then move up one level and consider pointed cone codes, which are
simply disjoint unions of pointed cone structures; we can consider the pointed cone
version C� of a G-less code C ; and agree that C� represents a spatial dataset
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when C does so. We can then turn our given G-less implementation ψ into a
sentence ψ� over pointed cone codes that implements our original topological
FO[R]-sentence.

Returning now to the invariance under rotation of ψ , we obtain that ψ� is
first-invariant over the class of pointed cone codes. By the Pushdown Lemma,
we can therefore rewrite ψ� as a boolean combination of conditions of the form
|θ | ≥ m, where each component sentence θ is first-invariant over pointed cone
structures. Now it is very easy to see that first-invariant FO collapses over pointed
cone structures, so without loss of generality we may assume that each θ does
not use the first-relation at all and is simply a sentence about cone structures.
Moreover, it is equally easy to see that for each sentence θ about cone structures
there exists a sentence θ ′ about word structures, such that for each cone structure
c and each linearization w of c, we have θ (c) = θ ′(w). Here, by a linearization of
c we obviously mean a word structure w such that its circularization equals c. In
particular, the sentence θ ′ is invariant under rotation.

In summary, we have obtained a Boolean combination ψ ′ of conditions of the
form |θ ′| ≥ m, where each component sentence θ ′ is invariant under rotation,
such that for any spatial dataset A and any G-less code C that represents A, we
have ϕ(A) = ψ ′(C). It now remains to perform the well-known translation of
first-order sentences on word structures into star-free regular expressions [Thomas
1997] to every θ ′ to obtain a (singular) CL-sentence from ψ ′, and the proposition
is proven.

Proposition 7.1 makes clear that the final step in establishing our Main Theorem
is to prove that every implementation of a topological FO[R]-sentence can be
equivalently written without mention of the relation G. Now a crucial observation
is that an implementation ψ , of a topological FO[R]-sentence ϕ, is G-invariant over
codes. Indeed, if codes C and C ′ are variants with respect to G, and datasets A and
A′ are drawings of C and C ′ respectively, then A and A′ are t.e.e. by Theorem 4.1
and therefore ψ(C) = ϕ(A) = ϕ(A′) = ψ(C ′). Hence, we want to prove:

LEMMA 7.1. G-invariant FO collapses over codes.

PROOF. Fix a sentence ψ that is G-invariant over codes. By the Pushdown
Lemma, we can rewrite ψ as a Boolean combination of conditions of the form
|θ | ≥ m, where each component sentence θ is G-invariant over the class of single
cycles and cycle pairs. By the Invariance and Pair Invariance Lemmas (and recalling
Corollary 6.1), each θ is equivalent to a G-less sentence θ ′ over single cycles, and
to a G-less sentence θ ′′ over cycle pairs. But then θ is equivalent over both single
cycles and cycle pairs to the G-less sentence

(is single ∧ θ ′) ∨ (¬is single ∧ θ ′′),

where is single is ∀x∀y(x ≤ y ∨ x ≥ y).
Recapitulating, we have expressed ψ in the special form of a Boolean combi-

nation of conditions of the form |θ | ≥ m, where each component sentence θ is
G-less. So, θ sees a single cycle as a word, and sees a cycle pair as an unordered
pair of words. Note that each condition |θ | ≥ m means that there are at least m
connected components satisfying θ . So, this special form does not yet give us a
G-less first-order expression, because it is obviously impossible to express that two
elements of a code belong to a different cycle pair without using G!
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To prove that ψ is still expressible without G, we proceed as follows. We find
two natural numbers k and 
 such that any two codes that are “(k, 
)-equivalent”
are indistinguishable by ψ . Now (k, 
)-equivalence will have two good properties:
it will be of finite index, and every equivalence class can be defined without G. As
a consequence, ψ can be written as a finite disjunction of G-less sentences, and we
will have proven our lemma.

To define (k, 
)-equivalence, we refer back to our special expression for ψ ,
and define k as the maximal quantifier rank of any of the component sentences
θ , and define 
 as the maximal m in the conditions |θ | ≥ m. Henceforth, when-
ever we talk about a “k-type”, we are talking about words over the alphabet
{L , R}, that is, k-types in the vocabulary (L , R, <). We now say that two codes are
(k, 
)-equivalent if for every k-type T , they either have precisely the same number
of cycles (paired or single) that satisfy T , or the two numbers are both at least
3
.

The proof that two (k, 
)-equivalent codes are indistinguishable by ψ proceeds
by transforming one code into the other, using a repertoire of transformations that
are indistinguishable by ψ . They are the following:

Marrying and Divorcing. Two single cycles can be married to become a cycle
pair. The inverse of this transformation is allowed as well.

Spouse Swapping. Two cycle pairs { f1, f2} and { f3, f4} can be replaced by two
other cycle pairs {g1, g3} and {g2, g4}, such that the words underlying fi and gi are
identical, for i = 1, 2, 3, 4.

Substitution. A single cycle can be replaced by any other single cycle whose
underlying word has the same k-type. A cycle pair can be replaced by any other
cycle pair, as long as the pair of underlying word k-types is the same.

Padding. For any k-type T with at least 
 occurrences of single cycles satisfying
T , we can add any number of additional single cycles satisfying T . For any pair
of k-types with at least 
 occurrences of cycle pairs with that pair of underlying
word types, we can add any number of additional cycle pairs with those word
types.

The fact that ψ is preserved under the first two operations is immediate from its
G-invariance; the last two are consequences of the special expression we have for
ψ . We now establish:

LEMMA 7.2. Any two (k, 
)-equivalent codes can be transformed into each
other by the four transformations above.

To prove this final lemma, let C and D be (k, 
)-equivalent cones. Using Di-
vorcing and Substitution, we can transform C and D in “normal” form, where
we call a code normal if each cycle pair has precisely one cross link. All of our
transformations will remain within normal form.

We call a k-type T abundant in C if there are at least 3
 cycles (married or single)
in C that satisfy T . We call T essentially bachelor if all words of type T have an
even number of L’s, and we call T marriageable otherwise.

First consider the types that are abundant in C and essentially bachelor. By
(k, 
)-equivalence, we know that these must be abundant in D as well, and hence
by Padding we can ensure that there are the same number of single cycles in C
and D with that type. So, henceforth we can and will ignore the single cycles of
abundant, essentially bachelor, type.
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We next arrange the marriageable abundant types. We make the following:

CLAIM 1. Let C be a code and T be a type that is marriageable and abundant
in C. We can transform C so that all of T ’s realizations are married.

PROOF OF CLAIM. Suppose there are j single cycles, and p paired cycles, of
type T in C . If j = 0 we have nothing to prove.

So let j > 0. We first show that we can make j ≥ 
. If it is not so large
already, then p must be larger than 2
, since T is abundant. But then, using Spouse
Swapping, we could marry off 2
 of the paired T -cycles to each other. Once we
did this, we could apply Padding to make the number of (T, T ) pairs as large as we
like. We could then take some of these pairs and divorce them; Divorcing is allowed
because we know single cycles of type T exist ( j > 0). By divorcing enough pairs,
we obtain at least 
 single cycles of type T .

Once j ≥ 
, we know it can be padded to any number, so in particular j can be
made large and even. It now remains to marry all these single cycles and we are
done.

By the claim just made, we can assume that all cycles of marriageable abundant
types are married in C and in D. Let the marriageable abundant types occurring in
C be T1, . . . , Tn; by (k, 
)-equivalence, D has exactly the same. We will now prove
by induction on n that C and D can be transformed to one and the same form.

If n = 0, then all types occurring in C and D are not abundant and thus have
exactly the same number of realizations in C and D, by (k, 
)-equivalence. Using
Spouse Swapping, we can easily transform C into D.

If n = 1, then the number of married cycles of type other than T1 is the same in
C and D. Consequently, the parity of the number of cycles of type T1 is the same in
C and D. If it is even, we use Spouse Swapping to make sure that T1’s are married
only to T1’s. Moreover, since there are at least 3
 T1’s, there are at least 
 pairs of
them, so we can pad C or D so that the number of (T1, T1) pairs is the same in both.
All remaining cycles are non-abundant, so we treat these as in the case n = 0. If the
number of T1’s is odd, we marry one of them to a non-abundant one, of the same
type in C and D, and proceed as if the number of T1’s were even.

If n > 1, let h1 (h2) be the number of cycles of type T1 (T2). We have h1, h2 ≥ 3
.
First, we can ensure that h2 is much bigger than h1; we can do this by marrying
2
 of the T2’s to each other and then padding the number of (T2, T2) pairs. We can
then take h1 of these pairs and do Spouse Swapping with the T1’s. In this way we
can arrange for all of the T1’s to be married to T2’s, both in C in D. Moreover, by
padding C or D, we can make the number of (T1, T2) pairs in C and D exactly
the same. Let C1 be the part of C consisting of these (T1, T2)-pairs, and let C2 be
the remainder of C . Similarly, partition D in D1 and D2; note that C1 and D1 are
isomorphic. In C2 and D2, the remaining abundant types are T2, . . . , Tn . Hence, by
induction, we can transform also C2 and D2 further to one and the same form. The
lemma is proved.

8. Discussion

In Section 3, we already mentioned that CL can indeed be simulated in FO[R].
Actually, this is already possible in FO[<], the fragment of FO[R] that does not
use arithmetic on R, only order. The reason for this is that we can use axis-parallel



304 M. BENEDIKT ET AL.

rectangular boxes instead of circles to define cones. As an immediate corollary of
our Main Theorem, we thus obtain:

COROLLARY 8.1. Every topological FO[R]-sentence on closed semi-algebraic
sets in the plane can already be expressed in FO[<].

This is a nice analog of the generic collapse theorem [Benedikt et al. 1998] used in
the proof of Proposition 5.1, which says exactly the same for order-generic FO[R]-
sentences on finite structures over the reals. Thus, our theorem can be viewed as a
“lifting” of collapse from finite structures to infinite datasets.

We note that in the proof of our Main Theorem, the drawing arguments (as well
as the drawings used in the proof of Theorem 4.1 [Paredaens et al. 2000]) all remain
within semilinear sets, and hence the entire argument could have taken place there.
Hence, we have also proved:

COROLLARY 8.2. Every FO[R]-query that is topological over semilinear
datasets is equivalent, over semilinear datasets, to a Cone Logic sentence.

Note that there are FO[R]-queries that are topological over semilinear datasets
but not over all semi-algebraic datasets. Indeed one can write an FO[R]-sentence
(even without multiplication) that is true exactly for those datasets that are “line-
like”—definable with addition (possibly with real parameters). Such a sentence is
a tautology over semilinear datasets but is not topological over semialgebraic ones.

The theorem also lifts up to any family of sets that includes the semilinear sets
and in which every set is isotopic to a semilinear one; for example, this is known
to hold for the collection of sets definable in an o-minimal expansion of the real
ordered group.

Likewise, we use little that is specific to FO[R] as the query language. Our
argument goes through for constraint query languages over expansions of the real
field which have the properties that: (a) definable sets are isotopic to semi-linear
sets and (b) the generic collapse theorem holds. Both of these are known to hold in
every o-minimal expansion of the reals [Van den Dries 1998; Benedikt et al. 1998].
Hence, for example, if we add exponentiation to our query language, we get:

COROLLARY 8.3. Every FO[+, ×, <, ex , S] query that is topological
over closed semi-linear (respectively semi-algebraic, FO[+, ×, <, ex ] defin-
able) sets in the plane is equivalent over semi-linear (respectively semi-
algebraic, FO[+, ×, <, ex ] definable) sets to a Cone Logic sentence.

The two obvious directions for further research, left open by the present work,
is to consider not just a single dataset but an ensemble of datasets, and to consider
datasets in three (or higher) dimensions.
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GRÖHE, M., AND SEGOUFIN, L. 2002. On first-order topological queries. ACM Trans. Comput. Logic 3,
3, 336–358.

GRUMBACH, S., AND SU, J. 1997. Queries with arithmetical constraints. Theoret. Comput. Sci. 173, 1,
151–181.

HOPCROFT, J.E., AND ULLMAN, J.D. 1979. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA.

KANELLAKIS, P. C., KUPER, G. M., AND REVESZ, P. Z. 1995. Constraint query languages. J. Comput.
Syst. Sci. 51, 1(Aug.), 26–52.

KUIJPERS, B., AND VAN DEN BUSSCHE, J. 1999. On capturing first-order topological properties of planar
spatial databases. In Database Theory, ICDT’99, C. Beeri and P. Buneman, Eds, Lecture Notes in
Computer Science, vol. 1540. Springer-Verlag, New York, pp. 187–198.

KUPER, G., LIBKIN, L., AND PAREDAENS, J. Ed. 2000. Constraint Databases. Springer-Verlag, New York.
LAURINI, R., AND THOMPSON, D. 1992. Fundamentals of Spatial Information Systems. Number 37 in

APIC Series. Academic Press.
LEONID, L. 2004. Elements of Finite Model Theory. Springer-Verlag, New York.
MCNAUGHTON, R., AND PAPERT, S. 1971. Counter-Free Automata. MIT Press, .
MOISE, E. E. 1977. Geometric topology in dimensions 2 and 3, volume 47 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York.
OTTO, M., AND VAN DEN BUSSCHE, J. 1996. First-order queries on databases embedded in an infinite

structure. Inf. Proc. Lett. 60, 37–41.
PAPADIMITRIOU, C. H., SUCIU, D., AND VIANU, V. 1999. Topological queries in spatial databases. J.

Comput. Syst. Sci. 58, 1, 29–53.
PAREDAENS, J., KUIJPERS, B., AND VAN DEN BUSSCHE, J. 2000. On topological elementary equivalence

of closed semi-algebraic sets in the plane. J. Symb. Logic 65, 4, 1530–1555.
PAREDAENS, J., VAN DEN BUSSCHE, J., AND VAN GUCHT, D. 1994. Towards a theory of spatial database

queries. In Proceedings of the 13th ACM Symposium on Principles of Database Systems. ACM, New
York, pp. 279–288.

SEGOUFIN, L., AND VIANU, V. 2000. Querying spatial databases via topological invariants. J. Comput.
Syst. Sci. 61, 2, 270–301.

THOMAS, W. 1997. Languages, automata, and logic. In Handbook of Formal Language Theory, vol. III.
G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, New York.

VAN DEN DRIES, L. 1998. Tame Topology and O-Minimal Structures. Cambridge University Press,
Cambridge, MA.

RECEIVED JANUARY 2005; ACCEPTED SEPTEMBER 2005

Journal of the ACM, Vol. 53, No. 2, March 2006.


