
A Logic-Based Approach

to Cloud Computing

Jan Van den Bussche

(Hasselt University, Belgium)

joint work with Tom Ameloot and Frank Neven

1



Origins of Cloud Computing

Large websites (Amazon, Google, Facebook)

• large underlying database

• large number of simultaneous users

• use of computer clusters

2



3



The Cloud and Big Data

Make datacenters available for

• storing user data (DropBox, Google Drive)

• programmers (Amazon Elastic Compute Cloud)

Big Data: use computer clusters for data

• previously mainly for compute-intensive tasks

• now for data-intensive tasks

4



Our goal in this talk

Develop a theoretical model of data clouds

Using the tools of database queries (Ph.Kolaitis talk part 1)

Formalize properties of cloud systems (eventual consistency,

coordination-freeness)

Model practical cloud programming languages (Bloom)

Investigate Hellerstein’s conjectures (CALM, CRON)

Obtain more fundamental understanding of data clouds

5



What’s in a cloud?

Set of compute nodes

Each node can:

• manage a local database

• receive messages from other nodes

• send messages to other nodes

Nodes work concurrently

Nodes continually cycle 3 phases: receive–update–send

(All nodes run the same program)

6



Example 1: Find all the red items

Each node has a piece of a dataset of items

Each node outputs its own red items

No communication is necessary

7



Recall Example 2: Library search (Google query)

One master-node and many slave-nodes

Each slave has a piece of the library: table of item–keyword
pairs

Clustered: all items satisfying a certain keyword are on the same
slave

Master has an index: mapping from keywords to slave ids

Master receives a keyword query

Consults index and forwards request to responsible slave

Slaves output matching items

8



Example 3: AND of two keywords (join)

If slaves have a copy of the index

Slave can process first keyword

Send matching items for confirmation te slave responsible for

second keyword

9



Example 4: Keyword count (Map-Reduce)

Master gets a large list of keywords

Master still has an index, but slaves have no data yet

Master distributes entries to the slaves according to index

Slaves keep counts for each distinct received keyword

Problem: when does a slave know he has received everything?

10



Asynchronous communication

Messages may arrive out of order!

A simple “end of stream” message will not work

Coordination is needed for keyword counting

• Master keeps counts: # of messages sent to each slave

• Slaves periodically report # of messages received so far

• Master can ask for final results when counts match

More complicated communication than mere exchange of data

11



Relational transducer [Abiteboul,Vianu,Yesha 2000]

Formal model of a compute node in a data cloud

A machine that maintains a state and produces outputs in re-

sponse to inputs

Choose three disjoint database schemas Sstate, Sin, Sout

States are instances of Sstate

Inputs and outputs are instances of Sin and Sout

Behavior is given by a query Q : Sstate ∪ Sin → Sstate ∪ Sout

12



Example of a relational transducer

Maintains a library of item–keyword pairs

Responds to insert/delete/keyword requests

Sstate = {Lib/2}
Sin = {Ins/2,Del/2,Key/1}
Sout = {R/2}

QLib = {(i, k) | (Lib(i, k) ∨ Ins(i, k)) ∧ ¬Del(i, k)}
QR = {(i) | ∃k(Lib(i, k) ∧Key(k))}

13



Example of a run

Lib R Ins Del Key
Prague capital
Prague Czech Rep.
Telc Czech Rep.
Telc boring

Telc Moravia
Telc EATCS

Telc boring

Prague capital
Prague Czech Rep.
Telc Czech Rep.
Telc Moravia
Telc EATCS

Czech Rep.

Prague capital
Prague Czech Rep.
Telc Czech Rep.
Telc EATCS
Telc Moravia

Prague
Telc

Telc fun Telc EATCS
EATCS
fun

Prague capital
Prague Czech Rep.
Telc Czech Rep.
Telc Moravia
Telc fun

Telc

14



Relational transducer as a node in a data cloud

Each node has a unique id

State contains

• relations Id and All, initialized with own id and all ids

• local state relations

• initial input relations (piece of distributed database)

• relations for producing final output

15



Modeling of messages

Messages are facts of the form

R(dest id, a1, . . . , ak)

Set of incoming messages is input for the transducer

Transducer’s output is set of outgoing messages

16



Example 2: Library search (Google query)

One master-node and many slave-nodes

Each slave has a piece of the library: table of item–keyword

pairs

Master has an index: mapping from keywords to slave ids

Master receives a keyword query

Consults index and forwards request to responsible slave

Slaves output matching items

17



Master receives requests as Req(r, k)-facts

Messages from master to slave are F (s, r, k,m)-facts

Replies from slaves to master are R(m, r, i)-facts

Query for F :

{(s, r, k,m) | Req(r, k) ∧ Index(k, s) ∧ Id(m)}

Query for R:

{(m, r, i) | ∃s∃k(F (s, r, k,m) ∧ Lib(i, k))}

In Datalog notation:

F (s, r, k,m)← Req(r, k), Index(k, s), Id(m).

R(m, r, i)← F (s, r, k,m),Lib(i, k).

18



Transducer network

A set of node ids and a transducer Q running on the nodes

While the network runs,

• each node has its local state

• a set of messages is in transit

This information constitutes the network’s configuration

19



Network transition

One network transition:

1. pick a node v

2. some of the messages to v are delivered (possibly none:
“heartbeat”)

3. v makes a transition (according to Q)

4. v’s outgoing messages are added to the network

In this way the network steps from configuration to configura-
tion

Highly nondeterministic!

20



Eventual consistency

Facebook: Alice is in Prague, Bob in New York, Cynthia in

Tokyo

A: “Just passed my violin exam!”

B: “Congrats!” — C: “Mine is tomorrow!”

Eventually everybody will see both reactions (in no particular

order)

Amazon.com: A and B both view a book, only 1 copy left, A

orders it

Until this info reaches B’s server, B can also order the book

21



Consistent transducer networks

Consider transducer network initialized with a distributed data-

base

During a run, observe output facts being produced by the nodes

Active domain is finite, so a quiescence point will be reached

after which no new output facts will be produced

Definition: The network is called consistent if, for every initial

configuration, all fair runs yield the same set of output facts

22



Example 1: not consistent

Node 1 sends out two messages A and B

If Node 2 receives A first, output C

A(v)← All(v).

B(v)← All(v).

MB()← B(v).

C()← A(v),¬MB().

23



Example 2: not consistent

Node 1 sends out two messages A and B

If Node 2 receives A and B simultaneously, output C

A(v)← All(v).

B(v)← All(v).

C()← A(v), B(v).

24



Cloud programs and distributed queries

A transducer that is consistent on every set of nodes is called
a cloud program

A cloud program computes a well-defined distributed query:
a mapping from distributed databases to databases

• input: initial contents of state relations

• output: set of all output facts

Theorem: Consider a distributed query Q.

1. Q is computable by a cloud program that uses only FO-
queries (first-order logic, relational calculus)

2. if and only if Q is expressible in FO + while

25



Example of FO + while

Transitive closure T of relation E

T := E;

while ∃x, y, z(T (x, y) ∧ T (y, z) ∧ ¬T (x, z))

do

T := {(x, z) | T (x, z) ∨ ∃y(T (x, y) ∧ T (y, z))}
end

26



From FO + while to cloud program

Two steps:

1. Gather the entire distributed database in a single node

2. Simulate FO + while on a relational transducer

For step 1 the nodes send their local data around

Difficulty is to know that we have received everything

Need to coordinate (recall word-counting example)

27



Programming coordination: Example

Each node has a piece of a distributed database. Use relation

A for the pieces.

They must together determine that all local pieces are empty

Each node sends around its id if its piece is empty. Use message

relation M .

Keep record of received ids in state S and compare with All

relation

Use output relation Yes

28



QM = {(j, i) | All(j) ∧ Id(i) ∧ ¬∃xA(x)}
QS = {(i) | ∃j M(j, i)}

QYes = {() | ∀i(All(i)⇒ S(i))}



No coordination needed for monotone queries

Definition: A query Q is monotone if

I ⊆ J ⇒ Q(I) ⊆ Q(J )

E.g. “All A’s are false” is not monotone

Definition: A transducer is oblivious if it does not use the
relation All except for sending messages

Theorem: Consider a monotone distributed query Q.

1. Q is computable by an oblivious cloud program that uses
only FO-queries (first-order logic, relational calculus)

2. if and only if Q is expressible in FO + while

29



The CALM conjecture

When is coordination not needed? (When is parallelism most

efficient?)

Hellerstein 2010 conjectured (CALM) that this is exactly when

the distributed query to be computed is not monotone

To formalize this conjecture we need a formal definition of

“coordination-freeness”

We propose such a definition and prove the conjecture under

the assumption of network independence.

30



Network independence

Definition: The global database of a distributed database is

the union of all its parts

A distributed query Q is called network-independent if, when-

ever I and J have the same global database, then Q(I) = Q(J )

Example: “Output the contents of only those nodes that con-

tain less than 3 facts” is not network-independent

31



Coordination-freeness: Intuition

There are two kinds of communication:

1. Data exchange among the nodes

2. Communication for other reasons (coordination)

When there is no coordination, and the data is already suitably

partitioned, data exchange is not needed either

• every node can compute its part of the output by itself

Consider redistributions of distributed databases: same net-

work, same global database, but distribution is different

32



Coordination-freeness: Definition

A cloud program P, computing a distributed query Q, is called

coordination-free if for every distributed database I there ex-

ists a redistribution I′ so that P(I′) already produces the entire

result Q(I) without communication (only self-messages are al-

lowed)

E.g. Program for “All A’s are empty” is not coordination-free

• Only redistribution of (∅, ∅) is (∅, ∅) itself!

• Program does not produce Yes without communication

33



Transitive closure by a coordination-free program

Binary relation E distributed over a set of nodes

Nodes incrementally compute transitive closure of their local

copy (state relation T )

But also send around their piece of relation E (message relation

M)

Nodes add incoming facts to their local copy of E

M(j, x, y)← All(j), E(x, y).

E(x, y)←M(j, x, y).

T (x, y)← E(x, y).

T (x, z)← T (x, y), T (y, z).

34



CALM Theorem

The following are equivalent for a network-independent dis-

tributed query Q:

1. Q is monotone

2. Q is computable by an oblivious cloud program

3. Q is computable by a coordination-free cloud program

We already know 1⇒ 2

35



Proof: Oblivious implies coordination-free

Given: oblivious cloud program P computing distributed query
Q

Given a distributed database I on n nodes

Let I0 be the global database of I in a single node

Since Q is network-independent, P(I0) produces Q(I)

This does not involve communication!

Redistribute I as n copies of I0

P is oblivious, so the partial run of P on I0 is still valid

Hence Q(I) is produced as desired

36



Proof: Coordination-free implies monotone

Given: coordination-free cloud program P computing distributed
query Q

Consider I ⊆ J and fact f ∈ Q(I)

Let I and J be global databases of I and J

Consider two-node network (I, I); since Q is network-independent,
Q(I, I) = Q(I)

There exists redistribution (I1, I2) of (I, I) so that P(I1, I2) pro-
duces Q(I) without communication; wlog assume f is produced
on node 1

Add J − I to node 2; partial run of node 1 that produces f is
still valid

37



Automated verification of cloud programs

Recall property of consistency of a transducer network: all

runs produce the same set of output facts

Undecidable for FO-transducers

Decidable for “simple” FO-transducers [Ameloot 2014]

Assumes local piece of data is given in read-only “input” rela-

tions

38



Simple transducer

All queries are UCQ¬ (unions of conjunctive queries with nega-
tion)

No recursive dependencies between message and state relations

No deletions (state relations can only grow)

All queries must be positive in message relations

Queries for sending must not mention state relations (only in-
puts and other messages)

Queries for state update must be message-bounded: existen-
tial variables must be bound to messages and can only occur
(possibly negated) in input relations and other messages)

39



Theorem: Simple transducer networks can express precisely

the distributed queries expressible (globally) in UCQ¬

Theorem: Consistency for simple transducer networks is de-

cidable (coNEXPTIME-complete)

Note that even on a given finite distributed database as input,

the transition system is still infinite due to resending of mes-

sages

40



Procedural vs declarative semantics

We have seen operational semantics of transducer network as

a transition system

Can also express FO-transducers in Datalog¬ and give a declar-

ative semantics using stable models

These can be formally proven equivalent

41



Causality

While messages may arrive out of order, there is still some causal
order in the semantics of transducer networks

Facebook Anne: “I passed my violin exam!”

Facebook Bob and Cynthia: “Congratulations”—“Great”

It would be strange if reactions arrived at Anne before she sends
the message!

Hellerstein 2010 has asked when we do not need causality?

It is possible to give a non-causal semantics to cloud programs
expressed in positive Datalog

Theorem: The causal and the non-causal semantics coincide
42



Conclusion

Data clouds are a big thing (Big Data)

Logical methods can help understanding them better

Berkeley Bloom language is essentially FO-transducers

Expressive power

Behavior

Verification

Efficiency

43



References

T.J. Ameloot, F. Neven, J. Van den Bussche: Relational transducers for
declarative networking

T.J. Ameloot: Deciding correctness with Fairness for simple transducer net-
works

T.J. Ameloot, J. Van den Bussche, P. Alvaro, W.R. Marczak, J.M. Heller-
stein: A declarative semantics for Dedalus

T.J. Ameloot, J. Van den Bussche: Positive Dedalus programs tolerate
non-causality

Follow-up works by Green, Ludaescher, Zinn

Ameloot, Ketsman, Neven PODS 2014 Best Paper Award

44


