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ABSTRACT
We present an algorithm for mining tree-shaped patterns in
a large graph. Novel about our class of patterns is that they
can contain constants, and can contain existential nodes
which are not counted when determining the number of oc-
currences of the pattern in the graph. Our algorithm has a
number of provable optimality properties, which are based
on the theory of conjunctive database queries. We propose a
database-oriented implementation in SQL, and report upon
some initial experimental results obtained with our imple-
mentation on graph data about food webs, about protein
interactions, and about citation analysis.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

General Terms
Algorithms, Performance, Experimentation

Keywords
Canonical form, conjunctive query, equivalence checking,
graph, levelwise, redundancy checking, SQL, tree query

1. INTRODUCTION
The problem of mining patterns in graph-structured data

has received considerable attention in recent years, as it has
many interesting applications in such diverse areas as biol-
ogy, the life sciences, the World Wide Web, or social sci-
ences. Past work in this area falls in two major categories,
not to be confused:

1. In the “transactional” category, e.g., [1, 2, 3, 4, 5,
6], the dataset is a set of small graphs which we call
transactions, and the task is to discover patterns that
occur at least once in a sufficient number of transac-
tions or examples. (Approaches from machine learning
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or inductive logic programming usually call the small
graphs “examples” instead of transactions.)

2. In the “single graph” category, e.g., [7, 8, 9, 10, 11],
the dataset is a single large graph, and the task is to
discover patterns that occur sufficiently often in the
dataset. Note that the transactional case can be simu-
lated by the single-graph case, but the converse is not
obvious.

The present work falls in the single-graph category. Past
work in this category has mainly focused on patterns in
the form of subgraphs that occur in sufficiently many edge-
disjoint isomorphic copies in the graph that is being mined.
We propose a rather different notion of pattern, which is
still a graph, but with the following features:

• Patterns may have “existential” nodes: any occurrence
of the pattern must have a copy of such a node, but
existential nodes are not counted when determining
the number of occurrences.

• Moreover, patterns may have “selected” nodes, labeled
by constants, which must map to fixed designated nodes
of the graph. Past work has dealt with node labels, but
only with non-unique ones: such labels are easily sim-
ulated by constants, but the converse is not obvious.
Also edge labels can be simulated using constants. (To
simulate a node label a, add a special node a, and ex-
press that node x has label a by drawing an edge from
x to a. For an edge x → y labeled b, introduce an
intermediate node x.y with x → x.y → y, and label
node x.y by b.)

• An “occurrence” of the pattern in G is defined as any
homomorphism from the pattern in G. When counting
the number of occurrences, two occurrences that differ
only on existential nodes are identified.

A simple example of a pattern is shown in Figure 1; when
applied to a food web (“who eats who”), it describes all
organisms x that compete with organism #8 for some or-
ganism as food, that itself feeds on organism #0. This pat-
tern has one existential node, two selected nodes, and one
distinguished node x.
Effectively, what we want to mine are what is known in

database research as conjunctive queries [12, 13]; these are
the queries we could pose to the graph (stored as a two-
column table) in the core fragment of SQL where we do not
use aggregates or subqueries, and use only conjunctions of
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Figure 1: Simple example of a pattern with two se-
lected nodes, one existential node, and one distin-
guished node x.

equality comparisons as where-conditions. For example, the
pattern of Figure 1 amounts to the following SQL query on
a table G(from,to):

select distinct G3.to as x

from G G1, G G2, G G3

where G1.from=0 and G1.to=G2.from

and G2.to=8 and G3.from=G2.from

We will present an algorithm for mining conjunctive-query
patterns that return sufficiently many answers on a given
graph. Our algorithm has the following properties:

1. We restrict to patterns that are trees, such as the ex-
ample in Figure 1. Tree patterns have formed an im-
portant special case in the transactional literature [4,
14], but have not yet received special attention in the
single-graph literature. Note that the graph that is
being mined is not restricted in any way.

2. The algorithm is incremental in the number of nodes
of the pattern. We generate unordered, rooted trees of
increasing sizes, avoiding the generation of isomorphic
duplicates. It is well known how to do this efficiently
[15, 16, 4, 14]. Note that this generation of trees is
in no way “levelwise” [17]. Indeed, under the way we
count pattern occurrences, a subgraph of a pattern
might be less frequent than the pattern itself (this was
already pointed out by Kuramochi and Karypis [10]).
So, our algorithm systematically considers ever larger
trees, and can be stopped any time it has run long
enough or has produced enough results. Our algorithm
does not need any space beyond what is needed to store
the mining results.

3. For each tree, all conjunctive queries based on that tree
are generated. Here, we do work in a levelwise fashion.
This aspect of our algorithm has clear similarities with
“query flocks” [18]. A query flock is a user-specified
conjunctive query, in which some constants are left
unspecified and viewed as parameters. A levelwise al-
gorithm was proposed for mining all instantiations of
the parameters under which the resulting query re-
turns enough answers. We push that approach further
by also mining the query flocks themselves. Conse-
quently, the specialization relation on queries used to
guide the levelwise search is quite different in our ap-
proach.

4. A query based on some tree may be equivalent to a
query based on a previously seen tree. Furthermore,
two queries based on the same tree may be equiva-
lent. We carefully and efficiently avoid the counting
of equivalent queries, by using and adapting what is
known from the theory of conjunctive database queries.

5. Last but not least, our algorithm naturally suggests a
database-oriented implementation in SQL. This is use-
ful for several reasons. First, the number of discovered
patterns can be quite large, and it is important to keep
them available in a persistent and structured manner,
so that they can be browsed easily, and so that asso-
ciation rules can be derived efficiently. Moreover, we
will show how the use of SQL allows us to generate
and check large numbers of similar patterns in paral-
lel, taking advantage of the query processing optimiza-
tions provided by modern relational database systems.
Third, a database-oriented implementation does not
require us to move the dataset out of the database
before it can be mined. In classical itemset mining,
database-oriented implementations have received seri-
ous attention [18, 19], but less so in graph mining, a
recent exception being an implementation in SQL of
the seminal SUBDUE algorithm [20].

The primary purpose of this paper is to present our al-
gorithm; concrete applications to discover new knowledge
about real-life scientific datasets is a topic of planned fu-
ture work. Yet, using a prototype implementation, we will
already demonstrate here that our approach is feasible, by
showing some concrete results mined from a food web, a
protein interactions graph, and a citation graph. We also
give performance figures on random graphs.

2. MINING TREE-QUERY PATTERNS
In this section, we define the problem formally, and de-

scribe our overall approach.

Graph-theoretic preliminaries. Let N be any finite set of
nodes; nodes can be any data objects such as numbers or
strings. For our purposes, we define a (directed) graph on
N as a subset of N2, i.e., as a finite set of ordered pairs of
nodes. These pairs are called edges. We assume familiarity
with the notion of a tree as a special kind of graph, and
with standard graph-theoretic concepts such as root of a
tree; children, descendants, parent, and ancestors of a node;
and path in a graph. Any good algorithms textbook will
supply the necessary background.

Tree queries. A tree query is a tree Q whose nodes are
called variables, where additionally:

1. Some variables may be marked as being existential ;

2. Some other variables may be labeled with a data con-
stant. These variables are called selected nodes.

The nodes of Q that are neither existential nor selected are
called the distinguished variables of Q.
When we draw a tree query, as in Figure 1, we write each

distinguished variable down as x, with different subscripts
when there are multiple such variables; we depict existential
nodes by the symbol ∃; and we depict selected nodes by
writing down their label.

Matchings. Recall that a homomorphism from a graph G1

to a graph G2 is a mapping h from the nodes of G1 to the
nodes of G2 that preserves edges, i.e., if (i, j) ∈ G1 then
(h(i), h(j)) ∈ G2.
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Figure 2: In this example graph, the pattern of Fig-
ure 1 has frequency three, as the distinguished node
x can be mapped to the three different nodes 4, 5,
and 8.

We now define a matching of a query Q in a graph G
simply as a homomorphism h from the underlying tree of Q
to G, with the constraint that for any selected node z, if z
is labeled a, then h(z) = a.
Furthermore, we define the frequency of Q in G as the

number of matchings of Q in G, with the important provi-
sion that we identify any two matchings that agree on the
distinguished variables. Indeed, two matchings that differ
only on the existential nodes need not be distinguished, as
this is precisely the intended semantics of existential nodes.
Note that we do not need to worry about selected nodes, as
all matchings will agree on those by definition.

Example. Take again the query Q shown in Figure 1. Let
us name the existential node by y; let us name the selected
node labeled 0 by z1; and the selected node labeled 8 by z2.
The distinguished node already has the name x. Now let
us apply Q to the simple example graph shown in Figure 2.
The following table lists all matchings of Q in G:

z1 y z2 x
h1 0 1 8 4
h2 0 1 8 8
h3 0 2 8 4
h4 0 2 8 5
h5 0 2 8 8

As required by the definition, all matchings match z1 to 0
and z2 to 8. Although there are five matchings, we only look
at their value on x to distinguish them, as y is existential.
So, h1 and h3 are identified, as are h2 and h4. In conclusion,
the frequency of Q in G is three, as x can be matched to the
three different nodes 4, 5, and 8.

Mining tree queries. We are now in a position to define
the mining task: given a graph G and a threshold k, find all
tree queries that have frequency at least k in G; these queries
are called frequent.
In theory, however, there are infinitely many frequent

queries, and even if we set an upper bound on the size of
the queries, there may be exponentially many. As an ex-
treme example, if G is the complete graph on the set of
nodes {1, . . . , n}, and k ≤ n, then any query with constants
in {1, . . . , n}, and at least one distinguished variable, is fre-
quent.
Hence, in practice, we want an algorithm that runs incre-

mentally, and that can be stopped any time it has run long
enough or has produced enough results.

x1

x2

x3 x4

x5

x6

x1

x2

x3

x4

x5 x6

Figure 3: Two orderings of the same tree. The left
one is canonical.

3. OVERALL APPROACH
An overall outline of our algorithm is the following:

Outer loop: Generate, incrementally, all possible trees of
increasing sizes. Avoid trees that are isomorphic to
previously generated ones.

Inner loop: For each new generated tree, generate all queries
based on that tree, and test their frequency.

The inner loop is organized in a levelwise manner [17], and
will be described in the next Section. Different queries can
be equivalent, however, and we must take precautions to
avoid generating and testing queries that are equivalent to
an earlier seen query. This will be discussed in Section 5.
As for the outer loop, it is already well known how to

efficiently generate all trees uniquely up to isomorphism, in
increasing number of nodes [15, 16, 4, 14]. These procedures
typically generate trees that are canonically ordered in the
following sense. Given a tree T , we can order the children
of every node in some way, and call this an ordering of T .
For each such possible ordering of T , we can write down the
level sequence of the resulting tree: if the tree has n nodes
then this is a sequence of n numbers, where the ith number
is the depth of the ith node in preorder. Here, the depth
of the root is 0, the depth of its children is 1, and so on.
The canonical ordering of T is then the one that yields the
lexicographically maximal level sequence among all possible
orderings of T .
For example, Figure 3 shows two orderings of the same

tree; the left one is the canonical one.

4. LEVELWISE SEARCH FOR FREQUENT
QUERIES

Let G be the graph being mined, and let U be its set of
nodes. In this section, we fix a tree T , and we want to find
all queries based on T whose frequency in G is at least k.
This tasks lends itself naturally to a levelwise approach

[17]. A natural choice for the specialization relation is sug-
gested by an alternative notation for the queries under con-
sideration. Concretely, since the underlying tree is fixed,
any query Q is characterized by three parameters:

1. The set ΠQ of existential nodes;

2. The set ΣQ of selected nodes;

3. The labeling λQ : ΣQ → U of the selected nodes by
constants.

We now say thatQ1 = (Π1,Σ1, λ1) specializes Q2 = (Π2,Σ2, λ2)
if Π1 ⊇ Π2; Σ1 ⊇ Σ2; and λ1 agrees with λ2 on Σ2. We also
say that Q2 generalizes Q1.
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4.1 Candidate generation
Clearly, if Q1 specializes Q2, then the frequency of Q1 is

at most that of Q2, so we can use this relation to guide a
levelwise search for the frequent queries. Starting with the
most general query T = (∅, ∅, ∅), we progressively consider
more specific queries. The search has the typical property
that, in each new iteration, new candidate queries are gener-
ated: queries whose frequency has not yet been determined,
but all whose generalizations are already known to be fre-
quent. Then the frequency of all newly discovered candidate
queries is determined, and the process repeats.
There are a great many queries to handle, and in particu-

lar, there will be many queries that differ only in λ. Hence,
to generate candidate queries in an efficient manner, we pro-
pose the use of candidacy tables and frequency tables. Let Π
and Σ be disjoint sets of nodes, as above. Then we define:

CanTabΠ,Σ = {λ | (Π,Σ, λ) is a candidate query}
FreqTabΠ,Σ = {λ | (Π,Σ, λ) is a frequent query}

In practice, the frequency table would also have an addi-
tional column to hold the actual frequencies, but for sim-
plicity of presentation we will ignore that column.
Note that when Σ = ∅ these tables are zero-column ta-

bles, which formally still make sense and can be interpreted
as boolean values; for example, if FreqTabΠ,∅ contains the
empty tuple, then the query (Π, ∅, ∅) is frequent; if the table
is empty, the query is not frequent.
To populate the tables efficiently, we use the notion of a

parent. We say that (Π′,Σ′) is a parent of (Π,Σ) if either
(i) Π = Π′ and Σ has precisely one node more than Σ′; or
(ii) Σ = Σ′ and Π has precisely one node more than Π′. We
then have:

Join Lemma. A labeling λ is in CanTabΠ,Σ if and only if
the following conditions are satisfied for every parent (Π′,Σ′)
of (Π,Σ):

(i) If Π = Π′, then λ|Σ′ ∈ FreqTabΠ′,Σ′ ;

(ii) If Σ = Σ′, then λ ∈ FreqTabΠ′,Σ′ .

The Join Lemma has its name because, viewing the tables
as relational database tables, it can be phrased as follows:

Each candidacy table can be computed by taking
the natural join of its parent frequency tables.

The only exception is when Π = ∅ and Σ = {z} is a
singleton; this is the initial iteration of the search process,
when there are no constants in the parent tables to start
from. In that case, we define CanTab∅,{z} as the table with
a single column z, holding all nodes of the graph G being
mined.

4.2 Frequency counting using SQL
The search process starts by determining the frequency

of the underlying tree T = (∅, ∅, ∅); indeed, formally this
amounts to computing FreqTab∅,∅. Similarly, for each query
Q = (Π, ∅, ∅) with Π �= ∅, all we can do is determine its
frequency, except that here, we do this only on condition
that its parent queries are frequent.
We have seen above that, if the frequency tables are viewed

as relational database tables, we can compute each can-
didacy table by a single database query, using the Join
Lemma. Now suppose the graph G that is being mined

is stored in the relational database system as well, in the
form of a table G(from,to). Then also each frequency table
can be computed by a single SQL query.
Indeed, in the cases where Σ = ∅ this simply amounts

to formulating the query in SQL, and determining its count
(eliminating duplicates). But also when Σ �= ∅, we can
compute FreqTabΠ,Σ by a single SQL query. Note that we
thus compute the frequency of a large number of patterns
in parallel! We proceed as follows. First, we formulate the
query (Π, ∅, ∅) in SQL; call the resulting expression E. We
then take the natural join of E and CanTabΠ,Σ, group by
Σ, and count each group. The join with the candidacy table
ensures that only candidate queries are counted.
It goes without saying that, whenever the frequency ta-

ble of a query is found to be empty, the search for more
specialized queries is pruned at that point.

Example. Take again the example pattern (query) of Fig-
ure 1. This query is based on the following tree T :

x1 x2

x3

x4

Comparing Figure 1, we see that Π = {x2}, Σ = {x1, x3},
and λ = (x1 : 0, x3 : 8). The join expression that computes
the candidacy table is:

FreqTab{x2},{x1} ✶ FreqTab{x2},{x3} ✶ FreqTab∅,{x1,x3}.

The SQL expression E for ({x2}, ∅, ∅) is:
select distinct G1.from as x1, G2.to as x3,

G3.to as x4

from G G1, G G2, G G3

where G1.to=G2.from and G3.from=G2.from

The SQL expression that computes the frequency table then
is:

select E.x1, E.x3, count(E.x4)

from (E) E, CanTab{x2},{x1,x3} CT

where E.x1=CT.x1 and E.x3=CT.x3

group by E.x1, E.x3

having count(E.x4) >= k

4.3 The algorithm
Putting everything together so far, the algorithm is given

in Figure 4. In outline it is a double Apriori algorithm [21],
where the sets Π form one dimension of itemsets, and the
sets Σ another.

5. EQUIVALENT QUERIES
In this section, we make a number of modifications to the

algorithm described so far, so as to avoid duplicate work on
equivalent queries.
Specifically, suppose we are given two queries with the

same number of distinguished variables. There is indeed a
natural and purely semantical notion of equivalence for such
queries, which we define next:

• We begin by defining a result of a query Q on a graph
G as any matching of Q in G, restricted to the distin-
guished variables.

• We now say that Q1 and Q2 are equivalent if for all
graphs G, their result sets on G are the same, up to a
renaming of the distinguished variables of Q1 to those
of Q2.
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For each unordered, rooted tree T do:
X := set of nodes of T
p := 0; P0 := {∅}
Repeat:
For each Π ∈ Pp do:
Compute FreqTabΠ,∅
If FreqTabΠ,∅ �= ∅ then:

s := 1; S1 := {{z} | z ∈ X − Π}
Repeat:
For each Σ ∈ Ss do:
If p = 0 and s = 1 then:

CanTabΠ,Σ := set of nodes of G
Else:

CanTabΠ,Σ := ✶ {CanTabΠ′,Σ′ | (Π′,Σ′) parent of (Π,Σ)}
Compute FreqTabΠ,Σ

If FreqTabΠ,Σ = ∅ then remove Σ from Ss

Done
Ss+1 := {Σ ⊆ X − Π | #Σ = s+ 1 and each s-subset of Σ is in Ss}
s := s+ 1

Until Ss = ∅
Else remove Π from Pp

Done
Pp+1 := {Π ⊆ X | #Π = p+ 1 and each p-subset of Π is in Pp}
p := p+ 1

Until Pp = ∅
Done

Figure 4: Levelwise search for frequent queries.
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∃
1 x1

x2

2 x3
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x1

x2 2

∃
x3 1

Figure 5: Two equivalent queries.

x1

x2

x3

∃
∃

x1

x2

∃ x3

x1

x2

x3

Figure 6: Three equivalent queries.

For example, the two queries shown in Figure 5 are equiv-
alent, as are the three queries shown in Figure 6.
Of course, we want to avoid that our algorithm considers

some query Q2 if it is equivalent to an earlier considered
query Q1. Since our algorithm generates trees in increasing
sizes, there are two cases to consider:

Case A: Q1 has fewer nodes than Q2.

Case B: Q1 and Q2 have the same number of nodes.

We can analyze the situation using a well-known result
from the theory of conjunctive queries [12, 13]. In order to
state that result, we need the notion of containment map-
ping. A containment mapping from Q1 to Q2 is a homomor-
phism from Q1 to Q2 that maps the distinguished variables
of Q1 one-to-one to the distinguished variables of Q2, and
that maps selected nodes of Q1 to selected nodes of Q2,

preserving labels. From the theory of conjunctive database
queries [12, 13] we recall the following:

Equivalence Theorem. Two queries are equivalent if and
only if there are containment mappings between them in both
directions.

Armed with this theorem, we now analyze the above two
cases.

5.1 Case A: Redundancy checking
Using the equivalence theorem, it can be seen that this

case can only happen if Q2 contains redundant subtrees: sub-
trees such that removing them yields an equivalent query.
(For example, the first two queries in Figure 6 indeed con-
tain a redundancy.) In other words, if we can avoid queries
with redundancies, then case A will not occur.
The following lemma provides us with an efficient check

for redundancies. The proof is given in the Appendix.

Redundancy Lemma. Let Q be a tree query without se-
lected nodes. Then Q has a redundancy if and only if con-
tains a subtree C in the form of a linear chain of existential
nodes (possibly just a single node), such that the parent of
C has another subtree that is at least as deep as C.

This lemma ignores selected nodes, but this is justified.
Indeed, from the equivalence theorem and the redundancy
lemma it follows that, if all selected nodes in a query Q are
labeled with distinct constants, then Q has a redundancy
if and only if Q′ has a redundancy, where Q′ is obtained
from Q by turning all selected nodes back into distinguished
variables. Since, as explained in Section 4.1, we handle all
queries that differ only in the labeling of selected nodes to-
gether in a single table, it is indeed harmless to treat selected
nodes as distinguished variables.
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As we have seen in Section 4, our algorithm introduces
existential nodes levelwise, one by one. This makes the re-
dundancy test provided by the redundancy lemma particu-
larly easy to perform. Indeed, if Q is a query of which we
already know it has no redundancies, and we make one ad-
ditional node i existential, then it suffices to test whether
i thus becomes part of a subtree C as in the Redundancy
Lemma. If so, we will prune the entire search at ΠQ ∪ {i}.

5.2 Case B: Canonical forms
We may now assume that Q1 and Q2 do not contain re-

dundancies, for if they would, they would have been dis-
missed already. Again using the isomorphism theorem, it
can then be seen that case B can only happen if Q1 and Q2

are actually isomorphic, i.e., there is a containment map-
ping from Q1 to Q2 that is one-to-one, and whose inverse
is a containment mapping from Q2 to Q1. (For example,
the two queries in Figure 5 are indeed isomorphic.) In par-
ticular, Q1 and Q2 have the same underlying tree. So, in
our algorithm, we need an efficient way to avoid isomorphic
queries based on the same tree T .
Fortunately, there is a standard way to do this, by working

with canonical forms of queries. Consider a pair (Π,Σ) over
T , as in Section 4. We can view this pair as a labeling of T :
all nodes in Π get the same generic label ‘∃’; all nodes in Σ
get ‘c’; and all remaining nodes get ‘x’. We then say that two
pairs (Π1,Σ1) and (Π2,Σ2) are isomorphic if there is a tree
isomorphism between the corresponding labeled versions of
T that respects the labels.
It is sufficient to work on the level of pairs (Π,Σ) to

capture all isomorphic queries. Indeed, if (Π1,Σ1, λ1) and
(Π2,Σ2, λ2) are isomorphic queries, then certainly the pairs
(Π1,Σ1) and (Π2,Σ2) are equivalent as well. And conversely,
if (Π1,Σ1) and (Π2,Σ2) are equivalent, then for each query
(Π1,Σ1, λ1) there is an isomorphic query (Π2,Σ2, λ2).
In order to represent each pair (Π,Σ) uniquely up to iso-

morphism, we can rather straightforwardly refine the canon-
ical ordering of the underlying unlabeled tree, which we al-
ready have (Section 3), to take into account the node labels.
Furthermore, the classical linear-time algorithm to canonize
a tree [22] generalizes straightforwardly to labeled trees. A
nice review of these generalizations has been given by Chi,
Yang and Muntz [14].
We will omit the details of the canonical form; in fact,

there are several ways to realize it. All that is important is
that we can check in linear time whether a pair is canonical;
that a pair can be canonized in linear time; and that two
pairs are isomorphic if and only if their canonical forms are
identical.
Armed by the canonical form, we are now in a position to

describe how the algorithm of Section 4 must be modified
to avoid equivalent queries. First of all, we only work with
pairs (Π,Σ) in canonical form; the others are dismissed. The
problem then arises, however, that a parent pair (Π′,Σ′),
where we omit a variable from either Π or Σ as described
above, might be non-canonical. In that case the frequency
table for (Π′,Σ′) will not exist. We can solve this by can-
onizing (Π′,Σ′) to its canonical version (Π′′,Σ′′), and re-
membering the renaming of variables this entails. The table
FreqTabΠ′′,Σ′′ can then serve in place of FreqTabΠ′,Σ′ , after
we have applied the inverse renaming to its column head-
ings.

6. RESULT MANAGEMENT AND
ASSOCIATION RULES

When our algorithm is terminated, its final output con-
sists of a set of frequency tables for each tree T that was
investigated. These tables together form a database that
provides an ideal data platform for browsing the mining re-
sults. We envisage a browsing tool in which the user draws
a tree shape, marks some nodes as existential, and marks
some others as selected, annotating some of these by con-
stants, but possibly also leaving some of the selected nodes
open for instantiation. By consulting the appropriate fre-
quency table in our results database, we can immediately
report to the user those annotations of the selected nodes
that make the pattern frequent.
Our platform also supports a simple form of association

rules. While a thorough treatment of association rules over
tree queries is beyond the scope of the present paper, we can
easily support a simple but useful kind of such rules. Let Q1

be a frequent tree query, and let Q2 be another frequent tree
query obtained from Q1 by making some additional nodes
selected. Clearly, the frequency f2 of Q2 will be at most
the frequency f1 of Q1, and we can define the confidence
of the rule Q1 ⇒ Q2 as the fraction f2/f1. With all the
frequency tables in place, it is a simple matter to compute
confidences. Thus, given a Q1 and a threshold c, an Apriori-
like algorithm can be used to compute all rules Q1 ⇒ Q2 of
the above kind with confidence at least c. The “itemsets”
are here, of course, the possible sets of extra selected nodes
in Q2 as compared to Q1.
We will give a real-life example of an association rule in

the next Section.

7. EXPERIMENTAL RESULTS
In this section, we report on some preliminary experi-

ments performed using our prototype implementation ap-
plied to both real-life and synthetic datasets. The results
show that our approach is indeed workable. In the near fu-
ture we plan to pay more attention to performance tuning,
and to work with domain experts to see if new scientific facts
can be discovered.
The experiments were performed on a Pentium IV (2.8GHz)

architecture with 1GB of internal memory, running under
Linux 2.6. The program was written in C++ with embed-
ded SQL, with DB2 UDB v8.2 as the relational database
system.

7.1 Real-life datasets
We have worked with a food web, a protein interactions

graph, and a citation graph. For each dataset, the table
below lists the number of nodes, number of edges, frequency
threshold k, and maximum size of trees considered in the
run. As we set rather generous limits on the maximum size
of trees, or on the minimum frequency threshold, each run
took several hours.

#nodes #edges k size
food web 154 370 25 6
proteins 2114 4480 10 5
citations 2500 350000 5 4

The food web [23] comprises 154 species that are all
directly or indirectly dependent on the Scotch Broom (a
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kind of shrub). One of the patterns that was mined with
frequency 176 is the following:

∃
x1 ∃

20

x2

20

This is really a rather arbitrary example, just to give an idea
of the kind of complex patterns that can be mined. Note
also that, thanks to the constant 20 appearing twice, this
is really a non-tree shaped pattern: we could equally well
draw both arrows to a single node labeled 20.
While we were thus browsing through the results, we quickly

noticed that the constant 20 actually occurs quite predom-
inantly, in many different frequent patterns. This constant
denotes the species Orthotylus adenocarpi, an omnivorous
plant bug. To confirm our hypothesis that this species plays
a central role in the food web, we asked for all association
rules with the following left-hand side:

x1

∃
∃
∃
x2

⇒

x1

∃
20

∃
x2

Indeed, the rule shown above turned up with 89% confi-
dence! For 89% of all pairs of species that are linked by
a path of length four, Orthotylus adenocarpi is involved in
between.
The protein interaction graph [24] comprises molec-

ular interactions (symmetric) among 1870 proteins occur-
ring in the yeast Saccharomyces cerevisiae. In such interac-
tion networks, typically a small number of highly connected
nodes occur. Indeed, we discovered the following associa-
tion rule with 10% confidence, indicating that protein #224
is highly connected:

x1

∃
x2

⇒
x1

224

x2

The citation graph comes from the KDD cup 2003,
and contains around 2500 papers about high-energy physics
taken from arXiv.org, with around 350 000 cross-references.
One of the discovered patterns is the following, with fre-
quency 1655, showing two papers that are frequently cited
together (by 6% of all papers).

x1

9711200 9802150

7.2 Performance
While our current prototype implementation has not yet

been tuned for performance, we still conducted some prelim-
inary performance measurements, with encouraging results.
We have used two types of synthetic datasets.

Random Web graphs. Naturally occurring graphs (as found
in biology, sociology, or the WWW) have a number of typ-
ical characteristics, such as sparseness and a skewed degree
distribution [25]. Various random graph models have been
proposed in this respect, of which we have used the “copy
model” for Web graphs [26, 27]. We use degree 5 and prob-
ability α = 10% to link to a random node (thus 90% to copy
a link).
On these graphs, we have measured the total running time

as a function of the size (number of edges) of the graph,
where we mine up to tree size 5, with varying minimum
frequency thresholds of 4, 10, and 25. The results, depicted
in Figure 7, show that the performance of these runs is quite
adequate.

Uniform random graphs. We have also experimented with
the well-known Erdös–Rényi random graphs, where one spec-
ifies a number n of nodes and gives each of the possible n2

edges a uniform probability (we used 10%) of actually be-
longing to the graph. In contrast to random Web graphs,
these graphs are quite dense and uniform, and they serve
well as a worst-case scenario to measure the performance as
a function of the number of discovered patterns, which will
be huge.
We have run on graphs with 47, 264, and 997 edges, with

minimum frequency thresholds of 10 and 25. The results,
depicted in Figure 8, show, first, that huge numbers of pat-
terns are mined within a reasonable time, and second, that
the overhead per discovered pattern is constant (all six lines
have the same slope).
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APPENDIX
Proof of the Redundancy Lemma. Let us refer to a subtree C
as described in the lemma as an “eliminable path”. An elim-
inable path is clearly redundant, so we only need to prove
the ‘only-if’ direction. Let T be a redundant subtree of Q
that is maximal, in the sense that it is not the subtree of an-
other redundant subtree. Then there must be a containment
mapping h of Q to Q − T . All distinguished variables of Q
must already be in Q − T , since containment mappings are
one-to-one on the distinguished variables. Hence, T consists
entirely of existential nodes. Also, note that h must fix the
root of Q, since the height of Q is at least that of Q − T .
Any iteration hn of h is a containment mapping of Q to

Q−T as well. Moreover, each hn induces a permutation on
the set V of distinguished variables. Since V is finite, there
are only a finite number of possible permutations of V . A
standard argument then shows that there is an iteration
h′ = hm that is the identity on V .
There are now two possible cases.
First, T itself may be a linear chain. Then the parent p

of T must either be distinguished, or must have at least two
children. Indeed, if p would be existential with T as only
subtree, then the subtree T ′ rooted at p would be redundant
as well, contradicting the maximality of T . If h′(p) = p,
then T is mapped by h′ to another subtree of p; since h′

is a homomorphism, that subtree must be at least as deep
as T . Hence, T is an eliminable path and we are done. If
h′(p) �= p, then the subtree rooted at p consists entirely of
existential nodes, since h′ is the identity on distinguished
nodes. This brings us in the second case.
Second, T is not a linear chain. An easy induction on the

height shows that any non-linear tree consisting entirely of
existential nodes must contain an eliminable path. Hence,
T , and thus also Q, contains an eliminable path as desired.
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