Applications of Alfred Tarski’s Ideas
in Database Theory*

Jan Van den Bussche

University of Limburg (LUC)
B-3590 Diepenbeek, Belgium

Abstract. Many ideas of Alfred Tarski—one of the founders of modern
logic—find application in database theory. We survey some of them with
no attempt at comprehensiveness. Topics discussed include the gener-
icity of database queries; the relational algebra, the Tarskian definition
of truth for the relational calculus, and cylindric algebras; relation al-
gebras and computationally complete query languages; real polynomial
constraint databases; and geometrical query languages.

Alfred Tarski, 1901-1983

To Dirk

1 Introduction

Alfred Tarski was one of the founders of modern logic, and a philosopher and
mathematician of extraordinary breadth and depth. It is therefore not surpris-
ing that many of his ideas find application also in database theory, a field of

* I thank Janos Makowsky for having proposed me to write and present this paper. I
owe a lot to Dirk Van Gucht, database theorist and Tarski fan, for having taught me
so much during the past ten years, about database theory as well as about Tarski.

theoretical computer science where logic plays an important role. In this year
of Tarski’s hundredth anniversary, it seems desirable to survey some of these
applications. We will not attempt to be comprehensive, however.

2 Relational database queries and logical notions

To begin our discussion, we fix some infinite universe U of atomic data elements.
In a set-theoretic formalization they would play the role of “urelemente”.

In the relational approach to database management, introduced by Codd
[19], we define a database schema S as a finite set of relation names, each with
an associated arity. A relational database D with schema S then assigns to each
R € S a finite n-ary relation RP C U", where n is the arity of R.

We store information in a database so that we can retrieve it later. The answer
of a query to a relational database is again a relation: this is very convenient as it
allows us to compose queries, or to store answers of queries as additional relations
in the database. The answers ‘yes’ or ‘no’ are represented by the nonempty and
the empty relation of arity 0, respectively. For example, let S = {R} where the
arity of R is 2. So, databases over S can be identified with finite binary relations
on U. Some examples of queries we might want to ask such databases are:

1. Is there an identical pair in R? (Answer: nullary relation.)

2. What are the elements occurring in the left column of R, but not in the right

one? (Answer: unary relation.)

3. What are the 5-tuples (x1, x2, T3, T4, x5) such that (x1,x2), (z2,x3), (x3,24),
and (x4, xs5) are all in R? (Answer: five-ary relation.)

. What is the transitive closure of R? (Answer: binary relation.)

. Which pairs of elements (x1,z2) are such that the sets {y | (z1,y) € R} and
{y | (x2,y) € R} are nonempty and have the same cardinality? (Answer:
binary relation.)

6. Is the cardinality of R a prime number? (Answer: nullary relation.)

[SAQ

At the most general level, we could formally define an n-ary query on S as
a function ¢ from databases D with schema & to finite relations ¢(D) C U™.
However, this definition is much too liberal. To illustrate this, let us take the
same example schema S as above, and a, b and c three different elements of U.
Now consider the database Dy where RP° = {(a,b), (a,c)}, and a unary query
go on S that maps Dy to the singleton {b}. This query does not seem “logical:”
given the information provided by Dy, there is no reason to favor b above ¢, as
b and c are completely symmetric in Dy. Note that none of the example queries
given above has this “unlogical” nature: each of them can be answered purely
on the basis of the information present in the database, and this is how it should
be.

How can we formalize this intuitive notion of a “logical” query? Tarski has
shown us how [60]. Consider the following cumulative hierarchy of universes Uy,
Ui, Us, and so on, and their union U*:

Up:=U, Upyr:=UUPU,), U :=JU,
n

Here P denotes the powerset operation. Most mathematical objects we want to
construct on top of U can be formalized as elements of U*. For example, by the
ordered pair construction (z,y) := {{z}, {z,y}}, ordered pairs of elements of
U live in U,, and thus binary relations on U live in Us. Database queries also
live in U*. For example, a unary query on binary relations, being itself a binary
relation from binary relations to unary relations, lives in Ug. More generally, any
notion involving objects living in U*, such as a property of such objects, or a
relation among such objects, can itself be formalized as an object living in U*.

Tarski now calls such a notion logical if it is left invariant by all possible
permutations of U. So, P € U* is logical if f(P) = P for every permutation f
of U, where permutations of U are extended to U* in the canonical manner. For
example, no singleton {a} with a € U is logical: there is no purely logical reason
to single out any particular atomic data element. The whole set U is logical, and
so is the empty set. The identity relation {(z,z) | € U} is logical, and so is
the diversity relation {(z,y) | z,y € U, = # y}. The higher we go up in the
cumulative hierarchy, the more complex logical notions we find. In particular,
queries may or may not be logical. For example, the “unlogical” query ¢o from
above is indeed not logical in the sense of Tarski. For if it were, it would have to
be invariant under the transposition ¢ = (b ¢) and thus would have to contain
not only the pair (Dg, {b}) but also the pair (¢(Dy), {t(b)}) = (Do, {c}), which is
impossible as qp is a function. On the other hand, all the earlier example queries
1-6 are readily seen to be logical.

Unaware of this,! Chandra and Harel [16], and independently Aho and Ull-
man [6], based on practical considerations, pointed out the following “univer-
sality property” (as A&U called it), or “consistency criterion” (as C&H called
it) for database queries. It is now generally known as the genericity of database
queries,? and says that for any query ¢, databases Dy and D5, and permutation
fof U, if f(Dy) = Do, then also f(¢(D1)) = q(D3). Clearly, a query is generic
in this sense if and only if it is logical. So, interestingly, Tarski’s definition of
logical notion somehow inevitably turned out to hold for database queries.

We note that Tarski saw his definition in the context of Klein’s Erlanger Pro-
gramm [66] in which different geometries are identified with the groups of trans-
formations under which the fundamental notions of the geometry in question
are left invariant. For example, topology could be defined as the geometry whose
notions are left invariant by continuous transformations (homeomorphisms). Ac-
cording to Tarski then, logic is the “geometry” whose notions are left invariant
by all transformations.

! The paper cited [60] was only published in 1986, but is based on a talk delivered by
Tarski twenty years earlier.

% The specific term ‘genericity’ was first used for this purpose by Hull and Yap [36]
and caught on.

3 The relational algebra and first-order queries

A fundamental insight of Codd was that many complex operations performed on
data files can be expressed as combinations of five basic operators on relations:

1. union of two relations of the same arity;
2. difference between two relations of the same arity;
3. cartesian product: if r is of arity n and s is of arity m, then r X s equals

{(mla"')xn)yla"')ym) | ("'El’"'?mn) er and (y17"'7ym) E S}’

4. projection: if T = (x1,...,z,) is an n-tuple and iy,...,i, € {1,...,n},
then m;, . i, (Z) equals (z;,,...,;,); if r is an n-ary relation then m;, . ; ()
equals {m;, .., (%) | T €r};

5. selection: if r is of arity n and ¢,j € {1,...,n}, then o,—;(r) equals {(z1,...,

zn) €7 | Ty =25}

A query on a schema § is said to be expressible in the relational algebra
if it can be defined by an expression built from the relation names of S using
the above five operators. For example, example query no. 2 from the previ-
ous section is easily expressed as m (R) — m2(R), and example query no. 3 as
7T1’274’6’8U2:304:506:7(R x R x R x R)

A classical theorem of Codd [20] identifies the queries expressible in the re-
lational algebra with the first-order queries. An m-ary query ¢ on S is called
first-order if there is a first-order formula ¢(z1,...,z,) over the relational vo-
cabulary S, such that for every database D,

¢D) ={(a1,...,a,) € [D[" | D |= play, ..., an]}.

Here, |D| denotes the active domain of D, consisting of all elements of U actually
occurring in one of the relations of D. In evaluating D |= p[ay,. .., a,], we view
D as an S-structure (in the sense of model theory) with (finite) domain |D|.
Codd referred to first-order logic used to express queries in this way as the
relational calculus.

Tarski being one of the founders of modern logic, it is not surprising that the
first-order queries owe a lot to him. We mention just two things:

1. The now-standard definition of satisfaction of a formula in a structure was
originally conceived by Tarski [55]. Thanks to Codd, every student of com-
puter science gets in touch with the syntax and the Tarskian semantics of
first-order logic, in the form of the relational calculus seen in the databases
course.

2. In view of the previous section, we should also ask ourselves whether first-
order queries actually satisfy the genericity criterion, or, equivalently, are
they logical in the sense of Tarski? They sure are: in fact, already in 1936
Tarski and Lindenbaum [44] noted that not just first-order, but full typed
higher-order logic can define only logical notions. Nowadays this sounds like
a tautology, but back in the days when modern logic was still in the process
of being defined, this was a fundamental observation.

In connection with Codd’s theorem two more of Tarski’s ideas find an applica-
tion in database theory. We discuss them separately in the following subsections.

3.1 Relational completeness

Codd thought of his theorem as a completeness result for the relational algebra:
the class of first-order queries was the reference level of expressiveness query
languages should aim for. Codd called a query language relationally complete
if it could express all first-order queries. Later, people started to realize that a
lot of interesting queries are not first-order [6,16,17]. For example, of the list
of example queries given in the previous section, queries no. 4, 5 and 6 are not
first-order.

So, relational completeness is not everything. However, there still is a sense
in which the relational algebra (or equivalently, first-order logic) can be consid-
ered a “complete” database query language, as was independently discovered by
Bancilhon [8] and Paredaens [47]. They showed that for any database D, and any
relation » C |D|™ such that every automorphism of D is also an automorphism
of r, there exists a first-order query ¢ such that ¢(D) = r. Here, an automor-
phism of D (r) is a permutation f of U such that f(D) =D (f(r) = r). Note
that the conditions of the theorem are necessary: for any generic n-ary query g,
g(D) C |D|™ and has at least the automorphisms of D.

This “BP-completeness” of first-order logic, as it came to be called, actually
follows from an early model-theoretic insight of Tarski, and another early model-
theoretic theorem known as Beth’s theorem. When he introduced the notion
of elementary equivalence of structures [53,54], Tarski noted that two finite
structures are elementary equivalent only if they are isomorphic. Actually, given
a finite structure D one can always write a single first-order sentence that is
satisfied by any structure D’ if and only if D’ is isomorphic to D.

Now let D, over S, and r be as in the BP-completeness theorem. Let S’ be the
expansion of § with an extra n-ary relation name R, and let D’ be the expansion
of D to &’ by putting RP' .= r. As D' is a finite structure, we can, by the above,
write a first-order sentence ¢ such that any database B over S’ satisfies ¢ iff B
is isomorphic to D’. Take any two By and By with By = ¢ and By |= ¢; so
there are permutations f; and fo of U so that f1(B;) = D’ and f2(Bs) = D'.
But then fof] !'is an automorphism of D and hence, by assumption, also of r.
So, fof; 1(r) = r, whence RBt = f; (r) = f, ' (r) = RB=.

We thus observe that ¢ implicitly defines R in terms of S. By Beth’s theorem,
there is a first-order formula (%) over S such that in any model of ¢ the
equivalence VZ(R(Z) <> 1) holds. This holds in particular in D’ itself, by which
we conclude that ¢(D) = r.

We have thus easily derived the BP-completeness of first-order logic from
some of the earliest model-theoretic results that were established. Still we rec-
ommend Paredaens’s direct proof, which uses the relational algebra and is very
elegant.?

% Recently, Cohen, Gyssens and Jeavons [21] showed that even the relational algebra
without the union and difference operators, but with nonequality selections ;;, is
already BP-complete, on condition the active domain is directly available as one of
the relations (or a projection of them), and has at least 3 elements.

3.2 Cylindric set algebras

Take a first-order formula ¢, and let the different variables occurring in it, free
or bound, be z1, ..., ,. When we follow the Tarskian semantics of ¢ on a
structure A and determine inductively for every subformula 1 the set 14 of
n-tuples (a1,...,a,) € A" under which ¢ is true in A, we notice that at every
inductive step we perform one of the following three operations on these n-ary
relations:

1. union, to evaluate V;
2. complementation with respect to A", to evaluate —; and
3. cylindrification along dimension i, to evaluate Jz;.

By the cylindrification along dimension i of arelation r C A”, with ¢ € {1,...,n},
we mean the operation

~i(r) :={(a1,...,apn) € A" | Ja € A: (a1,...,ai-1,0,Qi}1,...,0pn) E T}

These three operations, together with the constant relations d;; = {(a1,...,
an) € A" | a; = a;}, called the diagonals and needed to evaluate equality atoms
x; = xj, constitute the full n-dimensional cylindric set algebra with base A.
Cylindric set algebras are canonical examples of the general class of abstract
cylindric algebras, which has an equational definition in the usual style abstract
algebraic structures are defined. Cylindric algebras are the same to first-order
logic as Boolean algebras are to propositional logic, and they were introduced
by Tarski and his collaborators [31-34].

We thus see that a relational algebra in much the same spirit as Codd’s
was already considered by Tarski.* Concretely, let S be a schema, and take n
strictly larger than the arity of every relation name in §. We can build up n-CSA
expressions over S from the relation names in S and the constants d;; using the
operators e; U ea, —e, and v;(e). When evaluating an n-CSA expression e on a
database D with schema S, the operators and constants are interpreted as in
the full n-dimensional cylindric set algebra with base |D|. Each relation name
R is interpreted as the n-ary relation RP x |D|*~™, if the arity of R is m. We
then have:

Theorem 1. An n-ary query is expressible in n-CSA in the sense just defined,
if and only if it is expressible by a first-order formula using at most n different
variables.

Proof. Let the n variables be z1, ..., ;. The only thing we have to show is that
atomic first-order formulas of the form R(...) can be expressed in n-CSA. Only
for formulas of the form R(z1,...,x,,) this is immediate by the expression R.

The following example will suffice to explain the argument. Let n = 3, m = 2,
and consider the formula R(z2,x3). Note that the expression R expresses the

* Imielinski and Lipski [37] were the first to point out the connection between Codd’s
relational algebra and cylindric set algebras.

formula R(z1,x2). We first copy the second column of R into its third column
(which is “free:” recall that R stands for RP x |DJ). Then we cylindrify the
second column, after which we copy the first column to the now free second
column. We finally cylindrify the first column. Formally, the following n-CSA
expression expresses R(z2, z3):

Y1(y2(RNd2,3) N1 2)

In general, the existence of a “free column” guarantees us the room to per-
form the necessary transpositions on the columns to go from R(z1,...,Z.,) to
R(z,(1),- - -, Tp(m)) for an arbitrary permutation p of {1,...,n}.

The trick used in the above proof is again an idea of Tarski [59]: he used it
to give a substitution-free axiom system for first-order logic. Note how crucial it
is in this respect that n is strictly larger than the arity of each relation name.
Without this condition, the theorem does not seem to hold, although we have
not proven this formally. The idea is that, with R binary for example, there are
only a finite number of non-equivalent 2-CSA expressions over the schema {R}.
However, there are infinitely many non-equivalent formulas with 2 variables over
this schema.

The above theorem gives us a relational algebra for n-variable first-order
logic. Bounded-variable fragments of first-order and infinitary logic were vigor-
ously investigated in finite-model theory over the last decade [25,46], for a large
part motivated by database theory, in particular the seminal paper by Abiteboul
and Vianu [5]. (Another major motivation is descriptive complexity [38].)

4 Relation algebras

In parallel with his work on cylindric algebras, Tarski also promoted relation
algebras [18,51,61]. Like cylindric algebras, these are again a generalization of
Boolean algebras, but in another direction. They have again an abstract equa-
tional definition, but we will only be concerned here with the operations of the
proper relation algebra with base A, where A is a set of atomic data elements.
These operations are defined on binary relations over A only and comprise the
following:

UNION;

complementation with respect to A?;

composition: r © s := {(x,y) | Iz : (z,2) € r and (z,y) € s};
conversion: 7 = {(z,y) | (y,z) € r}.

Ll

For the remainder of this section, we fix a database schema S with all relation
names binary. This is not a heavy restriction: an n-ary relation can easily and
naturally be represented by n binary relations, and, as advocates of the Decom-
posed Storage Model argue quite convincingly [22,41], it can even be beneficial
to do so from a systems engineering point of view.

Again we can build expressions starting from the relation names in S, and the
constant Id, using the four operators above. We will call these RA-expressions.
On a database D with schema S, an RA-expression e can be evaluated by in-
terpreting the relation names as given by D, interpreting the constant Id as the
identity relation on |D|, and interpreting the operations relative to base set |D|.
The result is a binary relation e(D). So, RA-expressions always express binary
queries.

Queries expressible in RA are clearly first-order, and actually a substantial
number of first-order queries are expressible in RA. For example:

1. Recalling example query no. 2 from Section 2,
(IdNR® (Id U~Id)) — (IdN (IdU—Id) ® R)

expresses {(z,z) | Iy R(z,y) A 3z R(z,x)}.

2. Recalling example query no. 3, RO R® RO R expresses {(z1,z5) | x2, x5, T4
(R(w1,22) A R(z2,73) A R(23,24) A R(T4,75)}.

3. Ro(-Id N R® R) expresses {(z,y) | R(z,y) ANz £y : R(z,2)}.

Note that the above three example RA queries can actually already be ex-
pressed with a first-order formula using only 3 distinct variables. Indeed, in the
first formula we could have reused the bound variable y instead of introducing
a new bound variable z. The second query can be equivalently expressed as

{(2,) | 32 (Iy (3=(R(w, 2) A R(z,0) AR(y,2)) A R(z0))}

using just 3 variables. This is no coincidence; it is readily verified that any RA
query is in FO? (first-order queries expressible using only 3 variables). Tarski and
Givant [61] showed the converse: a binary query on binary relations is expressible
in RA precisely when it is in FO3.

4.1 From RA to FO by pairing

So, RA seems rather limited in expressive power. However, Tarski and Givant
showed also that in the presence of a “pairing axiom,” RA becomes equally
powerful as full first-order logic. We give a nice concretization of this general
idea, due to Gyssens, Saxton and Van Gucht [28].

Consider the following two “pairing” operations on a binary relation r on
some base set, A:

— left tagging: r* = {(=, (z,y)) | (z,y) € r};
— right tagging: r* :={((z,y),y) | (z,y) € r}.
Note that the resulting relations are not on A anymore, but on A U A2. This

suggests to build up a universe Ut on top of U, similar to the universe U* we
considered in Section 2:

Ui ==U, Ut,:=UfuU)? Uh:=[]Jut.
n

Left tagging and right tagging can now be naturally viewed as operations on
binary relations on Ut.

Our objective, of course, is to add the pairing operations to RA. A problem
with this, however, is that when we want to evaluate an expression containing
these operations on a database D, it no longer makes sense to perform the
complementation operation with respect to |D|, as we are really working in
|D|T. We cannot complement with respect to the full U either, as this could
yield infinite relations, and we have been working with finite databases from the
outset. A simple way out is to redefine complementation relative to the active
domain of a relation. So, for any binary relation r, we define

—ri={(xz,y) € |r* | (x,y) ¢ 1},

where |r| = {z | Jy : (z,y) € r or (y,z) € r}. A second modification we make
to RA is that we throw away Id, since we don’t need it anymore: for example,
RN Id is expressible as RY® (RY)” U (R”)” ® R”.

We denote RA, modified as just described, and enriched with the pairing
operations, by RAT. Evaluating an RA'-expression e on a database D in gen-
eral yields a binary relation e(D) on |D|T. Such binary relations can repre-
sent n-ary relations on |D|. For example, we can represent the ternary relation
{(a,b,¢),(d,e, f)} as {(a, (b,¢c)), (d, (e, f))}. Using such representations, we leave
it as an exercise to the reader to simulate Codd’s relational algebra in RA™. So
RAT™ has the full power of the first-order queries.

We conclude that Tarski produced two alternatives for Codd’s relational
algebra: cylindric set algebra, and relation algebra with pairing. From a systems
engineering perspective, Codd’s algebra remains of course very attractive [48].

4.2 A computationally complete query language based on RAT

Recall that on the most general level, given a schema S, we defined a generic
n-ary query on S to be any (possibly partial) function from databases with
schema S to finite n-ary relations on U that is invariant under every permuta-
tion of U. Genericity allows us to give a standard definition of when a query is
“computable.” Note that this is not immediate, because standard computability
works with concrete data objects, like natural numbers, or strings over a finite
alphabet, while our atomic data elements in U remain abstract.

The computability definition, given in a seminal paper by Chandra and Harel
[16], goes as follows. Let D be a database and suppose the cardinality of |D| is m.
Any bijection from |D| — {1,...,m} is called an enumeration of D. The image
of D under an enumeration yields a concrete object with which we can deal using
the standard computational models. We now say that query ¢ is computable if
there is a computable function C' in the standard sense, such that for every
database D, ¢(D) is defined if and only if C' is defined on every enumeration X
of D, and in this case C(X) always equals an enumeration of ¢(D).

We can capture the class of computable generic queries by making RA™ into a
programming language. It suffices to add variables holding finite binary relations

on U, assignment statements of the form X := e, where X is a variable and e is
an RA1-expression over the relation names in S and the variables, and to build
up programs from these statements using composition and while-loops of the
form ‘while e # @ do P’. We give programs the obvious operational semantics.
For example, the following program computes the transitive closure of R:

X :=R;
while (X ®R) — X # @ do
X =XUXOR.

Every program expresses a query by designating one of the variables as the
output variable. This query is evidently generic and computable.

Since the programming language just described is quite similar to the original
query language ‘QL’ first proved to be computationally complete by Chandra
and Harel [16], it does not harm to refer to it by the same name. Using as before
a representation of n-ary relations on U by binary relations on U, we then have:

Theorem 2 ([16], see also [3,4,1]). Every computable generic query is ex-
pressible by a QL-program.

We feel this result is a nice a-posteriori confirmation of Tarski’s conviction that
relation algebra (with pairing) is a formalism with all the expressive power one
needs.

We conclude this section with three remarks. First, given that RA™" expres-
sions evaluate to relations on Ut rather than on U, one could generalize the
notion of query somewhat to yield relations on UT, rather than on U, as out-
put. Let us refer to this generalized notion of query as +-query. The notions
of genericity and computable readily generalize to +-queries. Then under these
generalizations, the language QL just defined is still computationally complete:
every computable generic +-query on binary relations is expressible by a pro-
gram in QL.

Second, in view of the universe U* considered in Section 2, of which Ut is
only a subuniverse, we can generalize +-queries further to *-queries which now
yield relations on U* as output. QL is then no longer complete [63], but can be
easily reanimated by adding a third tagging operation:

— set tagging: > = {(z,{y | (z,y) € r}) | Jy: (z,y) €r}.

This is an operation on binary relations on U* rather than on UT. We then
again have that QL enriched with set tagging is computationally complete for
the generic *-queries [23, 35].

Finally, note that although the tagging operations introduce pairs and sets
of elements, these pairs and sets are still treated by the RA operations as atomic
abstract elements. So it is natural to replace every element of U* —U occurring in
the output of a x-query applied to a database D by a fresh new element in U not
in |D|. The class of abstract database transformations that can be obtained from
computable generic x-queries in this way has a purely algebraic characterization
[2,64].

5 Constraint databases

Until now we have worked with relational databases over an unstructured uni-
verse U of atomic data elements. That the atomic data elements remain abstract
and uninterpreted is one of the identifying features of classical database theory,
and corresponds in practice to the generic bulk-processing nature of database
operations. However, in reality U usually does have a structure of its own, in the
form of predicates and functions defined on it, and there are applications where
we want to take this structure into account. An important case, on which we
will focus in this and the next section, is that of spatial databases containing
information with a geometrical interpretation.

Suppose we want to store points in the plane in our database. In this case U is
R, the set of real numbers. We use a schema S with a binary relation name S. In
a database D with schema S, SP then is a finite set of pairs of real numbers, i.e.,
a finite set of points in the plane. In the presence of an “interpreted” universe
such as R we need to make a crucial but natural extension to the notion of first-
order query: we make the interpreted predicates and functions of our universe
available in our first-order formulas. Concretely, in the case of R, we now use
formulas over the vocabulary S expanded with the vocabulary (<, +,+,0,1) of
ordered fields.

For example, suppose we want to ask whether all points in the database lie on
a common circle around the origin. It is tempting to write the following formula
for this purpose:

IV, y(S(z,y) = 2 +y* = r?)

However, we should remember from Section 3 that we agreed to evaluate first-
order formulas over the active domain of the database. In contrast, the above
formula, and in particular the quantifier 3r, is intended to be evaluated over the
whole of R. Since the radius of the circle does not need to be a coordinate of a
point in the database, the formula is therefore incorrect as an expression of our
query. A correct formula under the active-domain semantics is the following:

Jz1, Ve, y(S(z,y) = 2 +y° =27 +47))

This example shows that the active-domain semantics for first-order formulas
is not very natural in the case of spatial databases. It was fine in the case of
an uninterpreted universe U, because there, all elements of U not in the active
domain of a database look alike with respect to that database [7]. In contrast, no
two reals look alike in first-order logic over the reals with signature (<, +,-,0,1).

We thus have two ways of evaluating a first-order formula ¢(Z) on a real
database D. We view D as an expansion of the structure (R, <,+,-,0,1) with
the relations of D. When we then write D |=aqom ¢[a] for some tuple @ of reals,
we mean that p[a] becomes true in D when we let each quantifier in ¢ range
over |D| only. When we write D [Epatural ¢[@], we mean that ¢[a] becomes true
when we let each quantifier range over the whole of R. The natural semantics is
definitely more natural than the active-domain semantics, but is it really more
powerful? The answer is no: Benedikt and Libkin [11] gave an algorithm that

turns any formula ¢ into another formula) such that for every real database D
we have D FEpatural @ iff D Factive . From now on we will stick to the natural
semantics.

Given the natural semantics, the new issue arises that the result of a first-
order query to a real database can easily be infinite, even though the database
is finite. For example, the following first-order query returns all points in the
convex closure of S:

{(@,y) | Fz1,y1, 22,92, A : S(@1,51) ANS(22,92) NOK AL]
A (z,y) = Mx1,y1) + (1= A)(@2,92)}

How do we represent these infinite sets?

A solution to this issue was proposed by Kanellakis, Kuper and Revesz in
their novel framework of constraint databases [40]. Call the above formula ¢,
and take for example the simple database Dy with just two points in it: SP° =
{(0,0),(1,1)}. To evaluate ¢ on Do we can try the following simple idea called
plug-in evaluation: replace in ¢ every atomic subformula of the form S(u,v) by
a corresponding formula defining SP°, i.e., the formula (u = 0Av = 0) V (u =
1Av=1). We get the following formula which is purely over the reals only; it
no longer mentions any database relations:

{(@,y) | I, 41,22, 92, X
((z1,91) = (0,0) V (21,91) = (1, 1))
A ((z2,y2) = (0,0) V (z2,92) = (1, 1))
ANOSALTIA(z,y) = M1, y1) + (1= A)(22,92)}

This formula defines the infinite set of points in R? on the closed line segment
between (0,0) and (1, 1) and symbolically represents the answer of our query on
our database.

We can always perform plug-in evaluation of a first-order query on a real
database, provided the numbers occurring in the database are rational so that
we can effectively write down the formula defining the answer. In general, the
subsets of R" that are definable (as n-ary relations) by first-order formulas over
R are known as the semi-algebraic sets [10,14]. They have quite nice properties.

Is this representation of semi-algebraic sets by real formulas workable? Can
we, e.g., effectively decide whether the set defined by a given real formula is
nonempty? Thanks to Tarski’s decision procedure for the first-order theory of
the reals [52], the representation is indeed quite workable. The computational
complexity of Tarski’s original procedure is very high, but over the years there
has been steady progress in algorithms for real algebraic geometry [9, 15, 30,45].
A crucial parameter in the computational complexity of current algorithms is
the number of quantifiers in the formula. In the case of plug-in evaluation this
number depends only on the query formula and not on the database, which
implies a polynomial time complexity.

Tarski actually gave a complete quantifier elimination procedure for real for-
mulas, so we can define every semi-algebraic set already by a quantifier-free

formula. To arrive at the concept of constraint database, we make one final but
logical step: we allow semi-algebraic sets not just as outputs of queries, but also as
inputs. Specifically, we remove the restriction that each relation in the database
must be finite, and require instead that each relation must be a semi-algebraic
set. In a constraint database we thus no longer store any actual tuples, but we
store a collection of quantifier-free formulas, one for each relation name in the
schema of the database. Plug-in evaluation is still possible: given a first-order
formula ¢ and a constraint database D, we replace in ¢ every atomic subfor-
mula of the form S(u,v), with S a relation name from the database schema, by
the real formula y(u,v) defining SP. The result of all these replacements is a
real formula defining ¢ (D). Since thanks to Tarski we can work with quantifier-
free formulas, the computational complexity of deciding nonemptiness and many
other algorithms remains polynomial-time like we had with finite databases.

Constraint databases has been an active research area over the past decade
[39,43,49,62,43], and the constraint database concept is not at all limited to the
reals. In principle it works for any universe U with a certain structure (consisting
of predicates and functions) that admits effective quantifier elimination (and for
which truth of atomic sentences is decidable).® In this respect, recall that, as
Tarski himself noted early on [57], his quantifier elimination for the reals implies
that every subset of R definable by a first-order formula with parameters over the
reals is the union of a finite number of intervals. This property alone is already
responsible for a lot of the nice properties (referred to as “tame topology” [65])
of semi-algebraic sets. Any universe that has this property is called o-minimal.
The “collapse” of the natural semantics for first-order logic on finite database
to the active-domain semantics, which we pointed out earlier, does not just hold
under the reals but under any universe that is o-minimal and admits quantifier
elimination [11].

6 Geometric queries

We conclude our survey by making the circle complete and returning to the first
topic we discussed: the notion of genericity for database queries, now reconsid-
ered in the new setting of spatial databases.

We begin by noting that, when thinking about spatial data, the real numbers
as “urelemente” are not the right level of abstraction. They show up merely as
a convenient representation, via coordinates, for the real urelemente which are
the points in our geometric space. Let us work as before in the real plane R?
(everything we will say in this section generalizes to arbitrary R?). This means
in general that we only work with database schemas S where the arity of every
relation name is a multiple of 2. In a geometric database with schema S, each
relation, of arity 2n, say, is interpreted as an m-ary relation on R2. Following
the constraint database approach outlined in the previous section, each relation
is semi-algebraic. We call such databases geometric. An n-ary geometric query

® Interesting recent work even considers universes that are non-numeric, such as strings
or terms [12,13, 24].

over S then is a function mapping geometric databases with schema S to n-ary
relations on R2.

Recalling our discussion in Section 2, we can now again call a geometric query
generic if it is invariant under all permutations of R? (note: R?, not R). This
does make sense: these are the queries that treat the points as uninterpreted
abstract data elements. They are exactly the classical generic queries under
the unstructured universe U where this U happens to be R?. Many interesting
geometric queries are not so “absolutely” generic, however, and this is as it should
be: as we mentioned at the end of Section 2, Tarski viewed logic as an “extreme”
kind of geometry. Thus, by considering various other groups of transformations
of R?, corresponding to various geometrical interpretations of our spatial data,
we can reach the geometric queries that fit the particular interpretation.

Let us illustrate this using the group of affinities, i.e., the permutations of
R? that preserve betweenness. We call a geometric query affine-generic if it is
invariant under all affinities of R?. For example, consider the following geometric
queries over a set of points S (i.e., a binary relation S):

1. Is S nonempty? In first-order: 3z,y S(z,y)
2. Is S convex? In first-order: Vz1,y1, T2, y2, A : (S(z1,y1) AS(22,y2) A0 < A <
1) = S(A@1,41) + (1 = N)(22,92))

3. Is S acircle? In first-order: 3r, o, YoV, y : S(z,y) ¢ (z—20)?+(y—yo)* = r?

Query 1 is absolutely generic; query 2 is only affine-generic; and query 3 is not
affine-generic (the notion of “circle” does not exist in affine geometry).

We now come to a natural question: how can we logically characterize the
affine-generic first-order geometric queries? Tarski brings us inspiration. In his
work on the axiomatization of elementary geometry [58,50], Tarski considered
first-order logical formalisms with variables ranging over points in the geometric
space, and elementary predicates on these points as dictated by the geometry
to be formalized. For example, elementary affine geometry in the real plane
corresponds to doing first-order logic in the structure (R?,3), where 3 denotes
the ternary betweenness predicate on R2: 3(p,q,r) holds if point p lies on the
closed line segment between points ¢ and r.

Inspired by this, we can view a geometric database D with schema S as
a constraint database over the interpreted universe (R?,3) rather than over
the universe (R, <,+,-,0,1). Note that under this alternative view, the schema
changes: the arity of each relation name S goes from 2n to n. We denote this
“halved” schema by S'. First-order queries under the alternative view now are
expressed by first-order formulas over the vocabulary (S’, 8) rather than (S, <,
+,-,0,1). Let us refer to the original class of first-order queries as FO[R] and
to the new one as FO[S]. Example queries 1 and 2 from above are expressed in
FO[p] as follows:

L. 3pS(p)
2. Vp,q,r : (S(p) A S(q) A B(r,p,q)) — S(r)

Example query 3 is not in FO[S]: indeed, query 3 is not affine-generic, and FO[5]
clearly contains only affine-generic queries. It is also clear that FO[f] is a subclass

of FO[R]: we represent every point variable p by a pair of real variables (p1,p2),
and ((p, g, r) is easily expressible as (g1 —p1) - (p2 —72) = (g2 —p2) - (p1 —1r1) A0 <
(@1 =p1) - (pr —r1) A0 < (g2 — p2) - (P2 — 12).

Interestingly, the converse holds as well:

Theorem 3 ([29]). Every affine-generic geometric query in FO[R] is in FO[f].

The proof uses the original observation by Tarski that the geometrical construc-
tions of <, + and - of points on a line can be defined in first-order logic over
B.

Other geometric interpretations can be captured in a similar way: for exam-
ple, if we use instead of the betweenness predicate, the (4-ary) equal-distance
predicate, we obtain euclidean rather than affine geometry. Capturing topolog-
ical queries (invariant under all homeomorphisms) is much more difficult [42,
27].

7 Conclusion

We have surveyed some ideas and results from database theory related to Tarski’s
ideas. We have neither been comprehensive with respect to Tarski’s work, nor
with respect to database theory, and probably not even with respect to the
applications of the former in the latter. A great source to learn more about Tarski
are his Collected Papers [26]. A great source to learn more about database theory
are the proceedings of the annual ACM Symposium on Principles of Database
Systems published by ACM Press, and the biannual International Conference on
Database Theory published in Springer’s Lecture Notes in Computer Science.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. S. Abiteboul and P.C. Kanellakis. Object identity as a query language primitive.
Journal of the ACM, 45(5):798-842, 1998.

3. S. Abiteboul and V. Vianu. Procedural languages for database queries and updates.
Journal of Computer and System Sciences, 41(2):181-229, 1990.

4. S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43(1):62-124, 1991.

5. S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of Computer
and System Sciences, 50(2):309-335, 1995.

6. A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In Conference
Record, 6th ACM Symposium on Principles of Programming Languages, pages 110—
120, 1979.

7. AK. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, and G.F. Schwartz. Reduction
of the relational model with infinite domains to the case of finite domains. Doklady
Akademii Nauk SSSR, 286(2):308-311, 1986. In Russian.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

F. Bancilhon. On the completeness of query languages for relational data bases.
In Proceedings 7th Symposium on Mathematical Foundations of Computer Science,
volume 64 of Lecture Notes in Computer Science, pages 112-123. Springer-Verlag,
1978.

S. Basu. Algorithms in Semi-Algebraic Geometry. PhD thesis, New York University,
1996.

R. Benedetti and J.-J. Risler. Real Algebraic and Semi-Algebraic Sets. Hermann,
1990.

M. Benedikt and L. Libkin. Relational queries over interpreted structures. Journal
of the ACM, 47(4):644-680, 2000.

M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. String operations in
query languages. In Proceedings 20th ACM Symposium on Principles of Database
Systems, 2001.

A. Blumensath and E. Griadel. Automatic structures. In Proceedings 15th IEEE
Symposium on Logic in Computer Science, pages 51-62, 2000.

J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer-Verlag,
1998.

B.F. Caviness and J.R. Johnson, editors. Quantifier elimination and cylindrical
algebraic decomposition. Springer, 1998.

A. Chandra and D. Harel. Computable queries for relational data bases. Journal
of Computer and System Sciences, 21(2):156-178, 1980.

A. Chandra and D. Harel. Structure and complexity of relational queries. Journal
of Computer and System Sciences, 25:99-128, 1982.

L.H. Chin and A. Tarski. Distributive and modular laws in the arithmetic of rela-
tion algebras. University of California Publications in Mathematics—New Series,
1(9):341-384, 1951.

E. Codd. A relational model for large shared databanks. Communications of the
ACM, 13(6):377-387, 1970.

E. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor,
Data Base Systems, pages 65—98. Prentice-Hall, 1972.

D. Cohen, M. Gyssens, and P. Jeavons. Derivation of constraints and database rela-
tions. In E.C. Freuder, editor, Principles and Practice of Constraint Programming,
volume 1118 of Lecture Notes in Computer Science, pages 468481, 1996.

G.P. Copeland and S. Khoshafian. A decomposition storage model. In Proceedings
of ACM-SIGMOD International Conference on Management of Data, volume 14:4
of SIGMOD Record, pages 268-279. ACM Press, 1985.

E. Dahlhaus and J.A. Makowsky. Query languages for hierarchic databases. In-
formation and Computation, 101(1):1-32, 1992.

E. Dantsin and A. Voronkov. Expressive power and data complexity of query
languages for trees and lists. In Proceedings 19th ACM Symposium on Principles
of Database Systems, pages 157-165, 2000.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, second edition,
1999.

S.R. Givant and R.N. McKenzie, editors. Alfred Tarski, Collected Papers.
Birkh&user, 1986.

M. Grohe and L. Segoufin. On first-order topological queries. In Proceedings 15th
IEEE Symposium on Logic in Computer Science, pages 349-360, 2000.

M. Gyssens, L.V. Saxton, and D. Van Gucht. Tagging as an alternative to object
creation. In J.C. Freytag, D. Maier, and G. Vossen, editors, Query Processing For
Advanced Database Systems, chapter 8. Morgan Kaufmann, 1994.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

M. Gyssens, J. Van den Bussche, and D. Van Gucht. Complete geometric query
languages. Journal of Computer and System Sciences, 58(3):483-511, 1999.

J. Heintz, T. Recio, and M.-F. Roy. Algorithms in real algebraic geometry and ap-
plications to computational geometry. In J. Goodman, R. Pollack, and W. Steiger,
editors, Discrete and Computational Geometry, volume 6 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. AMS-ACM, 1991.

L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I. North-Holland,
1971.

L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part II. North-Holland,
1985.

L. Henkin, J.D. Monk, A. Tarski, H. Andréka, and I. Németi. Cylindric Set Alge-
bras, volume 883 of Lecture Notes in Mathematics. Springer-Verlag, 1981.

L. Henkin and A. Tarski. Cylindric algebras. In R.P. Dilworth, editor, Lattice
Theory, volume 2 of Proceedings of Symposia in Pure Mathematics, pages 83-113.
American Mathematical Society, 1961.

R. Hull and J. Su. Algebraic and calculus query languages for recursively typed
complex objects. Journal of Computer and System Sciences, 47(1):121-156, 1993.
R. Hull and C.K. Yap. The format model, a theory of database organization.
Journal of the ACM, 31(3):518-537, 1984.

T. Imielinski and W. Lipski. The relational model of data and cylindric algebras.
Journal of Computer and System Sciences, 28:80-102, 1984.

N. Immerman. Descriptive Complezity. Springer, 1999.

P.C. Kanellakis. Constraint programming and database langauges: a tutorial. In
Proceedings 14th ACM Symposium on Principles of Database Systems, pages 46—
53, 1995.

P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Sciences, 51(1):26-52, August 1995.

S. Khoshafian, G.P. Copeland, T. Jagodi, H. Boral, and P. Valduriez. A query
processing strategy for the decomposed storage model. In Proceedings of the Third
International Conference on Data Engineering, pages 636-643. IEEE Computer
Society, 1987.

B. Kuijpers and V. Vianu. Topological queries. In Kuper et al. [43], chapter 10.
G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer,
2000.

A. Lindenbaum and A. Tarski. On the limitations of the means of expression of
deductive theories. In Logic, Semantics, Metamathematics. Papers from 1923-1938
[56], pages 384-392.

B. Mishra. Computational real algebraic geometry. In J.E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry. CRC
Press, 1997.

M. Otto. Bounded variable logics and counting: a study in finite models, volume 9
of Lecture Notes in Logic. Springer, 1997.

J. Paredaens. On the expressive power of the relational algebra. Information
Processing Letters, 7(2):107-111, 1978.

R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,
second edition, 2000.

P.Z. Revesz. Constraint databases: a survey. In L. Libkin and B. Thalheim, editors,
Semantics in Databases, volume 1358 of Lecture Notes in Computer Science, pages
209-246. Springer, 1998.

W. Schwabhiuser, W. Szmielew, and A. Tarski. Metamathematische Methoden in
der Geometrie. Springer-Verlag, 1983.

51
52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.
A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1951.

A. Tarski. Some notions and methods on the borderline of algebra and meta-
mathematics. In Proceedings of the International Congress of Mathematicians,
Cambridge, Mass, 1950, volume 1, pages 705-720. American Mathematical Soci-
ety, 1952.

A. Tarski. Contributions to the theory of models, T and II. Indagationes Math-
ematicae, 16:572-581 and 582-588, 1954. Volume III, which contains the list of
references, is in volume 17 of the same journal.

A. Tarski. The concept of truth in formalized languages. In Logic, Semantics,
Metamathematics. Papers from 1923-1938 [56], pages 152-278.

A. Tarski. Logic, Semantics, Metamathematics. Papers from 1928-1938. Clarendon
Press, Oxford, 1956.

A. Tarski. On definable sets of real numbers. In Logic, Semantics, Metamathemat-
ics. Papers from 1923-1938 [56], pages 110-142.

A. Tarski. What is elementary geometry? In L. Henkin, P. Suppes, and A. Tarski,
editors, The Aziomatic Method, with Special Reference to Geometry and Physics,
pages 16—-29. North-Holland, 1959.

A. Tarski. A simplified formalization of predicate logic with identity. Archiv fir
Mathematische Logik und Grundlagenforschung, 7:61-79, 1965.

A. Tarski. What are logical notions? History and Philosophy of Logic, 7:143-154,
1986. Edited by J. Corcoran.

A. Tarski and S. Givant. A Formalization of Set Theory Without Variables, vol-
ume 41 of AMS Colloguium Publications. American Mathematical Society, 1987.

J. Van den Bussche. Constraint databases: a tutorial introduction. SIGMOD
Record, 29(3):44-51, 2000.

J. Van den Bussche and J. Paredaens. The expressive power of complex values in
object-based data models. Information and Computation, 120:220-236, 1995.

J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On the complete-
ness of object-creating database transformation languages. Journal of the ACM,
44(2):272-319, 1997.

L. van den Dries. Tame Topology and O-Minimal Structures. Cambridge University
Press, 1998.

I.M. Yaglom. Feliz Klein and Sophus Lie: evolution of the idea of symmetry in the
nineteenth century. Birkhauser, Boston, 1988.

