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Abstract
Temporal graphs represent graph evolution over time, and have been receiving considerable research attention. Work on
expressing temporal graph patterns or discovering temporal motifs typically assumes relatively simple temporal constraints,
such as journeys or, more generally, existential constraints, possibly with finite delays. In this paper we propose to use timed
automata to express temporal constraints, leading to a general and powerful notion of temporal basic graph pattern (BGP).
The new difficulty is the evaluation of the temporal constraint on a large set of matchings. An important benefit of timed
automata is that they support an iterative state assignment, which can be useful for early detection of matches and pruning of
non-matches. We introduce algorithms to retrieve all instances of a temporal BGP match in a graph, and present results of an
extensive experimental evaluation, demonstrating interesting performance trade-offs. We show that an on-demand algorithm
that processes total matchings incrementally over time is preferable when dealing with cyclic patterns on sparse graphs. On
acyclic patterns or dense graphs, and when connectivity of partial matchings can be guaranteed, the best performance is
achieved by maintaining partial matchings over time and allowing automaton evaluation to be fully incremental. The code
and datasets used in our analysis are available at http://github.com/amirpouya/TABGP.

Keywords Temporal graphs · Property graphs · Graph query languages · Timed automata · dataflow systems

1 Introduction

Graph pattern matching, the problem of finding instances of
one graph in a larger graph, has been extensively studied since
the 1970s, and numerous algorithms have been proposed [14,
16, 21, 36, 50, 59]. Initially,work in this area focused on static
graphs, in which information about changes in the graph is
not recorded. Finding patterns in static graphs can be helpful
for many important tasks, such as finding mutual interests
among users in a social network. However, understanding
how interests of social network users evolve over time, sup-
port for contact tracing, and many other research questions
and applications require access to information about how a
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graph changes over time. Consequently, the focus of research
has shifted to pattern matching in temporal graphs for tasks
such as finding temporal motifs, temporal journeys, and tem-
poral shortest paths [26, 34, 48, 51, 54, 68, 73, 74].

Figure 1 gives our running example, showing an interac-
tion graph, where each node represents an employee (node
label emp), a customer (cst), or an office (ofc), and each
edge represents either an email message (msg) or a visit
(visit) from a source node to a target node. Each edge
is associated with the set of timepoints when an interaction
occurred. Such graphs with static nodes but dynamic edges
that are active at multiple timepoints are commonly used to
represent interaction networks [48, 72].

Example 1 Assume our temporal graph holds information
about a publicly traded company. Suppose that employee
v1 shared confidential information with their colleagues v2
and v3, and that one of them subsequently shared this infor-
mation with customer v4, potentially constituting insider
trading. Assuming that we have no access to the content of
the messages, only to when they were sent, can we identify
employees who may have leaked confidential information to
v4?
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Based on graph topology alone, both v2 and v3 could have
been the source of the information leak to v4. However, by
considering the timepoints on the edges,weobserve that there
is no path from v1 to v4 that goes through v3 and visits the
nodes in temporal order. We will represent this scenario with
the following basic graph pattern (BGP), augmented with a
temporal constraint:

v1
y1−→ x

y2−→ v4 : ∃t1 ∈ y1.T , ∃t2 ∈ y2.T : t1 � t2

Here, v1 and v4 are node constants, x is a node variable, y1
and y2 are edge variables, and y1.T and y2.T refer to the sets
of timepoints associated with edges y1 and y2. The temporal
constraint states that there must exist a pair of timepoints
t1, associated with edge y1, and t2, associated with edge y2,
such that t1 occurs before t2. We refer to such combinations
of BGPs and temporal constraints as temporal BGPs.

The temporal constraint in the above example is existen-
tial: it requires the existence of timepoints where the edges
from a BGP matchings are active, so that these timepoints
satisfy some condition (in the example, a simple inequality).

Fig. 1 Example of a temporal graph. Each edge is associated with a set
of timepoints during which it is active

Existential constraints are typical in the literature on tempo-
ral graph pattern matching [26, 48, 54, 68, 73, 74]. Various
forms of conditions, beyond inequalities on the timepoints,
have been considered. For example, one may require that the
timepoints belong to a common interval with a given start-
and end-time (“temporal clique” [73]) or with a given length
(“δ-motifs” [48]), or onemay specify lower andupper bounds
on the gaps between the timepoints [74].

In this paper, our goal is to go beyond existential con-
straints. Indeed, many useful temporal constraints are not
existential. We give two examples over temporal graphs such
as the one in Fig. 1.

Example 2 When monitoring communication patterns, we
may want to look for extended interactions between cus-
tomers and employees. Specifically, we are looking for
matchings of the BGP shown in Fig. 2a, where edge variables
y1 and y2 represent email messages exchanged by customer
x1 and employee x2. We impose the temporal constraint that
y1 and y2 are active in an interleaved, alternating fashion: first
y1 was active, then y2, then y1 again, etc. This constraint is
not existential. In Fig. 1, it is satisfied in the communication
between v5 and v1, but not between v7 and v1.

Example 3 In contact tracing, we may want to look for pairs
of employees who have shared an office for a contiguous
period of time with some minimal duration. We are look-

ing for matchings of the BGP x2 : emp
y1:visit−−−−−→ x1 :

ofc
y2:visit←−−−−− x3 : emp. As a temporal constraint, we

impose that there exists a contiguous sequence of timepoints
in the graph’s temporal domain, of duration at least, say, 3
time units, in which y1 and y2 were both active. This con-
straint is, again, not existential. In Fig. 1, the only matching
of the BGP (involving employees v2 and v4 and office v8)
does not satisfy the constraint; as a matter of fact, v2 and
v4 were never active (i.e., at the office) at the same time!

Fig. 2 Example of a temporal BGP and example timed automata explained in Example 4
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Indeed, “y1 and y2 are never active at the same time” would
be another natural example of a temporal constraint that is
not existential.

In order to express temporal constraints (existential or
not), we need a language. When the goal is the expres-
sion of possibly complex constraints, an obvious approach
would be to use SQL. Indeed, any temporal graph can be
naturally represented by three relations Node(vid, label),
Edge(eid, vid1, vid2, label), and Active(eid, time), where
vid and eid are node (vertex) and edge identifiers. The prob-
lem with this approach is that temporal constraints do not fit
well in the SQL idiom. SQL is certainly expressive enough,
but the resulting expressions tend to be complicated and hard
to optimize. The alternating communication pattern from
Example 2 would be expressed in SQL as follows:

QTA1: WITH matching AS
(SELECT E1.eid AS y1, E2.eid AS y2
FROM edge E1, edge AS E2
WHERE E1.dst = E2.src and E2.dst = E1.src),

Succ AS
(SELECT y1, y2, A1.eid AS e1, A2.eid AS e2
FROM matching, active A1, active A2
WHERE (A1.eid = y1 OR A1.eid = y2)

AND (A2.eid = y1 OR A2.eid = y2)
AND A1.time<A2.time AND NOT EXISTS

(SELECT * FROM active A3
WHERE (A3.eid = y1 or A3.eid = y2)

AND A1.time<A3.time
AND A3.time<A2.time))

SELECT * FROM matching M
WHERE NOT ( EXISTS (SELECT * FROM active

WHERE eid = y2)
AND NOT EXISTS (SELECT * FROM

active WHERE eid = y1) )
AND ( NOT EXISTS (SELECT * FROM active A1,

active A2
WHERE A1.eid = y1 AND

A2.eid = y2)
OR (SELECT MIN(time) FROM active WHERE

eid = y1) <
(SELECT MIN(time) FROM active WHERE

eid = y2) )
AND NOT EXISTS (SELECT * FROM Succ

WHERE M.y1 = y1 AND M.y2 = y2
AND e1 = e2)

Likewise, for the contiguous-duration office sharing pat-
tern from Example 3:

QTA7: WITH matching AS
(SELECT E1.eid AS y1, E2.eid AS y2
FROM edge E1, edge AS E2 WHERE E1.dst =

E2.dst)
SELECT DISTINCT y1, y2
FROM matching, active A1, active A2, active

B1, active B2
WHERE A1.eid = y1 AND A2.eid = y2 AND A1.time

= A2.time
AND B1.eid = y1 AND B2.eid = y2 AND B1.time

= B2.time
AND B1.time - A1.time > 3

AND NOT EXISTS
(SELECT * FROM active C
WHERE A1.time < C.time AND C.time <

B1.time
AND NOT EXISTS (SELECT * FROM active

C1, active C2
WHERE C1.time = C.time

AND C2.time = C.time
AND C1.eid = y1 AND

C2.eid = y2))

The hypothesis put forward in this paper is that spec-
ification formalisms used in fields such as complex event
recognition [24] or verification of real-time systems [9] may
be much more suitable for the expression of complex tempo-
ral constraints. In this paper, we specifically investigate the
use of timed automata [2, 9].

Example 4 Figure 2 shows various examples of timed
automata that can be applied to matchings of a BGP with
two edge variables y1 and y2, such as the BGPs considered
in Examples 2 and 3. One can think of the automaton as run-
ning over the snapshots of the temporal graph. A matching
is accepted if there is a run such that, after seeing the last
snapshot, the automaton is in an accepting state. The edge
variables serve as Boolean conditions on the transitions of
the automaton. When the edge matched to y1 (y2) is active
in the current snapshot, the Boolean variable y1 (y2), is true.
We use ∅ as an abbreviation for ¬y1 ∧ ¬y2, and {y1} for
y1 ∧ ¬y2 (and similarly {y2}).

The alternation constraint of Example 2 is expressed by
TA1. TA2 is similar but additionally requires that each mes-
sage gets a reply within 3 time units (a clock c is used for this
purpose). The contiguous-duration constraint of Example 3
is expressed by TA7, also using a clock. The constraint “y1
and y2 are never active together” is expressed by TA6; the
opposite constraint “y1 and y2 are always active together”
by TA5. Likewise, TA8 expresses that y2 is active whenever
y1 is (in SQL, this constraint would correspond to a set con-
tainment join [8]). Finally, TA3 expresses that y1 has been
active strictly before the first time y2 becomes active. Also,
existential constraints such as the one from Example 1 are
readily expressible by timed automata (see Sect. 3).

Timed automata offer not only a good balance between
expressiveness and simplicity. A temporal constraint
expressed by a timed automaton can also be processed effi-
ciently, as the iterative state assignment mechanism allows
early acceptance and early rejection of matchings. In this
paper, we will introduce three algorithms for the evalua-
tion of temporal BGPs with timed automata as temporal
constraints. The first is a baseline algorithm intended for
offline processing when the complete history of graph evo-
lution is available at the time of execution. The second is an
on-demand algorithm that supports online query processing
when the temporal graph arrives as a stream. The third is a
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partial-match algorithm that speeds up processing by sharing
computation between multiple matches.

We will present an implementation of these algorithms in
a dataflow framework, and will analyze performance trade-
offs induced by the properties of the temporal BGP and of
the underlying temporal graph. We will also compare perfor-
mance with main-memory SQL systems, and will observe
that temporal BGPs with temporal constraints that are not
existential can be impractical when expressed and processed
as SQL queries.

2 Temporal graphs and temporal graph
patterns

Webegin by recalling the standard notions of graph and graph
pattern used in graph databases [4, 63]. Assume some vocab-
ulary L of labels. We define:

Definition 1 (Graph) A graph is a tuple (N , E, ρ, λ), where:

– N and E are disjoint sets ofnodes and edges, respectively;
– ρ : E → (N × N ) indicates, for each edge, its source
and destination nodes; and

– λ : N ∪ E → L assigns a label to every node and edge.

Figure 1 gives an example of a graph, with N =
{v1, . . . , v7}, E = {e1, . . . , e9}, λ(v1) = λ(v2) = λ(v3) =
emp, λ(v4) = . . . = λ(v7) = cst, and λ(e1) = . . . =
λ(e9) = msg. In this graph, ρ(e5) = (v5, v1).

Next, recall the conventional notion of basic graph pattern
(BGP).

Definition 2 (Basic graph pattern (BGP)) A BGP is a tuple
(C, X ,Y , ρ, λ), where:

– C , X and Y are pairwise disjoint finite sets of node con-
stants, node variables, and edge variables, respectively;

– ρ : Y → (C ∪ X) × (C ∪ X) indicates, for each edge
variable, its source and destination, which can be a node
constant or a node variable; and

– λ : X ∪ Y → L is a partial function, assigning a label
from L to some of the variables.

The fundamental task related to BGPs is to find all match-
ings in a graph, defined as follows:

Definition 3 (Matching) A partial matching of a BGP
(C, X ,Y , ρP , λP ) in a graph G = (N , E, ρ, λ) is a func-
tion μ : Z → N ∪ E satisfying the following conditions:

– Z , the domain of μ, is a subset of X ∪ Y .
– μ(Z ∩ X) ⊆ N and μ(Z ∩ Y ) ⊆ E .

– Let y be an edge variable in Z and let ρP (y) = (x1, x2).
Then, for i = 1, 2, if xi is a node variable, then xi ∈ Z .
Moreover, ρ(μ(y)) = (μ(x1), μ(x2)), where we agree
that μ(c) = c for any node constant c.

– For every z ∈ Z for which λP (z) is defined, we have
λ(μ(z)) = λP (z).

If Z equals X ∪ Y then μ is called a (total) matching.

Consider the BGP in Fig. 2a. Evaluating it over the graph

in Fig. 1 yields 7 partial matchings: v1
e6−→ v5, v1

e9−→ v7,

v2
e3−→ v4, v3

e4−→ v4, v5
e5−→ v1, v6

e7−→ v1, v7
e8−→ v1, and

2 total matchings: v5
e5−→ v1

e6−→ v5 and v7
e8−→ v1

e9−→ v7 as
total matchings.

Remark 1 Our semantics of matching is based on the seman-
tics of standard conjunctive queries, so does not require
matchings to be injective. An alternative approach in graph
matching is to search for exact copies of subgraphs (graph
isomorphism). Many of our general ideas also apply to such
a semantics. For example, our baseline algorithm (Sect. 4.2)
can be used under injective semantics. However, once
more optimized query processing strategies are involved,
injectivity can make a difference. For example, classical
minimization (i.e., finding redundant joins) becomes much
more involved [58]. On the other hand, particular algorithms
exploiting graph isomorphism can be devised under injective
semantics.

We now present the notion of a temporal graph in which
edges are associated with sets of timepoints, while nodes
persist over time. Extending our work to temporal property
graphs in which both nodes and edges are associated with
temporal information, and where the properties of nodes and
edges can change over time [41], is an interesting direction
for further research. We assume that timepoints are strictly
positive real numbers and define:

Definition 4 (Temporal graph) A temporal graph is a pair
(G, ξ), where G is a graph and ξ assigns a finite set of time-
points to each edge of G. When e is an edge and t ∈ ξ(e),
we say that e is active at time t .

In the temporal graph in Fig. 1, ρ(e5) = (v5, v1) and
ξ(e5) = {1, 3, 5}, indicating that v5 messaged v1 at the listed
timepoints.

To extend the notion of matching to temporal graphs, we
enrich BGPs with temporal constraints, defined as follows.

Definition 5 (Temporal variables, assignments, and con-
straints) Let V be a set of temporal variables. A temporal
assignment α on V is a function that assigns a finite set of
timepoints to every variable in V . A temporal constraint over
V is a set of temporal assignments on V . This set is typically
infinite.When a temporal assignmentα belongs to a temporal
constraint Γ , we also say that α satisfies Γ .
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For the moment, this is a purely semantic definition of
temporal constraints; in Sect. 3 we will present how such
constraints may be specified using timed automata.

If we have a matchingμ from a BGP in a graphG, and we
consider a temporal graph (G, ξ) based on G, we automati-
cally obtain a temporal assignment on the edge variables of
the BGP. Indeed, each edge variable is matched to an edge
in G, and we take the set of timepoints of that edge. Thus,
edge variables serve as temporal variables, and we arrive at
the following definition:

Definition 6 (Temporal BGP,matching) A temporal BGP is a
pair (P, Γ )where P is a BGP and Γ is a temporal constraint
over Y (the edge variables of P).

Let (G, ξ) be a temporal graph. Given a matching μ of
P in G, we can consider the temporal assignment αμ on Y
defined by

αμ(y) := ξ(μ(y)) for y ∈ Y .

Now a matching of the temporal BGP (P, Γ ) in the tem-
poral graph (G, ξ) is any matching μ of P in G such that αμ

satisfies Γ .

In the next section, we describe how timed automata such
as that in Fig. 2b can be used to represent and enforce such
constraints.

3 Expressing temporal constraints

Our conception of a temporal BGP, as a standard BGP P
equipped with a temporal constraint Γ on the edge variables
of P , leaves open how Γ is specified. We pursue the idea to
use timed automata, an established formalism for expressing
temporal constraints in the area of verification [2, 9]. Timed
automata are often interpreted over infinite words, but here
we will use them on finite words.
Timed automata A timed automaton over a finite set Y of
variables is an extension of the standard notion of non-
deterministic finite automata (NFA), over the alphabet Σ =
2Y (the set of subsets of Y ). Recall that an NFA specifies a
finite set of states: an initial state, a set of final states, and
a set of transitions of the form (s1, θ, s2), where s1 and s2
are states and θ is a Boolean formula over Y . The automaton
reads a word over Σ , starting in the initial state. Whenever
the automaton is in a current state s1, the next letter to be
read is a, and there exists a transition (s1, θ, s2) such that a
satisfies θ , the automaton can change state to s2 and move to
the next letter. If, after reading the last letter, the automaton
is in a final state, the run accepts. If there is no suitable tran-
sition at some point, or if the last state is not final, then the
run fails. A word is accepted if there exists an accepting run.

The extra feature added by timed automata to the standard
NFA apparatus is a finite setC of clocks, which can be used to
measure time gaps between successive letters in a timed word
(to be defined momentarily). Transitions are of the extended
form

(s1, θ, δ, R, s2), (*)

where s1, θ and s2 are as in NFAs; δ is a Boolean combina-
tion of clock conditions; and R is a subset of C . Here, by a
clock condition, we mean a condition of the form c � g or
c � g, where c is a clock and g is a real number constant
representing a time gap.

As just mentioned, a timed automaton works over timed
words. A timed word over an alphabetΣ is a sequence of the
form

(t1, a1) . . . (tn, an),

where each ai ∈ Σ , and t1 < · · · < tn are timepoints.
When the automaton is started on the timed word, all clocks
are initially set to t0 := 0. For i = 1, . . . , n the automaton
runs as follows. Upon reading position (ti , ai ), every clock
has increased by ti − ti+1. Now the automaton can take a
transition (∗) as above on condition that the current state is
s1 and ai satisfies θ , as before; and, moreover, the current
valuation of the clocks satisfies δ. If this is so, the automaton
can change state to s2, move to the next position in the timed
word, and must reset to zero all clocks in R. As with NFAs,
a run is accepting if it ends in a final state, and a timed word
is accepted if there exists an accepting run.
Using timed automata to express temporal BGP constraints
A timed automaton defines the set of timed words that it
accepts. But how does it define, as announced, a temporal
constraint over Y , which is not a set of timed words, but a set
of temporal assignments? This is simple once we realize that
a temporal assignment over Y , in the context of a temporal
graph H = (G, ξ), is nothing but a timedword overΣ = 2Y .
We can see this as follows. Let T = ⋃{ξ(e) | e ∈ E} be the
set of all distinct timepoints used in H ; we also refer to T as
the temporal domain of H . Let T = {t1, . . . , tn}, ordered as
t1 < · · · < tn . We can then view any temporal assignment
α : Y → T as the timed word (t1, a1) . . . (tn, an), where
ai = {y ∈ Y | ti ∈ α(y)}.

NFAs are a special case of timed automata without any
clocks, and this special case is already useful for expressing
temporal constraints. For example, consider theNFA inFig. 3
which expresses the existential constraint ∃t1 ∈ y1∃t2 ∈ y2 :
t1 < t2 from Example 1. Suppose we instead want to express
the existential constraint ∃t1 ∈ y1∃t2 ∈ y2 : t1 < t2 − 7. We
can do this by introducing a clock c. When we see y1, we
reset the clock (c := 0). Then, when we see y2, we check
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Fig. 3 TAe: an existential constraint

that the clock has progressed beyond the desired 7 time units
(c > 7).

Of course, as already argued in the Introduction, timed
automata are much more powerful than mere existential con-
straints.
Checking acceptanceThe algorithm for checking whether an
input timed word (t1, a1) . . . (tn, an) is accepted by a timed
automaton extends the analogous algorithm for NFAs [28].
We maintain a set S of current possible configurations. Each
configuration is a pair (s, ν), where s is a state of the automa-
ton, and ν is a real-valued map defined on C (the set of
clocks). We initialize S as the singleton S0 := {(s0, ν)},
where s0 is the initial state and ν(c) = 0 for each c ∈ C .

For each i = 1, . . . , n, we now update Si−1 to Si as fol-
lows. Recall that t0 = 0.

1. Initialize Si := ∅.
2. For each (s, ν) ∈ Si−1, find all applicable transitions as

follows.

(a) Let ν′ be the map obtained by ν by updating ν′(c) :=
ν(c) + (ti − ti−1) for each clock c.

(b) Consider each transition (s1, θ, δ, R, s2) where s1 =
s, and test whether ai satisfies θ and ν′ satisfies δ. If
the test succeeds, let ν′′ be the same as ν′ except that
we reset ν′′(c) := 0 for each c ∈ R. Now add (s2, ν′′)
to Si .

If, in the end, Sn contains a final state, the timed word is
accepted. This procedure runs, for any fixed automaton, in
time linear in n.
Expressive power of timed automata Since their inception
in 1994, timed automata were rapidly adopted in the real-
time verification community, but were ignored in research
on temporal query languages. Timed automata can be used
to express a rich set of temporal constraints that is now con-
sidered standard [9] and remains a topic of active research.1

Part of the reason for the popularity of timed automata
is that they provide a natural and concise syntax for the
expression of temporal constraints that can be directly used
by programmers of complex queries on temporal graphs.
Equivalent logical formalisms have been developed, based

1 In 2022 alone, eighty new publications appeared on the applications
of timed automata.

on timed temporal logics [23], and they can be used as basis
for an alternative syntax for temporal constraints.

Alternatively, as discussed in the Introduction, SQL can
be used to express temporal constraints. A set of matchings
over the set of edge variables Y is naturally represented
by a relation M over the relation schema Y , using tem-
poral variables as attribute names. Together with a table
Active(y, t) indicating when each edge is active, we obtain a
relational representation of the temporal words that represent
the matchings in M . It is an open question whether every
timed automaton Γ over the alphabet Σ = 2Y is equiv-
alently expressible in SQL, meaning that the SQL query
returns exactly all matchings from M that satisfy Γ . The
converse question (whether timed automata can express all
SQL-expressible constraints) is open as well. Expressive-
ness questions about SQL that include arithmetic operations
(notably, arithmetic over timepoints, in our case), are notori-
ously hard to settle [39].

As a final alternative, also mentioned in the Introduction,
rather than separating the BGP and the temporal constraints,
one can attempt to use SQL holistically, representing both
kinds of constraints in a SQL query. A natural way to pro-
ceed is to represent the temporal graph by three relations,
Node, Edge, and Active, without separating the BGP and
the temporal constraint. However, while this may be prac-
tical for a restricted class of temporal constraints, the SQL
expressions tend to become very complex, and thus hard both
to implement and to optimize. Furthermore, by treating tem-
poral constraints as part of the query, we largely lose the
opportunity to exploit the actual temporal nature of the data
in query processing. We will support these claims experi-
mentally in Sect. 6.4.

4 Algorithms for timed-automaton temporal
graph patternmatching

In this section, we will discuss several algorithms for pro-
cessing temporal BGPs with temporal constraints given as
timed automata.

4.1 Temporal graph representation

Assume that we are given a temporal graph H = (G, ξ)

where G = (N , E, ρG , λG). We are also given a temporal
BGP Q = (P, Γ ) where P = (X ,Y , ρP , λP ) as defined
in Sect. 2. Our goal is to compute all matchings μ of Q in
H ; recall that this means that μ must be a matching of P in
G, and, moreover, the temporal assignment αμ must satisfy
Γ (Definition 5). We assume that Γ is specified as a timed
automaton over the alphabet Σ = 2Y .
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We can naturally represent H by the following relations:
Node(vid, label), Edge(eid, vid1, vid2, label), and
Active(eid, time).

We recall the natural notion of snapshot from temporal
databases:

Definition 7 (Snapshot) For any timepoint ti in the temporal
domain of H , the snapshot of H at time ti is the subgraph of
G induced by all edges that are active at time ti . We denote
this subgraph by Hti .

The snapshot can be represented by the relevant slices of the
tables Node, Edge and Active.

Wewill present three algorithms for finding thematchings
of a temporal BGP in a temporal graph, when the temporal
constraint is given by a timed automaton.We start by present-
ing our baseline algorithm that operates in two stages. First,
it generates all matchings of the BGP; next, it filters out those
matchings that violate the temporal constraint. Our second
on-demand algorithm works incrementally. It considers the
graph in temporal order, snapshot by snapshot. As time pro-
gresses, more edges of the graph are seen so that more and
more BGP matchings are found. Also, at each timestep, the
possible transitions of the automaton are evaluated to keep
track of the possible states for each matching. For newly
found matchings, however, the automaton has to catch up
from the beginning. This catching up is avoided in our third
partial-match algorithm, which incrementally maintains all
partialmatches of the BGP, refining them as time progresses.

4.2 Baseline algorithm

Assume a temporal BGP Q = (P, Γ ), where Γ is specified
as a timed automaton. Given a temporal graph H = (G, ξ),
we want to find all the matchings of Q in H . We do this in
two stages:

Find the BGPmatchings: Find all matchings of P in G using
any of the available algorithms for this task (e.g., a worst-
case optimal join algorithm [3, 46]).

Run the automaton: For each obtained matching μ:

(a) Convert the assignment αμ into a timed word over the
temporal domain of H , as described in Sect. 3.We denote
this timed word by wμ.

(b) Check if wμ is accepted by automaton Γ .

We next describe how the automaton stages (a) and (b)
can be done synchronously, for all matchings μ together.
Effectively, we can obtain a bulk-processing variant of the
acceptance algorithm described at the end of Sect. 3, as fol-
lows.

We use a table States that holds triples (μ, s, ν), where
μ is a matching; s is a state of the automaton; and ν is an
assignment of timepoints to the clocks of Γ . Since Γ is non-
deterministic, the same μ may be paired with different s and
ν. Naturally, in the initial content of States, each μ is paired
with state s0 and ν0 that maps every clock to 0.

Let T = {t1, . . . , tn} with t1 < · · · < tn be the temporal
domain of H as described in Sect. 3, and let t0 := 0. Recall
that the active timepoints for each edge are stored in the
table Active(eid, time). We obtain T by first sorting Active
on time and then scanning through it. Now during this scan,
for i = 1, . . . , n, we do the following:

1. Update each (μ, s, ν) in States by increasing every clock
value by ti − ti−1.

2. Let Y , the set of edge variables of P , be {y1, . . . , yk}.
Extend each (μ, s, ν) in States with Boolean values
b1, . . . , bk defined as follows: b j is true if edge μ(y j ) is
active at the current time ti , and false otherwise. Observe
that the bit vector b1 . . . bk represents the i-th letter of the
timed word wμ.

3. Join all records (μ, s, ν, b1 . . . bk) from States with all
transitions (s1, θ, δ, R, s2) from Γ , where the following
conditions are satisfied: s = s1; b1 . . . bk satisfies θ ; and
ν satisfies δ.

4. Project every joined tuple on (μ, s2, ν′′), where ν′′ is ν

but with every clock from R reset to 0. The resulting
projection is the new content of States.

Complexity Each of the above steps can be accomplished
by relational-algebra-like dataflow operations over the States
table. In particular, step 4.2 is done by successive left outer
joins. For j = 1, . . . , k, let A j be the Active table, filtered
on time = ti , and renaming eid to b j . We left-outer join
States with A j on condition y j = b j . If, in the result, b j is
null, it is replaced by false; otherwise it is replaced by true.
The entire second stage, for a fixed timed automaton, can be
implemented in time O(A+ nM), where A is the size of the
Active table, n is the size of the temporal domain, and M is
the number of matchings returned from the first stage.

The first stage of the baseline algorithm, finding BGP
matchings in a graph, is a well-researched and still active
topic [7]. The naive complexity upper-bound is O(Nk),
where N is the size ofG and k is the size of theBGP.However,
the more advanced algorithms cited above are worst-case
optimal [3, 46], meaning that their running time is propor-
tional to N + g(N ), where g is the so-called AGM-bound of
the BGP. Using such an algorithm, and noting that N � A,
the total complexity for stages one and two combined is
O(g(N ) + A + nM).
Early acceptance or rejection After the iteration for i = n,
thematchings that are accepted by the automatonΓ are those
that are paired in Stateswith an accepting state. We may also
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Fig. 4 Content of the States
relation at t = 0, . . . , 3,
illustrating the execution of the
timed automaton in Fig. 2c by
the baseline algorithm of
Sect. 4.2

be able to accept results early: when, during the iteration, a
matching μ is paired with an accepting state s, and all states
reachable from s in the automaton are also accepting, then
μ can already be output. On the other hand, when all states
reachable from s are not accepting, we can reject μ early.

Example 5 Consider again the temporal graph in Fig. 1, and
suppose that we want to find all cycles of length 2 shown in
Fig. 2a, under the temporal constraint T A2 shown in Fig. 2c.
The first stage of the baseline algorithm identified twomatch-
ings, μ = (e5, e6) and μ = (e8, e9). These are considered
by the timed automaton in the second stage.

Figure 4 shows the States relation with the timed words
wμ at times between 0 to 3. At t = 0, both matchings are
at s = s0, no clocks have been set, and, since neither of the
matchings has any edges, b1 = 0 and b2 = 0. At time t = 1,
e5 is active, hence the bit b1 for the matching (e5, e6) is set
to 1, and, since there is a rule in the timed automaton, state is
updated to s1 and clock x is set to 1. Matching (e8, e9) does
not exist at time 1, and so no change is made in that row of
the State table. At times t = 1.1 and t = 1.9, neither of the
matchings’ edges are active, hence the only change is that
the clock is updated for (e5, e6). At time t = 2, for matching
(e5, e6), the edge e6 is active and the clock x is less than 2,
hence we move back to state s0. For the matching (e8, e9), e8
is active so we move to s1 and set the clock. At time t = 3,
(e5, e6) continues to alternate, but for (e8, e9) we see that e8
is active, hence, we set b1 = 1 and b2 = 0, and, seeing that
the timed automaton does not have a transition, we drop this
matching (shown as grayed out in Fig. 4). Between times 3–
6, the matching (e5, e6) continues alternating between s0 and
s1. From time 7–9, we observe neither of e5 or e6, and hence
no change happens to the state of this matching. The final
output of this algorithm is that matching (e5, e6) is accepted
at state s0.

4.3 On-demand algorithm

Aclear disadvantage of the baseline algorithm is thatwemust
first complete the first stage (BGP matching on the whole
underlying graph G) before we can move to the automaton
stage. This delay may be undesirable and prohibits return-

ing results early in situations where the temporal graph
is streamed over time. We next describe our second algo-
rithm, which works incrementally by processing snapshots
in chronological order.

Recall Definition 7 of snapshots. We also define:

Definition 8 (History) The history of H until time ti , denoted
H�ti , is the union of all snapshots Ht j for j = 1, . . . , i . For
t0 := 0, we define H�t0 to be the empty graph.

The baseline algorithm is now modified as follows. We
no longer have a first stage. Snapshots arrive chronologically
at timepoints t1, . . . , tn ; it is not necessary for the algorithm
to know the entire temporal domain {t1, . . . , tn} in advance.
For i = 1, . . . , n:

1. We receive as input the next snapshot Hti . In previous
iterations we have already computed all matchings of P
in the preceding history H�ti−1 . Using this information
and the next snapshot, we compute the new matchings,
i.e., the matchings of P in the current history H�ti that
were not yet matchings of P in the preceding history.
Incremental BGP matching is a well-researched topic,
and any of the available algorithms can be used here [22,
25, 31, 69].

2. We use the table States as in the baseline algorithm. For
each newly discoveredmatchingμ, wemust catch up and
run the automaton from the initial state on the prefixofwμ

of length i −1. We add to States all triples (μ, s, ν), such
that the configuration (s, ν) is a possible configuration of
the automaton after reading the prefix.

3. All matchings we already had remain valid; indeed, if μ

is a matching of P in H�ti−1 then μ is also a matching
of P in H�ti . States is now updated for the i-th letter of
the timed words of all matchings, new and old, as in the
baseline algorithm.

We call this the “on-demand” algorithm because the
automaton is run from the beginning, on demand, each time
new matchings are found, in order to catch up with table
States holding the possible automaton configurations.

Example 6 Figure 5 shows the State relation for the on-
demand algorithm, for the sameBGP and temporal constraint
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Fig. 5 Content of the States relation at t = 0, . . . , 3, illustrating the
execution of the timed automaton in Fig. 2c by the on-demand algorithm
of Sect. 4.3

as in Example 5. The first time a cycle of length 2 exists in the
graph in Fig. 1 is t = 2, hence there will be no matching in
any iteration before t = 2 and no temporal automaton would
run. At time t = 2 the incremental matching algorithm finds
the matching (e5, e6) and passes it to the timed automaton
that runs it for t = 0, t = 1, t = 1.1 and t = 1.9 as was
described in Example 5. At time t = 9, edge e9 is received
and gives rise to a new matching (e8, e9). At that point, the
timed automaton is invoked for all t < 9. The process is sim-
ilar to what we described in Example 5, and the on-demand
automaton will eliminate this matching at t = 3 because
no rule in the automaton can be satisfied. The final output
is the same as for the baseline algorithm: matching (e5, e6)
accepted at state s0. Note that using on-demand algorithm,
we can process the graph that arrives as a stream.

Correctness and Complexity The correctness of the on-
demand algorithm follows because it is an incremental
variant of the baseline algorithm. Every record (μ, s, ν) that
occurs in table States in the baseline algorithmwill also occur
in the on-demand algorithm. Indeed, μ, which is a match-
ing of P in G, will be found in some iteration, at the very
least in the last iteration, since H�tn equals G. Conversely, if
(μ, s, ν) occurs in States in the on-demand algorithm, it will
also occur in the baseline algorithm. Indeed, if μ is a match-
ing of P in some history H�ti , then μ is also a matching of
P in G, since H�ti ⊆ G.

The complexity of the on-demand algorithm is, theoreti-
cally, not better than that of the baseline algorithm. Let Mi

be the number of new matchings found in iteration i , so that
M1 + · · · + Mn = M . We assume new matchings are found
with a worst-case optimal join algorithm applied to the delta
query [46], and, by slight abuse of notation, we, again, denote
the AGM bound for that query by g. Still, we need to catch
up the automaton configurations for the Mi new matchings,
and also do the state updates for all M1+· · ·+Mi matchings
found so far. This leads to a complexity in the order of

n∑

i=1

⎛

⎝N + g(N ) +
i∑

j=1

Mj

⎞

⎠

which appears worse than A + g(N ) + nM for the baseline
algorithm.

However, note that the O(N + g(N )) estimate for each
incremental query is a worst-case upper bound only. More-
over, the advantage remains that the on-demand algorithm
can be applied in a streaming context. So, realistic running
time comparisons must be made experimentally. Indeed, in
our experiments, we will see that on-demand is typically bet-
ter than the baseline.

4.4 Partial-match algorithm

A disadvantage of the on-demand algorithm is the catching-
up of the automaton on newly foundmatchings. Interestingly,
we can avoid any catching-up and obtain a fully incremental
algorithm, provided we keep not only the total matchings of
P in the current history, but also all partial matchings.

Specifically, we will work with maximal partial match-
ings: these are partial matchings that cannot be extended to
a strictly larger partial matching on the same graph. Now,
for any partial matching μ of P in G, we can define a timed
word wμ, in the same way as for total matchings. Formally,
wμ = (t1, a1) . . . (tn, an), where now ai = {y ∈ Y | μ is
defined on y and ti ∈ ξ(μ(y))}. The following property now
formalizes how a fully incremental approach is possible:

Proposition 1 Let μ be a maximal partial matching of P in
H�ti−1 , and let μ′ be a partial matching of P in H�ti , such
that μ ⊆ μ′. Then the timed words wμ and wμ′ have the
same prefix of length i − 1.

Proof Let wμ = (t1, a1), (t2, a2) . . . (tn, an) and wμ′ =
(t1, b1), (t2, b2) . . . (tn, bn). We must show that a j = b j

for j = 1, . . . , i − 1. The containment from left to right is
straightforwardly verified. Indeed, take y ∈ a j . Thenμ(y) is
defined and t j ∈ ξ(μ(y)). Since μ ⊆ μ′, also μ′(y) = μ(y)
is defined and we see that y ∈ b j as desired.

For the containment from right to left, take y ∈ b j .
Then μ′(y) is defined and t j ∈ ξ(μ′(y)). For the sake
of contradiction, suppose μ(y) would not be defined. Let
ρP (y) = (x1, x2), and strictly extend μ to μ′′ by mapping y
to μ′(y); x1 to μ′(x1); and x2 to μ′(x2). Since μ′ is a partial
matching of P inG, we know thatμ′(y) is an edge inG from
node μ′(x1) to node μ′(x2). Moreover, since t j ∈ ξ(μ′(y)),
the edge μ′(y) is present in H�t j , so certainly also in H�ti−1

since j � i−1. Thus,μ′′ is a partialmatching of P in H�ti−1 ,
contradicting the maximality of μ. We conclude that μ(y) is
defined, and y ∈ a j .

Concretely, the partial-match algorithm incrementally
maintains, for i = 1, . . . , n, all maximal partial matchings μ

of H�ti , along with the possible configurations (s, ν) of the
automaton after reading the i-th prefix of the timed wordwμ.
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The triples (μ, s, ν) are kept in the table States as before. Ini-
tially, States contains just the single triple (∅, s0, ν0), where
∅ is the empty partial matching, and s0 (initial automaton
state) and ν0 (every clock set to 0) are as in the initialization
of the baseline algorithm. For i = 1, . . . , n, we receive the
next snapshot Hti and do the following:

1. From previous iterations, States contains all tuples
(μ, s, ν), where μ is a maximal partial matching of P
in H�ti−1 and (s, ν) is a possible configuration of the
automaton on the i − 1-th prefix of wμ. Now, using
an incremental query processing algorithm, compute
Extend: the set of all pairs (μ,μ′) such that μ appears in
States,μ′ extendsμ, andμ′ is amaximal partialmatching
of P in H�ti .

2. With Extend computed in the previous iteration, update

States := {(μ′, s, ν) | (μ, s, ν) ∈ States

(μ,μ′) ∈ Extend}

by a project–join query. By Proposition 1, States now
contains all tuples (μ, s, ν), whereμ is a maximal partial
matching of P in H�ti (as opposed to H�ti−1 ) and (s, ν)

is a possible configuration of the automaton on the i−1-th
prefix of wμ.

3. Exactly as in the baseline and on-demand algorithms,
States is nowupdated for the i-th letter of the timedwords
of all partial matchings.

Note that in step 1 above, it is possible thatμ′ = μ, which
happens when the new snapshot does not contain any edges
useful for extendingμ, or whenμ is already a total matching.
On the other hand, when μ can be extended, there may be
many different possible extensions μ′, and table States will
grow in size.

Example 7 We now illustrate the algorithm for the same
BGP and temporal constraint as in Examples 5 and 6. Fig-
ure6 shows the States relation with the timed words at
t = 0, . . . , 3. (To streamline presentation, we omit edges
that are not part of any cycle of length 2, but note that there
are 16 such partial matchings in this relation). At t = 0, we
only have one partial matching, denoted by ∅. At time t = 1,
e5 is active for the first time, and we create two partial match-
ings (e5,−) and (−, e5). For (e5,−), b1 = 1 and, since the
second edge is not set yet, b2 = 0. Based on this, the automa-
ton will update this matching state to s1 and set the clock to
0. For (−, e5), we have b1 = 0 and b2 = 1, and, as there
is no transition in the automaton for this situation, this par-
tial matching is dropped early. At t = 2, two new edges e6
and e8 are observed, and (e6,−), (−, e6), (e8,−), (−, e8)
partial matching are added to Extend. Additionally, e6 can
extend (e5,−), creating the full matching (e5, e6). In this

Fig. 6 Content of the States relation at t = 0, . . . , 3, illustrating the
execution of the timed automaton in Fig. 2c by the partial matching
algorithm of Sect. 4.4

timepoint, as there is no transition for (−, e6) and (−, e8),
they are rejected. At t = 3, e8 is active and the partial match-
ing (e8,−) is rejected. Another observation is that, at t = 3
we see e5 again, and so we have b1 = 1, b2 = 0. We thus
drop the partial matching (e5,−), since no edge can extend
this matching. An early rejection such as this can reduce
the computation time for the partial matching algorithm. For
matching (e5, e6), the algorithm continues as in Example 5,
producing the same result.

Correctness and Complexity Correctness of the partial-
match algorithm was already established by Proposition 1.
As to the complexity, the same analysis applies as for the
on-demand algorithm, except that we must replace Mi by
M ′

i , the number of new partial matches. Since there may be
more partial matches than total matches, we see that theoret-
ically the complexity of partial-match is not better than that
of on-demand.

Of course, partial-match does avoid the catching up on
the automaton configurations of newly foundmatches, which
was needed in on-demand. But this win is a constant factor
and hard to reflect accurately in the asymptotic complex-
ity. Nevertheless, again, in our experiments, we will see that
partial-match does often perform better than on-demand,
depending on characteristics of datasets and BGPs, which
influence whether a large number of partial matches will be
generated that never can be completed to a total match.

123



Temporal graph patterns by timed automata

4.5 Avoiding quadratic blowup

A well-known problem with partial BGP matching, in the
non-temporal setting, is that the number of partial matchings
may be prohibitively large.

For a simple example, consider matching a path of length

3, x1
y1−→ x2

y2−→ x3
y3−→ x4, in some graph G. Note that any

edge in G gives rise to a partial matching for y1, y2, and
y3. What is worse, however, is that any pair of edges gives
rise to a partial matching for y1 and y3 together. We thus
immediately get a quadratic number of partial matchings,
irrespective of the actual topology of the graph G. For exam-
ple, G may have no 3-paths at all, or even no 2-paths. Such
a quadratic blowup may not occur for y1 and y2 together.
Indeed, since y1 and y2 form a connected subpattern, only
pairs of adjacent edges give rise to a partial matching.

Of course, in the above example,G may still havemany 2-
paths but very few 3-paths, so connectivity is not a panacea.
Still, we may expect connected subpatterns to have a number
of partial matchings that is more in line with the topology
of the graph. At the very least, working only with connected
subpatterns avoids generating theCartesian product of sets of
partial matchings of two or more disconnected subpatterns.

Interestingly, in the temporal setting, the very presence of
a temporal constraint (timed automaton) may avoid discon-
nected partial matchings. This happens when the temporal
constraint enforces that only partial matchings of connected
subpatterns can ever satisfy the constraint, allowing early
rejection of when partial matchings of disconnected subpat-
terns. We can formalize the above hypothesis as follows.

Consider a temporal BGP Q = (P, Γ ). As usual, let Y
be the set of edge variables of P . Consider a total ordering
< on Y . We say that:
< is connected with respect to P if, for every y ∈ Y , the

subgraph of P induced by all edge variables z � y is
connected.

< is compatible with Γ if, for any y1 < y2 in Y , and
any timed word w satisfying Γ in which both y1 and
y2 appear, the first position in w where y1 appears does
not come after the first position where y2 appears.
Now, when a connected, compatible ordering is available,

we can modify the partial-match algorithm in the obvious
manner so as to focus only on partial matchings based on the
subsets of variables {y1, . . . , y j }, for 1 � j � n. By the con-
nectedness property, we avoid Cartesian products.Moreover,
by the compatibility property, we do not lose any outputs.

As a simple example, consider the path of length 3 BGP
and the timed automaton Γ from Fig. 8. The ordering y1 <

y2 < y3 is connected with respect to P , and is compatible
with Γ . So our theory would predict the partial matching
algorithm to work well for this temporal BGP (P, Γ ). We
will show effectiveness of the partial matching algorithm in
Sect. 6.5.

Fig. 7 TA0 generalizesTA1, specifying that edges should appear repeat-
edly in the given temporal order

Fig. 8 TA4: Each of y1, y2 and y3 is active at some point, with first time
y1 � first time y2 � first time y3

Whether or not an ordering of the edge variables is con-
nected with respect to P is straightforward to check, by a
number of graph connectivity tests. Moreover, when Γ is
given by a timed automaton, it also possible to effectively
check whether an ordering is compatible with Γ .
Verifying compatibilityWe offer the following algorithm for
verifying that an ordering y1 < · · · < ym is compatible with
a temporal constraint Γ , specified by a timed automaton.

1. Compute an automaton defining the intersection of Γ

with all regular languages of the form

(¬y j ∧ ¬yi )
∗ · (y j ∧ ¬yi ) · true∗ · yi · true∗,

for 1 � i < j � n. These languages contain the words
where both yi and y j appear, but y j appears first, which
we do not want when i < j .

2. The resulting timed automaton should represent the
empty language, i.e., should not accept any timed word.

Effective algorithms for computing the intersection of timed
automaton and for emptiness checking are known [2]. Note
that it actually suffices here to intersect a timed automaton
(Γ ) with an NFA (the union of the regular languages from
step 1). An interesting question for further research is to
determine the precise complexity of the following problem:

Problem: Compatible and connected ordering
Input: A temporal BGP (P, Γ )

Output: Anordering of the edge variables that is connected
w.r.t. P and compatible withΓ , or ‘NO’ if no such
ordering exists.
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5 Implementation

The algorithms described in Sect. 4 have been implemented
using Rust and the Itertools library [52] as a single-
threaded application. Our algorithms are easy to implement
using any system supporting the dataflow model such as
Apache Spark [71], Apache Flink [11], Timely Dataflow
[43], or Differential Dataflow [40].

A temporal graph is stored on disk as relational data in
CSV files Node, Edge, and Active. In the initial stage of the
program, we load all data into memory, loading edges into
two hash-tables with vid1 and vid2 as keys. We added a
“first” meta-property field to the Edge relation and use it for
lazy evaluation of matchings in the baseline and on-demand
algorithms.
BGP matching We implement BGP matching as a select-
project-join query. For cyclic BGPs such as triangles and
rectangles, we use worst-case optimal join [3], meaning that
instead of the traditional pairwise join over the edges, we use
a vertex-growing plan.Weuse a state-of-the artmethod in our
implementation but note that (non-temporal) BGP matching
in itself is not the focus of this paper, and so any other BGP
matching algorithmcan be used in conjunctionwith the timed
automata-based methods we describe.

On-demand and partial matching algorithms are both
designed to work in online mode, computing new match-
ings at each iteration. To implement online matching for
the on-demand algorithm, we build on join processing in
streams [67].We can use information from the temporal con-
straint to avoid useless joins in the incremental computation
of matchings. For example, consider two edge variables y
and z coming from the BGP. With E the current history of
active edges and ΔE the edges from the new snapshot, we
must in principle update the join of ρy(E) with ρz(E) by
three additional joinsρy(E)��ρz(ΔE);ρy(ΔE)��ρz(E); and
ρy(ΔE)��ρz(ΔE). When the temporal constraint implies,
for example, that y is never active before z, the first of these
three additional joins can be omitted. Such order informa-
tion can be inferred from a timed automaton using similar
techniques already described in the paragraph on verifying
compatibility in Sect. 4.5.
Timed automataWe represent a timed automaton as a relation
Automaton(sc, θ, δ, R, sn), in which each tuple corresponds
to a transition from the current state sc to the next state sn .
For example, the timed automaton of Fig. 2c is represented
as follows:

sc θ δ R sn

0 00 true [] 0
0 10 c.0 < 3 [0] 1
1 01 c.0 < 3 [0] 0
1 00 true [] 1

The specification of the timed automaton is loaded into
memory as a hash table, with (sc, θ ) as the key. The timed
word θ (see Sect. 3), is encoded as a bitset. For example, in
the timed automaton in Fig. 2c, we encode y1 ∧ ¬y2 as 10,
where the first bit corresponds to y1 and the second to y2.
If the transition condition is true then, for a matching with
two variables, we add 4 rows to Automaton, one for each 00,
01, 10, and 11. Using bitsets makes automaton transitions
efficient, as we will show in Sect. 6.6. Table Automaton also
stores the clock acceptance condition δ, and a nested field R
with an array of clocks to be reset during the transition to the
next state. To update the state of a matching, we execute a
hash-join followed by a projection between Automaton and
States.

Updating the clock for each matching will be computa-
tionally expensive. Instead, during the automaton transition,
for each matching, we store the current time (of last snapshot
visited) value for that clock instead of setting it to zero. This
way, instead of updating all clocks in every iteration, we can
just get the correct value of the clock when needed and com-
pute the current value of the clock by subtracting the value
of the clock from the current time.

In many temporal graphs, due to the nature of their evolu-
tion, most edges appear for the first time during the last few
snapshots. To optimize performance we implemented a sim-
ple but effective optimization for our baseline and on-demand
algorithms:when the initial state of the timed automaton self-
loops on the empty letter, we will not run on a matching until
at least one of its edges is seen. This can be determined using
the “first” meta-property of the Edge relation. This optimiza-
tion is not necessary for the partialmatching algorithm,where
it is essentially already built-in.

We also implement the early acceptance and early rejec-
tion optimizations.

6 Experiments

We now describe an extensive experimental evaluation with
several real datasets and temporal BGPs, and demonstrate
that using timed automata is practical. We investigate the rel-
ative performance of our methods, and compare them against
two state-of-the-art in-memory relational systems, DuckDB
[49] and HyPer [44, 45].

In summary, we observe that the on-demand and partial-
match algorithms are effective at reducing the running time
compared to the baseline. Interestingly, while no single algo-
rithm performs best in all cases, the trade-off in performance
can be explained by the properties of the dataset, of the
BGP, and of the temporal constraint. Our results indicate that
partial-match is most efficient for acylic BGPs such as paths
of bounded length, while on-demand performs best for cyclic
BGPs such as triangles, particularly when evaluated over
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sparse graphs. Interestingly, the performance gap between
on-demand and partial-match is reduced with increasing
graph density or BGP size, and partial-match outperforms
on-demand in some cases. We also show that algorithm per-
formance is independent of timed automaton size and of the
number of clocks.

We show that our methods substantially outperform state-
of-the-art relational implementations in most cases. We also
demonstrate that temporal BGPs are more concise than the
corresponding relational queries, pointing to better usability
of our approach.
Experimental setup Our algorithms were executed as single-
thread Rust programs, running on a single cluster node with
an Intel Xeon Platinum8268CPU, using the Slurm scheduler
[70]. We used DuckDB v.0.3.1 and the HyPer API 0.0.14109
provided by Tableau.2 All systems were run with 32GB of
memory on a single CPU. Execution time of DuckDB and
HyPer parsing, optimizing and executing the SQL query, and
does not include the time to create database tables and load
them into memory. Similarly, execution time of our algo-
rithms includes loading the timed automaton and executing
the corresponding algorithm. All execution times are aver-
ages of 3 runs; the coefficient of variation of the running
times was under 10% in most cases, and at most 12%.

Remark 2 Since we are dealing with graph data and BGPs,
one may ask why we implemented our algorithms in a
dataflow environment, and compare to relational systems.
Why not work on top of a graph database system, and com-
pare to graph databases? The reason is that a BGP is, in
essence, a multiway join query, for which the best perfor-
mance is realized with the help of worst-case optimal join
algorithms, or relational query processors with very good
optimization. It is exactly with respect to these two environ-
ments that we conduct our experiments. On the other hand,
the main advantage of graph database systems is their sup-
port of reachability queries or regular path queries, which
are not part of our basic notion of BGP. Rather, our contribu-
tions lie in expressive temporal filtering of the matchings of
a BGP, for which our experimental set-up provides a suitable
empirical evaluation.

Datasets. Experiments were conducted on 4 real datasets,
summarized in Table 1, where we list the number of dis-
tinct nodes and edges, temporal domain size (“snaps”), the
number of active edges across snapshots (“active”), struc-
tural density (“struct”, number of edges in the graph, divided
by number of edges that would be present in a clique over
the same number of nodes), and temporal density (“temp”,
number of timepoints during which an edge is active, divided
by temporal domain size, on average).

2 https://help.tableau.com/current/api/hyper_api

Table 1 Description of the experimental datasets

Nodes Edges Active Snaps Density

Struct Temp

EPL 50 1500 35K 25 0.6 0.93

Contact 541 3349 21K 48 0.16 0.13

Bitcoin 1704 4845 268K 1036 0.026 0.049

Email 776 65K 1.9M 800 0.1 0.03

FB-Wall 46K 264K 856K 850 0.0001 0.003

Superuser 194k 854K 1.2M 2774 0.00002 0.0005

EPL, based on the English soccer dataset [19], represents
34,800 matches between 50 teams over a 25-year period. We
represent this data as a temporal graph with 1-year tempo-
ral resolution, where each node corresponds to a team and
a directed edge connects a pair of teams that played at least
one match during that year. The direction of the edge is from
a team with the higher number of goals to the team with the
lower number of goals in the matches they played against
each other that year; edges are added in both directions in
the case of a tied result. This is the smallest dataset in our
evaluation, but it is very dense both structurally and tempo-
rally.

Contact is based on trajectory data of individuals at the
University of Calgary over a timespan of 4h [47]. We cre-
ated a bipartite graph with 500 person nodes and 41 location
nodes, where the existence of an edge from a person to a
location indicates that the person has visited the location.
The original dataset records time up to a second. To make
this data more realistic for a contact tracing application, we
made the temporal resolution coarser, mapping timestamps
to 5-min windows, and associated individuals with locations
where they spent at least 2.5 min.

Bitcoin is a temporal graph based on the decentralized
digital currency and payment system [33, 48]. In this graph,
nodes represent bitcoin addresses, and directed edges from u
to v at time t signify that bitcoinwas transferred from address
u to address v at time t . In-line with the work by Semertzidis
and Pitoura [55], we used data up to December 31, 2013. The
graph used in our experiments has 1,704 nodes, 4,845 unique
edges, and 268K active edges over a 1,036-day period.

Email, based on a dataset of email communications within
a large European research institution [37], represents about
1.9M email messages exchanged by 776 users over an 800-
day period, with about 65K distinct pairs of users exchanging
messages. This dataset has high structural density (10% of
all possible pairs of users are connected at some point during
the graph’s history), and intermediate temporal density (3%).

FB-Wall, derived from the Facebook New Orleans user
network dataset [62], represents wall posts of about 46K
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users over a 850-day period, with 264K unique pairs of users
(author / recipient of post).

Superuser is based on StackOverflow, a stack exchange
website where users post questions and receive answers from
other users. In this temporal graph, derived by Paranjape et
al. [48], nodes represent users, and a directed edge from u
to v at time t signifies that user u answered a question from
user v, or that u commented on v’s question or on v’s answer.
This graph has 194K nodes, 854K edges, and 1.2M tempo-
ral edges that span over 2774 days, making this the largest
dataset in our experiments, both in the number of edges and
in duration.

We also use synthetic datasets to study the impact of data
characteristics on performance, and describe them in the rel-
evant sections.

Example 8 Our chosen test datasets illustrate the practical
applicability of temporal BGPs with expressive temporal
constraints on real-life data. Indeed, recall Examples 2 and
3 from the Introduction. Example 2 looks for patterns of
“ping-pong email messages,” which is naturally applicable
to datasets Email, FB-Wall, and Superuser. Then Example 3,
looking for patterns of location usage without overlap (using
automatonTA6 from the Introduction), is naturally applicable
to the Contact dataset. Furthermore, on the Bitcoin dataset,
we could envisage looking for “money carousels” where one
party transfersmoney to a second party, the second party sub-
sequently transfers money to a third party, upon which the
third party transfers money back to the first party, and this
cycle can repeat. This uses as BGP a cycle of length three,
and the automaton TA0 from Fig. 7. Our experiments, inter-
estingly, found out that no such carousel exists in the Bitcoin
dataset.

6.1 Relative performance of the algorithms

In our first set of experiments, we evaluate the relative perfor-
mance of the baseline (Sect. 4.2), on-demand (Sect. 4.3), and
partial-match (Sect. 4.4) algorithms. Note that the baseline
algorithm can only be used when a graph’s evolution history
is fully available (rather than arriving as a stream), and that
partial-match is only used when the matching is guaranteed
to be connected (Sect. 4.5).

We use the BGP that looks for paths of length 2, with
timed automata TA1, TA2 and TA3 from Fig. 2. Automaton
TA3 is interesting for showing the impact of early acceptance
and rejection on performance.

Figure 9 shows the execution time of the baseline, on-
demand and partial-match algorithms for EPL and Email,
also noting the number of temporalmatches. TheBGP,which
is in common for all executions in this experiment, returns
47K matches on EPL and 862K matches on Email. When
the temporal constraint is applied, the number of matches is
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Fig. 9 Running time for path of length 2 with timed automata
TA1,TA2,TA3

reduced, and is presented on the x-axis. For example, TA1

returns 1.8K matches on EPL and 36K on Email.
We observe that partial-match is the most efficient algo-

rithm for all queries and both datasets, returning in under 0.12
sec for EPL, and in under 17 sec for Email in all cases. The
on-demand algorithm outperforms the baseline in all cases,
but is slower than partial-match. The performance difference
between the baseline and on-demand is due to a join between
two large relations in baseline, compared to multiple joins
over smaller relations in on-demand.

We also observe that the relative performance of the algo-
rithms depends on the number of matches, and explore this
relationship further in the next experiment. To compare algo-
rithm performance across BGPs and datasets, we use the
timed automaton TA0 of Fig. 7, which generalizes TA1 from
2 to m edges. TA0 specifies that edges in a matching should
appear repeatedly in a strict temporal order.We use TA0 (with
m = 2, 3, or 4 as appropriate) as the temporal constraint for
paths of length 2 and 3, and for cycles of length 2, 3, 4, for
three of the datasets. Because theContact dataset is a bipartite

graph, we used it for in-star (x2
y1−→ x1

y2←− x3) and out-

star(x2
y1←− x1

y2−→ x3) BGPs of size 2 and 3. For Superuser,
the number of matches for path2 and path3 exceeded our
available memory, and we used the o-star2 pattern instead in
our experiments. (We will discuss memory usage in Sect. 6.2
below.)

Table 2 summarizes the results. It shows number of BGP
matchings (“BGP”), number of matchings accepted by TA0

(“BGP+TA”), and running times of computing the BGP
match only (“match”), and of computing both BGP and
temporal matches using to the baseline, on-demand, and
partial-match algorithms.

We observe that, for acylic patterns (e.g., paths, i-star, o-
star), partial-match is significantly faster than on-demand and
baseline. For such patterns, partial matchings are shared by
many total matchings and by larger partial matchings, bene-
fiting the running time. Interestingly, for cycles of size 2 and
3, on-demand is fastest, followed by baseline. However, for
cycles of size 4 partial-match is once again the fastest algo-
rithm.The reason for this is that there are far fewer cycles than
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Table 2 Relative performance of baseline, on-demand and partial-match, for different BGPs and automaton TA0

Pattern # of matches Time (s) Memory (GB)

BGP BGP+TA Match Baseline On-demand Partial Baseline On-demand Partial

EPL

path2 47K 1.8K 0.01 0.22 0.12 0.06 0.005 0.005 0.005

path3 1.5M 4.6K 0.21 5.11 3.66 0.32 0.005 0.005 0.005

cycle2 1.1K 35 0.01 0.03 0.01 0.02 0.005 0.005 0.005

cycle3 35K 66 0.02 0.12 0.09 0.36 0.005 0.005 0.005

cycle4 1.1M 106 0.22 3.31 2.92 0.53 0.005 0.005 0.005

Email # of matches Time (sec) Memory (GB)

pattern BGP BGP+TA match baseline on-demand partial baseline on-demand partial

path2 862K 36K 0.25 56.27 25.56 16.35 0.17 0.01 0.01

path3 42M 126K 41.00 1475.20 766.33 74.77 10.00 4.00 0.30

cycle2 18K 843 0.12 0.92 0.54 2.41 0.02 0.02 0.02

cycle3 205K 309 0.19 5.13 3.49 14.34 0.02 0.02 0.02

cycle4 8.4M 1352 4.38 196.50 125.85 92.40 1.50 1.00 1.20

Bitcoin # of matches Time (sec) Memory (GB)

Pattern BGP BGP+TA Match Baseline On-demand Partial Baseline On-demand Partial

path2 89K 1387 0.19 3.93 2.28 0.04 0.005 0.005 0.005

path3 1.1M 820 0.19 21.87 20.96 1.70 0.005 0.005 0.005

cycle2 839 6 0.08 0.15 0.17 0.21 0.005 0.005 0.005

cycle3 3621 0 0.09 0.16 0.34 0.24 0.005 0.005 0.005

Contact # of matches Time (sec) Memory (GB)

pattern BGP BGP+TA Match Baseline On-demand Partial Baseline On-demand Partial

i-star2 10.1K 0 0.01 0.03 0.03 0.01 0.01 0.01 0.01

o-star2 207K 0 0.03 0.84 0.79 0.67 0.01 0.01 0.01

i-star3 21.4K 0 0.01 0.07 0.06 0.03 0.01 0.01 0.01

o-star3 10.7M 0 2.86 36.24 35.26 1.73 15.00 10.00 0.50

FB-Wall # of matches Time (sec) Memory (GB)

pattern BGP BGP+TA Match Baseline On-demand Partial Baseline On-demand Partial

path2 4.4M 681K 1.08 839.30 387.31 318.14 1.20 0.62 0.37

path3 91M 235K 13.44 9477.47 5093.05 998.54 27.20 21.60 2.62

cycle2 160K 16K 0.94 12.34 8.32 66.76 0.01 0.01 0.22

cycle3 272K 4.1K 0.84 17.69 10.94 341.39 0.01 0.01 0.57

Superuser # of matches Time (sec) Memory (GB)

pattern BGP BGP+TA Match Baseline On-demand Partial Baseline On-demand Partial

cycle2 280K 36K 10.00 79.49 59.31 383.56 0.18 0.17 0.35

cycle3 2M 100K 113.52 561.63 383.56 1372.80 0.35 0.30 3.20

o-star2 43M 22M 113.52 > 12h 28,855.00 14,189 17.4 10.1 3.20

Best-performing results are highlighted in bold

possible partial matchings, and in smaller cycles this causes
partial-match to run slower. As cycle size increases, perfor-
mance of partial-match becomes comparable to, or better,
than of the other two algorithms. Another graph characteris-
tic that can affect partial-match performance is graph density,
which we discuss in the next section. (Our machine’s RAM
could not fit cycle4 for FB-Wall, so we did not conduct that
experiment.)

Finally, we note that—not surprisingly—intermediate
result size and output size substantially impact the running
time of all algorithms. This is particularly clear in our two
largest datasets, FB-Wall and Superuser. Note the Superuser
is the most challenging because it is both the largest dataset
in terms of the number of edges, and also has the largest tem-
poral domain (3× compared to FB-Wall). For Superuser, the
o-star2 pattern produced 22M temporal matches. This com-
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Table 3 Relative performance of baseline, on-demand and partial-match, for different BGPs, and for automata TA3 and TA5, over FB-Wall and
Superuser

Dataset Pattern TA # matches Time (s) Memory (GB)

Baseline On-demand Partial Baseline On-demand Partial

FB-Wall Cycle3 ta3 8910 11.87 19.66 306.00 0.10 0.10 0.57

FB-Wall Cycle3 ta5 57 3.69 5.87 4.49 0.10 0.10 0.10

FB-Wall Path3 ta3 4,339,730 9758 4888 1685 22 17 2.6

FB-Wall Path3 ta5 52,626 3048 1344 20.25 22 15 0.10

Superuser Cycle3 ta3 151,883 767 425 751 0.47 0.32 3.61

Superuser Cycle3 ta5 147,212 175 191 989 0.35 0.30 3.2

Superuser Path2 ta3 0 OM 26,086 118 OM 30.2 0.2

Superuser Path2 ta5 705,005 OM OM 1322 OM OM 0.70

Best-performing results, and cases where an out-of-memory (OM) error was encountered, are highlighted in bold

putation did not complete under the baseline algorithm after
12h, took about 4h for the partial match, and about 8h for
the on-demand algorithm.

6.2 Memory usage

Table 2 also reports the maximummemory usage of our pro-
posed algorithms for different BGPs and datasets, for the
timed automaton TA0. We start with some general obser-
vations. The memory used by our baseline algorithm is a
function of the number of matchings, as it produces all the
matching at time zero. For acyclic patterns using partial-
match, we can see that in most cases maximum memory
use is a function of the number of accepted matching. The
partial-match algorithm produces matchings incrementally
and, while it keeps partial matching, because of early rejec-
tion it will remove the non-accepted and partial matchings
as early as possible. The on-demand algorithm follows the
same outline as partial-match, however, because it also needs
to keep track of active edges from the previous time points
to run the automata on demand, it will have higher mem-
ory overhead. For cyclic patterns, especially on larger graphs
wheremostmatchingwill ultimately be accepted, the partial-
match algorithm needs a larger amount of memory because
the number of partial matchings is higher (and often substan-
tially so) as compared to the number of total matchings.

According toTable 2, the relatively small datasetsEPLand
Bitcoin run with less than 5MB of memory for all BGPs in
our experiments, and with no significant difference in terms
of memory overhead among the different algorithms. For the
Email dataset, patterns cycle2 and cycle3 return relatively
few matchings, and can be computed using less than 20MB
of memory. For patterns that return more results, such as
path3, the baseline algorithmneeds 10GBofmemory, the on-
demand needs 4GB, and partial-match can run with less than
300MB of memory. For the cycle4 pattern, the baseline algo-

rithmneeds 1.5GB, on-demand needs 1GBand partial-match
needs 1.2GB, due to a higher number of partial matchings.

An interesting observation in Table 2 is for the Con-
tact dataset, with o-star3. For this pattern, baseline and
on-demand need a significant amount of memory due to
the large number of matchings, but partial-match can pro-
cess it with 20× less memory. This is because partial-match
benefits from there being to accepted o-star2 partial pat-
terns in this case. For the cyclic patterns over FB-Wall and
Superuser datasets, our largest datasets, baseline is more
memory-efficient for cyclic patterns, while partial-match is
more memory-efficient for acyclic patterns (e.g., o-star2,
path2, and path3).

6.3 Additional scalability experiments

FB-Wall and Superuser are the two largest datasets in our
experiments. Here, we further investigate the relative per-
formance of our algorithms over these datasets with several
patterns and two timed automata, TA3 and TA5. We used
cycle3 and path3 for FB-Wall, and cycle3 and path2 for Supe-
ruser. The path3 pattern on Superuser returns more than 1.8
billion matchings, and we could not process it within 32GB
of memory that we had available.

Path3 returns 90millionmatchings on FB-Wall, and path2
returns 180millionmatchings on Superuser which, consider-
ing the large temporal domain of this graphs, is challenging
to handle. Table 3 shows the result of this experiment. Simi-
larly to previous experiments, baseline and on-demand show
better performance than partial-match for cyclic patterns, in
terms of both processing time andmemory overhead.Acyclic
patterns are were partial-match works best: for path3 on FB-
Wall, partial-match computed the matching more than 67×
faster than the other algorithms, with 100× less memory.
For Superuser under TA3, partial-match computed the result
800× faster using 200MB of memory, while on-demand
needed 26GB of memory and baseline ran out of memory.
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Table 4 Best-performing
timed-automaton algorithm
(TAA) compared to DuckDB
v.0.3.1 and HyPer API v.
0.0.14109, for SQL queries in
Fig. 1

TA # matches Time (s)

TAA DuckDB HyPer

EPL Path2 TAe 35,866 1.09 1.11 1.44

TA1 1801 0.06 60.14 17.84

TA2 374 0.05 69.89 11.36

TA3 21,035 0.04 0.07 0.13

TA4 29,726 0.06 0.07 0.13

TA5 1714 0.07 18.57 0.39

TA6 19,578 0.54 0.12 0.09

TA7 257 1.3 8.22 5.56

TA8 5377 0.23 0.17 0.21

EPL Cycle2 TAe 933 0.04 0.597 0.01

TA1 35 0.01 2.67 0.41

TA2 22 0.01 3.33 0.26

TA3 418 0.01 0.1 0.01

TA4 740 0.01 0.1 0.01

TA5 90 0.02 0.53 1.19

TA6 312 0.07 0.07 0.01

TA7 0 0.05 1.18 5.15

TA8 188 0.02 0.01 0.09

Bitcoin Path2 TAe 80,008 118.53 470.81 5.13

TA1 1387 0.04 OM OM

TA2 34 0.08 OM OM

TA3 56,943 3.31 24.45 6.89

TA4 57,782 3.32 24.96 6.86

TA5 452 0.94 OM 20.19

TA6 53,524 24.25 7.20 1.17

TA7 2083 41.28 OM OM

TA8 2083 2.85 0.88 18.18

Bitcoin Cycle2 TAe 801 1.36 286.99 0.39

TA1 6 0.15 OM OM

TA2 0 0.15 OM 4471

TA3 184 0.11 0.80 0.38

TA4 654 0.12 0.79 0.39

TA5 438 0.30 15.83 0.10

TA6 124 0.17 7.64 0.38

TA7 0 0.73 OM OM

TA8 451 0.32 0.036 1.74

Contact O-Star2 TAe 169,410 8.87 22.43 19.29

TA1 0 0.67 OM 316.5

TA2 0 0.72 OM 205.95

TA3 101,268 0.59 0.95 0.69

TA4 107,650 0.68 0.91 0.68

TA5 4154 0.72 OM 2.035

TA6 10,832 4.68 0.99 0.54

TA7 76 15.12 OM 102.89

TA8 4646 1.3 1.1 1.16

Email Path2 TAe 719,609 501.07 649.69 239.82

TA1 35,594 22.35 OM OM
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Table 4 continued TA # matches Time (s)

TAA DuckDB HyPer

TA2 801 3.73 OM 1748.85

TA3 443,431 7.78 17.84 8.59

TA4 455,977 7.82 17.78 8.26

TA5 2474 1.27 OM 48.87

TA6 693,956 320.04 8.98 5.61

TA7 390 327.33 OM OM

TA8 12,919 19.32 8.02 21.58

Email Cycle2 TAe 14,188 4.71 254.7 15.3

TA1 843 0.83 OM 1788.87

TA2 240 0.64 OM 1733.05

TA3 6333 0.46 0.38 0.68

TA4 11,396 0.44 0.38 0.68

TA5 1800 0.97 206.26 1.19

TA6 4230 24.09 8.63 5.48

TA7 134 7.1 OM OM

TA8 3441 1.79 0.219 49.79

Best-performing results, and cases where an out-of-memory (OM) error was encountered, are highlighted in
bold

For Superuser under TA5, both baseline and on-demand algo-
rithm ran out of memory, while partial-match computed the
result in 22min using less than 1GB of memory.

6.4 Comparison to in-memory databases

In this set of experiments, we compare the running time of
temporal BGP matching with equivalent relational queries.
We used four datasets (EPL, Bitcoin, Contact and Email) and
queried them with cyclic and acyclic BGPs of size 2, with
temporal constraints specified by 9 timed automata: T Ae

specifies an existential constraint (Fig. 3),whileT A1 . . . T A8

express constraints that are not existential.We did not run this
set of experiments with our largest datasets, FB-Wall and
Superuser, because the we were unable to load these datasets
into DuckDB and HyPer for processing.

We showed SQL queries QTA1 and QTA7 in the intro-
duction. In the Supplementary Materials we give a complete
listing of the SQL queries, with Path2, Cycl2 and Star2
expressing the BGPs used in our experiments, and QTAE,
QTA1–QTA8 implementing the temporal constraints.Most of
these queries are quite complicated compared to their equiv-
alent timed automata.

For DuckDB and HyPer, we loaded the relations Node,
Edge and Active into memory. To improve performance of
DuckDB, we defined indexes on Edge(src), Edge(dst), and
Active(eid,time). To the best of our knowledge, HyPer does
not support indexes.

Table 4 shows the execution time for each query, com-
paring the running time of the best method based on timed
automata (on-demand or partial-match, column “TAA”) with
DuckDB and HyPer. Observe that our algorithms are signif-
icantly faster for TA1, TA2, TA5 and TA7 for all 4 datasets,
and have comparable performance to the best-performing
relational system for TA3 and TA4. Relational systems out-
perform our algorithms on TAe and TA6. For TAe, relational
databases compute all possible matchings at all the time
points in one shot, and then filter out those that fail the tem-
poral constraint, which can be faster than an iterative process.
Similarly, for TA6, the XOR operator can be implemented as
a join-antijoin. Interestingly, for TA8 (set containment join,
see Introduction) DuckDB is most efficient, followed by our
algorithms, and then by HyPer. For the majority of other
cases, DuckDB either ran out of memory (OM in Table 4)
or was the slowest system. Our methods were able to handle
all queries within the allocated memory, while DuckDB and
HyPer both ran out of memory in some cases.

6.5 Impact of graph properties on performance

In this set of experiments, we explore the effect of structural
density and temporal domain size. We synthetically gener-
ated a complete graph with 50 nodes and 2450 edges (the
same size as the EPL dataset) and temporal density of 0.5.
We then sampled edges to create a graph with different struc-
tural densities.We use 4 representative BGPs: paths of length
3, and cycles of length 3. As temporal constraint we use TA4
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Fig. 10 Running time as a function of structural density for 4 common BGPs, with timed automaton TA4 in Fig. 8

from Fig. 8, as it has low early rejection rate, thus serving as
a worst case.

Figure 10 shows the execution time of each algorithm as
a function of graph density, varying from 0.1 to 1.0, where
density 1.0 corresponds to a complete graph. Observe that
partial-match outperforms on-demand for paths, particularly
as graph density increases. For the cycle of size 3, baseline
and on-demand have better performance than partial-match,
but the performance gapdecreaseswith increasinggraphden-
sity. Our experiments for BGPs: path of length 4 and cycle
of length 4 show similar trend. Notably, performance of on-
demand is very close to the baseline.

Next, we consider the impact of temporal domain size
on performance. In general, we expect execution times to
increase with increasing temporal domain size. To measure
this effect without changing the structure or the size of the
graph, we synthetically changed the temporal resolution of
the Email dataset, creating graphs with between 25 and 800
snapshots, and thus keeping the number of BGP matchings
fixed.

Figure 11a shows the result of executing temporal BGP
with path of length 2 and time automaton TA1 (Fig. 2b).
Observe that the execution time of all algorithms increases
linearly, with partial-match scaling bestwith increasing num-
ber of snapshots.

Finally, we study the relationship between result set size
of a temporal BGP and algorithm performance. For this, we
executed the path of length 2 BGP on the Email dataset, with
timed automaton TA2 in Fig. 2c, and manipulated selectivity
by varying the clock condition from c < 0 to c < 1024 on
the logarithmic scale. With these settings, the temporal BGP
accepts between 0 and 36K matchings. Figure11b presents
the result of this experiment, showing the running time (in
sec) on the x-axis and the number of temporal BGP match-
ings (in thousands) on the y-axis. Observe that the running
time increases linearly with increasing number of accepted
matchings for all algorithms, and the slope of increase is
small.

Fig. 11 a Running time vs. temporal domain size; b relationship
between running time and result set size

Fig. 12 Running time as a function of automaton size for cycle of size
4 with TA0 (Fig. 7) on EPL

6.6 Impact of the number of clocks and automaton
size on performance

In our final set of experiments, we investigate the impact of
automaton size and of the number of clocks on performance,
while keeping all other parameters fixed to the extent pos-
sible. To do this, we fix the BGP and vary the size of the
automaton, as follows. We fix the BGP to cycle4 and take
TA0 (Fig. 7) with m = 4 as a starting point. We can unfold
the cycle of states, thus doubling the number of states but
resulting in an equivalent automaton. We do this doubling
seven times, until we obtain 256 states.

Figure 12a shows the execution times on the EPL dataset.
Observing that the execution times remain constant, we
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conclude that automaton size does not significantly impact
performance.

Finally, to investigate the impact of the number of clocks
on performance, we added multiple clocks to the automaton
in Fig. 7 and we reset all clocks at every state transition. To
ensure that any possible difference is not due to the change
of output size, the condition of each clock is set to true. Fig-
ure12b shows the result of this experiment, with the number
of clocks on the x-axis and the execution time in seconds on
the y-axis. Observe that the running time of all algorithms
increases very slightly with increasing number of clocks. We
thus conclude that the computational overhead of storing and
updating clocks is low.

7 RelatedWork

During the past several decades, researchers considered dif-
ferent aspects of graph pattern matching, see Conte et al.
[16] for a survey. The majority of temporal graph models
use either time points [26, 34, 48] or intervals [42, 51, 68,
74] to enrich graphs with temporal information. We discuss
some of these approaches below. In our work, we associate
each edge in a graph with a set of time points, which is an
appropriate representation when events—such as messages
between users or citations—are instantaneous and so do not
have a duration. It is an interesting topic for further research
to investigate when and how an interval-based approach can
be encoded by a point-based approach. This depends also
on the considered graph model, and the considered class of
queries and temporal constraints.

As an example of an interval-based approach, Xu et al.
[68] consider temporal constraints that impose Allen rela-
tions [1] between the intervals of pairs of matched edges
from the graph pattern. Their notion of subgraph matching is
isomorphism-based, and their algorithmic approach is based
on a form of signature pruning.

A prominent line of work where the point-based approach
is adopted is that of mining frequent temporal subgraphs,
called temporal motifs [26, 34, 48]. There, the focus is typi-
cally on existential temporal constrains, aiming to identify
graph patterns with a specific temporal order among the
edges, such as in our Example 1. Timed automata can eas-
ily specify such constrains. An important type of a motif is
a δ temporal motif [48], where all the edges occur inside
the period of δ time units. Timed automata can use one or
multiple clocks to enforce such constrains.

An example of an approach that uses existential temporal
constraints is the work of Semertzidis and Pitoura [56], who
define a notion of “interaction graph pattern matching” with
the help of inequalities among edge variables, and further
support a “delta” constraint that imposes an upper-bound
on the difference between the earliest and the latest time

points. Such constraints are expressible by timed automata.
Semertzidis and Pitoura [56] propose efficient algorithms for
handling their specific temporal constraints under injective
semantics.

Züfle et al. [74] consider a particular class of temporal
constraints where the time points within a query range are
specified exactly up to the translation of the query range
into the temporal range of the graph. Such constraints are
more general than existential constraints, in that they can
represent gaps. An interesting aspect of this work is that the
history of each subgraph is represented as a string, and the
temporal constraint is checked using substring search. While
this method of expressing constraints can work over a set of
time points, it is limited to ordered temporal constraints and
does not support reoccurring edges. This work uses injective
semantics and proposes optimization methods that exploit it.

There are various lines of research on querying temporal
graphs that are complementary to our focus in this paper.
For example, durable matchings [38, 54] count the number
of snapshots in which a matching exists. Much attention has
also beenpaid to tracing unboundedpaths in temporal graphs,
under various semantics, e.g., fastest, earliest arrival, latest
departure, time-forward, time travel, or continuous [10, 20,
30, 64–66]. A focus on unbounded paths is complementary to
our work on patterns without path variables, but with power-
ful temporal constraints. Extending our framework with path
variables is an interesting direction for further research.

An important aspect of pattern matching in graphs is effi-
ciently extracting the matchings. Early work started with
the back-tracking algorithm by Ullmann [59], with later
improvements [15, 60]. Pruning strategies for brute-force
algorithms have been investigated as well [12, 17, 18].
Approaches suitable for large graphs typically build up the
set ofmatchings in a relational table [36] by a series of natural
joins over the edge relation; the aim is then to find an optimal
join order. Until recently, the best-performing approaches
were based on edge-growing pairwise join plans [35, 53,
57], but a new family of vertex-growing plans, known as
worst-case optimal joins, have emerged [5, 46, 61], with bet-
ter performance for cyclic patterns such as triangles. While
we use the latter approach and implement our algorithms
using relational operators, any method capable of finding
matchings on a static graph can be combined with our timed
automaton-based algorithms.

Another relevant direction is incremental graph pattern
matching [3, 6, 13, 22, 27, 29, 31, 32], where the goal is to
find and maintain patterns in an updating graph.

8 Conclusions and future work

In this paper, we proposed to use timed automata as a
simple but powerful formalism for specifying temporal con-
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straints in temporal graph pattern matching. We introduced
algorithms that retrieve all temporal BGP matchings in a
large graph, and presented results of an experimental evalua-
tion, showing that this approach is practical, and identifying
interesting performance trade-offs. Our code and data are
available at http://github.com/amirpouya/TABGP.

An interesting open problem is how timed automata
exactly compare to SQL in expressing temporal constraints
(pinpointing the expressive power of SQL on ordered data is
notoriously hard [39]). It is also interesting to investigate the
decidability and complexity of the containment problem for
temporal BGPs based on timed automata. Another natural
direction for further research is to adapt our framework to
a temporal graph setting where edges are active at durations
(intervals), rather than at separate timepoints. Our hypothesis
is that we can encode any set of non-overlapping intervals by
the set of border-points. We conjecture that timed automata
under such an encoding can express common constraints on
intervals, such as Allen’s relations [1].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00778-023-00795-
z.
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