Fully Generic Queries: Open Problems and Some Partial Answers

Jan Van den Bussche

(Hasselt University, Belgium)

joint work with Dimitri Surinx, Jonni Virtema

What is a Query?

An SQL select statement?

A Python program?

A Google query?

Theory of database queries [Chandra, Harel]

Fix some input database schema S_{in}

Fix some output database schema S_{out}

A query is a mapping from instances of S_{in} to instances of S_{out}

- SQL: input relational database, output relation
- Python: input objects containing data, output object
- Google: input documents, output documents

Computability, genericity

Two requirements on mapping Q:

1. Computable

2. Generic: treat atomic data entries as atomic!

Consider query Q on relations R(A, B) and S(C):

select A

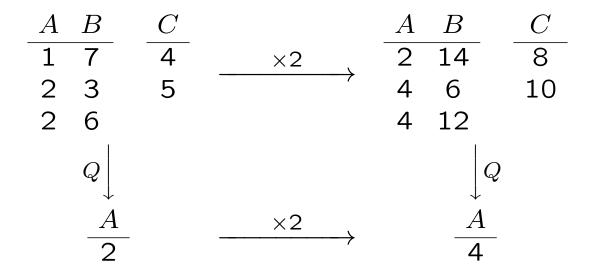
from R, S

where B < C

Permute the entries in the relations, preserving order \Rightarrow query answer is preserved

Commutative diagram

Q: select A from R,S where B<C



Formal definition of genericity

Let **dom** be the universe of atomic data values

Query Q is "generic" if

Q(f(D)) = f(Q(D))

for every D and every permutation f of **dom**

- All reasonable queries are generic.
- Some queries are even more...

Full genericity [Beeri, Milo, Ta-Shma]

• Query Q is "generic" if

$$Q(f(D)) = f(Q(D))$$

for every D and every permutation f of **dom**

• Query Q is "fully generic" if

Q(f(D)) = f(Q(D))

for every D and every function $f : \mathbf{dom} \to \mathbf{dom}$

 \Rightarrow f may map distinct values to the same

Cartesian product is fully generic

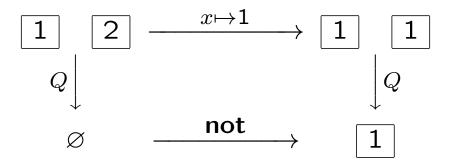
 $Q: R \times S$

$ \begin{array}{ccc} A & B \\ \hline 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array} $	<i>C</i> 7 8	$\xrightarrow{x \operatorname{div} 2} \rightarrow$	$\begin{array}{c cc} A & B & C \\ \hline 0 & 1 & 3 \\ 1 & 2 & 4 \\ 2 & 3 & \end{array}$
$ \begin{array}{c c} Q \\ \hline A & B \\ \hline 1 & 2 \\ 1 & 2 \\ 3 & 4 \\ 3 & 4 \\ 5 & 6 \\ 5 & 6 \\ 5 & 6 \\ \end{array} $	C 7 8 7 8 7 8 7 8	$\xrightarrow{x \operatorname{div} 2} \rightarrow$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Also fully generic: projection, union

Intersection **not** fully generic

 $Q : R \cap S$



Neither fully generic: difference, selection

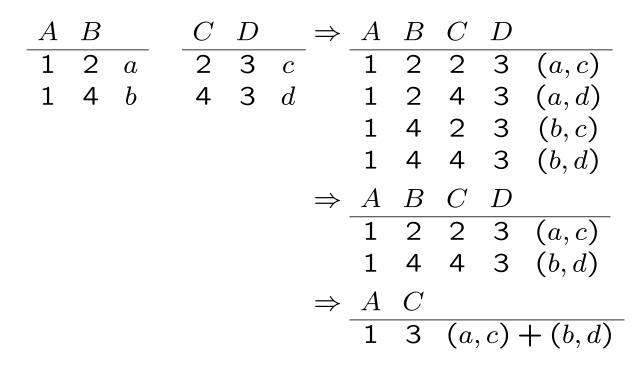
Intuition for fully generic:

• Output can be computed without comparing values

Application: Provenance tracking

Relations R(A, B), S(C, D) with provenance tokens

Query Q: $\pi_{A,D}(\sigma_{B=C}(R \times S))$



No need to compare provenance tokens

Complex objects

"Flat" relational model: only fully generic queries are **unions** of **projections** of **cartesian products**.

Complex objects:

- \boldsymbol{d} atomic data values
- [] tuple constructor
- { } set constructor
 - arbitrary combinations allowed
 - typed
- E.g. type $\{[\{d\}, \{d\}]\}$

Complex objects example

Store, for each concept, the set of synonyms in French, and in English

```
⇒ object of type {[{d}, {d}]}

↓ ↓

French English
```

Store, for each concept, and each available language, the set of synonyms

```
⇒ object of type \{\{[d, \{d\}]\}\}\

↓ ↓

language synonyms
```

OO programming languages, collection types, Spark, JSON

Fully generic complex-object queries

Nested relational algebra without equality selection:

 $\begin{array}{lll} \text{identity: } o \mapsto o & \text{unit: } o \mapsto [] \\ \text{projection: } [o_1, \dots, o_k] \mapsto o_i & \text{empty: } o \mapsto \varnothing \\ \text{singleton: } o \mapsto \{o\} & \text{flatten: } \{o_1, \dots, o_n\} \mapsto o_1 \cup \dots \cup o_n \\ \text{union: } [o_1, o_2] \mapsto o_1 \cup o_2 & \text{cart.prod: } [o_1, o_2] \mapsto o_1 \times o_2 \end{array}$

emptiness test composition of queries map: $\{o_1, \ldots, o_n\} \mapsto \{Q(o_1), \ldots, Q(o_n)\}$ tupling: $o \mapsto [Q_1(o), \ldots, Q_k(o)]$

We denote this language by ${\mathcal L}$

One-each [Beeri, Milo, Ta-Shma]

Intriguing operator, fully generic

For any type τ , define one-each : $\{\{\tau\}\} \rightarrow \{\{\tau\}\}$:

 $\{s_1,\ldots,s_n\}\mapsto \{s'_1\cup\cdots\cup s'_n\mid \emptyset\neq s'_i\subseteq s_i \text{ for } i=1,\ldots,n\}$

Can express powerset operator:

$$2^s = \text{one-each}(\{s\}) \cup \{\emptyset\}$$

Open question: Can one-each be expressed in \mathcal{L} + powerset?

Open question: Can every fully generic query be expressed in \mathcal{L} + one-each?

The equivalence problem

Equivalence problem:

Input: Query expressions E_1 , E_2

Decide: Do E_1 and E_2 express the same query?

Fundamental problem, reasoning, automated query optimization

Undecidable for relational algebra, or nested relational algebra

Decidable for nested relational algebra, with **atomic** equality selection, but without emptiness test

Open question: What about \mathcal{L} ?

Computability and definability

Open question: Is every fully generic query computable?

Open question: Is the definability problem decidable?

Input: Two objects A and B

Decide: Does there exist fully generic Q such that Q(A) = B?

Lacking answers to all these questions (some partial answers in proceedings paper)

We can at least formalize the intuition: *fully generic* = *computable without comparisons, not sensitive to duplicates*

Formalizing computability of queries

Classical computability works with strings over finite alphabet

```
Bijection enc: dom \rightarrow \{0, 1\}^*
```

Encode objects as strings over $\{0,1\}$ and puncutation symbols (comma, square brackets, set brackets)

Query Q is "computable under *enc*" if there exists Turing machine M:

Input: An encoding of some instance D

Output: An encoding of Q(D)

If Q is generic, this is independent of chosen *enc*

Domain Turing machines

Hull and Su proposed **domain** Turing machine:

- works directly over strings with **dom**-elements
- copy current symbol in register
- compare register value with current symbol
- write register value to current tape cell

Every computable, generic query is computable by a domain Turing machine

Oblivious domain Turing machines

- works directly over strings with **dom**-elements
- copy current symbol in register

no comparing register value with current symbol

- write register value to current tape cell
- \Rightarrow computing without comparing values: fully generic

Theorem: Every computable, fully generic query is computable by a oblivious domain Turing machine

Conclusion

Fully generic queries

Fascinating class of queries

Many open questions; poorly understood

Can be processed without comparing values; output not sensitive to duplicates in input

Allows fast reorganisation of data

Linear in output size?

What about bag data model?