
Fully Generic Queries:

Open Problems and
Some Partial Answers

Jan Van den Bussche

(Hasselt University, Belgium)

joint work with Dimitri Surinx, Jonni Virtema

1

What is a Query?

An SQL select statement?

A Python program?

A Google query?

2

Theory of database queries [Chandra, Harel]

Fix some input database schema Sin

Fix some output database schema Sout

A query is a mapping from instances of Sin to instances of Sout

• SQL: input relational database, output relation

• Python: input objects containing data, output object

• Google: input documents, output documents

3

Computability, genericity

Two requirements on mapping Q:

1. Computable

2. Generic: treat atomic data entries as atomic!

Consider query Q on relations R(A, B) and S(C):

select A

from R, S

where B < C

Permute the entries in the relations, preserving order

⇒ query answer is preserved

4

Commutative diagram

Q: select A from R,S where B<C

A B
1 7
2 3
2 6

C
4
5

×2−−−−−−−−→

A B
2 14
4 6
4 12

C
8

10

Q

y yQ
A
2

×2−−−−−−−−→ A
4

5

Formal definition of genericity

Let dom be the universe of atomic data values

Query Q is “generic” if

Q(f(D)) = f(Q(D))

for every D and every permutation f of dom

• All reasonable queries are generic.

• Some queries are even more. . .

6

Full genericity [Beeri, Milo, Ta-Shma]

• Query Q is “generic” if

Q(f(D)) = f(Q(D))

for every D and every permutation f of dom

• Query Q is “fully generic” if

Q(f(D)) = f(Q(D))

for every D and every function f : dom→ dom

⇒ f may map distinct values to the same

7

Cartesian product is fully generic

Q: R× S

A B
1 2
3 4
5 6

C
7
8

xdiv 2−−−−−−−−−−→

A B
0 1
1 2
2 3

C
3
4

Q

y yQ
A B C
1 2 7
1 2 8
3 4 7
3 4 8
5 6 7
5 6 8

xdiv 2−−−−−−−−−−→

A B C
0 1 3
0 1 4
1 2 3
1 2 4
2 3 3
2 3 4

Also fully generic: projection, union

8

Intersection not fully generic

Q: R ∩ S

1 2
x 7→1−−−−−−−−−→ 1 1

Q

y yQ
∅ not−−−−−−−−→ 1

Neither fully generic: difference, selection

Intuition for fully generic:

• Output can be computed without comparing values

9

Application: Provenance tracking

Relations R(A,B), S(C,D) with provenance tokens

Query Q: πA,D(σB=C(R× S))

A B
1 2 a
1 4 b

C D
2 3 c
4 3 d

⇒ A B C D
1 2 2 3 (a, c)
1 2 4 3 (a, d)
1 4 2 3 (b, c)
1 4 4 3 (b, d)

⇒ A B C D
1 2 2 3 (a, c)
1 4 4 3 (b, d)

⇒ A C
1 3 (a, c) + (b, d)

No need to compare provenance tokens

10

Complex objects

“Flat” relational model: only fully generic queries are unions
of projections of cartesian products.

Complex objects:

d atomic data values

[] tuple constructor

{ } set constructor

• arbitrary combinations allowed

• typed

E.g. type {[{d}, {d}]}
11

Complex objects example

Store, for each concept, the set of synonyms in French, and in
English

⇒ object of type {[{d}, {d}]}
↓ ↓

French English

Store, for each concept, and each available language, the set
of synonyms

⇒ object of type {{[d, {d}]}}
↓ ↓

language synonyms

OO programming languages, collection types, Spark, JSON

12

Fully generic complex-object queries

Nested relational algebra without equality selection:

identity: o 7→ o unit: o 7→ []
projection: [o1, . . . , ok] 7→ oi empty: o 7→ ∅
singleton: o 7→ {o} flatten: {o1, . . . , on} 7→ o1 ∪ · · · ∪ on
union: [o1, o2] 7→ o1 ∪ o2 cart.prod: [o1, o2] 7→ o1 × o2

emptiness test
composition of queries
map: {o1, . . . , on} 7→ {Q(o1), . . . , Q(on)}
tupling: o 7→ [Q1(o), . . . , Qk(o)]

We denote this language by L

13

One-each [Beeri, Milo, Ta-Shma]

Intriguing operator, fully generic

For any type τ , define one-each : {{τ}} → {{τ}} :

{s1, . . . , sn} 7→ {s′1 ∪ · · · ∪ s
′
n | ∅ 6= s′i ⊆ si for i = 1, . . . , n}

Can express powerset operator:

2s = one-each({s}) ∪ {∅}

Open question: Can one-each be expressed in L + powerset?

Open question: Can every fully generic query be expressed in

L + one-each?

14

The equivalence problem

Equivalence problem:

Input: Query expressions E1, E2

Decide: Do E1 and E2 express the same query?

Fundamental problem, reasoning,
automated query optimization

Undecidable for relational algebra, or nested relational algebra

Decidable for nested relational algebra, with atomic equality
selection, but without emptiness test

Open question: What about L?

15

Computability and definability

Open question: Is every fully generic query computable?

Open question: Is the definability problem decidable?

Input: Two objects A and B

Decide: Does there exist fully generic Q such that Q(A) = B?

Lacking answers to all these questions (some partial answers in

proceedings paper)

We can at least formalize the intuition: fully generic =

computable without comparisons, not sensitive to duplicates

16

Formalizing computability of queries

Classical computability works with strings over finite alphabet

Bijection enc : dom→ {0,1}∗

Encode objects as strings over {0,1} and puncutation symbols
(comma, square brackets, set brackets)

Query Q is “computable under enc” if there exists
Turing machine M :

Input: An encoding of some instance D

Output: An encoding of Q(D)

If Q is generic, this is independent of chosen enc

17

Domain Turing machines

Hull and Su proposed domain Turing machine:

• works directly over strings with dom-elements

• copy current symbol in register

• compare register value with current symbol

• write register value to current tape cell

Every computable, generic query is computable by a domain

Turing machine

18

Oblivious domain Turing machines

• works directly over strings with dom-elements

• copy current symbol in register

no comparing register value with current symbol

• write register value to current tape cell

⇒ computing without comparing values: fully generic

Theorem: Every computable, fully generic query is computable

by a oblivious domain Turing machine

19

Conclusion

Fully generic queries

Fascinating class of queries

Many open questions; poorly understood

Can be processed without comparing values;

output not sensitive to duplicates in input

Allows fast reorganisation of data

Linear in output size?

What about bag data model?

20

