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Abstract

A general model for spatial databases is consid-
ered, which extends the relational model by allow-
ing as tuple components not only atomic values but
also geometrical figures. The model, which is in-
spired by the work of Kanellakis, Kuper and Revesz
on constraint query languages, includes a calculus
and an algebra which are equivalent. Given this
framework, the concept of spatial database query
is investigated. Thereto, Chandra and Harel’s well-
known consistency criterion for classical relational
queries is adapted. Various adaptations are pro-
posed, depending on the kinds of geometry in which
the spatial information in the database is to be in-
terpreted. The consistency problem for calculus
queries is studied. Expressiveness issues are exam-
ined. The main purpose of the paper is to open
up new grounds for theoretical research in the area
of spatial database systems. Consequently, many
open problems are indicated.

1 Introduction.

Recently, much attention has been paid to spa-
tial database systems (e.g., [Buc89, GS91, AO93)),
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which are capable of dealing with spatial informa-
tion. Spatial database models and prototypes pro-
posed in the literature typically focus on one spe-
cific type of spatial information (or a finite set of
specific types), such as intervals for temporal appli-
cations or polygonal line segments for geographic
applications. This narrow focus is often justified,
since it is sufficient for many applications, and al-
lows for tuned, efficient implementations. Never-
theless, in order to obtain a better understanding of
the fundamental issues underlying spatial database
management, a more general perspective is in or-
der.

A natural approach to achieving this generality is
to consider as spatial data any geometrical figure
definable in elementary geometry, i.e., first-order
logic over the reals. This wide class of figures is
also known as the class of semi-algebraic sets in
real algebraic geometry [BCR87]. The first-order
theory of the reals is decidable; actually, it allows
a very strong form of effective quantifier elimina-
tion (known as Cylindrical Algebraic Decomposi-
tion [Col75, Arn88]), which makes that many prop-
erties of semi-algebraic sets are decidable as well
[HRRI1]. Databases containing arbitrary semi-
algebraic sets (i.e., their defining formulas) and a
calculus for querying them were first considered by
Kanellakis, Kuper and Revesz (abbr. KKR) in the
context of their work on constraint query languages
[KIKKR90].

In the present paper, it is our goal to initiate
a study of the theoretical aspects of queries for
spatial databases. As our framework, we use an
orthogonal combination of the standard relational
model and the KKR model. The tuples in the rela-
tions have both ordinary data attributes and spa-
tial attributes. Correspondingly, we have an asso-
ciated calculus query language that is a two-sorted
combination (and a conservative extension) of the



standard relational calculus and the KKR calculus.
We also define an equivalent algebra.

In the seminal paper on the theory of classical
relational queries, Chandra and Harel defined a
query formally as a partial recursive function from
databases to databases that is invariant under per-
mutations of the universe of atomic values ([CH80];
cf. also [AUT79]). The latter consistency criterion,
nowadays known as genericity [HY84], says infor-
mally that the query can be computed (on a Tur-
ing machine, say) regardless of how atomic values
are encoded as strings: two different atomic values
can only be distinguished on the basis of their log-
ical properties. This intuition was also expressed
by Tarski at a talk given in 1966 [Tar86], where
he compared the situation with that of geometry.
There, for example, a mathematical object (e.g., a
set of points, or a function from sets of points to
sets of points) is called “Euclidean” if it is invari-
ant under similarities, or called “topological” if it is
invariant under homeomorphisms. More generally,
geometrical concepts are classified according to the
group of geometrical transformations under which
they are invariant.

This will lead us to the definition of various con-
sistency criteria for spatial database queries, de-
pending on the kind of geometry in which the spa-
tial information is to be interpreted. For example,
we define isometry-generic queries as partial recur-
sive functions from spatial databases to spatial re-
lations which are invariant under isometries with
respect to the spatial data (and are still generic
in the standard sense with respect to the ordinary
data). The usefulness of thus classifying spatial re-
lationships has already been acknowledged in the
spatial database literature (e.g., [EF91]), but has
never been pushed as far as the level of global
queries like we do.

One of our main technical results is negative:
genericity of a calculus query is undecidable. In
the standard relational case (for relational calcu-
lus queries with constant symbols), this follows im-
mediately from the undecidability of classical first-
order logic on finite structures. This is no longer
true however in a purely spatial setting without
ordinary data. Nevertheless, we show that unde-
cidability carries over, even for the simplest prob-
lem of testing for translation-genericity over one-
dimensional spatial relations.

We also look into the expressiveness of the spatial
calculus. We observe that it can be decided in the
calculus whether an arbitrary semi-algebraic set is
finite. From this it follows that various important
integrity constraints are expressible. For instance,
one can check in the calculus whether the database
consists of a finite number of circles, polygonal line
segments, closed polygons, lines, and points, as is
often the case in practical applications.

Along the way, several open problems are in-
dicated. For example, it is effectively decidable
whether a semi-algebraic set is topologically con-
nected. But is it decidable by a calculus query? It
is in one dimension, and in at least three dimen-
sions we show that the problem is related to an-
other open problem, namely whether connectivity
of a finite graph over the real numbers is express-
ible in the calculus. The case of two dimensions
remains open. Another important open problem is
to find query languages that are complete for the
(different kinds of generic) spatial database queries.
In this context, we briefly discuss ways to extend
the calculus with an iteration mechanism.

It should be clear that our main purpose with
this paper, rather than presenting a number of
hard results, is to break up new grounds for the
study of fundamental aspects of queries for spatial
databases.

2 Preliminaries.

First-order logic of the reals. Assume a to-
tally ordered infinite set of variables called real
variables. A real term is a polynomial in real vari-
ables with integer coefficients. A real formula is an
arbitrary well-formed first-order formula built from
(i) atomic formulas of the form P © @, where P
and ) are real terms and O is one of =, <, <, > or
>: (ii) boolean operators; and (7ii) quantifications
(3z) or (V) of real variables. The number of free
variables of a formula is called its arity.

Let R be the set of real numbers. An m-ary
real formula ¢ with free variables x4,..., 2, de-
fines a set of points {(z1,...,2,) | ¢} in the Eu-
clidean space R™ in the obvious way by letting real
variables range over the real numbers. Sets thus
definable are called semi-algebraic. Note that for
m = 0, there are only two such sets: {()}, which
also stands for the Boolean constant True, and the



empty set which stands for False.

Two real formulas are equivalent if they define
the same set. Since Tarski [Tar51] it is known
that equivalence is decidable. Actually, every real
formula can be effectively converted to an equiva-
lent formula that is quantifier-free. Algorithms are
known [Col75, Ren92] which perform this quanti-
fier elimination in time which is exponential only
in the number of variables of the formula (assum-
ing prenex normal form). So, the algorithms have
polynomial-time complexity if this number is con-
stant. This will clearly be the case in our setting.

The spatial data model. Assume a set of rela-
tion names, where each relation name R has a type
7(R) which is a pair of natural numbers [n, m]. A
database scheme is a finite set of relation names.
Assume further a countably infinite domain U of
atomic values.

An intensional tuple (or ituple) of type [n,m]
is a tuple (ay,...,a,;¢) with a1,...,a, € U and
o a quantifier-free real formula of arity m. An i-
instance I of a scheme § now is a mapping on §,
assigning to each relation name R of § a finite set
of ituples of type 7(R). Such a set of ituples is
called an i-relation of type 7(R).

Intensional tuples and relations of type [n,m]
are finite representations of possibly infinite sub-
sets of U™ x R™ which we call extensional rela-
tions (or e-relations), as follows. For an ituple
t = (ai,...,a,;9), let S be the semi-algebraic
set defined by ¢. Then t represents the e-relation
{(a1,...,a,)} X S which we denote by ext(t). An
i-relation r then represents the e-relation ext(r) :=
UtEr ext (t)
called extensional tuples (or etuples). Faxtensional
instances and the e-instance ext(l) represented by
an i-instance I are now defined in the obvious way.

A relation type of the form [n,0] is called flat.
Relations of flat type (or flat relations) are the
standard value-based relations of classical rela-
tional databases. Similarly, we have flat schemes
(containing only relation names with a flat type)
and flat instances. In the flat case, there is no dif-

The elements of e-relations will be

ference between the intensional and the extensional
level.

On the other hand, relation types of the form
[0, m] are called purely spatial. Purely spatial
databases are exactly those considered in the KKR

model [KKR90] mentioned in the Introduction.
The sharp distinction we make between ordinary
data and spatial data allows a clean definition of
the concepts introduced in the next section. This
would not be possible if we would have chosen to
represent the atomic values in U as, e.g., integers
in R, which seems what is suggested in [KIKR90].

3 Generic spatial queries.

Definition 1 For a scheme S, denote the set of
i-instances (resp., e-instances) of & by i-inst(S)
(resp., e-inst(S)). Let Sy and Souy be disjoint
schemes.

1. An extensional query of signature &, —
Sout is a partial function from e-inst(Si,) to
e-inst(Sout) which, viewed as a binary relation
on instances, is invariant under every permu-
tation of U.

2. An intensional query of signature Sin — Sout
is a partial recursive function @ : i-inst(Sin) —
i-inst(Sout) for which there exists an e-query
Q' of the same signature such that the follow-
ing diagram commutes:

g @
i-inst(Sin)

i-inst(Sout)

ext l l ext
Ql

e-inst(Sin) e-inst(Sout) [

Restricted to flat schemes, i-queries as just de-
fined coincide with the well-known computable
queries for flat relational databases as defined by
Chandra and Harel [CH80]; in particular, their con-
sistency criterion (nowadays called genericity) is
expressed by the condition in the definition of e-
query. Note also that by this condition, for any
(i- or e-) query @, every atomic value appearing in
Q(I) already appears in I.

How is the notion of genericity best extended
in the presence of spatial data, i.e., to non-flat
databases? Informally, genericity says that a query
has the same behavior on “isomorphic” databases.
With respect to the ordinary data, isomorphisms
are simply arbitrary permutations of the set of
atomic values U. But what are the isomorphisms



with respect to the spatial data? They will cer-
tainly be transformations of the Euclidean space,
but precisely which kinds of transformations should
be considered depends on the kind of geometry in
which the spatial information is to be interpreted.

For instance, in some applications, the relative
positions (e.g., above-below, left-right) among the
different geometrical figures in the database form
an essential part of the spatial information. This
is for example the case in temporal databases deal-
ing with time points on the real line [TT93]. For
these applications, translations of the space are
considered to be isomorphisms, but reflections are
not. On the other hand, in geographical appli-
cations, which often deal exclusively with areas
and distances, any distance-preserving transforma-
tion (i.e., any isometry) is considered an isomor-
phism. Still other applications may only be in-
terested in the topological properties of the spa-
tial information (e.g., [EF91]), and will think of
isomorphisms as topological homeomorphisms. In
summary, genericity of spatial database queries is
best defined with respect to some general group of
geometrical transformations.

Before we can give a formal definition, we need
the following notion. A relation type of the form
[n,m] is said to be of dimension k if m is a
multiple of k. Assume this is the case: m =
t - k. The intuition then is that in an etu-
ple (aq,.. .y Um) of type [n,m], the m-
tuple of real numbers (u,...,u,) is thought of
as an i-tuple of points in the k-dimensional Eu-
clidean space R*. We can similarly talk about
k-dimensional schemes (containing only relation
names with a k-dimensional type) and instances.
Given a k-dimensional instance I and a permuta-
tion g of R*, we can apply ¢ to I in the obvious
way.

A T

Definition. Let &, and S,u; be two disjoint
Let G be a group of
permutations of R¥. An e-query @ of signature
Sin — Sout 18 G-generic if for any ¢ € G and any
I, Iy € e-inst(Siyn), if g(11) = I then ¢(Q([1)) =

schemes of dimension k.

Q1)
An i-query @) is G-generic if its corresponding
e-query Q' (cf. Definition 1) is. [ |

Let us now consider a few naturally occurring
groups of transformations in a bit more detail: T,

the group of translations; D, the group of direct
isometries; I, the group of isometries; S, the group
of similarities; A, the group of affinities; H, the
group of homeomorphisms; and P, the full group
of all permutations.

P-genericity is an extreme form which enforces
the standard genericity criterion of Chandra and
Harel on the querying of spatial data. In other
words, the points in space are considered to be
abstract atomic values without any geometrical
meaning, much like the atomic values in U.

As already mentioned earlier, H-genericity is
most appropriate for applications that are inter-
ested only in the topological properties of the spa-
tial data.

A-genericity corresponds to applications where
straightness of lines becomes important. With S-
genericity, also the length of straight line segments
comes in. A-genericity is appropriate for applica-
tions which consider any two figures with the same
shape (e.g., a circle and an ellipse, or two triangles)
to be isomorphic; S-genericity captures the appli-
cations which do so only if the two figures also have
the same proportions (e.g., two circles or two sim-
ilar triangles).

As already mentioned earlier, I-genericity is for
applications in which the exact distances are im-
portant when considering two figures as isomor-
phic. D-genericity is even stronger, also requiring
that the orientation of angles is the same: direct
isometries are translations or rotations. Finally,
we have T-genericity which, as already mentioned
earlier, is relevant for temporal databases (in di-
mension 1).

Clearly, the stronger the notion of isomorphism
is, the smaller the group G is and the more queries
are G-generic. We thus have a series of implications
which we will now show to be strict. The proof of
the following Proposition also serves to illustrate
the different kinds of genericity by means of natural
examples.

Proposition 1 P-generic = H-generic = A-
generic = S-generic = I-generic = D-generic =
T-generic. These implications hold for i-queries
(whence also for e-queries) and are strict.

Proof. (Sketch) We work in dimension 2. Con-
sider a database scheme {Lives, Region}, where
Lives is of type [1,2] and Region is of type [0,2].



On the extensional level, each tuple in Lives is of
the form (n;z,y) where n is (the name of) some
person and (z,y) is a location where this person
lives. Region contains some region, i.e., a semi-
algebraic set in the Euclidean plane. The following
queries have an output scheme consisting of a single
relation.

The query “give the persons who live in the re-
gion” (resulting in a relation of type [1,0]) is P-
generic.

The query “give the persons who live in the topo-
logical interior of the region” is H-generic but not
P-generic. Another example of a query with this
property is “give the topological boundary of the
region” (of result type [0, 2]).

The query of result type [0, 2] “give the straight
lines contained in the region” is A-generic but not
H-generic.

The query “give the persons who live closest to
the region” is S-generic but not A-generic. An-
other such query (of result type [0,0]) is “does the
region consist of two orthogonal finite-length line
segments?”

The query “give the equilateral triangles with
sides of length 1 contained in the region” is I-
generic but not S-generic. Another such query is
“give the pairs of persons living at least 10 miles
apart”.

Assume the region is a circle and that persons
live on this circle. The query “give the pairs
(n1,n3) such that person ny lives before person ny
in clockwise order” is D-generic but not I-generic.

Finally, the query “give the pairs (nq,n3) such
that person n; lives west of person ny” is T-generic
but not D-generic. [ |

We conclude this section with the following re-
mark. Asking for the locations where John lives,
though reasonable as a query, is strictly speaking
not a query at all since it gives special status to the
atomic value ‘John’ and is therefore not invariant
under all permutations of U (cf. Definition 1). This
problem goes away if we provide a constant rela-
tion John containing the single atomic value ‘John’,
and rephrase the query correspondingly. This is
of course merely an alternative view on the well-
known notion of C'-genericity [HY84], a slight gen-
eralization of classical genericity allowing queries
which depend on some finite set of constants C.

Under this alternative view, we can generalize

the notion of C'-genericity to the spatial context,
appropriate for a finite set of spatial constants
(which can be arbitrary semi-algebraic sets in gen-
eral). As a simple example where the constant is
a single point, consider a relation R of type [0, 2]
and the query (of result type [0, 2]) which rotates R
over 90° around the center (0,0). This query is not
even T-generic since the center point is given spe-
cial status. However, given two relations Ry and
Ry of type [0, 2], the query which checks whether
Ry consists of a single point p and, if so, rotates
Ry over 90° around p certainly is T-generic (it is
actually S-generic).

4 Calculus and algebra.

We now present a basic mechanism for specifying
spatial queries in the form of a calculus language
which is an orthogonal combination of the standard
relational calculus and one of the constraint query
languages of [KKR90]. The operational semantics
of the calculus is provided by an equivalent algebra.

Recall the language of real formulas defined in
Section 2. The formulas of the calculus query lan-
guage are obtained simply by adding to the former
language:

e A totally ordered infinite set of variables called
value variables, disjoint from the set of real

variables;
e Atomic formulas of the form v; = vy or
R(v1,...,v0;p1,...,Pm) Where R is a relation

name of type [n, m], the v; are value variables
and the p; are real terms (the latter kind of
atomic formula is called a relation atom); and

e Quantifications (Jv) or (Vv) of value variables.

Let @ be a calculus formula with free value vari-
ables vy,...,v, and free real variables zy,...,z,,.
Let & be a scheme containing all relation names
occurring in ®. Given an e-instance I of §, ¢ de-
fines an e-relation ®(I) of type [n, m] in the obvious
way by letting value variables range over the set of
all atomic values appearing in [ and letting real
variables range over the real numbers.

The calculus can thus be used as a declara-
tive language for expressing queries on the exten-
sional level. It is, of course, more interesting how-



ever to express i-queries (which are effectively com-
putable). This turns out to be possible: every e-
query expressible in the calculus corresponds (in
the sense of Definition 1) to an i-query. We show
this by translating calculus formulas into equiva-
lent algebra expressions which have an operational
semantics on the intensional level. The operators
of this algebra are presented next.

We will use the following terminology: given an
ituple t = (ay,...,a,;¢), we will denote the value
part (aq,...,a,) of t by val(t) and the spatial part
@ of t by spat(t).

Now let r, ry, and rq be i-relations of type [n, m]
and let r’ be an i-relation of type [n’, m/]. With-
out loss of generality, assume that all real formulas
appearing in r, r; and rp use the same variables
T1,...,Tm, and that no real variable is used both
in r and r’.

e The union r{Ury is the standard set-theoretic

union.

e For an arbitrary ituple ¢, denote the
set {t' € r; | wa(t) = wal(t)} by
veq;(t), for ¢« = 1,2. The difference
ri — ro equals {(val () Vircveq, () SPat(t’) A
_'\/t "Cuegy (T Spat( )) | te 7‘1}

e The Cartesian product r x r’ equals

{(val(t), val(t'); spat(t) A spat(t)) | t € r,
t" € r'}, of type [n 4+ n', m 4+ m/].

o The walue selection o,—;(r) equals {t € r |
val(1)(0) = val(1)(j)}-
Let ¢ be a quantifier-free real formula on
the variables zq,...,z,. The spatial selection

o,(r) equals {(val(t); spat(t) Ap) |t € r}.

e For 1 < 4y,...,%, < n, the value projection
Tip,ip (1) equals

{(val(t) (1), ...,

of type [p, m].

Let 1 < #1,...,2, < m and let y1,...,y, be
real variables different from each x;. For a real
formula ¢ with free variables z1,...,z,,, de-
fine 7, i () as the quantifier-free equiva-
lent of the real formula

val(t) (iy); spat(t)) | t € r},

(Fz1) ... (Fzm) (@ A /\ Y = 2;,).
=1

Then the spatial projection 7y, .., (r)equals
{(0al(t); 7oy o, (spal (1)) | £ € 7}, of type
[, p-

e Finally, the algebra includes the constant R*
for each k, standing for the “full” relation of

type [0, k].

Algebra expressions are obtained by applying al-
gebra operators to relation names. Using standard
techniques we can prove:

Proposition. Fvery calculus formula ® can be
effectively converted into an algebra expression F
such that the e-query expressed by ® corresponds
to the i-query expressed by F.

There is also an obvious converse to this propo-
sition which we do not state explicitly. We can
thus conclude that the calculus and the algebra are
equivalent.

Example. All queries mentioned in the proof
of Proposition 1 are expressible in the calculus
(whence also in the algebra). An easy one is “give
the pairs of persons living at least 10 miles apart”:
1,20 (23—, )2 4(wa —w2)2 >100 ( LivEs X Lives) in the al-
gebra.

To conclude this section we point out (proof
omitted) that the spatial calculus (algebra) is a
conservative extension of the standard relational
calculus (algebra).

Proposition. Fvery calculus query of flat signa-
ture is expressible in the flat relational calculus.

Also, it is clear that every calculus query of purely
spatial signature is expressible in the KKR calculus
[KKR90] mentioned in the Introduction.

5 Genericity of calculus queries.

Not all calculus queries are generic. The simplest
example is the trivial query {z | z = 0} de-
fined on the 1-dimensional scheme §; = {R} with
7(R) = [0,1]. This query is not T-generic. Actu-
ally, it is not G-generic for any § which contains a
transformation that does not fix 0.



Hence, there is a “consistency problem” for the
calculus. The following theorem witnesses the dif-
ficulty of this problem even in the simplest possible
setting:

Theorem 1 With G and &, as above, G-genericity
of calculus queries of signature S — 81 is unde-

cidable.

Proof. (Sketch) The V*-fragment of number the-
ory is undecidable since Hilbert’s 10th problem
can be reduced to it.
ber n by the one-dimensional semi-algebraic set
enc(n) := {0,...,n}, and encode a vector of natu-
ral numbers (nq, ..., ng) by enc(ny)Uenc(ng)+ni+
1U---Uenc(ng) +ng—1+1. The corresponding de-
coding is first-order. We then reduce a V*-sentence
(VZ) (&) of number theory to the query:

Encode a natural num-

if R encodes a vector 7 then
if ©(7) then 0
else {0}

else

This query is expressible in the calculus and is
generic iff the sentence is valid. [ |

In the same way, it can be shown that satisfi-
ability of (whence also equivalence among) calcu-
lus queries is undecidable; this was independently
shown by Grumbach and Su [GS] in the context
of a model and calculus for “finitely representable
databases” equivalent to ours. Note that equiv-
alence of purely spatial tableau calculus queries
(defined in analogy to the flat tableau queries of
[ASUT9]) was shown decidable in [KKR90]. This
result can be extended to general tableau queries
(proof omitted). This leaves us with:

Open problem. Is genericity of tableau calculus
queries decidable?

We also point out that for any group G of trans-
formations that can be defined in elementary alge-
bra (in particular for any natural subgroup of the
group of affine transformations with algebraic pa-
rameters), G-genericity of purely spatial calculus
queries is co-r.e., since for any fixed transforma-
tion ¢, query (), and i-instance I, the statement
g(Q(I)) = Q(g(I)) can be written as a sentence in
the decidable first-order theory of the reals.

If we disallow quantification, the consistency
problem seems to become more manageable. We
present one theorem that is probably typical for
the kind of results that can be expected in this sit-
uation.

Consider the simple 2-dimensional scheme con-
sisting of a single relation R of type [n, 2] for some
n. Call a calculus query of result type [n’,2] over
this scheme simple quantifier-free if its defining for-
mula ®(¥;z,y) has the form &1 A --- A &, A P,
where each ®; is a relation atom or its negation
and @’ is a quantifier-free formula not involving
R. The class of simple quantifier-free queries cap-
tures the “global” operations (and selections, us-
ing ®') on the spatial data, such as a transla-
tion over a constant vector @ of all points in R:

{(0,2) | R(7;7 - a@)}.

Theorem. Fvery D-generic simple quantifier-
free query must be P-generic.

In other words, only unsophisticated (from a spa-
tial point of view) simple quantifier-free queries can
be D-generic. The proof (omitted) is quite ad-hoc
and proceeds by elimination of polynomials.

6 Expressiveness of the calculus.

A useful property is the following:

—

Proposition 2 Let ®(0;,7y) be a calculus query
with free value variables U and free real variables
7.5 The query {(7:9) | {7 | ©(57,9)} is finite)
is expressible in the calculus.

Proof. (Sketch) The set {Z'| ®(¥;, )} is a semi-
algebraic set parameterized by ¥ and . Since every
semi-algebraic set is homeomorphic to a union of
singletons and open cubes [BCR87], such a set is fi-
nite iff it does not have an accumulation point. The
topological notion of accumulation point is first-
order definable in metric spaces and hence express-
ible in the calculus. [ |

In other words, Proposition 2 says that the
generalized quantifier (37%) (“there exist only
finitely many #”) is expressible in the calculus.!
So, (¥n) (32, y) Lives(n; x, y) expresses that every

! A weaker version of this fact for the first-order theory of
the reals was already known [Sch79].



person lives only on a finite number of points. Im-
portantly, 3 can also be used to recognize prop-
erties of infinite semi-algebraic sets. Indeed, many
types of geometrical figures used in practical situ-
ations consists of an infinite number of points, but
can be described using only a finite number. For
instance, polygons can be described their vertices,
and circles by their center and radius. Moreover,
the finite description is often first-order definable
(expressible in the calculus). Given any fixed col-
lection of such types of figures, it can then be veri-
fied in the calculus whether the spatial information
in the database consists of a finite number of figures
of these types.

Example. As a simple example, we can verify
whether a relation R of type [0,2] contains only
a finite number of line segments. If the endpoints
of a line segment are (z1,y1) and (22, y2), then the
subformula (Vz)(Vy)(Vr) : (0 < r < 1A (z,y) =
(z1,y1) + r(22 — 21,92 — y1)) = R(z,y) expresses
that all points lying between the endpoints are in
R, and the subformula (3s)(Va)(Vy)(Vr) : (s < r <
0N ((2,y) = (x1,01) +r(ee — 2,2 —y1) V (2, y) =
(@1,y1) + (L= r)(22 — 21,92 — y1))) = —R(z,y)
expresses that R does not extend outside the end-
points. Calling the first subformula ®(z1, y1, 22, y2)
and the second W(xy,y1,22,y2), the formula we
need is thus (F7xy, y1, 29, y2) (& A W),

Recently, Grumbach and Su [GS] observed that
the compactness property known from Model The-
ory fails for (an equivalent formulation of) our
model of spatial databases. An elementary corol-
lary of compactness is that a calculus sentence hav-
ing finite models (i.e., instances on which the sen-
tence yields True) of arbitrary cardinality also has
an infinite model. Proposition 2 shows that this
corollary (whence also compactness) fails as well,
since finiteness is definable in the calculus.

Since the calculus can only express i-queries in
PTIME, there are many queries it cannot express.
However, restricting attention to purely spatial
databases, we conjecture that also many PTIME
queries are not expressible in the calculus. An ob-
vious candidate is the query to decide whether a
finite e-relation of type [0,2] is connected when
viewed as a directed graph. We thus have the fol-

lowing open problem, also stated as an open prob-

lem in [GS]:

Open problem 1 Is graph-theoretic connectivity
expressible in the calculus?

There is also another notion of connectivity en-
tirely different from the graph-theoretic one, which
comes in naturally in the context of spatial data.
Recall that an e-relation of type [0, k] is a (pos-
sibly infinite) semi-algebraic set of points in k-
dimensional space R*. This set may or may not be
connected in the classical topological sense. The
query to decide topological connectivity in dimen-
sion kis in PTIME [HRRO1]. For k = 1, it is easily
expressed in the calculus. However, we ask:

Open problem 2 Let k > 2. Is topological con-
nectivity in dimension k expressible in the calculus?

Graph-theoretic connectivity (Open problem 1)
and topological connectivity (Open problem 2) ap-
pear unrelated in general. Nevertheless, we can
show:

Proposition. Let k > 3. Graph-theoretic con-
nectivity of a finite e-relation of type [0,2] can be
reduced, in the calculus, to topological connectivity
in dimension k.

Proof. (Sketch) Consider the case k = 3. We de-
fine a calculus query ) working on finite e-relations
R of type [0, 2], such that R is graph-theoretically
connected if and only if Q(R), a semi-algebraic set
in dimension 3, is topologically connected. Denote
the set of all vertices of R (viewed as a graph)
by V. The set Q(R) contains a number of verti-
cal lines situated orthogonally to the graph of the
parabola y = z? in the zy-plane. For each vertex
a in V, there is one such line, going through the
point (a,a? 0). Furthermore, Q(R) contains hor-
izontal line segments linking the different vertical
lines. For each edge (a,b) in R, there is one such
line segment, connecting the vertical a-line with the
vertical b-line, situated at height Ma/m+ b. Here,
M is one plus the maximum max,-q/ev |a—a'|, and
m is the minimum min,£q/cy |@ — a'| minus one. It
can be verified that for any two vertices ¢ and b of
R, the a-line and the b-line are topologically con-
nected if and only if there is a path in the graph R
from a to b. Furthermore, () is expressible in the
calculus. Hence, the claim follows. ]



We have thus shown that if Open problem 1 is
settled in the negative, then Open problem 2 is
settled in the negative as well for & > 3. The case
of dimension two remains wide open.

7 Complete languages

The design of complete query languages in our
framework is an important subject for further re-
search. For flat queries, it is well-known that using
the flat relational calculus as the basis of a pro-
gramming language with assignment statements,
untyped relation variables, and iteration, yields a
complete language known as QL [CH80]. We can
similarly build a language starting from the spatial
calculus, and call it SpQL.

Open problem. Is every i-query expressible in

SpQL?

In [KKR90], it was observed that the calculus can-
not be extended with declarative iteration based
on least fixpoints, since such an extension would
no longer be closed for the spatial data model. But
(partially defined) procedural iteration based on
conventional while-loops can of course still be used.

Another problem is finding languages complete
not for all i-queries, but for all G-generic ones, for
various groups of transformations G (e.g.,
considered in Section 3). In view of our undecid-
ability result, for this problem it is perhaps more
appropriate to have primitives for the querying of
spatial data that are more specific to G-generic ge-
ometry than general first-order logic. For instance,
in the case of S-genericity (corresponding to Eu-
clidean geometry), the programming language for
geometrical constructions in Euclidean geometry
defined in [Eng93] might be a good starting point.

those
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