
Expressiveness of

E�cient Semi�Deterministic Choice Constructs�

Marc Gyssens�� Jan Van den Bussche���� and Dirk Van Gucht�

� University of Limburg �LUC�� Dept� WNI� B����� Diepenbeek� Belgium�
e�mail	 marc�gyssens
uia�ac�be

� University of Antwerp �UIA�� Dept� WISINF� B���
� Antwerp� Belgium�
e�mail	 jan�vandenbussche
uia�ac�be

� Indiana University� Computer Sci� Dept�� Bloomington� IN ������ USA�
e�mail	 vgucht
cs�indiana�edu

Abstract� Recently� Abiteboul and Kanellakis introduced the notion of
determinate query to describe database queries having the ability to cre�
ate new domain elements� As there are no natural determinate�complete
query languages known� more restrictive �the constructive queries� and
more general �the semi�deterministic queries� notions of query were con�
sidered� Here� we show that the advantage of the second approach over
the �rst is not so much in increased expressiveness� but in the ability of
expressing queries more e�ciently�

� Introduction

Over a decade ago� Chandra and Harel ��� proposed a language�independent
notion of completeness with respect to domain�preserving database queries� a
query language is complete if it can express all Turing�computable partial func�
tions from databases to databases that are invariant under every permutation of
the universe of possible domain values� The latter criterion� nowadays known as
genericity �e�g�� ���	� ensures that queries can be computed in a way independent
of the encoding of the universe of possible domain values�

More recently� object�oriented database applications motivated researchers to
relax domain preservation by allowing the appearance of new objects in the result
of a query �
�� Extending the notion of query in this sense� however� necessitates
a signi�cant revision of the de�nition of Chandra and Harel� Indeed� queries
which introduce new objects in their results are necessarily non�deterministic
due to the genericity criterion� Obviously� there is a need to control the degree
of non�determinism one wishes to allow�

An important proposal to revise the de�nition of Chandra and Harel came
from Abiteboul and Kanellakis �
�� They introduced the notion of determinate

� The following extended abstract presents research results of the Belgian Incentive
Program �Information Technology� � Computer Science of the future� initiated by
the Belgian State � Prime Minister�s Service � Science Policy O�ce� The scienti�c
responsability is assumed by its authors�

�� Research Assistant of the Belgian National Fund for Scienti�c Research�



query � a generic� non�deterministic query for which the possible results of the
query applied to a given input database are equal up to renaming of the new
objects� In addition� Abiteboul and Kanellakis introduced the language IQL to
express determinate queries� Contrary to what was at �rst expected� IQL is not
complete for the determinate queries� its incompleteness stems from the fact
that the de�nition of determinacy does not take into account that new objects
in IQL are always created in terms of existing objects� Therefore� Andries and
the present authors de�ned a more restrictive notion of query� called constructive
query �
��� and showed that IQL is complete with respect to the constructive
queries� It should be noted that this completeness result is by no means speci�c
to IQL� as IQL is equivalent to any minimal language that can express �rst�order
queries� object creation� and unbounded looping� Therefore� many other object�
creating query languages that have been considered �e�g�� �

� 

� 
�� 
�� 
��	
are essentially equivalent to IQL�

Extending IQL to a complete language requires the introduction of an in�
volved determinate copy elimination mechanism �
� ��� suggesting that the con�
cept of determinate query is perhaps less natural than originally anticipated�
From this viewpoint� restricting the class of determinate queries to the class of
constructive queries is a way to obtain a more natural class of queries�

An equally valid approach to obtain a more natural class of queries is to
extend the class of determinate queries by also allowing certain strictly non�de�
terministic queries� The observation that many important strictly non�determin�
istic queries involve choices based on the symmetries of the input database and
therefore use only a limited form of non�determinism led to the notion of semi�
deterministic query �
��� A semi�deterministic query is a generic� non�determin�
istic query for which the results of the query applied to a given input database
are isomorphic via isomorphisms that are symmetries �i�e� automorphisms	 of
the input database� In particular� the most obvious way to perform the copy
elimination required to make IQL determinate�complete is not determinate but
non�deterministic� notably by choosing one of the isomorphic copies�

Of course� we must ask what is gained by taking the semi�deterministic ap�
proach rather than the constructive� To evaluate the semi�deterministic approach
we need to consider languages in which semi�deterministics queries can be ex�
pressed� The most obvious way to obtain such a language is augmenting IQL
with a choice operation� Abiteboul and Vianu ��� considered a choice operation�
called witness� in the context of general non�deterministic queries� In �
�� it was
shown� however� that �i� it is undecidable to check at compile time whether a
program in IQL � witness expresses a semi�deterministic query� and �ii� run�
time checking for semi�determinism is polynomial�time equivalent to checking
graph isomorphism�

These negative results should not be held against the notion of semi�deter�
minism as queries making symmetry�based choices are often intractable precisely
because they involve �nding these symmetries� On the other hand� there is a
large class of natural queries requiring symmetry�based choices that can be ac�
complished in polynomial time� For instance� it was shown in the full version of



�
�� that the polynomial�time counting queries �e�g�� ��� 
��	 can be expressed
e�ciently by uniformly semi�deterministic IQL � witness programs� In view
of the importance of this class of queries� it is the purpose of the present pa�
per to characterize a minimal class of semi�deterministic queries in which the
polynomial�time counting queries can be expressed e�ciently�

Thereto� we augment IQL with a choice operation which is much more restric�
tive than witness� called swap�choice� The swap�choice operation was �rst
suggested in �
�� and selects one representative for each class of swap�equivalent
objects in the database� two objects are called swap�equivalent if the transposi�
tion of these objects is an automorphism of the database� Swap�equivalence is
�rst�order de�nable and therefore in polynomial time� As a result� swap�choice
is e�ciently computable� Unlike witness� swap�choice is moreover guaranteed
to act semi�deterministically� In this paper� we argue that there are no reasonable
alternatives for this operation with equally desirable properties�

Next� we examine the precise expressive power of IQL � swap�choice� More
concretely� we provide a characterization which is reminiscent of the character�
ization of IQL as a constructive�complete language� We establish that the in�
troduction of swap�choice provides little extra computational power� and in
particular� that swap�choice provides no extra power at all when applied to
newly�created objects only�

Hence� the advantage of the semi�deterministic approach over the construc�
tive one is not that more queries can be expressed� but that more queries can
be expressed e�ciently� Indeed� the arguments developed in the full version of
�
�� imply that the polynomial�time counting queries can be expressed e�ciently
in IQL � swap�choice� even when the applications of swap�choice are only
applied to newly�created objects� Although all polynomial�time counting queries
are constructive� most of these nevertheless cannot be expressed e�ciently in
IQL alone ����

In this paper we show a much stronger result� We show that IQL � counting
and IQL � swap�choice applied to newly�created objects only are polynomial�
time equivalent� thereby substantiating our earlier claim� the queries expressible
in IQL � swap�choice form the smallest natural class of semi�deterministic
queries containing the constructive queries in which the polynomial�time count�
ing queries can be expressed e�ciently�

This result sheds new light on the polynomial�time counting queries� It is well�
know that every polynomial�time deterministic query can be computed e�ciently
in the relational calculus augmented with iteration on ordered databases �
�� 
���
In the context of general non�determinism� the witness operation can be used
to compute an order on the database objects� Hence� in the absence of order�
all polynomial�time queries can be computed e�ciently in IQL � witness� Our
equivalence result shows that� for an important subclass of the polynomial�time
queries� namely the polynomial�time counting queries� a very limited form of
non�determinism is necessary and su�cient for e�cient computation�

This abstract is organized as follows� In Section 
� we review the de�nitions
of determinate and constructive object�creating queries and present the query



language CQL as an abstract formulation for IQL� In Section �� we present
the semi�deterministic queries and the swap�choice operation� In Section ��
we characterize the expressive power of CQL � swap�choice� In Section �� we
�nally show the polynomial�time equivalence of swap�choice applied to newly�
created objects only and counting and discuss the rami�cations of this result�

� Preliminaries

We assume the existence of an in�nitely enumerable set of relation names� Each
relation name R has an associated arity ��R	� A database scheme is a �nite set
of relation names� We further assume there is an in�nitely enumerable universe
O of objects� A database instance I over a database scheme S assigns to each R

in S a �nite relation RI � O��R�� In the sequel� inst�S	 denotes the set of all
instances over scheme S� dom�I	 � O the set of all objects appearing in instance
I � and Aut�I	 the automorphism group of I �

We now turn to queries� The following de�nition is adapted from �
��

De�nition �� Let Sin � Sout be two database schemes� A determinate query Q

from Sin to Sout is a recursively enumerable binary relationship Q � inst�Sin	�
inst�Sout	 such that


� if Q�I� J	� then RI � RJ for all R � Sin�

� if Q�I� J	� and f is a permutation of O� then also Q�f�I	� f�J		� and
�� if Q�I� J�	 and Q�I� J�	� then J� and J� are isomorphic via an isomorphism

that is the identity on dom�I	�

Item 
 of De�nition 
 states that a determinate query does not cause side�
e�ects on the input database� item 
 states the genericity criterion� and item �
states that two results of a determinate query are equal up to �renaming� of the
new objects�

To obtain results that are not tied to a particular language� we propose the
general query language CQL as an abstract formulation for IQL� the language in�
troduced in �
� to express determinate queries�� Programs in CQL are built from
FO�statements� new�statements� abstraction�statements� and while�statements�

Syntactically� an FO�statement is of the form R �� �� in which R is a k�ary
relation name� and � a k�ary relational�calculus�like �rst�order �FO�	 expression�
Given a scheme S over which � is de�ned� the FO�statement R �� � de�nes a
binary relationship Q � inst�S	 � inst�S � fRg	 in the obvious way�

We need two types of statements to create new objects� new�statements as�
sociate new domain elements to tuples� and abstraction�statements to sets�

To de�ne new�statements� we use the new operation� Let S be a scheme�
and � a k�ary FO�expression de�ned over S� Let I be an instance over S�

� The language CQL is a variation on the language FO � powerset � while in �
��
and is better suited for the complexity arguments that are the main focus of this
paper�



and ��I	 � ft�� � � � � tng with t�� � � � � tn k�ary tuples� Then new ��I	 non�
deterministically selects n di�erent new objects o�� � � � � on �i�e�� objects not hav�
ing occurred previously in the computation	 and yields the k � 
�ary relation
�ft�g � fo�g	 � � � � � �ftng � fong	� in which each tuple of ��I	 is tagged by a
unique� new object� Finally� a new�statement has the form R �� new �� with R

a relation name and � as above� Its semantics is obvious�
To de�ne abstraction�statements� we use the abstraction operation� Let S

be a scheme� and � a binary FO�expression de�ned over S� Let I be an instance
over S� and ��I	 � f�x�� y�	� � � � � �xn� yn	g� The binary relation ��I	 can be
interpreted as a set�valued function� say f � The operation abstraction ��I	
non�deterministically selects new objects o�� � � � � on satisfying oi � oj if and
only if f�xi	 � f�xj	� and yields the binary relation f�x�� o�	� � � � � �xn� on	g in
which each object xi is associated to the tag of the corresponding set f�xi	�
Finally� an abstraction�statement has the form R �� abstraction �� with R a
relation name and � as above� Its semantics is obvious�

Example �� Consider Figure 
� Let I be the instance over the scheme fRg� The
instance over the scheme fR�Sg is a possible result of S �� new f�x� y	 j
R�x� y	 � x �� yg applied to I � and the instance over the scheme fR� Tg is a
possible result of T �� abstraction f�x� y	 j R�x� y	g applied to I � In the re�
lation T � the object �
� represents the set fb� cg� and the object �
� the set
fdg�

R 	

a b

a c

b b

b c

c d

d d

S 	

a b 

a c �
b c �
c d �

T 	

a 

b 

c �
d �

Fig� �� Possible results of the new�statement S 	� new f�x� y� j R�x� y� � x �� yg and
the abstraction�statement T 	� abstractionf�x� y� j R�x� y�g�

Finally� we bring in iteration� A while�statement is any expression of the form
while � do P od with � an FO�sentence and P a CQL program� The semantics
of a while�statement is obvious�

Given input and output schemes Sin � Sout� a CQL program in which the
relation names in the left�hand sides of FO�� new�� and abstraction�statements
are not contained in Sin and resulting in relations over a superscheme of Sout�

can be interpreted as a determinate query from Sin to Sout�
The language CQL� however� is not complete with respect to the determinate

queries� This can already be seen at the level of individual input�output pairs of
instances �
� ��� Let Q be a determinate query� and suppose Q�I� J	� The only

� Relation names used only for intermediate computations may be ignored�



correspondence between I and J that can be derived from De�nition 
 is that
each automorphism in Aut�I	 can be extended to an automorphism in Aut�J	�
A stronger correspondence exists if Q can be computed by a CQL program�
however� because� in a CQL program� new objects are always created in terms
of existing objects� Hence� if Q can be computed by a CQL program� there exists
a natural extension mapping from Aut�I	 to Aut�J	� As this natural extension
mapping preserves composition� it is a group homomorphism from Aut�I	 to
Aut�J	� This observation led Andries and the present authors to the following
de�nition and theorem in �
���

De�nition �� Let Sin � Sout be two database schemes� A constructive query Q

from Sin to Sout is a determinate query satisfying

�� if Q�I� J	� then there exists an extension homomorphism from Aut�I	 to
Aut�J	�

Theorem�� The language CQL is complete with respect to the constructive
queries�

� Semi�deterministic queries and query languages

As mentioned in the Introduction� the constructive queries were proposed in
�
�� to restrict the determinate queries to a more natural class� Another natural
class can be obtained by extending the class of determinate queries to the class
of semi�deterministic queries �
���

De�nition �� Let Sin � Sout be two database schemes� A semi�deterministic
query Q from Sin to Sout is a recursively enumerable binary relationship Q �
inst�Sin	� inst�Sout	 satisfying items 
 and 
 of De�nition 
 and

��� if Q�I� J�	 and Q�I� J�	� then J� and J� are isomorphic�

Notice that items 
 and �� imply that if � is an isomorphism between J� and
J�� then � restricted to dom�I	 is in Aut�I	�

The naturalness of semi�determinism is con�rmed by the following alternative
characterization of constructive queries� which immediately follows from a result
in �
���

Theorem�� Let Sin � Sout be two database schemes� A constructive query Q

from Sin to Sout is a semi�deterministic query satisfying item � of De�nition ��

In order to express semi�deterministic queries� a choice mechanism is re�
quired� For this purpose� we consider the swap�choice operation �rst suggested
in �
���

Let S be a scheme� � an FO�expression de�ned over S� and I an instance
over S� Two objects a and b in dom���I		 are called swap�equivalent if the



transposition �a b	 is in Aut�I	�� The operation swap�choice ��I	 yields a
unary relation obtained by non�deterministically selecting one representative for
each equivalence class of swap�equivalent objects in dom���I		� Finally a swap�
choice statement has the form R �� swap�choice �� with R a relation name
and � as above� Its semantics is obvious�

Example �� Consider Figure 
� Let I be the instance over the scheme fRg� The
equivalence classes of swap�equivalent objects are fa� bg� fc� dg� fe� fg� fgg� and
fhg� Hence the instance over the scheme fR�Sg is a possible result of the state�
ment S �� swap�choice f�x� y	 j R�x� y	 � x �� yg applied to I �

R 	

a a

b b

c g

d g

e h

f h

S 	

c

f

g

h

Fig� �� A possible result of S 	� swap�choice f�x� y� j R�x� y� � x �� yg�

As swap�equivalence is �rst�order de�nable and hence in polynomial time�
swap�choice is an e�cient operation� Furthermore� swap�choice is guaranteed
to act semi�deterministically� It is the authors� belief that there are no reasonable
alternatives for this operation� Of course� non�symmetry�based choice mecha�
nisms are not sound since they can compute non�semi�deterministic queries�
Even symmetry�based equivalence relationships do not necessarily give rise to
strictly semi�deterministic operators� In this respect� it might come as a surprise
that the relationship under which a and b are equivalent if there is an automor�
phism in Aut�I	 mapping a to b does not give rise to a strictly semi�deterministic
operator� Moreover� equivalences based on general symmetries are hard to com�
pute� Hence� the symmetries under consideration need to be restricted� Clearly�
the transpositions on which swap�equivalence is based are the most primitive
symmetries that can be considered� Finally� it is not obvious how to allow more
symmetries than just transpositions without sacri�cing transitivity�

In the following sections� we characterize the expressiveness of the language
CQL � swap�choice obtained by augmenting CQL with swap�choice�statements
and investigate the e�ciency gains resulting from this augmentation�

� Expressiveness of swap�choice

Since CQL � swap�choice is an extension of the constructive queries �De�ni�
tion 
	� and since the constructive queries can be elegantly de�ned as a restriction

� The transitivity of swap�equivalence follows from the equality �a c� � �b c��a b��b c��



of the semi�deterministic queries �Theorem �	� it is reasonable to search for a
characterization by generalizing the condition in item � of De�nition 
�

Thereto� suppose J is a possible result of a sequence of subsequent swap�
choice�statements applied to an instance I � While in general an extension map�
ping from Aut�I	 to Aut�J	 will no longer exist �
��� it is still possible to �nd
a natural homomorphism from Aut�I	 to Aut�J	� To see this� one has to ob�
serve two facts� �i� an automorphism of I respects the swap�equivalence classes
of dom�I	 with respect to I � and �ii� a sequence of subsequent swap�choice�
statements induces a partial order on each of these swap�equivalence classes
de�ned by the order in which objects were selected� Now consider total or�
ders on each of these swap�equivalence classes compatible with the partial or�
ders� Then the mapping sending an automorphism of I to the permutation of
dom�J	 � dom�I	 that has the same global e�ect on the swap�equivalence classes
of dom�I	 with respect to I but respects each of the total orders thereon is a ho�
momorphism from Aut�I	 to Aut�J	 with kernel Swap�I	� the group generated
by the transpositions in Aut�I	� De�nition � generalizes the relevant properties
of this homomorphism�

De�nition �� Let Sin � Sout be two database schemes� A swap�generic query
Q from Sin to Sout is a semi�deterministic query satisfying

��� if Q�I� J	� then there exists a homomorphism h from Aut�I	 to Aut�J	 with
kernel Ker�h	 � Swap�I	 such that� for all � � Aut�I	 and for all swap�
equivalence classes S of dom�I	 with respect to I � �i� h��	�S	 � ��S	� and
�ii� ��S	 � S implies h��	jS � IdS �

It can be shown �proof omitted	 that swap�genericity is closed under compo�
sition� We now establish the following characterization�

Theorem	� A query is swap�generic if and only if it can be expressed by a CQL
� swap�choice program�

Proof� �Sketch�	 By the argument in the beginning of this section� a swap�choice
statement is swap�generic� a variation of that argument can be used to show that
each CQL statement is swap�generic� whence the �if��

To see the �only if�� let Q be a swap�generic query from Sin to Sout and let R
be a binary relation name� The query Q� from Sin to Sin�fRg computing under
R an arbitrary total order on each of the swap�equivalence classes of dom�I	 with
respect to I can easily be expressed by a CQL � swap�choice program� say P��
Furthermore it can be shown �details omitted	 that there exists a constructive
query Q� from Sin�fRg to Sout�fRg satisfying the following property� Q�I� J	
if and only if there exist I � and J � such that Q��I

�� J �	� I �jSin
� I � J �jSout

� J �

and J �R � I �
R
de�nes a total order on each of the swap�equivalence classes of

dom�I	 with respect to I � By Theorem �� there is a CQL program P� expressing
Q�� Since Q can be obtained from Q��Q� simply by omitting R from the output
scheme� it is expressed by the CQL � swap�choice program P��P��



The proof of Theorem � furthermore yields a normal form for CQL � swap�

choice programs� each swap�generic query can be expressed by a program in
which all the swap�choice�statements precede all the object�creating statements�

It is enlightening to rephrase De�nition � in more group�theoretic terms�
Thereto� notice that the swap�equivalence classes of dom�I	 with respect to I

are precisely the orbits S of dom�I	 with respect to Swap�I	� Generalizing this
observation� one can de�ne the following�

De�nition 
� Let Sin � Sout be two database schemes� and N �I	 a normal
subgroup of Aut�I	 for each instance I over Sin� An N�generic query Q from Sin
to Sout is a semi�deterministic query satisfying

���� if Q�I� J	� then there exists a homomorphism h from Aut�I	 to Aut�J	
with Ker�h	 � N �I	 such that� for all � � Aut�I	 and for all orbits S

of dom�I	 with respect to N �I	� �i� h��	�S	 � ��S	� and �ii� ��S	 � S

implies h��	jS � IdS �

De�nition � provides a unifying framework to compare several notions of
query� Indeed� for N �I	 � fIddom�I�g� the de�nition reduces to constructivity�
for N �I	 � Swap�I	 to swap�genericity� and for N �I	 � Aut�I	 to general semi�
determinism� As �on average� Swap�I	 is only a small subgroup of Aut�I	� the
above comparison suggests that swap�genericity is very close to constructivity�
This feeling is further con�rmed by the following result�

Theorem�� A CQL � swap�choice program in which swap�choice is only ap�
plied to created objects� expresses a constructive query�

As a consequence� a CQL � swap�choice program in which swap�choice
is only applied to created objects can be simulated by a pure CQL program�
Theorem � is shown by establishing the existence of an extension homomorphism
between the automorphism groups of each input�output pair� In the following
section� we give an alternative� constructive proof�

� Swap�choice and counting

Often a pure CQL program simulating a program in CQL � swap�choice in
which swap�choice is only applied to created objects �Theorem �	 is much less
e�cient than the original one� To see this� let R be a binary relation name� and
consider the query Q from fRg to fR� T� F� Sg returning the unary relations
T � f�oT 	g� F � f�oF 	g with oT and oF new objects representing true and
false� respectively� and the binary relation S de�ned by S�x� oT 	 if fy j R�x� y	g
has even cardinality and S�x� oF 	 if fy j R�x� y	g has odd cardinality� The query
Q is expressed by the following CQL � swap�choice program�

� This means that� for every application of a statement R 	� swap�choice � to an
intermediate instance K� dom���K�� � dom�I� � ��



R� �� new f�x� y	 j R�x� y	g� U �� f�x� z	 j �	y	R��x� y� z	g� R� � 
�
T �� new f�	g� F �� new f�	g�
S �� f�x�w	 j �	y	R�x� y	 � T �w	g� V �� 
� U � �� f�z	 j �	x	U�x� z	g�
while V �� U � do

V � �� swap�choice f�z	 j U ��z	 � �V �z	g� V �� f�z	 j V �z	 � V ��z	g�
S �� f�x�w	 j �	z	�V ��z	 � U�x� z		 � �T �w	 � F �w		 � �S�x�w	 �

��	z	�V ��z	 � U�x� z		 � S�x�w	 g
od

First� a unique new object is created for each tuple in R which is then disassoci�
ated from the objects in the second projection of R� Hence� the binary relation
U associates to each object x in the �rst projection of R a set of swap�equivalent
new objects with the same cardinality as fy j R�x� y	g� Next� S is initialized by
associating true to each object x in the �rst projection of R� Finally� the loop
computes the correct value for S by selecting one by one the new objects asso�
ciated to x while �ipping its boolean �ag� The obvious implementation of the
above program runs in low polynomial time� In pure CQL� however� the query
Q cannot even be computed in polynomial space ����

The above query Q is but one example of a large class of polynomial�time
counting queries� This class is a two�sorted extension of �xpoint logic	 with
counting terms of the form countf�y j ���x� �y	g� which can be used as arguments
of numerical functions computable in polynomial�time assuming unary notation
for numbers� and was studied by Gr�adel and Otto ��� and Grumbach and Tollu
�
���

In the context of object creation� we can alternatively de�ne the counting
queries without having to introduce a separate sort for the natural numbers�
as a natural number in unary notation is an ordered list of objects� Using this
representation� polynomial�time functions on natural numbers can be simulated
faithfully by straightforward adaptation of known techniques showing that �x�
point logic equals polynomial time on ordered databases� Hence� we can get at
the counting queries simply by augmenting CQL with an operation creating for
each �x a list of new objects of length countf�y j ���x� �y	g� 
�

Formally� let S be a scheme� and � a binary FO�expression de�ned over S�
Let I be an instance over S� and fx�� � � � � xpg � fx j �	y	�x� y	 � ��I	g� For
each i � 
� � � � � p� let ni be the cardinality of fy j �xi� y	 � ��I	g� The operation
count ��I	 non�deterministically selects� for each i� new objects o�i � � � � � o

ni
�
i �

and yields the ternary relation

f�x�� o
�
�� o

�
�	� �x�� o

�
�� o

�
�	� � � � � �x�� o

n�
� � on�
�

� 	� �x�� o
�
�� o

�
�	� � � � � �xp� o

np
p � onp
�

p 	g

in which each xi is associated with a list of new objects of length ni � 
�
The count operation can be simulated in pure CQL� but not e�ciently� To

see the latter� it su�ces to observe that the following CQL � count analogue
of the above CQL � swap�choice program also expresses Q e�ciently�

� In our context� �xpoint logic can be thought of as the CQL programs using only
FO�statements and in�ationary while�loops�



R� �� count f�x� y	 j R�x� y	g� U �� f�x� z	 j �	z�	R��x� z� z�	g� R� � 
�
T �� new f�	g� F �� new f�	g�
S �� f�x�w	 j �	y	R�x� y	 � T �w	g� V �� 
� U � �� f�z	 j �	x	U�x� z	g�
while V �� U � do

V � �� f�z	 j U ��z	 � �V �z	 � �
x	�
z�	�R�x� z�� z	� V �z�	g�
V �� f�z	 j V �z	 � V ��z	g�
S �� f�x�w	 j �	z	�V ��z	 � U�x� z		 � �T �w	 � F �w		 � �S�x�w	 �

��	z	�V ��z	 � U�x� z		 � S�x�w	 g
od

The two programs exhibited in the preceding discussion are very similar in
computational organization� The following result generalizes this observation�

Theorem��� CQL � swap�choice applied to new objects only and CQL �
count are polynomial�time equivalent�

Proof� �Sketch�	 In the full version of �
��� it was shown that the count oper�
ation is e�ciently expressible by a semi�deterministic program in CQL � wit�

ness� Closer inspection of the proof reveals that the choices in this program can
actually by expressed by applications of swap�choice to new objects only�

Conversely� an application of swap�choice to new objects only can be e��
ciently simulated in CQL � count as follows� First� the swap�equivalence rela�
tionship is materialized in a binary relation� This can be done e�ciently since
swap�equivalence is �rst�order de�nable� The abstraction operation when ap�
plied to the constructed binary relation will associate a unique new object to
each swap�equivalence class� By applying count� a list of length one more than
the cardinality of the corresponding swap�equivalence class can be attached to
each such new object� By a simple CQL program� the objects in each swap�
equivalence class are replaced by the non�tail objects in the corresponding list�
The simulation of the swap�choice operation is now completed by selecting the
�rst object in each of these lists�

As count�statements can be �une�ciently	 expressed in pure CQL� the above
argument also provides an alternative� constructive proof of Theorem �� Further�
more� it should be noted that the proof of Theorem 
� heavily relies on the use
of the abstraction operation� In �
�� it was shown that the use of abstraction
is necessary for the faithful representation of sets in CQL� We conjecture that
abstraction is equally crucial for the simulation of count�

Most importantly� Theorem 
� shows that� in the absence of order� a very lim�
ited form of non�determinism is necessary and su�cient for e�cient computation
of the polynomial�time counting queries� and this without having to resort to the
explicit introduction of the natural numbers as a special sort of domain values�
The characterization in this paper of the nature of this non�determinism thus
situates the polynomial�time counting queries within the class of all polynomial�
time queries� for which unrestricted non�determinism is required� putting the
results of Cai� F�urer� and Immerman ��� in perspective�



References


� S� Abiteboul� Personal communications� 
����
�� S� Abiteboul and P� Kanellakis� Object identity as a query language primitive�

In Proc� ���� ACM SIGMOD Int� Conf� Management of Data� in SIGMOD Rec��

����	
���
��� 
����

�� S� Abiteboul and V� Vianu� Non�determinism in logic�based languages� Ann�

Math� Artif� Intell�� �	
�
�
��� 
��
�
�� S� Abiteboul and V� Vianu� Generic computation and its complexity� In Proc�

��rd ACM Symp� Theory of Computing� �����
�� 
��
�
�� M� Andries and J� Paredaens� A language for generic graph�transformations� In

Graph�Theoretic Concepts in Computer Science� Proc� Int� Workshop WG ���
LNCS ���� ������ Springer�Verlag� 
����

�� J� Cai� M� Furer� and N� Immerman� An optimal lower bound on the number
of variables for graph identi�cation� In Proc� ��th IEEE Symp� Foundations of

Computer Science� �
���
�� 
����
�� A� Chandra and D� Harel� Computable queries for relational database systems� J�

Comput� Syst� Sci�� �
���	
���
��� 
����
�� K� Denningho� and V� Vianu� Database method schemas and object creation� In

Proc� ��th ACM Symp� Principles of Database Systems� �������� 
����
�� E� Gr�adel and M� Otto� Inductive de�nability with counting on �nite structures�

In Proc� 	th Workshop on Computer Science Logic� LNCS ���� ��
����� Springer�
Verlag� 
����


�� S� Grumbach and C� Tollu� Query languages with counters� In Proc� 
th Int� Conf�
Database Theory� LNCS ���� 
���
��� Springer�Verlag� 
����



� M� Gyssens� J� Paredaens� and D� Van Gucht� A graph�oriented object database
model� In Proc� �th ACM Symp� Principles of Database Systems� �
������ 
����


�� M� Gyssens� J� Paredaens� and D� Van Gucht� A graph�oriented object database
model for database end�user interfaces� In Proc� ���� ACM SIGMOD Int� Conf�

Management of Data� in SIGMOD Rec�� 
����	������ 
����

�� R� Hull and M� Yoshikawa� ILOG	 Declarative creation and manipulation of object

identi�ers� In Proc� �	th Int� Conf� on Very Large Data Bases� �������� 
����

�� N� Immerman� Relational queries computable in polynomial time� Information

and Control� ��	���
��� 
����

�� M� Kifer and J� Wu� A logic for object�oriented logic programming �Maier�s O�

logic revisited�� In Proc� �th ACM Symp� Principles of Database Systems� ��������

����


�� J� Van den Bussche and J� Paredaens� The expressive power of structured values in
pure OODB�s� In Proc� ��th ACM Symp� Principles of Database Systems� ��
�����

��
�


�� J� Van den Bussche and D� Van Gucht� Semi�determinism� In Proc� ��th ACM

Symp� Principles of Database Systems� 
�
���
� 
���� Full version submitted�

�� J� Van den Bussche� D� Van Gucht� M� Andries� and M� Gyssens� On the com�

pleteness of object�creating query languages� In Proc� ��rd IEEE Symp� Founda�

tions of Computer Science� �������� 
����

�� M� Vardi� The complexity of relational query languages� In Proc� �
th ACM Symp�

Theory of Computing� 
���
��� 
����

This article was processed using the LaTEX macro package with LLNCS style


