Expressiveness of
Efficient Semi-Deterministic Choice Constructs”*

Marc Gyssens', Jan Van den Bussche**?, and Dirk Van Gucht?3

! University of Limburg (LUC), Dept. WNI, B-3590 Diepenbeek, Belgium,
e-mail: marc.gyssens@uia.ac.be
2 University of Antwerp (UIA), Dept. WISINF, B-2610 Antwerp, Belgium,
e-mail: jan.vandenbussche@uia.ac.be
3 Indiana University, Computer Sci. Dept., Bloomington, IN 47405, USA,
e-mail: vgucht@cs.indiana.edu

Abstract. Recently, Abiteboul and Kanellakis introduced the notion of
determinate query to describe database queries having the ability to cre-
ate new domain elements. As there are no natural determinate-complete
query languages known, more restrictive (the constructive queries) and
more general (the semi-deterministic queries) notions of query were con-
sidered. Here, we show that the advantage of the second approach over
the first is not so much in increased expressiveness, but in the ability of
expressing queries more efficiently.

1 Introduction

Over a decade ago, Chandra and Harel [7] proposed a language-independent
notion of completeness with respect to domain-preserving database queries: a
query language is complete if it can express all Turing-computable partial func-
tions from databases to databases that are invariant under every permutation of
the universe of possible domain values. The latter criterion, nowadays known as
genericity (e.g., [4]), ensures that queries can be computed in a way independent
of the encoding of the universe of possible domain values.

More recently, object-oriented database applications motivated researchers to
relax domain preservation by allowing the appearance of new objects in the result
of a query [2]. Extending the notion of query in this sense, however, necessitates
a significant revision of the definition of Chandra and Harel. Indeed, queries
which introduce new objects in their results are necessarily non-deterministic
due to the genericity criterion. Obviously, there is a need to control the degree
of non-determinism one wishes to allow.

An important proposal to revise the definition of Chandra and Harel came
from Abiteboul and Kanellakis [2]. They introduced the notion of determinate

* The following extended abstract presents research results of the Belgian Incentive
Program “Information Technology” — Computer Science of the future, initiated by
the Belgian State — Prime Minister’s Service — Science Policy Office. The scientific
responsability is assumed by its authors.

** Research Assistant of the Belgian National Fund for Scientific Research.

query: a generic, non-deterministic query for which the possible results of the
query applied to a given input database are equal up to renaming of the new
objects. In addition, Abiteboul and Kanellakis introduced the language IQL to
express determinate queries. Contrary to what was at first expected, IQL is not
complete for the determinate queries; its incompleteness stems from the fact
that the definition of determinacy does not take into account that new objects
in IQL are always created in terms of existing objects. Therefore, Andries and
the present authors defined a more restrictive notion of query, called constructive
query [18], and showed that IQL is complete with respect to the constructive
queries. It should be noted that this completeness result is by no means specific
to IQL, as IQL is equivalent to any minimal language that can express first-order
queries, object creation, and unbounded looping. Therefore, many other object-
creating query languages that have been considered (e.g., [11, 12, 13, 15, 18])
are essentially equivalent to IQL.

Extending IQL to a complete language requires the introduction of an in-
volved determinate copy elimination mechanism [2, 8], suggesting that the con-
cept of determinate query is perhaps less natural than originally anticipated.
From this viewpoint, restricting the class of determinate queries to the class of
constructive queries is a way to obtain a more natural class of queries.

An equally valid approach to obtain a more natural class of queries is to
extend the class of determinate queries by also allowing certain strictly non-de-
terministic queries. The observation that many important strictly non-determin-
istic queries involve choices based on the symmetries of the input database and
therefore use only a limited form of non-determinism led to the notion of semi-
deterministic query [17]. A semi-deterministic query is a generic, non-determin-
istic query for which the results of the query applied to a given input database
are isomorphic via isomorphisms that are symmetries (i.e, automorphisms) of
the input database. In particular, the most obvious way to perform the copy
elimination required to make IQL determinate-complete is not determinate but
non-deterministic, notably by choosing one of the isomorphic copies.

Of course, we must ask what is gained by taking the semi-deterministic ap-
proach rather than the constructive. To evaluate the semi-deterministic approach
we need to consider languages in which semi-deterministics queries can be ex-
pressed. The most obvious way to obtain such a language is augmenting IQL
with a choice operation. Abiteboul and Vianu [3] considered a choice operation,
called witness, in the context of general non-deterministic queries. In [17] it was
shown, however, that (i) it is undecidable to check at compile time whether a
program in IQL + witness expresses a semi-deterministic query, and (i) run-
time checking for semi-determinism is polynomial-time equivalent to checking
graph isomorphism.

These negative results should not be held against the notion of semi-deter-
minism as queries making symmetry-based choices are often intractable precisely
because they involve finding these symmetries. On the other hand, there is a
large class of natural queries requiring symmetry-based choices that can be ac-
complished in polynomial time. For instance, it was shown in the full version of

[17] that the polynomial-time counting queries (e.g., [9, 10]) can be expressed
efficiently by uniformly semi-deterministic IQL + witness programs. In view
of the importance of this class of queries, it is the purpose of the present pa-
per to characterize a minimal class of semi-deterministic queries in which the
polynomial-time counting queries can be expressed efficiently.

Thereto, we augment IQL with a choice operation which is much more restric-
tive than witness, called swap-choice. The swap-choice operation was first
suggested in [17] and selects one representative for each class of swap-equivalent
objects in the database; two objects are called swap-equivalent if the transposi-
tion of these objects is an automorphism of the database. Swap-equivalence is
first-order definable and therefore in polynomial time. As a result, swap-choice
is efficiently computable. Unlike witness, swap-choice is moreover guaranteed
to act semi-deterministically. In this paper, we argue that there are no reasonable
alternatives for this operation with equally desirable properties.

Next, we examine the precise expressive power of IQL + swap-choice. More
concretely, we provide a characterization which is reminiscent of the character-
ization of IQL as a constructive-complete language. We establish that the in-
troduction of swap-choice provides little extra computational power, and in
particular, that swap-choice provides no extra power at all when applied to
newly-created objects only.

Hence, the advantage of the semi-deterministic approach over the construc-
tive one is not that more queries can be expressed, but that more queries can
be expressed efficiently. Indeed, the arguments developed in the full version of
[17] imply that the polynomial-time counting queries can be expressed efficiently
in IQL + swap-choice, even when the applications of swap-choice are only
applied to newly-created objects. Although all polynomial-time counting queries
are constructive, most of these nevertheless cannot be expressed efficiently in
IQL alone [4].

In this paper we show a much stronger result. We show that IQL + counting
and IQL + swap-choice applied to newly-created objects only are polynomial-
time equivalent, thereby substantiating our earlier claim: the queries expressible
in IQL + swap-choice form the smallest natural class of semi-deterministic
queries containing the constructive queries in which the polynomial-time count-
ing queries can be expressed efficiently.

This result sheds new light on the polynomial-time counting queries. It is well-
know that every polynomial-time deterministic query can be computed efficiently
in the relational calculus augmented with iteration on ordered databases [14, 19].
In the context of general non-determinism, the witness operation can be used
to compute an order on the database objects. Hence, in the absence of order,
all polynomial-time queries can be computed efficiently in IQL + witness. Our
equivalence result shows that, for an important subclass of the polynomial-time
queries, namely the polynomial-time counting queries, a very limited form of
non-determinism is necessary and sufficient for efficient computation.

This abstract is organized as follows. In Section 2, we review the definitions
of determinate and constructive object-creating queries and present the query

language CQL as an abstract formulation for IQL. In Section 3, we present
the semi-deterministic queries and the swap-choice operation. In Section 4,
we characterize the expressive power of CQL + swap-choice. In Section 5, we
finally show the polynomial-time equivalence of swap-choice applied to newly-
created objects only and counting and discuss the ramifications of this result.

2 Preliminaries

We assume the existence of an infinitely enumerable set of relation names. Each
relation name R has an associated arity a(R). A database scheme is a finite set
of relation names. We further assume there is an infinitely enumerable universe
O of objects. A database instance I over a database scheme S assigns to each R
in S a finite relation RY ¢ O In the sequel, inst(S) denotes the set of all
instances over scheme S, dom(I) C O the set of all objects appearing in instance
I, and Aut(I) the automorphism group of I.
We now turn to gueries. The following definition is adapted from [2]:

Definition 1. Let S;, C Sy be two database schemes. A determinate query Q
from Sin t0 Sout is a recursively enumerable binary relationship @ C inst(Sin) X
inst(Sout) such that

1. if Q(I,J), then R = R’ for all R € Sy;

2. if Q(I,J), and f is a permutation of O, then also Q(f(I), f(J)); and

3. if Q(I,J1) and Q(I,Js2), then J; and Jo are isomorphic via an isomorphism
that is the identity on dom(I).

Item 1 of Definition 1 states that a determinate query does not cause side-
effects on the input database; item 2 states the genericity criterion; and item 3
states that two results of a determinate query are equal up to “renaming” of the
new objects.

To obtain results that are not tied to a particular language, we propose the
general query language CQL as an abstract formulation for IQL, the language in-
troduced in [2] to express determinate queries.* Programs in CQL are built from
FO-statements, new-statements, abstraction-statements, and while-statements.

Syntactically, an FO-statement is of the form R := &, in which R is a k-ary
relation name, and @ a k-ary relational-calculus-like first-order (FO-) expression.
Given a scheme S over which @ is defined, the FO-statement R := & defines a
binary relationship @ C inst(S) x inst(S U {R}) in the obvious way.

We need two types of statements to create new objects: new-statements as-
sociate new domain elements to tuples, and abstraction-statements to sets.

To define new-statements, we use the new operation. Let S be a scheme,
and @ a k-ary FO-expression defined over §. Let I be an instance over S,

* The language CQL is a variation on the language FO 4+ powerset + while in [18]
and is better suited for the complexity arguments that are the main focus of this

paper.

and &(I) = {t1,...,tn} with t1,...,t, k-ary tuples. Then new &(I) non-
deterministically selects n different new objects oy, ..., 0, (i.e., objects not hav-
ing occurred previously in the computation) and yields the k 4+ l-ary relation
({t1} x {o1}) U--- U ({tn} x {on}), in which each tuple of &(I) is tagged by a
unique, new object. Finally, a new-statement has the form R := new &, with R
a relation name and @ as above. Its semantics is obvious.

To define abstraction-statements, we use the abstraction operation. Let S
be a scheme, and @ a binary FO-expression defined over S. Let I be an instance
over S, and ®(I) = {(z1,¥1),---, (Tn,yn)}. The binary relation &(I) can be
interpreted as a set-valued function, say f. The operation abstraction &(I)
non-deterministically selects new objects o1,..., 0y, satisfying o; = o; if and
only if f(x;) = f(z;), and yields the binary relation {(z1,01),...,(2n,0,)} in
which each object z; is associated to the tag of the corresponding set f(x;).
Finally, an abstraction-statement has the form R := abstraction &, with R a
relation name and & as above. Its semantics is obvious.

Ezample 1. Consider Figure 1. Let I be the instance over the scheme {R}. The
instance over the scheme {R,S} is a possible result of S := new {(z,y) |
R(z,y) Nz # y} applied to I, and the instance over the scheme {R,T} is a
possible result of T := abstraction {(x,y) | R(z,y)} applied to I. In the re-
lation T, the object “1” represents the set {b,c}, and the object “2” the set

{d}.

ab

ac abl al

bbd ac? b1
R'bc S'bc3 T'CZ

cd cd4 d 2

dd

Fig. 1. Possible results of the new-statement S := new {(z,y) | R(z,y) Az # y} and
the abstraction-statement T := abstraction{(z,y) | R(z,y)}.

Finally, we bring in iteration. A while-statement is any expression of the form
while ¢ do P od with ¢ an FO-sentence and P a CQL program. The semantics
of a while-statement is obvious.

Given input and output schemes Siy C Sout, @ CQL program in which the
relation names in the left-hand sides of FO-, new-, and abstraction-statements
are not contained in S;, and resulting in relations over a superscheme of Spu®
can be interpreted as a determinate query from Si, to Sous-

The language CQL, however, is not complete with respect to the determinate
queries. This can already be seen at the level of individual input-output pairs of
instances [1, 5]. Let @ be a determinate query, and suppose Q(I,.J). The only

® Relation names used only for intermediate computations may be ignored.

correspondence between I and J that can be derived from Definition 1 is that
each automorphism in Aut(I) can be extended to an automorphism in Aut(J).
A stronger correspondence exists if @) can be computed by a CQL program,
however, because, in a CQL program, new objects are always created in terms
of existing objects. Hence, if () can be computed by a CQL program, there exists
a natural extension mapping from Awut(I) to Aut(J). As this natural extension
mapping preserves composition, it is a group homomorphism from Aut(I) to
Aut(J). This observation led Andries and the present authors to the following
definition and theorem in [18]:

Definition 2. Let S;, C Sout be two database schemes. A constructive query Q
from Sy, to Sout is a determinate query satisfying

4. if Q(I,J), then there exists an extension homomorphism from Aut(I) to
Aut(J).

Theorem 3. The language CQL is complete with respect to the constructive
queries.

3 Semi-deterministic queries and query languages

As mentioned in the Introduction, the constructive queries were proposed in
[18] to restrict the determinate queries to a more natural class. Another natural
class can be obtained by extending the class of determinate queries to the class
of semi-deterministic queries [17]:

Definition 4. Let S, C Sou¢ be two database schemes. A semi-deterministic
query @ from Sy, to Soup is a recursively enumerable binary relationship @ C
inst(Sin) X inst(Sout) satisfying items 1 and 2 of Definition 1 and

3. if Q(1,J1) and Q(I, J2), then J; and J> are isomorphic.

Notice that items 1 and 3’ imply that if ¢ is an isomorphism between J; and
J2, then ¢ restricted to dom(I) is in Aut([).

The naturalness of semi-determinism is confirmed by the following alternative
characterization of constructive queries, which immediately follows from a result
in [17]:

Theorem 5. Let S, C Sous be two database schemes. A constructive query @
from S to Souy s a semi-deterministic query satisfying item 4 of Definition 2.

In order to express semi-deterministic queries, a choice mechanism is re-
quired. For this purpose, we consider the swap-choice operation first suggested
in [17].

Let S be a scheme, & an FO-expression defined over S, and I an instance
over S. Two objects a and b in dom(P(I)) are called swap-equivalent if the

transposition (a b) is in Aut(I).® The operation swap-choice &(I) yields a
unary relation obtained by non-deterministically selecting one representative for
each equivalence class of swap-equivalent objects in dom(®(I)). Finally a swap-
choice statement has the form R := swap-choice @, with R a relation name
and @ as above. Its semantics is obvious.

Ezample 2. Consider Figure 2. Let I be the instance over the scheme {R}. The
equivalence classes of swap-equivalent objects are {a, b}, {¢,d}, {e, f}, {9}, and
{h}. Hence the instance over the scheme {R, S} is a possible result of the state-
ment S := swap-choice {(z,y) | R(z,y) A x # y} applied to I.

a a

bb c

cyg f
R S :

dg g

eh h

fh

Fig. 2. A possible result of S := swap-choice {(z,y) | R(z,y) Az # y}.

As swap-equivalence is first-order definable and hence in polynomial time,
swap-choice is an efficient operation. Furthermore, swap-choice is guaranteed
to act semi-deterministically. It is the authors’ belief that there are no reasonable
alternatives for this operation. Of course, non-symmetry-based choice mecha-
nisms are not sound since they can compute non-semi-deterministic queries.
Even symmetry-based equivalence relationships do not necessarily give rise to
strictly semi-deterministic operators. In this respect, it might come as a surprise
that the relationship under which a and b are equivalent if there is an automor-
phism in Aut(I) mapping a to b does not give rise to a strictly semi-deterministic
operator. Moreover, equivalences based on general symmetries are hard to com-
pute. Hence, the symmetries under consideration need to be restricted. Clearly,
the transpositions on which swap-equivalence is based are the most primitive
symmetries that can be considered. Finally, it is not obvious how to allow more
symmetries than just transpositions without sacrificing transitivity.

In the following sections, we characterize the expressiveness of the language
CQL + swap-choice obtained by augmenting CQL with swap-choice-statements
and investigate the efficiency gains resulting from this augmentation.

4 Expressiveness of swap-choice

Since CQL + swap-choice is an extension of the constructive queries (Defini-
tion 2), and since the constructive queries can be elegantly defined as a restriction

6 The transitivity of swap-equivalence follows from the equality (a ¢) = (b ¢)(a b)(b ¢).

of the semi-deterministic queries (Theorem 5), it is reasonable to search for a
characterization by generalizing the condition in item 4 of Definition 2.

Thereto, suppose .J is a possible result of a sequence of subsequent swap-
choice-statements applied to an instance I. While in general an extension map-
ping from Awut(I) to Aut(J) will no longer exist [17], it is still possible to find
a natural homomorphism from Awut(I) to Aut(J). To see this, one has to ob-
serve two facts: (1) an automorphism of I respects the swap-equivalence classes
of dom(I) with respect to I, and (i) a sequence of subsequent swap-choice-
statements induces a partial order on each of these swap-equivalence classes
defined by the order in which objects were selected. Now consider total or-
ders on each of these swap-equivalence classes compatible with the partial or-
ders. Then the mapping sending an automorphism of I to the permutation of
dom(J) = dom(I) that has the same global effect on the swap-equivalence classes
of dom(I) with respect to I but respects each of the total orders thereon is a ho-
momorphism from Awut(I) to Aut(J) with kernel Swap(I), the group generated
by the transpositions in Aut(I). Definition 6 generalizes the relevant properties
of this homomorphism:

Definition 6. Let S;;, C Sou¢ be two database schemes. A swap-generic query
Q from Si to Syt is a semi-deterministic query satisfying

4" if Q(I,J), then there exists a homomorphism h from Aut(I) to Aut(J) with
kernel Ker(h) = Swap(I) such that, for all ¢ € Aut(I) and for all swap-
equivalence classes S of dom(I) with respect to I, (i) h(p)(S) = ¢(5); and
(i) ©(S) = S implies h(p)|s = Ids.

It can be shown (proof omitted) that swap-genericity is closed under compo-
sition. We now establish the following characterization:

Theorem 7. A query is swap-generic if and only if it can be expressed by a CQL
+ swap-choice program.

Proof. (Sketch.) By the argument in the beginning of this section, a swap-choice
statement is swap-generic; a variation of that argument can be used to show that
each CQL statement is swap-generic, whence the “if.”

To see the “only if,” let) be a swap-generic query from Si, to Soyut and let R
be a binary relation name. The query @1 from S, to Sin U{R} computing under
R an arbitrary total order on each of the swap-equivalence classes of dom(I) with
respect to I can easily be expressed by a CQL + swap-choice program, say P;.
Furthermore it can be shown (details omitted) that there exists a constructive
query @ from Siy U{R} to Sout U { R} satisfying the following property: Q(I,.J)
if and only if there exist I’ and J' such that Q2(I',J"), I'ls,, = I, J'|s... = J,
and J'% = I'" defines a total order on each of the swap-equivalence classes of
dom/(I) with respect to I. By Theorem 3, there is a CQL program P, expressing
Q-. Since can be obtained from Q50 (@ simply by omitting R from the output
scheme, it is expressed by the CQL + swap-choice program P;; P».

out

The proof of Theorem 7 furthermore yields a normal form for CQL + swap-
choice programs: each swap-generic query can be expressed by a program in
which all the swap-choice-statements precede all the object-creating statements.

It is enlightening to rephrase Definition 6 in more group-theoretic terms.
Thereto, notice that the swap-equivalence classes of dom(I) with respect to I
are precisely the orbits S of dom(I) with respect to Swap(I). Generalizing this
observation, one can define the following:

Definition 8. Let Siy € Sous be two database schemes, and N(I) a normal
subgroup of Aut(I) for each instance I over Si,. An N-generic query @ from Sy,
to Sous 1S @ semi-deterministic query satisfying

4" if Q(I,J), then there exists a homomorphism h from Aut(I) to Aut(J)
with Ker(h) = N(I) such that, for all ¢ € Aut(I) and for all orbits S
of dom(I) with respect to N(I), (i) h(v)(S) = ¢(S); and (ii) ©(S) = S
implies h(p)|s = Ids.

Definition 8 provides a unifying framework to compare several notions of
query. Indeed, for N(I) = {Idgom(r)}, the definition reduces to constructivity,
for N(I) = Swap(I) to swap-genericity, and for N(I) = Aut(I) to general semi-
determinism. As “on average” Swap(I) is only a small subgroup of Aut(I), the
above comparison suggests that swap-genericity is very close to constructivity.
This feeling is further confirmed by the following result:

Theorem 9. A CQL + swap-choice program in which swap-choice is only ap-
plied to created objects” expresses a constructive query.

As a consequence, a CQL + swap-choice program in which swap-choice
is only applied to created objects can be simulated by a pure CQL program.
Theorem 9 is shown by establishing the existence of an extension homomorphism
between the automorphism groups of each input-output pair. In the following
section, we give an alternative, constructive proof.

5 Swap-choice and counting

Often a pure CQL program simulating a program in CQL + swap-choice in
which swap-choice is only applied to created objects (Theorem 9) is much less
efficient than the original one. To see this, let R be a binary relation name, and
consider the query @ from {R} to {R,T,F,S} returning the unary relations
T = {(or)}, F = {(or)} with or and or new objects representing true and
false, respectively, and the binary relation S defined by S(z,or) if {y | R(z,y)}
has even cardinality and S(z,or) if {y | R(x,y)} has odd cardinality. The query
Q is expressed by the following CQL + swap-choice program:

" This means that, for every application of a statement R := swap-choice & to an
intermediate instance K, dom(®(K)) N dom(I) = (.

R _neW{(ﬂf,H (=,9)};
T = new {(}; F = new {(
§ = {(z,w) | Gy)R(z,y) A
while V # U’ do

U:={(z,2) | Qy)R'(z,y,2)}; R' = 0;

)}; V=0, U= {(2) | Ge)U(z,2)};

V' := swap-choice {(z) |U'(z2) A=V (2)}; V:={(2) | V() VV'(2) };
S:={(z,w)| F)(V'(z)AU(z,2)) A(T(w)V F(w)) A =S(z,w) V
—~(32)(V'(2) AU (z,2)) A S(z, w) }

od

First, a unique new object is created for each tuple in R which is then disassoci-
ated from the objects in the second projection of R. Hence, the binary relation
U associates to each object in the first projection of R a set of swap-equivalent
new objects with the same cardinality as {y | R(z,y)}. Next, S is initialized by
associating true to each object z in the first projection of R. Finally, the loop
computes the correct value for S by selecting one by one the new objects asso-
ciated to z while flipping its boolean flag. The obvious implementation of the
above program runs in low polynomial time. In pure CQL, however, the query
@ cannot even be computed in polynomial space [4].

The above query) is but one example of a large class of polynomial-time
counting queries. This class is a two-sorted extension of fixpoint logic® with
counting terms of the form count{y | #(Z,7)}, which can be used as arguments
of numerical functions computable in polynomial-time assuming unary notation
for numbers, and was studied by Gridel and Otto [9] and Grumbach and Tollu
[10].

In the context of object creation, we can alternatively define the counting
queries without having to introduce a separate sort for the natural numbers,
as a natural number in unary notation is an ordered list of objects. Using this
representation, polynomial-time functions on natural numbers can be simulated
faithfully by straightforward adaptation of known techniques showing that fix-
point logic equals polynomial time on ordered databases. Hence, we can get at
the counting queries simply by augmenting CQL with an operation creating for
each Z a list of new objects of length count{y | #(z,y)} + 1.

Formally, let S be a scheme, and ¢ a binary FO-expression defined over S.
Let I be an instance over S, and {z1,...,z,} = {z | 3y)(z,y) € ¢(I)}. For
each i =1,...,p, let n; be the cardinality of {y | (z;,y) € ®(I)}. The operation
count (/) non-deterministically selects, for each i, new objects o}, ..., 0!,
and yields the ternary relation

{(mlv 0%7 O%)) (1‘1)0%)0?% tee (1‘1,01 70?14_1) (1’2,0%,0%), ce (xpa Opp)onp+1)}
in which each x; is associated with a list of new objects of length n; + 1.

The count operation can be simulated in pure CQL, but not efficiently. To
see the latter, it suffices to observe that the following CQL + count analogue
of the above CQL + swap-choice program also expresses @) efficiently:

& In our context, fixpoint logic can be thought of as the CQL programs using only
FO-statements and inflationary while-loops.

R = count, {(r,9) | B,0); U= ((,2) | @Rz,) R =0
T = new {(}; F = new {0};

S:={(z,w) | GY)R(z,y) AT(w)}; V:=0; U :={(2) | (F2)U(z,2)};
while V # U’ do

Vii={(z) |U'(2) A=V (2) A Va)(V2')(R(z, 2, z) = V() };

Vi={(2) | V() VV'(2) };

S={(z,w) | F)(V'(z) ANU(z,2)) AN(T(w)V F(w)) A=S(z,w) V
=(32)(V'(z2) NU(z,2)) A S(z,w) }

od

The two programs exhibited in the preceding discussion are very similar in
computational organization. The following result generalizes this observation:

Theorem 10. CQL + swap-choice applied to new objects only and CQL +
count are polynomial-time equivalent.

Proof. (Sketch.) In the full version of [17], it was shown that the count oper-
ation is efficiently expressible by a semi-deterministic program in CQL + wit-
ness. Closer inspection of the proof reveals that the choices in this program can
actually by expressed by applications of swap-choice to new objects only.

Conversely, an application of swap-choice to new objects only can be effi-
ciently simulated in CQL + count as follows. First, the swap-equivalence rela-
tionship is materialized in a binary relation. This can be done efficiently since
swap-equivalence is first-order definable. The abstraction operation when ap-
plied to the constructed binary relation will associate a unique new object to
each swap-equivalence class. By applying count, a list of length one more than
the cardinality of the corresponding swap-equivalence class can be attached to
each such new object. By a simple CQL program, the objects in each swap-
equivalence class are replaced by the non-tail objects in the corresponding list.
The simulation of the swap-choice operation is now completed by selecting the
first object in each of these lists.

As count-statements can be (unefficiently) expressed in pure CQL, the above
argument also provides an alternative, constructive proof of Theorem 9. Further-
more, it should be noted that the proof of Theorem 10 heavily relies on the use
of the abstraction operation. In [16] it was shown that the use of abstraction
is necessary for the faithful representation of sets in CQL. We conjecture that
abstraction is equally crucial for the simulation of count.

Most importantly, Theorem 10 shows that, in the absence of order, a very lim-
ited form of non-determinism is necessary and sufficient for efficient computation
of the polynomial-time counting queries, and this without having to resort to the
explicit introduction of the natural numbers as a special sort of domain values.
The characterization in this paper of the nature of this non-determinism thus
situates the polynomial-time counting queries within the class of all polynomial-
time queries, for which unrestricted non-determinism is required, putting the
results of Cai, Fiirer, and Immerman [6] in perspective.

References

—_

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. S. Abiteboul. Personal communications, 1990.

. S. Abiteboul and P. Kanellakis. Object identity as a query language primitive.
In Proc. 1989 ACM SIGMOD Int. Conf. Management of Data, in SIGMOD Rec.,
18(2):159-173, 1989.

S. Abiteboul and V. Vianu. Non-determinism in logic-based languages. Ann.
Math. Artif. Intell., 3:151-186, 1991.

S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc.
23rd ACM Symp. Theory of Computing, 209-219. 1991.

M. Andries and J. Paredaens. A language for generic graph-transformations. In
Graph-Theoretic Concepts in Computer Science, Proc. Int. Workshop WG 91,
LNCS 570, 63-74. Springer-Verlag, 1992.

J. Cai, M. Furer, and N. Immerman. An optimal lower bound on the number
of variables for graph identification. In Proc. 30th IEEE Symp. Foundations of
Computer Science, 612-617, 1989.

A. Chandra and D. Harel. Computable queries for relational database systems. J.
Comput. Syst. Sci., 21(2):156-178, 1980.

K. Denninghoff and V. Vianu. Database method schemas and object creation. In
Proc. 12th ACM Symp. Principles of Database Systems, 265-275. 1993.

E. Gradel and M. Otto. Inductive definability with counting on finite structures.
In Proc. 6th Workshop on Computer Science Logic, LNCS 702, 231-247. Springer-
Verlag, 1993.

S. Grumbach and C. Tollu. Query languages with counters. In Proc. 4th Int. Conf.
Database Theory, LNCS 646, 124-139. Springer-Verlag, 1992.

M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database
model. In Proc. 9th ACM Symp. Principles of Database Systems, 417-424. 1990.
M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database
model for database end-user interfaces. In Proc. 1990 ACM SIGMOD Int. Conf.
Management of Data, in SIGMOD Rec., 19(2):24-33. 1990.

R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object
identifiers. In Proc. 16th Int. Conf. on Very Large Data Bases, 455-468. 1990.

N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86-104, 1986.

M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier’s O-
logic revisited). In Proc. 8th ACM Symp. Principles of Database Systems, 379-393.
1989.

J. Van den Bussche and J. Paredaens. The expressive power of structured values in
pure OODB’s. In Proc. 10th ACM Symp. Principles of Database Systems, 291-299.
1991.

J. Van den Bussche and D. Van Gucht. Semi-determinism. In Proc. 11th ACM
Symp. Principles of Database Systems, 191-201. 1992. Full version submitted.

J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On the com-
pleteness of object-creating query languages. In Proc. 83rd IEEE Symp. Founda-
tions of Computer Science, 372-379. 1992.

M. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp.
Theory of Computing, 137-146. 1982.

This article was processed using the IATEX macro package with LLNCS style

