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Abstract: We provide a general framework for declarative selection operations for
complex object databases, based on the safe calculus for complex objects. Within
this framework, we consider a class of “single pass-evaluable” selection operations.
We show how such selection operations can be succinctly expressed by programs
that use only very simple positive existential selections. Also, a syntactic criterion
is developed for the commutation of two such positive existential selections. These
two results are then jointly applied to the problem of optimizing complex object
selections, which is much more complicated than in classical relational databases.

1 Introduction

Relational database systems enjoy the property of high-level, declarative, ad-hoc query
languages, with the relational calculus as logical basis and the relational algebra as oper-
ational equivalent. The link between algebra and calculus is most clearly visible in the
selection operation. In its most general appearance, a selection may be defined as an
operation that derives from a set of objects those that satisfy a given logic formula, thus
acting as a filter. Selection operations are of fundamental importance in all high-level
database management tasks.

Inspired by this, an important issue in the research on nezt generation and object-
oriented databases is the development of formal, logic-based data models [AK89, Bee90,
KLW95, LR89, SS90] which allow the design of high-level query languages (a good example
is [BCD89], which is based on [LR89]). Recent efforts in this area typically provide “dy-
namic” features (like object identity, inheritance, and methods) on top of a core complex
object data model.

Complex objects are built from atomic ones by arbitrary application of tuple and set
constructors, thus extending the relational model of relations containing tuples of atomic
values. Ultimately, the whole database structure can be seen as one (very) complex
object. A particularly elegant “relational” extension of the relational model that supports
complex objects is the nested relational database model, where tuple components need not
be atomic but may be relations in turn [TF86]. So, tuple and set constructors alternate.
Nested relations are in a strong sense “information-wise” equivalent “normal forms” of
the seemingly more general unrestricted (i.e., not necessarily alternating) complex objects
[HY84]. In Section 2, we review the necessary preliminaries on nested relations.

In Section 3, we introduce a general framework for the study of selection operations for
nested relational databases. We concentrate on generic selections: this means that values
are treated essentially uninterpreted [AU79, Hul86]. Classical relational selections that
are generic use only comparisons between values based on (in)equality, like select[A # B.



In nested relations, where tuple components can be sets, much more generic comparisons
are feasible, like X Y, A€ X, XNY =0, .... Our framework expresses a large class of
generic selection conditions through the calculus for nested relations [AB88, HS88, KV93,
PVGS88, RKS88|. E.g., X Z Y is expressed as: (A € X)(VB € Y)A # B. The full power
of the nested relational calculus would yield selections of hyperexponential complexity
[HS88]. However, we employ only a “safe” fragment of the calculus: all selection operations
we consider are computable in polynomial time.

Then we turn to the problem of evaluation and optimization of complex object se-
lections. In classical relational databases, query evaluators are tuned to handle series of
selections very efficiently. Standard optimization algorithms [UlI89] typically “preprocess”
the respective selection conditions, which may contain logical connectives, into conjunc-
tive normal form, whereupon the obtained simple conjuncts are processed in a particular
order. The strategy for choosing this order (“shuffling”) is based on information about
storage structure, such as indexes, or distribution of the data. Obviously, the correctness
of such strategies relies on the fact that the order in which several selections are applied
is irrelevant for the eventual result. Thus, the fact that any two selection operations
commute, although taken for granted, is fundamental in query optimization.

The situation of selections for nested databases is far more complicated, the main two
reasons being quantifiers and deep-level application:

— Selection conditions can become very involved due to the presence of quantifiers, such
that preprocessing a selection into a sequence of “conjuncts” that are simple enough to
be treated as atomic operations is not always possible;

— It is strongly desirable to be able to apply selections to instances that appear as complex
values deeply within the nested structure. But then, such selection applications can
influence the behaviour of other (selection) operations. Two complex objects selections
therefore do not commute in general.

We give some initial results on the problem of optimizing complex object selections.
For a restricted, yet sufficiently general class of selection operations, we provide satis-
factory solutions for handling the two complications described above. Inspired by the
the classical optimization algorithms, our method also consists of a preprocessing stage,
followed by a shuffling stage:

— In Section 4, we preprocess selection operations by expressing them by succinct programs
consisting only of very simple, so-called positive existential selections, together with two
elementary restructuring operations, used for handling temporary storage of intermediate
calculations;

— In Section 5.1, we present a syntactic criterion for the commutation of two such positive
existential selection operations. Section 5.2 then shows how combining these two results
yields a methodology for optimizing a series of complex object selections.

We point out that our results may also find an application in the area of rule-based sys-
tems [SIG89a, SIG89b, SIGI0] for complex objects. Indeed, the if-part of a rule naturally
corresponds to a selection condition, and rule triggers might reside on various levels in the
complex structure. Therefore, our results are relevant to the issue of mutual independence
of two or more rules as well as that of optimization and order of evaluation of a series of
rule firings. Some initial investigations are reported in [VdB91].

Finally, in Section 6 we briefly mention related and future work. Among other things,
we compare our framework of complex object selections to various selection operations



encountered in the literature: even our restricted class of selections turns out to be suffi-
ciently general to express many operations usually considered there.

2 Preliminaries

In this section we briefly introduce a model for working with nested relations, following
[PDBGVG89, Chapter 7] to which we refer for more details.

Basically we assume an enumerable set V' of atomic values and an infinitely enumerable
set U of atomic attributes.

In the standard relational model (hereafter called the flat model), schemes are sets
of atomic attributes, and instances are sets of tuples over these attributes. The main
idea of nested relations is that attributes can be schemes in turn. As a consequence, tuple
components need not be atomic but can be instances as well. Thus the notion of attribute
is most naturally extended as follows:

Definition 2.1 The set U of attributes is the minimal set satisfying:
— U is contained in U,
— every finite subset of U in which no atomic attribute occurs more than once is an element

of U.

Elements of Y — U are called complex attributes. Observe that flat relation schemes, being
finite subsets of U, are complex attributes. In general we define:

Definition 2.2 A scheme is a complex attribute.

A scheme R can be viewed as the root of a tree. The children of R are its elements;
atomic elements are leafs, while each complex element, being a scheme, is the root of a
subtree in turn. From now on, we will not distinguish between a scheme and its associated
tree, and use tree terminology when talking about schemes. Thus we define:

Definition 2.3 For a scheme R, we denote the set of nodes in R by att(R); we extend
this to atomic attributes A by putting att(A) := {A}.

We stress that hence for any attribute Y, Y € att(Y').

Example 2.4 Assuming A, B,C,D € U, Figure 1 shows the scheme
R={Z={C, X ={A}},W ={D,Y ={B}}}

We have att(R) = {R,Z,C, X, A,W,D,Y, B}.

Since values and instances are so closely intertwined, we define them jointly, in the
following inductive manner:

Definition 2.5 Let R be a scheme. The sets V of values, T of instances, inst(R) of
instances over R and tup(R) of tuples over R are the minimal sets satisfying:
-V=VUuUZz;

— 7T = Uginst(R);

— inst(R) consists of all finite subsets of tup(R);

— tup(R) consists of all mappingst: R — V, such that t(A) € V for each A€ RNU and
t(Y) € inst(Y) for eachY € R—U.
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Figure 1: A simple example scheme.
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Figure 2: Simple example instance over the scheme of Figure 1.

Example 2.6 Figure 2 shows an instance over R, containing only one tuple (over R).
Concretely one could view a tuple over R as partly describing a robot. The Z-component
of a tuple over R is a set of tuples (two in the case of Figure 2), where each such tuple
could represent an arm of the robot: the C-component of a tuple over Z might be the length
of the arm, while its X -component might be the set of (one-tuples of ) possible angles for
that arm. Similarly, the W -component of a tuple over R could represent the set of eyes of
the robot, where each eye has a focal distance (D) and a set of angles it can look at (V).
The robot of Figure 2 has one eye.

We will use the scheme of Figure 1 as an abstract running example throughout the
paper, discarding the meaning attached to it here.

From the definition, it follows that instances can alternatively be seen as complex
values. Complex values are typed by the specific scheme over which they are an instance.
Even if two instances have different schemes, they can still have the same structure and
hence be seen as essentially equal “upon renaming of attributes”. In order to formalize
this idea, we define:

Definition 2.7 e A renaming is a permutation of U.

o Let XY €U. We write X 2Y if there is a renaming ¢ such that Y = X%®.!

For any two atomic attributes A, B, we have A =2 B. For complex attributes X,Y, we
have X 2 Y iff they are isomorphic when viewed as trees; the renaming ¢ gives the
correspondence between the leafs. Note that there may be several valid choices for .

L is canonically extended to f; also, as is the case here, we will write p(z) as z¥.



Given fixed ¢, and complex values 7,5 over X,Y respectively, we now write r =, s if
s = r?.2 For simplicity, we will implicitly assume in the sequel that ¢ is understood
whenever two isomorphic complex values are compared and write r = s for r =, s.

3 A general framework of complex object selections

In this section we introduce a general framework of complex object selections. Throughout
the remainder of this text, R is an arbitrary but fixed scheme.

3.1 Syntax

First we naturally introduce the logic formulas that will serve as the selection conditions.
They form a “safe” fragment of the (tuple) calculus for nested relations. For each X €
att(R) — U, we assume an infinitely enumerable set of (tuple) variables over X. A variable
over X, denoted as t~, stands for tuples over X.

Definition 3.1 Conditions are well-formed logic formulas built in the usual way with

e literals, of the form:
— Xy =tN P with ZC X, Z'C X" and Z = Z', or
—tX(A) =0, with Ae X —U;

e negation (—);
e the logical connectives (V, A, =, < );

e quantifications, of the form: (Qt* € t¥ (X)), with X € Y, and Q € {V,3}.

We will use the following abbreviations for literals:
—t¥ ="YX denotes t¥ |x = "X |x/,
— t¥(A) = "' (A") denotes X[y = X | (a1}

Notice that, due to the “safe” format of quantifications, conditions may not contain
a literal. The simplest examples for this are the two short conditions: —(Ft* € t¥ (X))
and (It~ € t¥(X)). In fact, they can be equivalently written with literals, as: ¥ (X) = ()
and =Y (X) = 0, respectively. This is the reason why we included this latter kind
of literal in our language: it allows us to assume without loss of generality that every
condition contains a literal, which will turn out to be convenient in our further technical
development.

We also point out that the only “constant” we allow in comparisons is the empty set.
The results reported here are largely independent of this. For our purposes, it is sufficient
to treat ‘t(A) = ¢’ simply as ‘t(A) = ¢(B)’, where B is an extra tuple component with
constant value c.

2 Any renaming can be naturally extended to V by making it the identity on V.
3 If f is a mapping on a set S, and S’ C S, then we denote the restriction of f to S’ by f|s.



3.2 Semantics

Whether a condition makes sense as a condition for complex object selections depends on
where in the scheme tree the selection takes place. Let W € att(R) — U and r an instance
over R. If W # R, then a tuple ¢t over W can appear several times in r. Given such an
appearance oy of ¢, certain tuples appearing in r correspond to «; in a unique way. First
of all this is ¢ itself. Furthermore, if Z is the parent of W, there is a unique tuple ¢ over
Z, in which «; appears. More generally, this works for any ancestor Z of W in R (i.e.,
W e att(Z)).
Thus, an appearance oy of a tuple t over W in r corresponds to a mapping

o {Z|Weatt(Z)y = ] tup(Z)

Z|W catt(2)
such that: au(W) =t; ay(Z1) € au(Z2)(Z4) if Zy € Zy; and ay(R) € 7.

Example 3.2 Consider our example instance r (Figure 2). r contains one tuple t; over
R; t1(Z) contains two tuples: t;; = [C' : 5, X : {[A : 20],[A : 30]}] and t1o = [C : 6,X :
{[A : 20],[A : 45]}]. The tuple t = [A : 20] over X is an element of t1,(X) as well as of
t12(X). Sot appears twice in r. Let oy be the appearance of t in t11. So, ay(Z) = t11, and
ay(R) = t1. In contrast, there is no tuple over Y that naturally corresponds to ay. This
is because X & att(Y): au(Y) is not defined.

Definition 3.3 Let W € att(R)—U. A selection condition over W is a condition P such
that for each free variable occurrence t#, W € att(Z).

So, one condition can be a selection condition over several W’s.

Definition 3.4 Let W € att(R)—U, r be an instance over R, and oy be an appearance of
a tuple t over W in r. Let P be a selection condition over W. Then P(«y) is the boolean

value obtained by evaluating P over r, when we substitute each free variable occurrence
tZ by ay(Z).

By the above discussion, P(qy) is well-defined. Obviously, every selection condition has
an equivalent form where for each X there is at most one free variable over X: indeed,
two free variables of the same sort play the same role, and hence can be identified. We
finally state:

Definition 3.5 Let W,r, P be as above. The selection selecty [P](r) is the instance over

R, obtained from r by filtering out those appearances oy of tuples t over W in r for which
P(ay) is false.

Example 3.6 Let R be our example scheme (Figure 1). Then Py = —t®(Z) = t®(W) is
a selection condition over R, as well as

P, = (Vt7 e t'(2)) (3" e tR(W)t? =V

The selection selectg[Py] can be paraphrased as “selectg[t™(Z) C t®(W)]”. Similarly, the
selection condition over W: Py = (Y € tW (Y)Y (B) = " (D) can be paraphrased as
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Figure 3: Result of applying selectz[P,] to the instance of Figure 1.

V(D) € tW(Y)”. We invite the reader to check that, for the example instance r of
Figure 2, selecty[Ps](r) = r. A selection condition over Z involving a logical connective
18 P4 N

(vt € t(Z)(~t] =17 = (vt € t{(X))(Vty € 5 (X))t (4) =15 (A))

tf and t7 are the only free variables of Py. The selection select z|Py] retains only those
appearances of tuples over Z whose X -component is disjoint with that of all other tuples
belonging to the Z-value it belongs to. Using the notations of Example 3.2, if we apply
this selection to the example instance r, both t11 and t1o will be deleted: the result is shown
in Figure 3.

Selection conditions form a fragment of the tuple calculus for nested relations; in
particular, the formulas are all safe [RKS88] (called strictly safe in [AB88]). This implies
that selections can be computed in the strictly safe algebra, i.e., without the powerset
operator, for nested relations. It can be shown that the strictly safe algebra only expresses
queries computable in polynomial time.

To end this section, please note that our model of selection operations is not meant
to serve as a user-level specification language, but rather as a uniform framework for
reasoning about complex object selections.

4 Evaluation of a restricted class of selections

In this section, we discuss three restrictions on selection conditions. Conditions satisfying
these three conditions are called restricted. As a very simple subclass of restricted condi-
tions we introduce positive existential conditions. Finally, we show that selections using
arbitrary restricted conditions can be expressed in terms of selections using only positive
existential conditions.

Definition 3.1 (of conditions) is very general. In order to be able to obtain specific
results, we now restrict the class of conditions as follows. Throughout, we are considering
selection conditions over a fixed W € att(R) — U.

1. No logical connectives allowed.

Note that this immediately reduces conditions to the general format of a sequence of
(possibly negated) quantifications, followed by a literal.



Our second restriction essentially states that the selection operation can be evaluated
in a single “scan”. So, double quantifications are not allowed, and neither are quantifi-
cations over sets containing tuples over W, since the selection operation itself already
performs a scan on this level.

2. For each X € att(R) — U there must be at most one quantification over X, i.e., of
the form (Qt* € t¥(X)). Furthermore, if W € att(X), then no such quantification
can occur.

Our third and final restriction is slightly more technical:

3. Let Q@ = (Qt* € t¥(X)) be a quantification that either is universal or immedi-
ately precedes an occurrence of negation. Then the condition following @ must be a
selection condition over X (Definition 3.3).

This restriction has the intuition that quantified negative conditions and universally
quantified conditions must be “local” to this quantification.

Definition 4.1 A condition is called restricted if it satisfies the restrictions (1), (2) and
(3) above.

The class of restricted selection operations is still sufficiently powerful to express many
selections encountered in the literature; see Section 6.

Example 4.2 Reconsider Example 3.6. The conditions Py, Py, Py are restricted; Py, how-
ever is clearly not. As a more subtle example, also in the context of our example scheme
of Figure 1, the following selection condition over W satisfies restrictions (1) and (2) but
not (3):

(3FtZ c tRW)) (vt e V(YY) (3T € tA (X))t =1~

Indeed, t2 occurs free in the condition (FtX € tZ(X))tY =X, but Y & att (7).

The motivation for considering restricted selections will be clear from Theorem 4.7 and
the remarks following thereafter. Of crucial importance in this respect are the positive
existential conditions:

Definition 4.3 A condition is called positive existential if it satisfies restrictions (1) and
(2) above, has only existential quantifications, and contains no negation.

Observe that positive existential conditions are restricted, since restriction (3) is voidlessly
satisfied.

Although the expressiveness of positive existential conditions seems rather limited,
we will see in Theorem 4.7 that any restricted selection operation is expressible by a
program consisting only of positive existential selections, together with the two elementary
operations copy and singleton.

These last two operations are trivial restructurings, defined as follows:

Definition 4.4 Let r be an instance over R, W € att(R) — U, and Y C W.
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Figure 4: The result of applying copy[Y — Y?]; singleton][Y#] to the instance of Figure 3.

e Let ¢ be a renaming such that att(Y?)Natt(R) = 0. The operation copy[Y — Y¥|(r)
yields the instance r' over R', where R' is obtained from R by replacing W by
W'=WuUY?, and r' is obtained from r by replacing each tuple t over W appearing
in r by the tuple t' over W' defined by: t'|w = tlw and t'|yes = t]y.

e The operation singleton]Y|(r) yields the instance r' over R', where R' is obtained
from R by replacing W by W' = (W —Y)U{Y}, and 1" is obtained from r by
replacing each tuple t over W appearing in r by the tuple t' over W' defined by:
t,|W—Y = t|W_y and tl(Y) = {t|y}

Example 4.5 See Figure /, where W' = {D,Y'} and Y/ =Y U {Y*}.

In order to be able to remove copies, we need also the ability to project out a set Y of
attributes: because of the particular usage we will make of such projections, we will call
them copy-removals and denote them by remove[Y].

Example 4.6 Before formally stating Theorem 4.7, we already informally indicate how
the copy and singleton operations are used in the simulation of arbitrary restriction selec-
tions by positive existential ones.

Consider again the example scheme R of Figure 1, and consider the selection

selectw [(Vt" € V' (Y))—t" (B) =t (D)]

The following equivalent program eliminates the universal quantification: (with ¢ an ap-
propriate renaming)

copy[{Y} = {Y*}];
/* denote the scheme W U{Y¥?} by W' */
selecty.[-t"* (B?) = t"W'(D)];
selecty [tV (V) =tV (Y¥)];
remove[{Y ¥}]
That s, we apply the unquantified selection to a copy of each set, after which we simply

test whether the copy has remained unchanged, since this is exactly the case if the condition
s universally true in the set.



The first selection of the above program still contains an occurrence of negation. This
s in turn eliminated if we substitute this first selection in turn by the following equivalent
program: (with v an appropriate renaming)

copy[¥® = V),
singleton[Y¥];
/* denote the scheme Y? U{Y?} by Y' */
/* denote the scheme {D,Y,Y'} by W" */
selectyo [t (BY) = t"V"(D));
selecty [t (Y¥) = 0];
remove[{Y¥}]

That is, we apply the unnegated selection operation to a singleton-copy of each tuple, after
which we can simply test each result for emptiness, since this is exactly the case if the
condition does not hold for the tuple.

Using the techniques illustrated in the above example we can show (proof ommitted):

Theorem 4.7 For each restricted selection operation there is an equivalent program con-
sisting only of positive existential selections, copy, and singleton, up to copy-removal.

The length of this program is proportional to the number of universal quantifiers and
negations that occur in the condition.

As the above example suggests, Theorem 4.7 has a constructive proof, which provides
us with an effective algorithm for expressing restricted selections by positive existential
ones. Thus, an immediate application of the theorem is in the evaluation of complex object
selections. The following remarks are in order here:

e Positive existential selections, being so simple, have a great chance of finding efficient
implementations. In particular, if only atomic values are compared, they can be

efficiently evaluated using slight adaptations of known techniques, such as those
described in [Bid87, BRS82, PSS*87];

e the operations copy, singleton and copy-removal are merely conceptual represen-
tations of the flow of control in the program, and hence can be argued to have
neglectable cost;

e the number of operations produced by the algorithm is linearly proportional (with
low coefficients) to the number of occurring negations and universal quantifications
in the given restricted selection condition.

The last item is of particular interest. Indeed, consider the following (extreme) exam-
ple.

Example 4.8 Let P be a selection condition, having the rough format: —=VVYN—={ with ¢ a
literal. Then 2 negations and 3 universal quantifiers occur in P. Hence, the evaluation
algorithm of Theorem 4.7 produces an equivalent program of about 18 operations. How-
ever, if P is first rewritten in the equivalent format: 3330 then we immediately obtain a
positive existential condition, i.e., a program of 1 operation. As a more subtle example,
a (sub)condition of the format —=3—--- can be rewritten as ¥ ---, eliminating one step in
the evaluation algorithm.



Thus, the problem comes up of rewriting the selection condition into an equivalent
(restricted) one whose V-—-degree, i.e., the total number of occurring negations and uni-
versal quantifiers, is minimal. This problem can be naturally restated as follows. With
a restricted condition one can associate a string over the alphabet {V,3, =}, by looking
only at the quantifier of each quantification and ignoring the literal. The problem is to
find an equivalent string of minimal degree. Here, two strings are equivalent if they can
be transformed to each other using the well-known De Morgan equations: V- = —d,
J- = =V and the rule == = \ (the empty string). Note that the two De Morgan rules
can be replaced by the single equation -3— =V.

The following procedure minimize(P), with P a restricted selection condition, solves
the problem. We use the following terminology: bringing a string in normal form w.r.t.
a certain rewrite rule means repeatedly and exhaustively applying the rule to the string.

1. Bring P in normal form w.r.t. V — —d-, and call the result Pi;
2. Bring P; in normal form w.r.t. =— — A, and call the result P;

3. Bring P, in normal form w.r.t =3— — V, applying the rule from left to right. The
result is minimize(P).

Clearly, minimize runs in time linear in the length of P. We can show: (proof omited)
Proposition 4.9 minimize(P) is of minimal V-—-degree.

Of course, one must also check that minimize(P) is still restricted. It can be shown that
this is indeed the case, provided that P does not contain “unnecessary” quantifications,
but we omit the details here.

Example 4.10 Consider the string P =V3V. Then P, = =3-3-3-, and minimize(P) =
P: P is indeed of minimal degree itself. If, however, in Step 3 we would not start at the
left and rewrite Py into -3V3—, we obtain a string of non-minimal degree, one higher than

the degree of P.

We end this section with a remark on conjunctions of selection conditions. In the
condition of a restricted selection, logical connectives, such as conjunction, are disal-
lowed (restriction (1)). We can however slightly relax this restriction: consider a se-
lection operation selecty [P, & P,], where P;, P, are both restricted selection conditions
over W. Then obviously, this selection can be alternatively written as the composition
selecty [ Py); selecty [P,] and we can apply Theorem 4.7 to both parts.

In fact, the order of the above composition is irrelevant for the eventual result: we
could do the same as well with selecty [P,]; selecty [Py]. This is clearly due to the fact
that both selections apply over the same W. Indeed, in general, two (restricted) selections
selecty,[P;], i = 1,2, do not necessarily commute. In the next section we look more closely
into this problem, and its natural connection to the problem of optimizing complex object
selections.



5 Commutation and optimization of selection opera-
tions

In this section, we consider the problem of commutation of selection operations. First we
give a decision procedure for commutation of two positive existential selections. Then,
exploiting Theorem 4.7, we look how this commutation criterion can be used in the prob-
lem of optimizing multiple selection operations. Throughout we only consider restricted
selection conditions.

5.1 Commutation of positive existential selections

Unlike the case of flat relational databases, in nested databases, the particular order in
which a series of selection operations is applied can affect the final result. The reason for
this is of course that selections can apply at arbitrary places in the scheme tree, which
results in a complex interaction.

Example 5.1 Consider our example scheme R of Figure 1, and the instance r over R of
Figure 2. r contains one tuple, t. t(W) in turn also contains one tuple: t; = [D : 33,Y :
{[B:33],[B : 45]}].

Now consider the two selection operations Sy, Ss:
Sy = select [(3t € YV (Y))t¥ (B) = t"(D)]

Sy = selecty[(Ft7 € t7(2))(FY € t7(X))tY (B) = t*(A)]

Let us compute both Sa(Si(r)) and Si(S2(r)). Clearly, Sy leaves r unchanged. Applying
Sy to Si(r) = r results in the removal of [B : 33| from t,(Y"), whence applying Sy to Sa(r)
yields an instance ' containing only one tuple t', with t'(Z) = t(Z) and t'(W) = (0. We
observe that S1(Sa(r)) # Sa(S1(r)). Hence, Sy and Sy do not commute for all possible
instances.

Consider on the other hand the selection Sz = selecty[tY (B) = t"(D)]. Then it can
be seen that S and S3 always commute.

In the above example, we found combinations of selections that did commute and
others that did not. As pointed out in the Introduction, having a criterion for commuta-
tion to our disposal is of critical importance in the optimization of selections. It indeed
turns out that it is possible to decide, given two positive existential selection operations,
whether or not they commute in general.

In order to be able to state our commutation criterion in an elegant way, we simplify
the format of literals a little. Literals of the form ¢*(A) = () are treated as if of the form
t*(A) = t¥(B), where B & A is an extra attribute with constant value (). Further, literals
of the form t*|, = #'V'|;;, where Z, W are not singletons, are reduced to literals involving
only single attributes by applying the restructuring:

copy|Z — Z?]; copy[W — W¥];
singleton|Z¥]; singleton[W#];

So, the subtuples over Z and W are copied in a singleton complex value over Z¥ and W¥#,
respectively, and we can now use the simple literal ¢(Z%) = t'(W¥).



Now let S; = selectw,[P;], i = 1,2, be two positive existential selections. As a result
of the above discussion, we may assume without loss of generality that the literal of P,
is of the form t¥i(A;) = "i(B;). To exclude singular cases, we furthermore assume that

A; # B;.
Definition 5.2 S; is said to influence S; if:
(Wi < Aj orW; < B;) and W, & att(W;)

where, for two attributes Z, 7' € att(R), we write Z <> Z' if Z and Z' lie on a common
path in R.

Intuitively, S; influences S; if the set of A;- and Bj-values from perspective W; may
be altered due to deletions at perspective W;. The extra condition that W; ¢ att(W;)
generalizes the situation in flat relational databases (where necessarily W; = W; = R); if
W; € att(W;), deletions at level W; also delete tuples at level W}, so in that case S; does
not influence S;, but “cooperates” with it (though in a rather crude manner).

More precisely, we have established (proof ommitted):

Theorem 5.3 If {A}, B;} = {Ay, By}, then S; and S, always commute. Otherwise, S;
and Sy always commute if and only if they do not influence each other.

Corollary 5.4 Given two positive existential selection conditions, it is decidable whether
or not they always commute, in time polynomial in the size of the scheme R.

Example 5.5 Reconsider the selections Sy, .So, S5 of Fxample 5.1. We can now use The-
orem 5.3 to verify commutation:

e Si and Sy do not commute, since Sy influences Sy. Indeed, Wi (= W) & att(Wa(=
Y)) and Y < Ay (= B).

e Si and S35 commute, since {A,(= B), B:(= D)} = {A3(= D), Bs(= B)}.

e Finally, Sy and S3 also commute, since Wo = W3 =Y, and Y € att(Y); hence, it is
impossible for So and Sz to influence each other. Actually, any two selections Sy, So
for which Wy = Wy commute, for the same reason.

5.2 Towards optimizing complex object selections

We now enlarge our focus from the problem of commutation of positive existential selec-
tions to the more general problem of commutation and optimization of restricted selection
operations.

A first observation is that Theorem 5.3 does not straightforwardly extend to the general
case of restricted selection operations, as illustrated next:

Example 5.6 In Ezample 5.5 we used Theorem 5.3 to deduce that the selections S, Sz of
Ezample 5.1 commute, since { Ay, B1} = {As, Bs}. Consider however the negated version
of S3: Sy = selecty[—tY (B) =tV (D)]. Clearly Sy is not positive existential, and although
{A1, B} = {A4, By}, S1 and Sy do not always commute, as is readily seen.



Actually, a criterion for commutation of general selection operations would be of lesser
interest to optimization. Indeed, as the operations become more complex, simple “global”
strategies of choosing an execution order might be too weak. Instead, we will propose
a strategy in which we descend into the complex structure of the selections, down to
the level of single positive existential ones, and apply Theorem 5.3 there. This will be
possible with the aid of Theorem 4.7. Thus, let S; = selecty,[P;], 1 < i < n, of the form as
above, be n restricted selections. The problem is to optimize the program Sy;---;S,. By
Theorem 4.7, each S; can be expressed as a sequence (; of positive existential selections,
together with copy, singleton and copy-removal operations.

Our approach is as follows. First, we apply all copies and singletons occurring in the
(i, beforehand, and independently, i.e., care is taken that all corresponding renamings
do not coincide. We have thus obtained an enlarged scheme R’', which equals R “with
copies”.* Each S; is now expressed as the subsequence (; , consisting of all (positive
existential) selection operations in (;. In analogy with the problem of optimizing selections
in flat relational databases, we state the problem of optimizing the series of complex object
selections Si;---; S, as follows: Merge the sequences (; in such a way that the most
optimal evaluation sequence is obtained.

As in standard algorithms for optimizing selections in relational databases [U1189),
strategies for doing this will typically rely on information about storage structure, such
as indexes, or distribution of the data. However, a considerable complication, in contrast
with the situation in flat relational databases, is that here we have to deal with the issue
of commutation: an optimization is correct only if the obtained merging always yields
the same result as the original program (;;---;(,. Here, Theorem 5.3 comes in. The
crucial observation is: every merging can be obtained by starting from the concatenation
of the original sequences, (| ;---;(, , and then “pushing” the positive existential selection
operations of (;~ through those of (;°, j <i. At each push, we can effectively check whether
or not the two selections may be effectively switched without altering the final result of
the program. By first minimizing the length of the (;’s, as explained in Section 4, we can
significantly reduce the search space, i.e., the number of possible mergings to consider.

Example 5.7 As a simple example, recall the selections Sy, Sy of Examples 5.1 and 5.6.
We have for (; :

Sui: selecty [tY7(B?) =tV (D)];
Sua: selecty [t (Y?) =tV (YV)];
Here, Y', W' correspond to Y,W in the scheme R' with copies: (¢, are appropriate

renamings)
R ={zZ,W' ={D,Y' ={B,Y?,Y"}}}

where YV serves as “tag” for the empty set (so Siy really expresses t¥ (Y¥) = 0, as
explained in Section 5.1). Since Sy is positive existential, ([ is Sy itself, slightly adapted
to work on instances over R':

Sii: selecty (I € V' (Y NEV (D) = 7 (B)]

4 Thus, we delay the copy-removals until the end; in order to make this work, the selection conditions
have to be slightly adapted. We do not go into detail about this here; Example 5.7 gives a simple
illustration.



Now by Theorem 5.3, S11 and Sy do not commute; however S1, and Sy do. Thus, for
evaluating Sy; S1 we have no choice but to use the unmerged sequence composition ¢, ;(y .
Howewver, for evaluating S1; Sy we can choose between Si1;S41; Sao and Sy1; S11; Sao.

6 Discussion

In the framework of a general calculus-based theory for complex object selection op-
erations, we gave some initial results concerning the evaluation and optimization of a
restricted class of “single-pass” operations.

Other rather general systems of complex object selections have been proposed in the
literature. The Verso super selection was introduced in [Bid87]. As in our approach,
general logic formulas are used there as selection conditions; however, Verso selections
work only on the top level. Actually, the focus of [Bid87] is more on succinctly express-
ing relational tableau queries through Verso super selection; this is possible since Verso
databases correspond to universal relation databases.

In [AB88, BCD89, BK90, SS86] (among others), a more algebraic approach is taken
in defining powerful selection operations, by allowing other algebra operations to appear
in selection conditions, as in “select[r[C](Z) N7[D](W) = ()]”. The optimization problem
may then be attacked by finding algebraic equivalences, stating how the various opera-
tions commute and interact. Results in this direction can be found in [Col89, Sch86]. In
comparison, our approach focuses more specifically on the particular structure of declara-
tive selection operations. Thus, we obtain rather detailed results, which may also be more
readily applicable to other logic-based environments, like rule-based systems. Moreover,
our model of selections is not tied to a particular query specification language, but is also
translatable to algebraic formalisms. So, both the algebraic as our methodology can be
used complementary.

And conversely, the restricted class of selections we considered in Sections 4 and 5
is able to capture most selection operations usually encountered in the literature (and
many others too). A typical representative of these are the extended selections defined in
[SS86]. Their corresponding conditions are formulas built from comparisons based on =,
C, € (including “dynamic constants” ), negation, logical connectives, and a limited form of
existential quantification (due to the recursive use of projection and selection within the
conditions). It can be shown (cfr. Example 4.2 and the comments at the end of Section 4
and the present section) that all such conditions are restricted in our sense, or can be
equivalently expressed by restricted ones.

An obvious direction to extend our results is to extend the class of restricted selection
conditions. If one still wants an analogue of Theorem 4.7, it may then be necessary to
extend the set of “auxiliary” operations, in our case the copy and singleton operations.
A simple example of this idea would be to add disjunction through selections of the form
selecty [Py or Py], where P;, P, are restricted. One can express this operation by the
program:

copy[{W} — {W¥}; copy[{W'} — {W¥};
selecty | PY); selectyyo[Py);
union[W? UWY — W]|



where the union construct is an additional auxiliary operation, replacing each W-instance
by the union of its corresponding copies.
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