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Abstract� We provide a general framework for declarative selection operations for

complex object databases� based on the safe calculus for complex objects� Within

this framework� we consider a class of �single pass�evaluable� selection operations�

We show how such selection operations can be succinctly expressed by programs

that use only very simple positive existential selections� Also� a syntactic criterion

is developed for the commutation of two such positive existential selections� These

two results are then jointly applied to the problem of optimizing complex object

selections� which is much more complicated than in classical relational databases�

� Introduction

Relational database systems enjoy the property of high�level� declarative� ad�hoc query
languages� with the relational calculus as logical basis and the relational algebra as oper�
ational equivalent� The link between algebra and calculus is most clearly visible in the
selection operation� In its most general appearance� a selection may be de�ned as an
operation that derives from a set of objects those that satisfy a given logic formula� thus
acting as a �lter� Selection operations are of fundamental importance in all high�level
database management tasks�

Inspired by this� an important issue in the research on next generation and object�
oriented databases is the development of formal� logic�based data models 
AK��� Bee�	�
KLW��� LR��� SS�	� which allow the design of high�level query languages �a good example
is 
BCD���� which is based on 
LR����� Recent e�orts in this area typically provide �dy�
namic� features �like object identity� inheritance� and methods� on top of a core complex
object data model�

Complex objects are built from atomic ones by arbitrary application of tuple and set
constructors� thus extending the relational model of relations containing tuples of atomic
values� Ultimately� the whole database structure can be seen as one �very� complex
object� A particularly elegant �relational� extension of the relational model that supports
complex objects is the nested relational database model� where tuple components need not
be atomic but may be relations in turn 
TF���� So� tuple and set constructors alternate�
Nested relations are in a strong sense �information�wise� equivalent �normal forms� of
the seemingly more general unrestricted �i�e�� not necessarily alternating� complex objects

HY���� In Section �� we review the necessary preliminaries on nested relations�

In Section �� we introduce a general framework for the study of selection operations for
nested relational databases� We concentrate on generic selections
 this means that values
are treated essentially uninterpreted 
AU��� Hul���� Classical relational selections that
are generic use only comparisons between values based on �in�equality� like select 
A �� B��



In nested relations� where tuple components can be sets� much more generic comparisons
are feasible� like X �� Y � A � X� X �Y � �� � � � � Our framework expresses a large class of
generic selection conditions through the calculus for nested relations 
AB��� HS��� KV���
PVG��� RKS���� E�g�� X �� Y is expressed as
 ��A � X���B � Y �A �� B� The full power
of the nested relational calculus would yield selections of hyperexponential complexity

HS���� However� we employ only a �safe� fragment of the calculus
 all selection operations
we consider are computable in polynomial time�

Then we turn to the problem of evaluation and optimization of complex object se�
lections� In classical relational databases� query evaluators are tuned to handle series of
selections very e�ciently� Standard optimization algorithms 
Ull��� typically �preprocess�
the respective selection conditions� which may contain logical connectives� into conjunc�
tive normal form� whereupon the obtained simple conjuncts are processed in a particular
order� The strategy for choosing this order ��shu�ing�� is based on information about
storage structure� such as indexes� or distribution of the data� Obviously� the correctness
of such strategies relies on the fact that the order in which several selections are applied
is irrelevant for the eventual result� Thus� the fact that any two selection operations
commute� although taken for granted� is fundamental in query optimization�

The situation of selections for nested databases is far more complicated� the main two
reasons being quanti�ers and deep�level application

� Selection conditions can become very involved due to the presence of quanti�ers� such
that preprocessing a selection into a sequence of �conjuncts� that are simple enough to
be treated as atomic operations is not always possible�
� It is strongly desirable to be able to apply selections to instances that appear as complex
values deeply within the nested structure� But then� such selection applications can
in�uence the behaviour of other �selection� operations� Two complex objects selections
therefore do not commute in general�

We give some initial results on the problem of optimizing complex object selections�
For a restricted� yet su�ciently general class of selection operations� we provide satis�
factory solutions for handling the two complications described above� Inspired by the
the classical optimization algorithms� our method also consists of a preprocessing stage�
followed by a shu�ing stage

� In Section �� we preprocess selection operations by expressing them by succinct programs
consisting only of very simple� so�called positive existential selections� together with two
elementary restructuring operations� used for handling temporary storage of intermediate
calculations�
� In Section ���� we present a syntactic criterion for the commutation of two such positive
existential selection operations� Section ��� then shows how combining these two results
yields a methodology for optimizing a series of complex object selections�

We point out that our results may also �nd an application in the area of rule�based sys�
tems 
SIG��a� SIG��b� SIG�	� for complex objects� Indeed� the if�part of a rule naturally
corresponds to a selection condition� and rule triggers might reside on various levels in the
complex structure� Therefore� our results are relevant to the issue of mutual independence
of two or more rules as well as that of optimization and order of evaluation of a series of
rule �rings� Some initial investigations are reported in 
VdB����

Finally� in Section � we brie�y mention related and future work� Among other things�
we compare our framework of complex object selections to various selection operations



encountered in the literature
 even our restricted class of selections turns out to be su��
ciently general to express many operations usually considered there�

� Preliminaries

In this section we brie�y introduce a model for working with nested relations� following

PDBGVG��� Chapter �� to which we refer for more details�

Basically we assume an enumerable set V of atomic values and an in�nitely enumerable
set U of atomic attributes�

In the standard relational model �hereafter called the �at model�� schemes are sets
of atomic attributes� and instances are sets of tuples over these attributes� The main
idea of nested relations is that attributes can be schemes in turn� As a consequence� tuple
components need not be atomic but can be instances as well� Thus the notion of attribute
is most naturally extended as follows


De�nition ��� The set U of attributes is the minimal set satisfying�
� U is contained in U �
� every �nite subset of U in which no atomic attribute occurs more than once is an element
of U �

Elements of U �U are called complex attributes� Observe that �at relation schemes� being
�nite subsets of U � are complex attributes� In general we de�ne


De�nition ��� A scheme is a complex attribute�

A scheme R can be viewed as the root of a tree� The children of R are its elements�
atomic elements are leafs� while each complex element� being a scheme� is the root of a
subtree in turn� From now on� we will not distinguish between a scheme and its associated
tree� and use tree terminology when talking about schemes� Thus we de�ne


De�nition ��� For a scheme R� we denote the set of nodes in R by att�R�� we extend
this to atomic attributes A by putting att�A� 
� fAg�

We stress that hence for any attribute Y � Y � att�Y ��

Example ��� Assuming A�B�C�D � U � Figure � shows the scheme

R � fZ � fC�X � fAgg�W � fD� Y � fBggg

We have att�R� � fR�Z� C�X�A�W�D� Y� Bg�

Since values and instances are so closely intertwined� we de�ne them jointly� in the
following inductive manner


De�nition ��� Let R be a scheme� The sets V of values� I of instances� inst�R� of
instances over R and tup�R� of tuples over R are the minimal sets satisfying�
� V � V � I�
� I �

S
R inst�R��

� inst�R� consists of all �nite subsets of tup�R��
� tup�R� consists of all mappings t 
 R	 V� such that t�A� � V for each A � R �U and
t�Y � � inst�Y � for each Y � R� U �
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Figure �
 A simple example scheme�
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Figure �
 Simple example instance over the scheme of Figure ��

Example ��� Figure 	 shows an instance over R� containing only one tuple �over R��
Concretely one could view a tuple over R as partly describing a robot� The Z�component
of a tuple over R is a set of tuples �two in the case of Figure 	�� where each such tuple
could represent an arm of the robot� the C�component of a tuple over Z might be the length
of the arm� while its X�component might be the set of �one�tuples of� possible angles for
that arm� Similarly� the W �component of a tuple over R could represent the set of eyes of
the robot� where each eye has a focal distance �D� and a set of angles it can look at �Y ��
The robot of Figure 	 has one eye�

We will use the scheme of Figure � as an abstract running example throughout the
paper� discarding the meaning attached to it here�

From the de�nition� it follows that instances can alternatively be seen as complex
values� Complex values are typed by the speci�c scheme over which they are an instance�
Even if two instances have di�erent schemes� they can still have the same structure and
hence be seen as essentially equal �upon renaming of attributes�� In order to formalize
this idea� we de�ne


De�nition ��	 
 A renaming is a permutation of U �


 Let X� Y � U � We write X �� Y if there is a renaming � such that Y � X���

For any two atomic attributes A�B� we have A �� B� For complex attributes X� Y � we
have X �� Y i� they are isomorphic when viewed as trees� the renaming � gives the
correspondence between the leafs� Note that there may be several valid choices for ��

� � is canonically extended to U � also� as is the case here� we will write ��x� as x��



Given �xed �� and complex values r� s over X� Y respectively� we now write r �� s if
s � r��� For simplicity� we will implicitly assume in the sequel that � is understood
whenever two isomorphic complex values are compared and write r � s for r �� s�

� A general framework of complex object selections

In this section we introduce a general framework of complex object selections� Throughout
the remainder of this text� R is an arbitrary but �xed scheme�

��� Syntax

First we naturally introduce the logic formulas that will serve as the selection conditions�
They form a �safe� fragment of the �tuple� calculus for nested relations� For each X �
att�R��U � we assume an in�nitely enumerable set of �tuple� variables over X� A variable
over X� denoted as tX � stands for tuples over X�

De�nition ��� Conditions are well�formed logic formulas built in the usual way with


 literals� of the form�

� tX jZ � t�X
�

jZ��� with Z � X� Z � � X � and Z �� Z �� or

� tX�A� � �� with A � X � U �


 negation ����


 the logical connectives �
� �� �� ���


 quanti�cations� of the form� �QtX � tY �X��� with X � Y � and Q � f�� �g�

We will use the following abbreviations for literals

� tX � t�X

�

denotes tX jX � t�X
�

jX� �
� tX�A� � t�X

�

�A�� denotes tX jfAg � t�X
�

jfA�g�
Notice that� due to the �safe� format of quanti�cations� conditions may not contain

a literal� The simplest examples for this are the two short conditions
 ���tX � tY �X��
and ��tX � tY �X��� In fact� they can be equivalently written with literals� as
 tY �X� � �
and �tY �X� � �� respectively� This is the reason why we included this latter kind
of literal in our language
 it allows us to assume without loss of generality that every
condition contains a literal� which will turn out to be convenient in our further technical
development�

We also point out that the only �constant� we allow in comparisons is the empty set�
The results reported here are largely independent of this� For our purposes� it is su�cient
to treat �t�A� � c� simply as �t�A� � t�B��� where B is an extra tuple component with
constant value c�

� Any renaming can be naturally extended to V by making it the identity on V �
� If f is a mapping on a set S� and S� � S� then we denote the restriction of f to S� by f jS� �



��� Semantics

Whether a condition makes sense as a condition for complex object selections depends on
where in the scheme tree the selection takes place� Let W � att�R��U and r an instance
over R� If W �� R� then a tuple t over W can appear several times in r� Given such an
appearance �t of t� certain tuples appearing in r correspond to �t in a unique way� First
of all this is t itself� Furthermore� if Z is the parent of W � there is a unique tuple t over
Z� in which �t appears� More generally� this works for any ancestor Z of W in R �i�e��
W � att�Z���

Thus� an appearance �t of a tuple t over W in r corresponds to a mapping

�t 
 fZ j W � att�Z�g 	
�

ZjW�att�Z�

tup�Z�

such that
 �t�W � � t� �t�Z�� � �t�Z���Z�� if Z� � Z�� and �t�R� � r�

Example ��� Consider our example instance r �Figure 	�� r contains one tuple t� over
R� t��Z� contains two tuples� t�� � 
C 
 �� X 
 f
A 
 �	�� 
A 
 �	�g� and t�� � 
C 
 �� X 

f
A 
 �	�� 
A 
 ���g�� The tuple t � 
A 
 �	� over X is an element of t���X� as well as of
t���X�� So t appears twice in r� Let �t be the appearance of t in t��� So� �t�Z� � t��� and
�t�R� � t�� In contrast� there is no tuple over Y that naturally corresponds to �t� This
is because X �� att�Y �� �t�Y � is not de�ned�

De�nition ��� Let W � att�R��U � A selection condition over W is a condition P such
that for each free variable occurrence tZ� W � att�Z��

So� one condition can be a selection condition over several W �s�

De�nition ��� Let W � att�R��U � r be an instance over R� and �t be an appearance of
a tuple t over W in r� Let P be a selection condition over W � Then P ��t� is the boolean
value obtained by evaluating P over r� when we substitute each free variable occurrence
tZ by �t�Z��

By the above discussion� P ��t� is well�de�ned� Obviously� every selection condition has
an equivalent form where for each X there is at most one free variable over X
 indeed�
two free variables of the same sort play the same role� and hence can be identi�ed� We
�nally state


De�nition ��� Let W� r� P be as above� The selection selectW 
P ��r� is the instance over
R� obtained from r by �ltering out those appearances �t of tuples t over W in r for which
P ��t� is false�

Example ��� Let R be our example scheme �Figure ��� Then P� � �tR�Z� � tR�W � is
a selection condition over R� as well as

P� � ��tZ � tR�Z����tW � tR�W ��tZ � tW

The selection selectR
P�� can be paraphrased as �selectR
t
R�Z� � tR�W ���� Similarly� the

selection condition over W � P� � ��tY � tW �Y ��tY �B� � tW �D� can be paraphrased as



f Z W g

f C X g

f D Y g

��
f B g
��

�

Figure �
 Result of applying selectZ 
P�� to the instance of Figure ��

�tW �D� � tW �Y ��� We invite the reader to check that� for the example instance r of
Figure 	� selectW 
P���r� � r� A selection condition over Z involving a logical connective
is P��

��tZ� � tR�Z����tZ� � tZ� � ��tX� � tZ� �X����tX� � tZ� �X���tX� �A� � tX� �A��

tR and tZ� are the only free variables of P�� The selection selectZ
P�� retains only those
appearances of tuples over Z whose X�component is disjoint with that of all other tuples
belonging to the Z�value it belongs to� Using the notations of Example ��	� if we apply
this selection to the example instance r� both t�� and t�� will be deleted� the result is shown
in Figure ��

Selection conditions form a fragment of the tuple calculus for nested relations� in
particular� the formulas are all safe 
RKS��� �called strictly safe in 
AB����� This implies
that selections can be computed in the strictly safe algebra� i�e�� without the powerset
operator� for nested relations� It can be shown that the strictly safe algebra only expresses
queries computable in polynomial time�

To end this section� please note that our model of selection operations is not meant
to serve as a user�level speci�cation language� but rather as a uniform framework for
reasoning about complex object selections�

� Evaluation of a restricted class of selections

In this section� we discuss three restrictions on selection conditions� Conditions satisfying
these three conditions are called restricted� As a very simple subclass of restricted condi�
tions we introduce positive existential conditions� Finally� we show that selections using
arbitrary restricted conditions can be expressed in terms of selections using only positive
existential conditions�

De�nition ��� �of conditions� is very general� In order to be able to obtain speci�c
results� we now restrict the class of conditions as follows� Throughout� we are considering
selection conditions over a �xed W � att�R�� U �

�� No logical connectives allowed�

Note that this immediately reduces conditions to the general format of a sequence of
�possibly negated� quanti�cations� followed by a literal�



Our second restriction essentially states that the selection operation can be evaluated
in a single �scan�� So� double quanti�cations are not allowed� and neither are quanti��
cations over sets containing tuples over W � since the selection operation itself already
performs a scan on this level�

�� For each X � att�R�� U there must be at most one quanti�cation over X� i�e�� of
the form �QtX � tY �X��� Furthermore� if W � att�X�� then no such quanti�cation
can occur�

Our third and �nal restriction is slightly more technical


�� Let Q � �QtX � tY �X�� be a quanti�cation that either is universal or immedi�
ately precedes an occurrence of negation� Then the condition following Q must be a
selection condition over X �De�nition �����

This restriction has the intuition that quanti�ed negative conditions and universally
quanti�ed conditions must be �local� to this quanti�cation�

De�nition ��� A condition is called restricted if it satis�es the restrictions ���� �	� and
��� above�

The class of restricted selection operations is still su�ciently powerful to express many
selections encountered in the literature� see Section ��

Example ��� Reconsider Example ���� The conditions P�� P�� P� are restricted� P� how�
ever is clearly not� As a more subtle example� also in the context of our example scheme
of Figure �� the following selection condition over W satis�es restrictions ��� and �	� but
not ����

��tZ � tR�W ����tY � tW �Y ����tX � tZ�X��tY � tX

Indeed� tZ occurs free in the condition ��tX � tZ�X��tY � tX� but Y �� att�Z��

The motivation for considering restricted selections will be clear from Theorem ��� and
the remarks following thereafter� Of crucial importance in this respect are the positive
existential conditions


De�nition ��� A condition is called positive existential if it satis�es restrictions ��� and
�	� above� has only existential quanti�cations� and contains no negation�

Observe that positive existential conditions are restricted� since restriction ��� is voidlessly
satis�ed�

Although the expressiveness of positive existential conditions seems rather limited�
we will see in Theorem ��� that any restricted selection operation is expressible by a
program consisting only of positive existential selections� together with the two elementary
operations copy and singleton�

These last two operations are trivial restructurings� de�ned as follows


De�nition ��� Let r be an instance over R� W � att�R�� U � and Y � W �



f Z W � g

f C X g

f D Y � g

��

f B Y � g

��
f B� g
��


�
f B� g

�

Figure �
 The result of applying copy
Y 	 Y ��� singleton
Y �� to the instance of Figure ��


 Let � be a renaming such that att�Y ���att�R� � �� The operation copy
Y 	 Y ���r�
yields the instance r� over R�� where R� is obtained from R by replacing W by
W � � W �Y �� and r� is obtained from r by replacing each tuple t over W appearing
in r by the tuple t� over W � de�ned by� t�jW 
� tjW and t�jY � 
� tjY �


 The operation singleton
Y ��r� yields the instance r� over R�� where R� is obtained
from R by replacing W by W � � �W � Y � � fY g� and r� is obtained from r by
replacing each tuple t over W appearing in r by the tuple t� over W � de�ned by�
t�jW�Y 
� tjW�Y and t��Y � 
� ftjY g�

Example ��� See Figure 
� where W � � fD� Y �g and Y � � Y � fY �g�

In order to be able to remove copies� we need also the ability to project out a set Y of
attributes
 because of the particular usage we will make of such projections� we will call
them copy�removals and denote them by remove
Y ��

Example ��� Before formally stating Theorem 
��� we already informally indicate how
the copy and singleton operations are used in the simulation of arbitrary restriction selec�
tions by positive existential ones�

Consider again the example scheme R of Figure �� and consider the selection

selectW 
��tY � tW �Y ���tY �B� � tW �D��

The following equivalent program eliminates the universal quanti�cation� �with � an ap�
propriate renaming�

copy
fY g 	 fY �g��
�� denote the scheme W � fY �g by W � ��

selectY � 
�tY
�

�B�� � tW
�

�D���
selectW �
tW

�

�Y � � tW
�

�Y ����
remove
fY �g�

That is� we apply the unquanti�ed selection to a copy of each set� after which we simply
test whether the copy has remained unchanged� since this is exactly the case if the condition
is universally true in the set�



The �rst selection of the above program still contains an occurrence of negation� This
is in turn eliminated if we substitute this �rst selection in turn by the following equivalent
program� �with � an appropriate renaming�

copy
Y � 	 Y ���
singleton
Y ���
�� denote the scheme Y � � fY �g by Y � ��
�� denote the scheme fD� Y� Y �g by W �� ��

selectY � 
tY
�

�B�� � tW
��

�D���
selectY � 
tY

�

�Y �� � ���
remove
fY �g�

That is� we apply the unnegated selection operation to a singleton�copy of each tuple� after
which we can simply test each result for emptiness� since this is exactly the case if the
condition does not hold for the tuple�

Using the techniques illustrated in the above example we can show �proof ommitted�


Theorem ��	 For each restricted selection operation there is an equivalent program con�
sisting only of positive existential selections� copy� and singleton� up to copy�removal�

The length of this program is proportional to the number of universal quanti�ers and
negations that occur in the condition�

As the above example suggests� Theorem ��� has a constructive proof� which provides
us with an e�ective algorithm for expressing restricted selections by positive existential
ones� Thus� an immediate application of the theorem is in the evaluation of complex object
selections� The following remarks are in order here



 Positive existential selections� being so simple� have a great chance of �nding e�cient
implementations� In particular� if only atomic values are compared� they can be
e�ciently evaluated using slight adaptations of known techniques� such as those
described in 
Bid��� BRS��� PSS�����


 the operations copy� singleton and copy�removal are merely conceptual represen�
tations of the �ow of control in the program� and hence can be argued to have
neglectable cost�


 the number of operations produced by the algorithm is linearly proportional �with
low coe�cients� to the number of occurring negations and universal quanti�cations
in the given restricted selection condition�

The last item is of particular interest� Indeed� consider the following �extreme� exam�
ple�

Example ��
 Let P be a selection condition� having the rough format� ������ with � a
literal� Then 	 negations and � universal quanti�ers occur in P � Hence� the evaluation
algorithm of Theorem 
�� produces an equivalent program of about �� operations� How�
ever� if P is �rst rewritten in the equivalent format� ���� then we immediately obtain a
positive existential condition� i�e�� a program of � operation� As a more subtle example�
a �sub�condition of the format ��� � � � can be rewritten as � � � �� eliminating one step in
the evaluation algorithm�



Thus� the problem comes up of rewriting the selection condition into an equivalent
�restricted� one whose ����degree� i�e�� the total number of occurring negations and uni�
versal quanti�ers� is minimal� This problem can be naturally restated as follows� With
a restricted condition one can associate a string over the alphabet f�� ���g� by looking
only at the quanti�er of each quanti�cation and ignoring the literal� The problem is to
�nd an equivalent string of minimal degree� Here� two strings are equivalent if they can
be transformed to each other using the well�known De Morgan equations
 �� � ���
�� � �� and the rule �� � � �the empty string�� Note that the two De Morgan rules
can be replaced by the single equation ��� � ��

The following procedure minimize�P �� with P a restricted selection condition� solves
the problem� We use the following terminology
 bringing a string in normal form w�r�t�
a certain rewrite rule means repeatedly and exhaustively applying the rule to the string�

�� Bring P in normal form w�r�t� � 	 ���� and call the result P��

�� Bring P� in normal form w�r�t� �� 	 �� and call the result P��

�� Bring P� in normal form w�r�t ��� 	 �� applying the rule from left to right� The
result is minimize�P ��

Clearly� minimize runs in time linear in the length of P � We can show
 �proof omited�

Proposition ��� minimize�P � is of minimal ����degree�

Of course� one must also check that minimize�P � is still restricted� It can be shown that
this is indeed the case� provided that P does not contain �unnecessary� quanti�cations�
but we omit the details here�

Example ���� Consider the string P � ���� Then P� � �������� and minimize�P � �
P � P is indeed of minimal degree itself� If� however� in Step � we would not start at the
left and rewrite P� into ������ we obtain a string of non�minimal degree� one higher than
the degree of P �

We end this section with a remark on conjunctions of selection conditions� In the
condition of a restricted selection� logical connectives� such as conjunction� are disal�
lowed �restriction ����� We can however slightly relax this restriction
 consider a se�
lection operation selectW 
P� � P��� where P�� P� are both restricted selection conditions
over W � Then obviously� this selection can be alternatively written as the composition
selectW 
P��� selectW 
P�� and we can apply Theorem ��� to both parts�

In fact� the order of the above composition is irrelevant for the eventual result
 we
could do the same as well with selectW 
P��� selectW 
P��� This is clearly due to the fact
that both selections apply over the sameW � Indeed� in general� two �restricted� selections
selectWi


Pi�� i � �� �� do not necessarily commute� In the next section we look more closely
into this problem� and its natural connection to the problem of optimizing complex object
selections�



� Commutation and optimization of selection opera�

tions

In this section� we consider the problem of commutation of selection operations� First we
give a decision procedure for commutation of two positive existential selections� Then�
exploiting Theorem ���� we look how this commutation criterion can be used in the prob�
lem of optimizing multiple selection operations� Throughout we only consider restricted
selection conditions�

��� Commutation of positive existential selections

Unlike the case of �at relational databases� in nested databases� the particular order in
which a series of selection operations is applied can a�ect the �nal result� The reason for
this is of course that selections can apply at arbitrary places in the scheme tree� which
results in a complex interaction�

Example ��� Consider our example scheme R of Figure �� and the instance r over R of
Figure 	� r contains one tuple� t� t�W � in turn also contains one tuple� t� � 
D 
 ��� Y 

f
B 
 ���� 
B 
 ���g��

Now consider the two selection operations S�� S��

S� � selectW 
��tY � tW �Y ��tY �B� � tW �D��

S� � selectY 
��t
Z � tR�Z����tX � tZ�X��tY �B� � tX�A��

Let us compute both S��S��r�� and S��S��r��� Clearly� S� leaves r unchanged� Applying
S� to S��r� � r results in the removal of 
B 
 ��� from t��Y �� whence applying S� to S��r�
yields an instance r� containing only one tuple t�� with t��Z� � t�Z� and t��W � � �� We
observe that S��S��r�� �� S��S��r��� Hence� S� and S� do not commute for all possible
instances�

Consider on the other hand the selection S� � selectY 
t
Y �B� � tW �D��� Then it can

be seen that S� and S� always commute�

In the above example� we found combinations of selections that did commute and
others that did not� As pointed out in the Introduction� having a criterion for commuta�
tion to our disposal is of critical importance in the optimization of selections� It indeed
turns out that it is possible to decide� given two positive existential selection operations�
whether or not they commute in general�

In order to be able to state our commutation criterion in an elegant way� we simplify
the format of literals a little� Literals of the form tX�A� � � are treated as if of the form
tX�A� � tX�B�� where B �� A is an extra attribute with constant value �� Further� literals
of the form tX jZ � t�Y jW � where Z�W are not singletons� are reduced to literals involving
only single attributes by applying the restructuring


copy
Z 	 Z��� copy 
W 	W ���
singleton
Z��� singleton
W ���

So� the subtuples over Z and W are copied in a singleton complex value over Z� and W ��
respectively� and we can now use the simple literal t�Z�� � t��W ���



Now let Si � selectWi

Pi�� i � �� �� be two positive existential selections� As a result

of the above discussion� we may assume without loss of generality that the literal of Pi
is of the form tXi�Ai� � t�Yi�Bi�� To exclude singular cases� we furthermore assume that
Ai �� Bi�

De�nition ��� Si is said to in�uence Sj if�

�Wi � Aj orWi � Bj� andWj �� att�Wi�

where� for two attributes Z�Z � � att�R�� we write Z � Z � if Z and Z � lie on a common
path in R�

Intuitively� Si in�uences Sj if the set of Aj� and Bj�values from perspective Wj may
be altered due to deletions at perspective Wi� The extra condition that Wj �� att�Wi�
generalizes the situation in �at relational databases �where necessarily Wi � Wj � R�� if
Wj � att�Wi�� deletions at level Wi also delete tuples at level Wj� so in that case Si does
not in�uence Sj� but �cooperates� with it �though in a rather crude manner��

More precisely� we have established �proof ommitted�


Theorem ��� If fA�� B�g � fA�� B�g� then S� and S� always commute� Otherwise� S�

and S� always commute if and only if they do not in�uence each other�

Corollary ��� Given two positive existential selection conditions� it is decidable whether
or not they always commute� in time polynomial in the size of the scheme R�

Example ��� Reconsider the selections S�� S�� S� of Example ���� We can now use The�
orem ��� to verify commutation�


 S� and S� do not commute� since S� in�uences S�� Indeed� W��� W � �� att�W���
Y �� and Y � A��� B��


 S� and S� commute� since fA��� B�� B��� D�g � fA��� D�� B��� B�g�


 Finally� S� and S� also commute� since W� �W� � Y � and Y � att�Y �� hence� it is
impossible for S� and S� to in�uence each other� Actually� any two selections S�� S�

for which W� � W� commute� for the same reason�

��� Towards optimizing complex object selections

We now enlarge our focus from the problem of commutation of positive existential selec�
tions to the more general problem of commutation and optimization of restricted selection
operations�

A �rst observation is that Theorem ��� does not straightforwardly extend to the general
case of restricted selection operations� as illustrated next


Example ��� In Example ��� we used Theorem ��� to deduce that the selections S�� S� of
Example ��� commute� since fA�� B�g � fA�� B�g� Consider however the negated version
of S�� S� � selectY 
�tY �B� � tW �D��� Clearly S� is not positive existential� and although
fA�� B�g � fA�� B�g� S� and S� do not always commute� as is readily seen�



Actually� a criterion for commutation of general selection operations would be of lesser
interest to optimization� Indeed� as the operations become more complex� simple �global�
strategies of choosing an execution order might be too weak� Instead� we will propose
a strategy in which we descend into the complex structure of the selections� down to
the level of single positive existential ones� and apply Theorem ��� there� This will be
possible with the aid of Theorem ���� Thus� let Si � selectWi


Pi�� � � i � n� of the form as
above� be n restricted selections� The problem is to optimize the program S�� � � � �Sn� By
Theorem ���� each Si can be expressed as a sequence �i of positive existential selections�
together with copy� singleton and copy�removal operations�

Our approach is as follows� First� we apply all copies and singletons occurring in the
�i� beforehand� and independently� i�e�� care is taken that all corresponding renamings
do not coincide� We have thus obtained an enlarged scheme R�� which equals R �with
copies��� Each Si is now expressed as the subsequence ��i � consisting of all �positive
existential� selection operations in �i� In analogy with the problem of optimizing selections
in �at relational databases� we state the problem of optimizing the series of complex object
selections S�� � � � �Sn as follows
 Merge the sequences ��i in such a way that the most
optimal evaluation sequence is obtained�

As in standard algorithms for optimizing selections in relational databases 
Ull����
strategies for doing this will typically rely on information about storage structure� such
as indexes� or distribution of the data� However� a considerable complication� in contrast
with the situation in �at relational databases� is that here we have to deal with the issue
of commutation
 an optimization is correct only if the obtained merging always yields
the same result as the original program ��� � � � � � �

�
n � Here� Theorem ��� comes in� The

crucial observation is
 every merging can be obtained by starting from the concatenation
of the original sequences� ��� � � � � � �

�
n � and then �pushing� the positive existential selection

operations of ��i through those of ��j � j � i� At each push� we can e�ectively check whether
or not the two selections may be e�ectively switched without altering the �nal result of
the program� By �rst minimizing the length of the �k�s� as explained in Section �� we can
signi�cantly reduce the search space� i�e�� the number of possible mergings to consider�

Example ��	 As a simple example� recall the selections S�� S� of Examples ��� and ����
We have for ��� �

S��� selectY � 
tY
�

�B�� � tW
�

�D���
S��� selectY �
tY

�

�Y �� � tY
�

�Y ����

Here� Y ��W � correspond to Y�W in the scheme R� with copies� ��� � are appropriate
renamings�

R� � fZ�W � � fD� Y � � fB� Y �� Y �ggg

where Y � serves as �tag� for the empty set �so S�� really expresses tY
�

�Y �� � �� as
explained in Section ����� Since S� is positive existential� ��� is S� itself� slightly adapted
to work on instances over R��

S��� selectW �
��tY
�

� tW
�

�Y ���tW
�

�D� � tY
�

�B��

� Thus� we delay the copy�removals until the end� in order to make this work� the selection conditions
have to be slightly adapted� We do not go into detail about this here� Example ��� gives a simple
illustration�



Now by Theorem ���� S�� and S�� do not commute� however S�� and S�� do� Thus� for
evaluating S��S� we have no choice but to use the unmerged sequence composition ��� � �

�
� �

However� for evaluating S��S� we can choose between S���S���S�� and S���S���S���

� Discussion

In the framework of a general calculus�based theory for complex object selection op�
erations� we gave some initial results concerning the evaluation and optimization of a
restricted class of �single�pass� operations�

Other rather general systems of complex object selections have been proposed in the
literature� The Verso super selection was introduced in 
Bid���� As in our approach�
general logic formulas are used there as selection conditions� however� Verso selections
work only on the top level� Actually� the focus of 
Bid��� is more on succinctly express�
ing relational tableau queries through Verso super selection� this is possible since Verso
databases correspond to universal relation databases�

In 
AB��� BCD��� BK�	� SS��� �among others�� a more algebraic approach is taken
in de�ning powerful selection operations� by allowing other algebra operations to appear
in selection conditions� as in �select 
�
C��Z���
D��W � � ���� The optimization problem
may then be attacked by �nding algebraic equivalences� stating how the various opera�
tions commute and interact� Results in this direction can be found in 
Col��� Sch���� In
comparison� our approach focuses more speci�cally on the particular structure of declara�
tive selection operations� Thus� we obtain rather detailed results� which may also be more
readily applicable to other logic�based environments� like rule�based systems� Moreover�
our model of selections is not tied to a particular query speci�cation language� but is also
translatable to algebraic formalisms� So� both the algebraic as our methodology can be
used complementary�

And conversely� the restricted class of selections we considered in Sections � and �
is able to capture most selection operations usually encountered in the literature �and
many others too�� A typical representative of these are the extended selections de�ned in

SS���� Their corresponding conditions are formulas built from comparisons based on ��
�� � �including �dynamic constants��� negation� logical connectives� and a limited form of
existential quanti�cation �due to the recursive use of projection and selection within the
conditions�� It can be shown �cfr� Example ��� and the comments at the end of Section �
and the present section� that all such conditions are restricted in our sense� or can be
equivalently expressed by restricted ones�

An obvious direction to extend our results is to extend the class of restricted selection
conditions� If one still wants an analogue of Theorem ���� it may then be necessary to
extend the set of �auxiliary� operations� in our case the copy and singleton operations�
A simple example of this idea would be to add disjunction through selections of the form
selectW 
P� or P��� where P�� P� are restricted� One can express this operation by the
program


copy
fWg 	 fW �g�� copy
fWg 	 fW �g��
selectW�
P �

� �� selectW� 
P �
� ��

union
W � �W � 	 W �



where the union construct is an additional auxiliary operation� replacing eachW �instance
by the union of its corresponding copies�
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