The Semijoin Algebra

Jan Van den Bussche Hasselt University

joint work with Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz

The relational algebra, RA

Projection $\pi_{A,B,C}$

• allow repetitions: $\pi_{A,A/B}$

Selection $\sigma_{A=B}$, $\sigma_{A<B}$

Renaming ρ_R

Union, intersection, difference

Equijoin
$$R \underset{R.C=S.D}{\bowtie} S$$

• special cases: natural join, cartesian product

RA expressions

Build up expressions for complex queries

Likes(drinker, beer), Serves(bar, beer), Visits(drinker, bar)

Losers:

$$\pi_{V.d}(V) - \pi_{V.d}\sigma_{V.d=L.d}(V \bowtie S \bowtie L)$$

Codd's theorem: RA is equivalent to first-order logic (relational calculus)

The semijoin algebra, SA

Equi-semijoin:

$$R \underset{\theta}{\ltimes} S := \{t \in R \mid \exists s \in S : \theta(t, s) \text{ is true} \}$$
$$= \pi_R(R \underset{\theta}{\bowtie} S)$$

with $\boldsymbol{\theta}$ a conjunction of equalities

SA is RA where we replace \bowtie by \ltimes

Visitors of lousy bars:

$$V \ltimes (\pi_{bar}(S) - \pi_{bar}(S \ltimes L))$$

The guarded fragment of first-order logic, GF

[Andréka, van Benthem, Németi]

Quantifiers are restricted to the following form:

 $\exists \overline{y}(lpha(\overline{x},\overline{y}) \land \psi(\overline{x},\overline{y})) \ \forall \overline{y}(lpha(\overline{x},\overline{y})
ightarrow \psi(\overline{x},\overline{y}))$

- α atomic formula (single relation)
- \bullet all free variables of ψ must occur in α

Visitors of lousy bars:

 $\{d, ba \mid V(d, ba) \land \neg \exists be(S(ba, be) \land \exists d L(d, be))\}$

Originally introduced in the context of modal, algebraic logic

Codd theorem for SA

SA is equivalent to GF

From SA to GF:

$$V \ltimes (\pi_{bar}(S) - \pi_{bar}(S \ltimes L))$$

$$V \ltimes (\pi_{bar}(S) - \pi_{bar}\{ba, be \mid S(ba, be) \land \exists d L(d, be)\})$$

$$V \ltimes (\pi_{bar}(S) - \{ba \mid \exists be(S(ba, be) \land \exists d L(d, be))\})$$

$$V \ltimes (\{ba \mid \exists be S(ba, be)\} - \{ba \mid \exists be(S(ba, be) \land \exists d L(d, be))\})$$

$$V \ltimes (\{ba \mid \exists be S(ba, be) \land \neg \exists be(S(ba, be) \land \exists d L(d, be))\})$$

$$\{d, ba \mid V(d, ba) \land \exists be S(ba, be) \land \neg \exists be(S(ba, be) \land \exists d L(d, be))\})$$

From GF to SA:

$$\{d, ba \mid V(d, ba) \land \neg \exists be(S(ba, be) \land \exists d L(d, be))\}$$

$$\{d, ba \mid V(d, ba) \land \neg \exists be(S(ba, be) \land be \in \pi_{be}(L))\}$$

$$\{d, ba \mid V(d, ba) \land \neg \exists be((ba, be) \in S \ltimes \pi_{be}(L))\}$$

$$\{d, ba \mid V(d, ba) \land \neg (ba \in \pi_{ba}(S \ltimes \pi_{be}(L)))\}$$

$$\{d, ba \mid V(d, ba) \land ba \in (\pi_{ba}(S) - \pi_{ba}(S \ltimes \pi_{be}(L)))\}$$

$$V \ltimes (\pi_{ba}(S) - \pi_{ba}(S \ltimes \pi_{be}(L)))$$

Consequences of SA = GF

Equivalance extends to fixpoint logic: $\mu SA = \mu GF$

Ex: Database relations R(A, B) and T(B), relation variable X(A, B):

$$\mathsf{LFP} X. (R \ltimes T) \cup (R \ltimes X) \\ R.B = X.A$$

SA has the finite model property

Our translation $SA \rightarrow GF$ is exponential; still:

 Satisfiability of SA-expressions is decidable (complete for EXPTIME)

Polynomial translation $SA \rightarrow GF$?

Guarded bisimilarity

GF is invariant under guarded bisimilarity, \simeq_g

Databases A and B, same schema, tuple \overline{a} in A, tuple \overline{b} in B

Def. $(A, \overline{a}) \simeq_g (B, \overline{b})$ if player II can keep up forever in the following game:

1. initial game position is (A, \overline{a}) and (B, \overline{b})

2. player I chooses a tuple in one of the databases, say A

3. player II responds in other database \Rightarrow (A, \bar{a}') and (B, \bar{b}')

- \bar{a}' and \bar{b}' must satisfy precisely same relations, predicates
- if \bar{a} and \bar{a}' agree in *i*th position, then \bar{b} and \bar{b}' must too
- 4. if player II cannot respond correctly he looses; otherwise repeat from new position (A, \overline{a}') and (B, \overline{b}') .

Invariance property

If $(A, \overline{a}) \simeq_g (B, \overline{b})$ then for all SA-expressions E: $\overline{a} \in E(A) \quad \Leftrightarrow \quad \overline{b} \in E(B)$

Use to prove SA-inexpressibility of certain queries

Ex. single relation R:

"R is transitive" not SA-expressible

Division

$$R(A,B) \div S(C) := \{a \mid \forall b \in S : (a,b) \in R\}$$

RA-expressible, but not SA:

Linear query processing

Linear RA expression: on every database, every intermediate result has linear size

linear: $(\sigma R \cup \pi S) - T$

not linear: $R \cap (S \bowtie T)$

linear:
$$R \underset{R.A=S.B}{\bowtie} \pi_B(S) = R \underset{R.A=S.B}{\bowtie} S$$

Every query expressible by a linear RA expression is already expressible by a SA expression

Note that SA-expressions are always linear

Proof idea

For $E_1 \bowtie_{\theta} E_2$ to be linear, every joining tuple pair (\bar{a}, \bar{b}) must satisfy $\forall i \exists j : a_i = b_j$ or vice versa

- if not, we could "blow up" the database by duplicating the "free" values in \bar{a} and \bar{b}
- blown up database is guarded bisimilar
- since E_1 and E_2 can be assumed linear by induction, they will output the duplicate tuples \Rightarrow quadratic join size

Such joins can be expressed in SA

Corollaries

Every RA-expression is either linear, or has a subexpression that has quadratic output size

Every RA-expression either produces quadratic intermediate results, or is equivalent to an SA-expression

Set joins

We now know that division is not expressible in linear RA

Division is a restricted kind of *set join*

Def. Let P(X, Y) be a predicate about sets. For relations R(A, B) and S(C, D):

$$R \underset{P}{\bowtie}^{\mathsf{set}} S := \{a, c \mid P(\{b : R(a, b)\}, \{d : S(c, d)\})\}$$

subset join: $\bowtie_{X\subseteq Y}^{set}$ set-equality join: $\bowtie_{X=Y}^{set}$ standard equijoin: $\bowtie_{X\cap Y\neq \emptyset}^{set}$

If the emptiness query for \bowtie_P^{set} can be expressed in linear RA, then P must be monotone

Sidenote: Grouping and aggregation

It is well known that division can be linearly expressed using counting:

$$R(A,B) \div S(C) = \pi_A(\gamma_{A,\operatorname{count}(B)}(R \ltimes_{B=C} S) \underset{\operatorname{count}(B)=\operatorname{count}(C)}{\ltimes} \gamma_{\operatorname{count}(C)}(S))$$

Theta-equijoins

 \ltimes_{θ} with θ more than just conjunction of equalities?

Ex. " $R(A, B) \models A \rightarrow B$ ":

$$R \underset{\substack{R.A=S.A\\R.B \neq S.B}}{\ltimes} \rho_S(R)$$

Satisfiability of SA^{\neq} is undecidable

Do our linearity results extend to SA^{\neq} ? and to $SA^{<}$?

Ω -guarded bisimilarity

- $\Omega,$ signature of predicates that can be used in θ
- SA⁼: if \bar{a} and \bar{a}' agree in *i*th position, then \bar{b} and \bar{b}' must too

SA $^{\Omega}$: (\bar{a}, \bar{a}') and (\bar{b}, \bar{b}') must satisfy precisely the same predicates from Ω

Conclusion

SA = GF but SA^{Ω} is more powerful

SA = linear RA

Division, set joins not linear RA

• theoretical explanation why these queries are hard on the query processor

Many open problems remain