The Semijoin Algebra

Jan Van den Bussche
Hasselt University

joint work with Dirk Leinders, Maarten Marx, Jerzy TyszKiewicz

The relational algebra, RA
Projection w4 B ¢
e allow repetitions: w4 4/p
Selection oc4—p, ca<«B
Renaming pgr
Union, intersection, difference

Equijoin R X S
R.A=S.B
R.C=S5.D

e Special cases: natural join, cartesian product

RA expressions
Build up expressions for complex queries
Likes(drinker, beer), Serves(bar, beer), Visits(drinker, bar)

Losers:

Ty a(V) =y goyag=r.qa(V XS X L)

Codd’s theorem: RA is equivalent to first-order logic (relational
calculus)

The semijoin algebra, SA

Equi-semijoin:
Rx S:={te R|3se S:0(ts) is true}
0
= WR(RD;S)

with 8 a conjunction of equalities
SA is RA where we replace X by X

Visitors of lousy bars:

V X (Wbar(s) — Wbar(s X L))

The guarded fragment of first-order logic, GF

[Andréka, van Benthem, Németi]

Quantifiers are restricted to the following form:

Fy(az, y) Np(Z,y))
Vy(a(z,y) — ¢¥(z,9))

e o atomic formula (single relation)

e all free variables of ¢y must occur in «

Visitors of lousy bars:
{d,ba | V(d,ba) A —=3be(S(ba, be) A Id L(d, be))}

Originally introduced in the context of modal, algebraic logic

Codd theorem for SA

SA is equivalent to GF

From SA to GF:

VX (0 (S) = e (S X L))
V X (1p,,-(S) — wpgr{ba, be | S(ba,be) A Id L(d, be)})
V X (mp,,-(S) — {ba | Fbe(S(ba,be) A Id L(d,be))})
V x ({ba | Fbe S(ba,be)} — {ba | Fbe(S(ba,be) N Id L(d, be))})
V x ({ba | Fbe S(ba, be) N =Tbe(S(ba,be) A Ad L(d, be))})
{d,ba | V(d, ba) A Fbe S(ba, be) N —3be(S(ba,be) N Id L(d,be))})

From GF to SA:

{d,ba | V(d, ba) A =3Fbe(S(ba, be) A Id L(d, be))}
{d,ba | V(d,ba) A =3Fbe(S(ba, be) A be € (L))}
{d,ba | V(d,ba) A =Fbe((ba,be) € S X mp.(L))}
{d,ba | V(d,ba) A =(ba € mp,(S X mp.(L))}
{d,ba | V(d,ba) Aba € (mpq(S) — mpa (S X mpe(L))}
VX (1o (S) — o (S X mpe (L))

Consequences of SA = GF
Equivalance extends to fixpoint logic: uSA = uGF

Ex: Database relations R(A, B) and T(B),
relation variable X (A, B):

LFPX.(RxT)U(R x X)
R.B=X.A

SA has the finite model property
Our translation SA — GF is exponential; still:

e Satisfiability of SA-expressions is decidable
(complete for EXPTIME)

Polynomial translation SA — GF?

Guarded bisimilarity
GF is invariant under guarded bisimilarity, ~g4
Databases A and B, same schema, tuple a in A, tuple b in B

Def. (A,a) ~4 (B,b) if player II can keep up forever in the
following game:

1. initial game position is (4,a) and (B,b)
2. player I chooses a tuple in one of the databases, say A

3. player II responds in other database = (A4,a’) and (B,¥)

e a’ and b must satisfy precisely same relations, predicates

e if a and a’ agree in ith position, then b and ¥ must too

4. if player II cannot respond correctly he looses;
otherwise repeat from new position (A4,a’) and (B,V).

Invariance property

If (A,a) ~4 (B,b) then for all SA-expressions E:

acE(A) < beE(B)

Use to prove SA-inexpressibility of certain queries

EX. single relation R:

A B
1 a 2 1—=a 2 N “R is transitive” not
>< SA-expressible
3 b 4 3—=b 4

~_ 7~ 7

Division
R(A,B) - S(C) :={a|Vbe S: (a,b) € R}
RA-expressible, but not SA:

A
R

0 N W

© 00 Nl N

00 ~N 00 N

NNDBER B

W WNNDNNE= =
O ~N O 00 o0 N

Linear query processing

Linear RA expression: on every database, every intermediate
result has linear size

linear: (cRU=®S) —T
not linear: RN (S XT)

linear: R X 7a5(S) =R K S
R.A=S.B R.A=S.B

Every query expressible by a linear RA expression is
already expressible by a SA expression

Note that SA-expressions are always linear

Proof idea

For E1 Xy E> to be linear, every joining tuple pair (a,b) must
satisfy Vidj : a; = b; or vice versa

e if not, we could “blow up’” the database by duplicating the
“free” values in a and b

e blown up database is guarded bisimilar

e since Eq and E> can be assumed linear by induction, they
will output the duplicate tuples = quadratic join size

Such joins can be expressed in SA

Corollaries

Every RA-expression is either linear, or has a subexpression that
has quadratic output size

Every RA-expression either produces quadratic intermediate re-
sults, or is equivalent to an SA-expression

Set joins
We now know that division is not expressible in linear RA

Division is a restricted kind of set join

Def. Let P(X,Y) be a predicate about sets.
For relations R(A, B) and S(C, D):

R»}gset S :={a,c| P({b: R(a,b)},{d: S(c,d)})}

subset join: MSEL,, set-equality join: XSEL ..
standard equijoin: Miertw#q)

If the emptiness query for Nsﬁt can be expressed in
linear RA, then P must be monotone

Sidenote: Grouping and aggregation

It is well known that division can be linearly expressed using
counting:
R(A,B) = 5(C) =

WA(WA’COUM(B)(R X p=C 5) count(B)zcount(C) 7count(0)(s))

T heta-equijoins
Xg With 6 more than just conjunction of equalities?

Ex. “R(A,B) = A — B":

R

R
") ps(R)
R

S.
S.B

X
=
Satisfiability of SAZ is undecidable

Do our linearity results extend to SA7? and to SA<?

C2-guarded bisimilarity
€2, signature of predicates that can be used in 0
SA=: if a and @’ agree in ith position, then b and ¥ must too

SAS2: (@,a’) and (b,0)) must satisfy precisely the same predicates
from 2

Conclusion
SA = GF but SA%? is more powerful
SA = linear RA
Division, set joins not linear RA

e theoretical explanation why these queries are hard on the
query processor

Many open problems remain

