
The Semijoin Algebra

Jan Van den Bussche

Hasselt University

joint work with Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz

The relational algebra, RA

Projection πA,B,C

• allow repetitions: πA,A/B

Selection σA=B, σA<B

Renaming ρR

Union, intersection, difference

Equijoin R �
R.A=S.B
R.C=S.D

S

• special cases: natural join, cartesian product

RA expressions

Build up expressions for complex queries

Likes(drinker,beer), Serves(bar,beer), Visits(drinker,bar)

Losers:

πV.d(V) − πV.dσV.d=L.d(V � S � L)

Codd’s theorem: RA is equivalent to first-order logic (relational

calculus)

The semijoin algebra, SA

Equi-semijoin:

R �

θ
S := {t ∈ R | ∃s ∈ S : θ(t, s) is true}

= πR(R �
θ

S)

with θ a conjunction of equalities

SA is RA where we replace � by �

Visitors of lousy bars:

V � (πbar(S) − πbar(S � L))

The guarded fragment of first-order logic, GF

[Andréka, van Benthem, Németi]

Quantifiers are restricted to the following form:

∃ȳ(α(x̄, ȳ) ∧ ψ(x̄, ȳ))

∀ȳ(α(x̄, ȳ) → ψ(x̄, ȳ))

• α atomic formula (single relation)

• all free variables of ψ must occur in α

Visitors of lousy bars:

{d, ba | V (d, ba) ∧ ¬∃be(S(ba, be) ∧ ∃d L(d, be))}

Originally introduced in the context of modal, algebraic logic

Codd theorem for SA

SA is equivalent to GF

From SA to GF:

V � (πbar(S) − πbar(S � L))

V � (πbar(S) − πbar{ba, be | S(ba, be) ∧ ∃d L(d, be)})
V � (πbar(S) − {ba | ∃be(S(ba, be) ∧ ∃d L(d, be))})

V � ({ba | ∃be S(ba, be)} − {ba | ∃be(S(ba, be) ∧ ∃d L(d, be))})
V � ({ba | ∃be S(ba, be) ∧ ¬∃be(S(ba, be) ∧ ∃d L(d, be))})

{d, ba | V (d, ba) ∧ ∃be S(ba, be) ∧ ¬∃be(S(ba, be) ∧ ∃d L(d, be))})

From GF to SA:

{d, ba | V (d, ba) ∧ ¬∃be(S(ba, be) ∧ ∃d L(d, be))}
{d, ba | V (d, ba) ∧ ¬∃be(S(ba, be) ∧ be ∈ πbe(L))}
{d, ba | V (d, ba) ∧ ¬∃be((ba, be) ∈ S � πbe(L))}
{d, ba | V (d, ba) ∧ ¬(ba ∈ πba(S � πbe(L))}

{d, ba | V (d, ba) ∧ ba ∈ (πba(S) − πba(S � πbe(L))}
V � (πba(S) − πba(S � πbe(L))

Consequences of SA = GF

Equivalance extends to fixpoint logic: µSA = µGF

Ex: Database relations R(A, B) and T(B),
relation variable X(A, B):

LFPX. (R � T) ∪ (R �

R.B=X.A
X)

SA has the finite model property

Our translation SA → GF is exponential; still:

• Satisfiability of SA-expressions is decidable
(complete for EXPTIME)

Polynomial translation SA → GF?

Guarded bisimilarity

GF is invariant under guarded bisimilarity, �g

Databases A and B, same schema, tuple ā in A, tuple b̄ in B

Def. (A, ā) �g (B, b̄) if player II can keep up forever in the

following game:

1. initial game position is (A, ā) and (B, b̄)

2. player I chooses a tuple in one of the databases, say A

3. player II responds in other database ⇒ (A, ā′) and (B, b̄′)

• ā′ and b̄′ must satisfy precisely same relations, predicates

• if ā and ā′ agree in ith position, then b̄ and b̄′ must too

4. if player II cannot respond correctly he looses;

otherwise repeat from new position (A, ā′) and (B, b̄′).

Invariance property

If (A, ā) �g (B, b̄) then for all SA-expressions E:

ā ∈ E(A) ⇔ b̄ ∈ E(B)

Use to prove SA-inexpressibility of certain queries

Ex. single relation R:

A

2

3 b 4

1 a

B

4

1 a 2

3 b

⇒ “R is transitive” not

SA-expressible

Division

R(A, B) ÷ S(C) := {a | ∀b ∈ S : (a, b) ∈ R}

RA-expressible, but not SA:

A B

R
1 7
1 8
2 7
2 8

S
7
8

R
1 7
1 8
2 8
2 9
3 7
3 9

S
7
8
9

Linear query processing

Linear RA expression: on every database, every intermediate
result has linear size

linear: (σR ∪ πS) − T

not linear: R ∩ (S � T)

linear: R �
R.A=S.B

πB(S) = R �

R.A=S.B
S

Every query expressible by a linear RA expression is

already expressible by a SA expression

Note that SA-expressions are always linear

Proof idea

For E1 �θ E2 to be linear, every joining tuple pair (ā, b̄) must

satisfy ∀i∃j : ai = bj or vice versa

• if not, we could “blow up” the database by duplicating the

“free” values in ā and b̄

• blown up database is guarded bisimilar

• since E1 and E2 can be assumed linear by induction, they

will output the duplicate tuples ⇒ quadratic join size

Such joins can be expressed in SA

Corollaries

Every RA-expression is either linear, or has a subexpression that

has quadratic output size

Every RA-expression either produces quadratic intermediate re-

sults, or is equivalent to an SA-expression

Set joins

We now know that division is not expressible in linear RA

Division is a restricted kind of set join

Def. Let P(X, Y) be a predicate about sets.
For relations R(A, B) and S(C, D):

R �
P

set S := {a, c | P({b : R(a, b)}, {d : S(c, d)})}

subset join: �set
X⊆Y set-equality join: �set

X=Y

standard equijoin: �set
X∩Y =∅

If the emptiness query for �set
P can be expressed in

linear RA, then P must be monotone

Sidenote: Grouping and aggregation

It is well known that division can be linearly expressed using

counting:

R(A, B) ÷ S(C) =

πA(γA,count(B)(R �B=C S) �

count(B)=count(C)
γcount(C)(S))

Theta-equijoins

�θ with θ more than just conjunction of equalities?

Ex. “R(A, B) |= A → B”:

R �

R.A=S.A
R.B =S.B

ρS(R)

Satisfiability of SA= is undecidable

Do our linearity results extend to SA=? and to SA<?

Ω-guarded bisimilarity

Ω, signature of predicates that can be used in θ

SA=: if ā and ā′ agree in ith position, then b̄ and b̄′ must too

SAΩ: (ā, ā′) and (̄b, b̄′) must satisfy precisely the same predicates

from Ω

Conclusion

SA = GF but SAΩ is more powerful

SA = linearRA

Division, set joins not linear RA

• theoretical explanation why these queries are hard on the

query processor

Many open problems remain

