The Semijoin Algebra

Jan Van den Bussche
Hasselt University

joint work with Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz

The relational algebra, RA

Projection $\pi_{A, B, C}$

- allow repetitions: $\pi_{A, A / B}$

Selection $\sigma_{A=B}, \sigma_{A<B}$

Renaming ρ_{R}

Union, intersection, difference

Equijoin $R \underset{\substack{R . A \\ R . C=S . B}}{\bowtie} S$

- special cases: natural join, cartesian product

RA expressions

Build up expressions for complex queries

Likes(drinker, beer), Serves(bar, beer), Visits(drinker, bar)

Losers:

$$
\pi_{V . d}(V)-\pi_{V . d} \sigma_{V . d=L . d}(V \bowtie S \bowtie L)
$$

Codd's theorem: RA is equivalent to first-order logic (relational calculus)

The semijoin algebra, SA

Equi-semijoin:

$$
\begin{aligned}
R \underset{\theta}{\ltimes} S & :=\{t \in R \mid \exists s \in S: \theta(t, s) \text { is true }\} \\
& =\pi_{R}(R \underset{\theta}{\bowtie} S)
\end{aligned}
$$

with θ a conjunction of equalities

SA is RA where we replace \bowtie by \ltimes

Visitors of lousy bars:

$$
V \ltimes\left(\pi_{b a r}(S)-\pi_{b a r}(S \ltimes L)\right)
$$

The guarded fragment of first-order logic, GF
[Andréka, van Benthem, Németi]
Quantifiers are restricted to the following form:

$$
\begin{gathered}
\exists \bar{y}(\alpha(\bar{x}, \bar{y}) \wedge \psi(\bar{x}, \bar{y})) \\
\forall \bar{y}(\alpha(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}, \bar{y}))
\end{gathered}
$$

- α atomic formula (single relation)
- all free variables of ψ must occur in α

Visitors of lousy bars:

$$
\{d, b a \mid V(d, b a) \wedge \neg \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\}
$$

Originally introduced in the context of modal, algebraic logic

Codd theorem for SA

SA is equivalent to GF

From SA to GF:

$$
\begin{gathered}
V \ltimes\left(\pi_{b a r}(S)-\pi_{b a r}(S \ltimes L)\right) \\
V \ltimes\left(\pi_{b a r}(S)-\pi_{b a r}\{b a, b e \mid S(b a, b e) \wedge \exists d L(d, b e)\}\right) \\
V \ltimes\left(\pi_{b a r}(S)-\{b a \mid \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\}\right) \\
V \ltimes(\{b a \mid \exists b e S(b a, b e)\}-\{b a \mid \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\}) \\
V \ltimes(\{b a \mid \exists b e S(b a, b e) \wedge \neg \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\}) \\
\{d, b a \mid V(d, b a) \wedge \exists b e S(b a, b e) \wedge \neg \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\})
\end{gathered}
$$

From GF to SA:

$$
\begin{gathered}
\{d, b a \mid V(d, b a) \wedge \neg \exists b e(S(b a, b e) \wedge \exists d L(d, b e))\} \\
\left\{d, b a \mid V(d, b a) \wedge \neg \exists b e\left(S(b a, b e) \wedge b e \in \pi_{b e}(L)\right)\right\} \\
\left\{d, b a \mid V(d, b a) \wedge \neg \exists b e\left((b a, b e) \in S \ltimes \pi_{b e}(L)\right)\right\} \\
\left\{d, b a \mid V(d, b a) \wedge \neg\left(b a \in \pi_{b a}\left(S \ltimes \pi_{b e}(L)\right)\right\}\right. \\
\left\{d, b a \mid V(d, b a) \wedge b a \in\left(\pi_{b a}(S)-\pi_{b a}\left(S \ltimes \pi_{b e}(L)\right)\right\}\right. \\
V \ltimes\left(\pi_{b a}(S)-\pi_{b a}\left(S \ltimes \pi_{b e}(L)\right)\right.
\end{gathered}
$$

Consequences of $\mathrm{SA}=\mathrm{GF}$

Equivalance extends to fixpoint logic: $\mu \mathrm{SA}=\mu \mathrm{GF}$
Ex: Database relations $R(A, B)$ and $T(B)$, relation variable $X(A, B)$:

$$
\text { LFP } X .(R \ltimes T) \cup(R \underset{R . B=X . A}{\ltimes} X)
$$

SA has the finite model property
Our translation SA \rightarrow GF is exponential; still:

- Satisfiability of SA-expressions is decidable (complete for EXPTIME)

Polynomial translation $S A \rightarrow$ GF?

Guarded bisimilarity

GF is invariant under guarded bisimilarity, $\simeq g$

Databases A and B, same schema, tuple \bar{a} in A, tuple \bar{b} in B

Def. $(A, \bar{a}) \simeq_{g}(B, \bar{b})$ if player II can keep up forever in the following game:

1. initial game position is (A, \bar{a}) and (B, \bar{b})
2. player I chooses a tuple in one of the databases, say A
3. player II responds in other database $\Rightarrow\left(A, \bar{a}^{\prime}\right)$ and $\left(B, \bar{b}^{\prime}\right)$

- \bar{a}^{\prime} and \bar{b}^{\prime} must satisfy precisely same relations, predicates
- if \bar{a} and \bar{a}^{\prime} agree in ith position, then \bar{b} and \bar{b}^{\prime} must too

4. if player II cannot respond correctly he looses; otherwise repeat from new position $\left(A, \bar{a}^{\prime}\right)$ and (B, \bar{b}^{\prime}).

Invariance property

If $(A, \bar{a}) \simeq_{g}(B, \bar{b})$ then for all SA-expressions E :

$$
\bar{a} \in E(A) \quad \Leftrightarrow \quad \bar{b} \in E(B)
$$

Use to prove SA-inexpressibility of certain queries
Ex. single relation R :

$\Rightarrow \begin{aligned} & \text { " } R \text { is transitive" not } \\ & \text { SA-expressible }\end{aligned}$

Division

$$
R(A, B) \div S(C):=\{a \mid \forall b \in S:(a, b) \in R\}
$$

RA-expressible, but not SA:

Linear query processing

Linear RA expression: on every database, every intermediate result has linear size
linear: $(\sigma R \cup \pi S)-T$
not linear: $R \cap(S \bowtie T)$
linear: $R \underset{\text { R.A } \stackrel{\bowtie}{=} S . B}{ } \pi_{B}(S)=R_{R . A \stackrel{ }{\ltimes} S . B} S$

Every query expressible by a linear RA expression is already expressible by a SA expression

Note that SA-expressions are always linear

Proof idea

For $E_{1} \bowtie_{\theta} E_{2}$ to be linear, every joining tuple pair (\bar{a}, \bar{b}) must satisfy $\forall i \exists j$: $a_{i}=b_{j}$ or vice versa

- if not, we could "blow up" the database by duplicating the "free" values in \bar{a} and \bar{b}
- blown up database is guarded bisimilar
- since E_{1} and E_{2} can be assumed linear by induction, they will output the duplicate tuples \Rightarrow quadratic join size

Such joins can be expressed in SA

Corollaries

Every RA-expression is either linear, or has a subexpression that has quadratic output size

Every RA-expression either produces quadratic intermediate results, or is equivalent to an SA-expression

Set joins

We now know that division is not expressible in linear RA

Division is a restricted kind of set join
Def. Let $P(X, Y)$ be a predicate about sets.
For relations $R(A, B)$ and $S(C, D)$:

$$
R \underset{P}{\bowtie^{\text {set }} S:=\{a, c \mid P(\{b: R(a, b)\},\{d: S(c, d)\})\}, ~}
$$

subset join: $\bowtie_{X \subseteq Y}^{\text {set }}$ set-equality join: $\bowtie_{X}^{\text {set }}=Y$
standard equijoin: $\bowtie_{X \cap Y \neq \emptyset}^{\text {set }}$

If the emptiness query for $\bowtie_{P}^{\text {set }}$ can be expressed in linear RA, then P must be monotone

Sidenote: Grouping and aggregation

It is well known that division can be linearly expressed using counting:

$$
\left.\begin{array}{l}
R(A, B) \div S(C)= \\
\quad \pi_{A}\left(\gamma_{A, \operatorname{count}(B)}\left(R \ltimes_{B=C} S\right) \quad \operatorname{count}(B) \stackrel{\ltimes}{=} \operatorname{count}(C)\right.
\end{array} \gamma_{\operatorname{count}(C)}(S)\right) .
$$

Theta-equijoins

\ltimes_{θ} with θ more than just conjunction of equalities?

Ex. " $R(A, B)=A \rightarrow B$ ":

$$
R \underset{\substack{R . A \underset{=}{\ltimes} \cdot A \\ R . B \neq S . B}}{\ltimes} \rho_{S}(R)
$$

Satisfiability of $S A \neq$ is undecidable
Do our linearity results extend to $S A \neq$? and to $S A<$?

Ω-guarded bisimilarity

Ω, signature of predicates that can be used in θ
SA $=$: if \bar{a} and \bar{a}^{\prime} agree in i th position, then \bar{b} and \bar{b}^{\prime} must too
$\mathrm{SA}^{\Omega}:\left(\bar{a}, \bar{a}^{\prime}\right)$ and $\left(\bar{b}, \bar{b}^{\prime}\right)$ must satisfy precisely the same predicates from Ω

Conclusion

$S A=G F$ but $S A^{\Omega}$ is more powerful
$S A=$ linear $R A$

Division, set joins not linear RA

- theoretical explanation why these queries are hard on the query processor

Many open problems remain

