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1. INTRODUCTION
Declarative networking [Loo et al. 2009] is a recent approach by which distributed compu-
tations and networking protocols are modeled and programmed using formalisms based on
Datalog. In his keynote speech at PODS 2010 [Hellerstein 2010a; Hellerstein 2010b], Heller-
stein made a number of intriguing conjectures concerning the expressiveness of declarative
networking. In the present paper, we are focusing on the CALM conjecture (Consistency
And Logical Monotonicity). This conjecture suggests a strong link between, on the one hand,
“eventually consistent” and “coordination-free” distributed computations, and on the other
hand, expressibility in monotonic Datalog (without negation or aggregate functions). The
conjecture was not fully formalized, however; indeed, as Hellerstein notes himself, a proper
treatment of this conjecture requires crisp definitions of eventual consistency and coordina-
tion, which have been lacking so far. Moreover, it also requires a formal model of distributed
computation.
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In the present paper, we investigate the CALM conjecture in the context of a model
for distributed database querying. In the model we propose, the computation is performed
on a network of relational transducers. The relational transducer model, introduced by
Abiteboul and Vianu, is well established in database theory research as a model for data-
centric agents reacting to inputs [Abiteboul et al. 2000; Deutsch et al. 2009; Deutsch et al.
2007; Deutsch et al. 2006; Spielmann 2003]. Relational transducers are firmly grounded in
the theory of database queries [Abiteboul and Vianu 1991b; Abiteboul and Vianu 1995]
and also have close connections with Abstract State Machines [Blass et al. 2002]. It thus
seems natural to consider networks of relational transducers, as we will do here. We give a
formal operational semantics for such networks, formally define “eventual consistency”, and
formally define what it means for a network to compute a conventional database query, in
order to address the expressiveness issues raised by Hellerstein.
It is less clear, however, how to formalize the intuitive notion of “coordination”. We do not

claim to resolve this issue definitively, but we propose a new, non-obvious definition that
appears workable. Distributed algorithms requiring coordination are viewed as less efficient
than coordination-free algorithms. Hellerstein has identified monotonicity as a fundamental
property connected with coordination-freeness. Indeed, monotonicity enables “embarrassing
parallelism” [Hellerstein 2010b]: agents working on parts of the data in parallel can produce
parts of the output independently, without the need for coordination.
One side of the CALM conjecture now states that any database query expressible in

monotonic Datalog can be computed in a distributed setting in an eventually consistent,
coordination-free manner. This is the easy side of the conjecture, and indeed we formally
confirm it in the following broader sense: any monotone query Q can be computed by
a network of “oblivious” transducers. Oblivious transducers are unaware of the network
extent (in a sense that we will make precise), and every oblivious transducer network is
coordination-free. Here, we should note that the transducer model is parameterized by
the query language L that the transducer can use to update its local state. Formally, the
monotone query Q to be computed must be expressible in the while-closure of L for the
above confirmation to hold. If Q is defined in Datalog, for example, then L can just be
unions of conjunctive queries.
The other side of the CALM conjecture, that the query computed by an eventually

consistent, coordination-free distributed program is always expressible in Datalog, is false
when taken literally, as we will point out. Nevertheless, we do give an extended version of the
conjecture that holds. More importantly, we confirm the conjecture in the following more
general form: coordination-free networks of transducers can compute only monotone queries.
Note that here we are using our newly proposed formal definition of coordination-free.
This paper is organized as follows. Preliminaries are in Section 2. Section 3 introduces

networks of transducers. Section 4 investigates the use of transducer networks for expressing
conventional database queries in a distributed fashion. Section 5 discusses the issue of coor-
dination, and looks into the CALM conjecture and related results. Section 6 contains results
about the expressiveness of transducer networks. Section 7 shortly looks into a variation of
the transducer model, and Section 8 is the conclusion.
This paper is the extended version of our conference paper [Ameloot et al. 2011].

1.1. Related Work
The desire to better understand coordination in the field of declarative networking is evi-
denced by the steadily growing literature on this subject. First, Alvaro et al. [Alvaro et al.
2011a] look at coordination as a quantitative property that can be minimized. They describe
a program analysis technique to spot syntactical locations in the code where coordination
is not needed. The goal then, is to help the programmer iteratively reduce the number of
locations where coordination is used.
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The conference paper of this work has also inspired follow-up work by others. In particular,
Zinn et al. [Zinn et al. 2012] have generalized our results to also include a “partitioning
policy”, which is a strategy to initialize every node of a network with input data before the
computation starts. The basic idea is that each node is given local relations that provide
information about how data is distributed, and in particular what data each node can
autonomously reason about, i.e., without coordination with other nodes. This allows a node
to sometimes perform nonmonotone operations without the need for communication. It
even turns out that in some variations of the model considered, all database queries are
“coordination-free”. It can be expected however, that such a partitioning policy is quite
expensive in terms of how much additional data each node should have.
One of our results is that a monotone query can in principle be computed without coor-

dination, but it remains open in what exact way the best performance can be achieved in a
practical scenario. The work of Loo et al. [Loo et al. 2006] and Nigam et al. [Nigam et al.
2012], however, provides concrete algorithms for the case of distributed Datalog programs.
They want to efficiently update the state (i.e., the derivations) on nodes of the network
whenever some input facts change. It would be too costly to completely recompute the
state of every node when an update happens. Instead, they propose a technique that prop-
agates only the incremental changes that have to be distributedly applied. This allows for
sending less messages around the network, and does not require needless recomputations
of data. Their algorithms require no coordination, can handle recursive Datalog rules, and
can tolerate messages that are delivered out of order by the network.

2. PRELIMINARIES
2.1. Basic Notions
We first recall some basic notions from database theory [Abiteboul et al. 1995]. A database
schema is a finite set D of pairs (R, k) where R is a relation name and k ∈ N is the associated
arity of R. A relation name is allowed to occur only once in a database schema. We often
write a pair (R, k) ∈ D as R(k). We assume some infinite universe dom of atomic data
values. An arity of zero is also called nullary. We write ( ) to denote the nullary tuple.
A fact f is a pair (R, ā), often denoted as R(ā), where R is a relation name and ā is a

tuple of values over dom. A database instance I over a database schema D is a finite set of
facts such that for each R(a1, . . . , ak) ∈ I we have R(k) ∈ D. Let Z be a subset of relation
names in D. We write I|Z to denote the restriction of I to the facts whose predicate is a
relation name in Z. For a function h : dom→ dom we define h(I) = {R(h(a1), . . . , h(ak)) |
R(a1, . . . , ak) ∈ I}. The active domain of I, denoted adom(I) ⊆ dom, is the set of atomic
data values that occur in I.
A query Q over input database schema D and output database schema D′ is a partial

function mapping database instances ofD to database instances ofD′. A special but common
kind of query are those where the output database schema contains just one relation. A
query Q is called generic if for all input instances I and all permutations h of dom the
query Q is also defined on the isomorphic instance h(I) and Q(h(I)) = h(Q(I)). We recall
that a generic query Q is domain-preserving, in the sense that adom(Q(I)) ⊆ adom(I) for
all input instances I. We use the word “query” in this text to mean generic query, unless
explicitly specified otherwise.
We recall the following query languages [Abiteboul et al. 1995]:

— UCQ: unions of conjunctive queries,
— UCQ¬: UCQ with negation in the body,
— FO: first order logic (relational calculus),
— While: FO with iteration,
— Datalog,
— NrDatalog: nonrecursive Datalog,
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— NrDatalog¬: NrDatalog with negation on body atoms.

The weakest query language among these is UCQ.

2.2. Transducers
The computation on a single node of a network is formalized by means of relational
transducers [Abiteboul et al. 2000; Ameloot et al. 2011; Deutsch et al. 2009; Deutsch
et al. 2007; Deutsch et al. 2006; Spielmann 2003]. A transducer schema Υ is a tuple
〈Υin,Υout,Υmsg,Υmem,Υsys〉 of database schemas, called respectively “input”, “output”,
“message”, “memory” and “system”. A relation name can occur in at most one database
schema of Υ. We fix Υsys to always contain two unary relations Id and All. A transducer
state for Υ is a database instance over Υin ∪Υout ∪Υmem ∪Υsys. For a transducer state I
we use notations of the form I|(in,sys) to denote the facts in I whose predicates are in Υin
or Υsys. This notation is extended to other identifiers among in, out, msg, mem, and sys.

An (epidemic) relational transducer Π over Υ is a collection of queries:

— for each R(k) ∈ Υout there is a query QRout having output schema {R(k)};
— for each R(k) ∈ Υmem there are queries QRins and QRdel both having output schema {R(k)};
— for each R(k) ∈ Υmsg there is a query QRsnd having output schema {R(k)};

where each of these queries has the input schema Υin ∪Υout ∪Υmsg ∪Υmem ∪Υsys. These
queries will form the internal mechanism that a node uses to update its local storage and
to send messages. The transducer model is parameterized by a generic query language
L: this language is used to concretely specify the above queries, in which case we call
Π an L-transducer. We will often abbreviate “epidemic relational transducer” simply as
“transducer”. The term “epidemic” will become clear in Section 3.1, where the transducer
model is used on a network.
Let Π be a transducer over schema Υ. Amessage instance for Υ is a database instance over

Υmsg. A local transition of Π is a 4-tuple (I, Ircv, J, Jsnd), also denoted as I, Ircv → J, Jsnd,
where I and J are transducer states for Υ, Ircv and Jsnd are message instances for Υ such
that (denoting I ′ = I ∪ Ircv):

J |(in,sys) = I|(in,sys);

J |(out) = I|(out) ∪
⋃

R(k)∈Υout

QRout(I ′);

J |(mem) =
⋃

R(k)∈Υmem

(I|R ∪R+) \R−

Jsnd =
⋃

R(k)∈Υmsg

QRsnd(I ′),

where, following the presentation in [Zinn et al. 2012],

R+ = QRins(I ′) \ QRdel(I ′); and,
R− = QRdel(I ′) \ QRins(I ′).

Intuitively, on the receipt of message facts Ircv, a local transition updates the old transducer
state I to new transducer state J and sends the facts in Jsnd. When compared to I, in J
potentially more output facts are produced; and the update semantics for each memory
relation R adds the facts produced by insertion query QRins, removes the facts produced by
deletion query QRdel, and there is no-op semantics in case a fact is both added and removed
at the same time [Spielmann 2003]. Output facts can not be removed. Note that local
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transitions are deterministic in the following sense: if I, Ircv → J, Jsnd and I, Ircv → J ′, J ′snd
then J = J ′ and Jsnd = J ′snd.

3. TRANSDUCER NETWORKS
We will refer to a single computer as simply a node. We now formalize a network of such
nodes. In Section 4 we give example programs.
A network N is a finite, connected, and undirected graph whose nodes are all in dom.

We write nodes(N ) and edges(N ) to denote the nodes and edges of N respectively. For
x ∈ nodes(N ), we write neighbor(x,N ) to denote the set {y | (x, y) ∈ edges(N )}.
A (homogeneous) transducer network is a triple T = 〈N ,Υ,Π〉 where N is a network,

Υ is a transducer schema, and Π is a transducer over Υ whose copies will be running at
each node of the network. One could also consider non-homogeneous transducer networks,
where each node contains a different transducer, possibly over a different schema, but these
types of networks are not considered in the present paper. We discuss our design choices in
Section 3.4.
For a query language L, we say that a transducer network is an L-transducer network if

all its transducers are L-transducers.
We now formalize how data is distributed across a network. A distributed database instance

over a network N and a database schema D is a total function that assigns to each node of
N an ordinary database instance over D.

3.1. Operational Semantics
Let T = 〈N ,Υ,Π〉 be a transducer network. Any distributed database instance over N and
Υin can be given as input to T . Let H be such an instance. A configuration of T on H is a
pair ρ = (s, b) of functions where

— s maps each x ∈ nodes(N ) to a transducer state J = s(x) such that J |(in) = H(x) and
J |(sys) = {Id(x)} ∪ {All(y) | y ∈ nodes(N )}; and,

— b maps each x ∈ nodes(N ) to a finite multiset of facts over Υmsg.

We call s the state function and b the buffer function. Intuitively, the instance H is used
to initialize each node, and for each x ∈ nodes(N ) the system relations Id and All in Υsys
provide the local transducer at x the identity of the node x it is running on and the identities
of the other nodes. Next, the buffer function maps each x ∈ nodes(N ) to the multiset of
messages that have been sent to x but that have not yet been delivered to x. A multiset
allows us to represent duplicates of the same message (sent at different times).
The start configuration of T on H, denoted start(T , H), is the configuration ρ = (s, b) of

T on H that for each x ∈ nodes(N ) defines s(x)|(out,mem) = ∅ and b(x) = ∅.
We now describe the actual computation of the transducer network. A global transition

of T on input H is a 4-tuple (ρ1, x,m, ρ2), also denoted as ρ1
x,m−−→ ρ2, where x ∈ nodes(N ),

and ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of T on H such that

— m is a submultiset of b1(x) and there exists a message instance Jsnd such that
s1(x), set(m)→ s2(x), Jsnd

is a local transition of transducer Π;
— for each y ∈ nodes(N ) \ {x} we have s1(y) = s2(y);
— b2(x) = b1(x) \m; for each y ∈ neighbor(x,N ) we have b2(y) = b1(y) ∪ Jsnd; and for all

other nodes y we have b2(y) = b1(y).

We call x the active node (or recipient) and set(m) the delivered messages. Intuitively, in
a global transition we select an arbitrary node x and allow it to receive some arbitrary
submultiset m from its message buffer. The messages in m are then delivered at node x

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Tom J. Ameloot et al.

(as a set, i.e., without duplicates) and x performs a local transition, in which it updates its
memory and output relations, and possibly sends some new messages to all its neighbors.1
The node does not send messages to itself. If m = ∅, we call this global transition a heartbeat
transition and otherwise we call it a delivery transition. A heartbeat transition corresponds
to the real life situation in which a node does a computation step when a local timer goes
off and no messages have been received from the network.
A run R of a transducer network T on a distributed input database instance H is an infi-

nite sequence of global transitions ρi
xi,mi−−−−→ ρi+1 for i = 1, 2, 3, . . ., where ρ1 = start(T , H),

and the ith transition with i ≥ 2 operates on the resulting configuration of the previous
transition. It follows from the semantics of local transitions that when a node during one
global transition changes its output or memory, then these changes are visible to that node
only starting from the next global transition in which that node is active. Note also that
several facts can be delivered together during a transition, regardless of whether they were
sent during different earlier transitions or during the same earlier transition.
We have not defined global transitions that are concurrent, i.e., global transitions in which

multiple nodes receive a message multiset and do local transitions at the same time. The
reason for not including this kind of global transition is that it can be simulated by multiple
sequential global transitions: this is done by letting the previously concurrent nodes become
active in some arbitrary order, and in each of those single-node transitions, the active node
just reads its own message buffer like in the concurrent transition. Because local transitions
are deterministic, the nodes will update their state and send out messages in the same way
as during the concurrent transition.

3.2. Fairness
In the literature on process models it is customary to require certain “fairness” conditions
on runs [Francez 1986; Apt et al. 1988; Lamport 2000]. Let T = 〈N ,Υ,Π〉 be a transducer
network. In this paper, a run of T on some input distributed database instance is called
fair if (i) every node of N is active in an infinite number of transitions and (ii) if for some
node a fact occurs in its message buffer in an infinite number of configurations, then this
fact is delivered to that node during an infinite number of transitions. Intuitively, the last
condition demands that no sent messages are infinitely delayed. We consider only fair runs.
Note that every transducer network has a fair run for every input because heartbeat

transitions are still possible even when the message buffers have become empty.

3.3. Message Delivery Constraints
We may want to impose a size-constraint on the delivered message multisets. Indeed, for
a transducer network T and a natural number k ≥ 1, we can restrict our attention to
runs of T where the sizes of the delivered message multisets are of size at most k. This
is the k-delivery semantics for T . In a previous paper [Ameloot et al. 2011], we restricted
attention to 1-delivery semantics. In this paper we assume no such bound, unless explicitly
mentioned.

3.4. Discussion
In this section we want to motivate the usefulness of our transducer model by comparing
it with the literature. First, some of the main characteristics of our model are that (i) the
same transducer program is replicated at all nodes; (ii) a node can only send messages to its
neighbors; and (iii) messages are never lost. These three characteristics occur commonly in
declarative networking literature [Loo et al. 2009; Grumbach and Wang 2010; Nigam et al.
2012].

1Hence the name “epidemic” [Eugster et al. 2004].
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The aspect where our model deviates, however, is that the sender of a message cannot
address the message to a particular neighbor. But this can be simulated in our model by
designating a specific component of each message as the addressee. When a node receives a
message, it can verify that it is the valid addressee by using local relation Id, in which case it
will process the message, and otherwise the node forwards the message to (all) its neighbors.
This can be seen as less efficient: depending on the network topology, some nodes might
receive many messages not addressed to them, and this could lead to some messages being
forwarded forever. But we will not be concerned with such efficiency issues in this paper.
Instead, we believe that sending to all neighbors is sufficient to reason about distributed
algorithms. For completeness, however, in Section 7 we also briefly consider a transducer
variant in which a node can send messages to a specific neighbor, and we relate this model
to our epidemic model.
As a last remark, although the network topology is fixed at the start of a run, we note

that our model can be used to simulate a dynamic network, in which nodes and edges
can be temporarily offline. Indeed, offline nodes can be simulated by having some nodes
not doing local transitions for a while, and offline edges can be simulated by delaying the
messages sent through them. Our fairness condition however requires that eventually every
node keeps on doing local transitions and that message delays are bounded.

4. EXPRESSING QUERIES
What does it take for a transducer network to compute some global query? Here we propose
a formal definition based on the two properties of consistency and network-independence.
This is discussed in the following subsections.

4.1. Transducer Kinds
We will use the following terminology for transducers. We call a transducer oblivious if
it does not read the relations Id and All in its queries. Intuitively, this means that the
transducer is unaware of the network context, because it does not know about the node it is
running on, and it does not know about the other nodes. A transducer is called inflationary if
it never deletes facts from its memory relations. That is, the deletion queries for the memory
relations return the empty set of facts on all inputs. A transducer is called monotone if all
its queries are monotone. The later Example 4.4 describes a transducer that is at the same
time oblivious, inflationary, and monotone.

4.2. Input and Output
Let T = 〈N ,Υ,Π〉 be a transducer network. Let I be an ordinary (non-distributed) database
instance over schema Υin. This instance can be given as input to T by partitioning it
across the nodes, where the same fact can be given to multiple nodes. Formally, a dis-
tributed database instance H over N and Υin is said to be a horizontal partition of I if
I =

⋃
x∈nodes(N )H(x).

Let ρ = (s, b) be a configuration of T on input H. Naturally, ρ defines an output database
instance out(ρ) over the schema Υout as follows:

out(ρ) =
⋃

x∈nodes(N )

s(x)|(out).

Let R be a run of T on some input. We denote the sequence of configurations of R as ρ1,
ρ2, etc. If there is a number i ≥ 1 such that out(ρi) = out(ρj) for all j > i, then we call i a
quiescence point for R. We call a configuration ρi of R a quiescence configuration if i is a
quiescence point. Only quiescence configurations can follow a quiescence configuration, and
all quiescence configurations define the same output database instance. Only a finite number
of distinct output facts are possible because we only consider finite input instances, and
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because the queries of transducers are generic, and hence domain-preserving. The following
property is now clear:

Proposition 4.1. For every transducer network, on every input, every run contains a
quiescence configuration.

The output of run R is now defined as out(ρi) where ρi is a quiescence configuration of R.
Our notion of output does not specify the output at individual nodes and does not prevent
messages from being sent once a quiescence point is reached.

4.3. Consistency
We say that a transducer network T = 〈N ,Υ,Π〉 is consistent if for all database instances
I over Υin, on all horizontal partitions of I over N , all fair runs of T have the same output,
denoted T (I).
When T is consistent, this function T (.) has the characteristic of a query, except that

it need not be generic. For example, the “query” that asks for all data elements in the
input that are not node identifiers, can be computed by a consistent transducer network.
We mainly focus on the computation of generic queries. Naturally, T is said to compute a
query Q over input schema Υin and output schema Υout if T is consistent and T (I) = Q(I)
for every database instance I over Υin on which Q is defined.

Because the individual queries that make up a transducer are generic, we can make the
following observation:

Proposition 4.2. The function T (.) is generic for each consistent transducer network
T in which the transducer is oblivious.

4.4. Examples
First, we explain our notational conventions for specifiying concrete transducers. Because
FO is equivalent to NrDatalog¬ [Abiteboul et al. 1995], we will frequently use the more
readable rule-based syntax of NrDatalog¬ to specify FO-transducers. The answer relations
of NrDatalog¬ programs will be clearly marked. For example, for a memory-insertion query
QRins, the answer relation of the corresponding NrDatalog¬ program is Rins; for an output
query QTout, the answer relation is Tout; for a message-sending query QSsnd, the answer
relation is Ssnd. We leave a blank line between the NrDatalog¬ rules that belong to different
queries. Unmentioned queries of a transducer are assumed to always return the empty set
of facts.
We now give some examples of transducer networks.

Example 4.3. For a simple example of a consistent transducer network, let the input be
a binary relation R. Each node outputs the identical pairs from its part of the input. No
messages are sent. This network computes the equality selection σ$1=$2(R). This is easily
programmed on an FO-transducer, which is specified as follows. The transducer schema is
Υin = {R(2)}, Υout = {T (2)}, Υmsg = ∅, Υmem = ∅, and the single transducer rule is:

Tout(u, u)← R(u, u).
�

Example 4.4. To give an example of a consistent transducer network that involves com-
munication, we compute the transitive closure of a binary relation R in a well-known dis-
tributed manner [Loo et al. 2009]. We present here a naive, unoptimized version. Each node
sends its part of the input to its neighbors. Specifically, each node also forwards all messages
it receives to its neighbors. This way, the input is flooded to all nodes. Each node accumu-
lates the input facts it receives in a binary memory relation S. Finally, each node has an
output relation T in which we repeatedly insert R∪S∪(T ◦T ), where ◦ stands for relational
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composition. Thanks to the monotonicity of the transitive closure, this transducer network
is consistent. We can implement this idea with an UCQ-transducer. The transducer schema
is Υin = {R(2)}, Υout = {T (2)}, Υmsg = {U (2)}, Υmem = {S(2)}, and the transducer rules
are:

Usnd(u, v)← R(u, v).
Usnd(u, v)← U(u, v).

Sins(u, v)← U(u, v).

Tout(u, v)← R(u, v).
Tout(u, v)← S(u, v).
Tout(u, v)← T (u, w), T (w, v).

Note that the transducer is oblivious. There is no need to reason explicitly about node
identifiers, because all we need is let the nodes steadily accumulate all input facts across the
network and incrementally produce chunks of output. The transducer is also inflationary
and monotone, reflecting the essential nature of the transitive closure computation. �

Example 4.5. Let us see a simple example of a transducer network that is not consistent.
Consider a network with at least two nodes. The input is a unary relation R. Each node
sends its part of R to its neighbors. Next, each node outputs the received messages on
condition that the output is still empty. When there are at least two nodes and at least
two different R-facts, different runs may deliver the messages in different orders, so different
outputs can be produced, even for the same input distributed database instance. We can
write an FO-transducer Π to implement this idea. The transducer schema Υ is Υin = {R(1)},
Υout = {T (1)}, Υmsg = {U (1)}, Υmem = ∅, and the transducer rules are:

Usnd(u)← R(u).

block( )← T (u).
Tout(u)← ¬block( ), U(u).

�

Undecidability for testing consistency of a transducer network readily follows from unde-
cidability of satisfiability of FO. The proof is in Appendix A.

4.5. Network-Independence
We are mainly interested in the case where a query can be correctly computed by a trans-
ducer regardless of the network.
Let Π be a transducer over a schema Υ. We say that Π is network-independent if for all

networks N , the transducer networks 〈N ,Υ,Π〉 are consistent and compute the same query
Q. We say that Q is the query distributedly computed by Π. The transducer from Example
4.4 is network-independent. Now consider the following example.

Example 4.6. We give a simple example of a transducer that gives rise to consistent
transducer networks but that is not network-independent. Suppose we have a unary input
relation R. Each node sends its own identifier to its neighbors. This way the edges of the
network can be discovered. The discovered edges are forwarded to every node, and when
a node detects that the collected edges together form a complete graph, then the node
outputs its local input for relation R. If the network is indeed a complete graph, by fairness
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eventually all nodes will detect this, and then the transducer network computes the identity
query. But on other network topologies the empty query is computed.
For completeness, we specify an FO-transducer Π to implement this idea. We define the

transducer schema Υ as Υin = {R(1)}, Υout = {T (1)}, Υmsg = {A(1), B(2)}, Υmem = {S(2)}.
The rules of the transducer are:

Asnd(u)← Id(u).

Bsnd(u, v)← A(u), Id(v).
Bsnd(u, v)← B(u, v).

Sins(u, v)← B(u, v).

missing( )← All(u), All(v), u 6= v, ¬S(u, v).
Tout(u)← R(u), ¬missing( ).

�

Testing network-independence for FO-transducers is undecidable. See Appendix A for the
proof.

4.6. Preliminary Observations
We now give several preliminary results about expressing queries with transducers, that are
important for deriving later results.
First, we present two lemmas which show that at each node a transducer can always

assemble a local copy of all input facts available on the network.
Lemma 4.7. Let D be a database schema. There is a transducer schema Υ with Υin = D

and an oblivious, inflationary, monotone UCQ-transducer Π over Υ such that for every
transducer network for Π, for every instance I of D, on every horizontal partition of I, every
fair run reaches a configuration where every node has a local copy of the entire instance I
in its memory.

Proof. Because the construction is straightforward, we only provide a sketch. The idea
is that all nodes will send out their local input facts and forward any message they receive.
The local inputs, together with the received inputs, are accumulated in local memory re-
lations. In any fair run, eventually all nodes will have received all input facts. Relations
Id and All are not needed. We also do not need deletions on the memory relations. This
technique has already been illustrated by Example 4.4. �

We can refine the technique of Lemma 4.7 to let a node know when it has collected every
input fact in memory:

Lemma 4.8. Let D be a database schema. There is a transducer schema Υ with Υin = D
and an UCQ¬-transducer Π over Υ such that for every transducer network for Π, for every
instance I of D, on every horizontal partition of I, every fair run reaches a configuration
where every node has a local copy of the entire instance I in its memory, and an additional
flag ‘ready’ is true (implemented by a nullary memory relation). Moreover, the flag ‘ready’
does not become true at a node before that node has the entire instance I in its memory.
The transducer Π is not oblivious, but can be made inflationary when using locally the

language NrDatalog¬ instead of UCQ¬.2

2This is because a NrDatalog¬ program allows auxiliary relations to be declared, to which negation can be
applied.
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Proof. We provide a sketch, and the full construction can be found in Appendix A.2.
The idea is that a node x will send its local input facts over relation R(k) ∈ D to every
other node, with an additional last component that contains the identifier of x, to indicate
the origin of the fact. We call this last component the “tag”. Next, when a node y receives
a tagged input fact, it removes the tag and stores the fact in its memory. This already
lets each node incrementally accumulate all inputs across the network. Now, for each fact
that y receives from x, node y also sends an acknowledgment back to x. The node x checks
whether y has (eventually) acknowledged all the input facts of x. If yes, then x sends out
done(x, y). From the viewpoint of y, if y has received done(x, y) from all other nodes x then
it knows that it has accumulated all the input facts on the network, and the ready-flag is
created at y. The relations Id and All are used heavily in this protocol. �

The following theorem indicates that our transducer model has enough expressive power
to study queries in the distributed context:

Theorem 4.9. Let L be a language containing UCQ¬. Then every query expressible in
L can be distributedly computed by an L-transducer. In particular, if L is a computationally
complete query language, every partial computable query can be distributedly computed by
an L-transducer.

Proof. Let Q be a query expressible in L. Let D and D′ be respectively the input and
output schema of Q. We construct an L-transducer Π to compute Q in two steps. In the
first step, we use the partial specification of Π from Lemma 4.8 to obtain the entire input
instance at every node. The language UCQ¬ suffices for this. This transducer has input
schema Υin = D but does not produce any output yet. In the second step, we define the
output schema of this transducer to be Υout = D′. Now, because Q is expressible in L, once
the flag ready becomes true, we can output Q in the next local transition, by implementing
for each output relation an L-query that reads only the collected input facts. �

In the context of the CALM conjecture, monotone queries will play an important role.
For now, we observe that oblivious transducers are sufficient to compute them:

Theorem 4.10. Let L be a query language containing UCQ. Then every monotone
query expressible in L can be distributedly computed by an oblivious L-transducer. In par-
ticular, if L is computationally complete, every partial computable monotone query can be
distributedly computed by an oblivious L-transducer. Moreover, these oblivious transducers
can be made inflationary and monotone.

Proof. Let Q be a monotone query expressible in L. The idea is the same as in the
proof of Theorem 4.9, but we now use the oblivious, inflationary, monotone transducer from
Lemma 4.7, to let every node gradually collect all inputs facts available on the network.
Now, because Q is expressible in L, in every local transition we can execute L-queries for the
output relations that read the part of the input already accumulated in memory. Since Q is
monotone, no incorrect tuples are output this way. Eventually, all nodes have accumulated
all the input across the network, and no new outputs will be produced. �

5. THE CALM CONJECTURE
The following was conjectured by Hellerstein:

Conjecture 5.1 (CALM Conjecture [Hellerstein 2010b]). A program has an
eventually consistent, coordination-free execution strategy if and only if it is expressible
in (monotonic) Datalog.

Before we can rigorously investigate this conjecture, we want to formalize the notion of
“coordination-freeness”. This is presented in Section 5.1. Next, we will present our formal
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CALM conjecture and its associated results in Section 5.2. Additional results are in Section
5.3.

5.1. Coordination-free
The CALM conjecture hinges on an intuitive notion of “coordination” of certain distributed
computations. We illustrate this notion with a few examples.
In the well-known two-phase commit protocol [Gray 1978], each node is responsible for

executing some part of a distributed transaction. To keep the distributed database consis-
tent in the face of runtime crashes, either all parts should be committed or none is. To
this purpose, after executing its part of the distributed transaction, but before actually
committing the results, a node checks that every node can commit its results. This way,
the distributed commit can proceed only if all individual nodes can commit. Naturally, the
nodes have to exchange messages to determine if they can commit or not.
As another example, the multicast protocol of Lemma 4.8 also relies on heavy coordina-

tion: the nodes exchange many messages, including acknowledgments, before they all obtain
the flag ‘ready’.
Generalizing both examples, the main idea behind coordination is that a large set of nodes

needs to obtain a consensus. For two-phase commit this is the global decision whether all
nodes should commit or not, and for Lemma 4.8 the consensus is that all nodes have the
same data. Reaching a consensus is known to be difficult in the distributed context [Attiya
and Welch 2004]. Because of the complexity of consensus, the involved nodes sometimes
have to wait relatively long before they can continue with the actual computation. This is
called a “global barrier” [Hellerstein 2010b].
It should be clear that coordination typically decreases the efficiency of distributed compu-

tations, because while the coordination is under way, the nodes are just waiting. So, it seems
useful to understand precisely when coordination can be avoided, for which we will use the
term “coordination-freeness”. This is what the CALM conjecture is all about. It seems hard
to give a definitive formalization of coordination-freeness. Still, we offer here a nontrivial
definition that appears interesting. A very drastic, too drastic, definition of coordination-
free would be to disallow any communication. Our definition is much less severe and only
requires that the computation can succeed without communication on “suitable” horizontal
partitions. It actually does not matter what a suitable partition is, as long as it exists.
Even under this liberal definition, the only-if direction of (our formalization of) the CALM
conjecture will turn out to hold.3

Formally, let Π be a transducer over a schema Υ. Let T be a transducer network for
Π. We call T coordination-free if for every database instance I over Υin, there exists a
horizontal partition H of I and a run of T on H in which a quiescence configuration is
already reached by performing only heartbeat transitions (zero or more). Intuitively, if the
horizontal partition is right, then no communication is required to correctly compute the
query. The property of coordination-freeness is mainly interesting for consistent transducer
networks, because then at the quiescence configuration that was reached with only heartbeat
transitions, the produced output is the same as produced by any other fair run. We call
transducer Π coordination-free if for every network its corresponding transducer network is
coordination-free.

Example 5.2. Consider again the transitive closure computation from Example 4.4.
When every node already has the full input, they can each individually compute the tran-
sitive closure with only heartbeats. Hence, this transducer is coordination-free. �

3Of course, under the drastic definition of coordination-freeness, the if-direction of the CALM conjecture
(which is the easy direction) as formulated below in Proposition 5.3, will no longer hold.
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The transitive closure query is monotone and this example can actually be generalized
in the following proposition. This proposition is implicit in the literature on embarrasingly
parallel computation [Hellerstein 2010b; Loo et al. 2006; Nigam et al. 2012], and our main
result (Theorem 5.11) will provide a converse to it.

Proposition 5.3. Let L be a query language containing UCQ. Every monotone query
Q expressible in L can be distributedly computed by a coordination-free L-transducer.

Proof. Recall from the proof of Theorem 4.10 that there is an oblivious L-transducer
that distributedly computes Q. Using the same intuition as in Example 5.2, this transducer
is coordination-free. �

The reader should not be lulled into believing that with a coordination-free program it
is always sufficient to give the full input at all nodes, as the following example shows:

Example 5.4. Consider the following query Q, having as input two nullary relations A
and B, and a nullary output relation T : create the non-empty output (representing “true”)
if at least one of A and B is nonempty. This query is monotone. Consider the following
(contrived) transducer Π to compute Q. If the network has only one node (which can be
tested by looking at the relation All), the transducer simply outputs the answer to the
query. Otherwise, it first tests if its local input fragments of A and B are both nonempty.
If this is the case, nothing is output locally yet, but a nullary fact C is sent out. Any node
that receives the message C will output it. When precisely one of A and B is nonempty
locally, the transducer simply outputs the correct output directly. The transducer is network-
independent. Also, the transducer is coordination-free, because on networks with at least
two nodes there always is a partition of the data under which no node has both A and
B locally nonempty, and the query can be computed without communication. Moreover,
when A and B are both nonempty, and every node has the entire input, no run will reach
a quiescence configuration without communication. �

The following two examples show that network-independence for a transducer does not
guarantee coordination-freeness, and vice versa.

Example 5.5. We provide an example of a transducer that is network-independent but
not coordination-free, i.e., requires communication. Let Q be the following “emptiness”
query, having a nullary input relation R, and a nullary output relation T : create the non-
empty output (representing “true”) iff R is empty. This query is nonmonotone. We now
describe a transducer to distributedly compute Q. Since every node can have a part of the
input, the nodes coordinate with each other to be certain that R is empty at every node.
Every node sends out its identifier (using the relation Id) on condition that its local relation
R is empty. Received messages are forwarded, so that if R is globally empty, eventually all
nodes will have received the identifiers of all nodes, which can be checked using the relation
All. When this happens, the transducer at each node outputs a nullary fact.

For completeness, we specify an FO-transducer Π to implement this idea. The transducer
schema Υ is as follows: Υin = {R(0)}, Υout = {T (0)}, Υmsg = {U (1)} and Υmem = {S(0)}.
The rules are:
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Usnd(u)← Id(u), ¬R( ).
Usnd(u)← U(u).

Sins(u)← Id(u), ¬R( ).
Sins(u)← U(u).

missing( )← All(u), ¬S(u).
Tout( )← ¬missing( ).

�

Example 5.6. We give a transducer that is coordination-free, and that is consistent
on every network, but is not network-independent. The transducer has two unary input
relations R and S, and it has a unary output relation T . Using relations Id and All, the
transducer can detect if there is only one node, or if there are more nodes. If there is just
one node, the single node outputs the union of R and S. If there are at least two nodes,
then all nodes will copy their local inputs into their memory; they also broadcast their input
facts to each other, so that all nodes accumulate all inputs of the network; and, the nodes
will continuously output the intersection of the accumulated R-facts with the accumulated
S-facts.
First, we see that on each network this transducer is consistent. Indeed, on a single-node

network the union of R and S is output, and on a multi-node network the intersection of R
and S is output. This different output behavior prevents the transducer from being network-
independent. Finally, the transducer is coordination-free because on a single-node network
the output is always computed with only heartbeats, and on a multi-node network we can
consider the partition where each node has the entire input, and then the intersection of R
and S can already be computed with only heartbeats. �

Coordination-freeness seems a useful property for a transducer to have. However, it cannot
be decided automatically in general:

Proposition 5.7. Coordination-freeness is undecidable for FO-transducers.

Proof. We reduce the finite satisfiability problem for FO to deciding coordination-
freeness for FO-transducers. Let ϕ be an FO-sentence over a database schema D. We con-
struct an FO-transducer Π that is coordination-free iff ϕ is not finitely satisfiable.

Consider the transducer Π in Example 5.5, that is over schema Υ. We may assume
without loss of generality that the relation names of Υ do not occur in D. We obtain a
new transducer schema Υ′ from Υ by adding D to Υin; by adding new message relations
{(Cmsg, k) | C(k) ∈ D}; and, by adding new memory relations {(Cmem, k) | C(k) ∈ D}. We
obtain a new transducer Π′ over Υ′ by modifying Π to let all nodes gradually accumulate
all input facts by means of message forwarding. Moreover, besides keeping the old output
condition “¬missing”, we will only produce an output if additionally ϕ is satisfied on the
accumulated D-facts so far (in memory).
For the first direction, suppose that ϕ is finitely satisfiable on a database instance I overD.

We show that Π′ is not coordination-free. We can regard I as a database instance over Υ′in,
where relation R is empty. Let N be a network containing two nodes x and y. Let T denote
the transducer network based on N and Π′. Suppose that there is some horizontal partition
H of I over N and a run R of T on input H in which a first quiescence configuration
is already reached by doing only heartbeat transitions. Because I does not contain R( ),
the nodes send the messages U(x) and U(y). Because of fairness, these messages must be
delivered to y and x respectively, which can happen only after the first quiescence point
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because before the quiescence point there are only heartbeat transitions. Eventually, every
node will find ¬missing( ) to be true. The same reasoning can be applied to the relations of
D: whether I is empty or not, there must be a configuration after the first quiescence point,
in which all nodes have accumulated I in the memory relations. Then ϕ also becomes true,
and thus we know that every node eventually outputs T (). Note that this fact cannot be
in the first quiescence configuration because it requires the delivery of at least one of the
messages U(x) or U(y). So, the initial quiescence configuration that was reachable by only
heartbeat transitions cannot exist. Thus, the network N and input I are a proof that Π′ is
not coordination-free.
For the other direction, suppose that ϕ is not finitely satisfiable. Then no transducer

network based on Π′ can produce output, no matter what the input instance over Υ′in or
horizontal partition of that instance is. Hence, the start configuration of every run is already
a quiescence configuration, and Π′ is coordination-free. �

Although coordination-freeness is undecidable for FO-transducers (and by extension more
powerful transducers), we can identify a syntactic class of transducers that is guaranteed
to be coordination-free, and that will prove to have the same expressive power as the class
of coordination-free transducers. Importantly, the syntactic restriction does not guarantee
network-independence. Recall from Section 4.1 that an oblivious transducer does not read
the system relations Id and All. For now we observe:

Proposition 5.8. Let L be a query language. Every network-independent, oblivious
L-transducer is coordination-free.

Proof. Let Π be a network-independent, oblivious L-transducer over a schema Υ. Let
Q be the query distributedly computed by Π.
First, on a single-node network, the single node is always given the entire input and there

can only be heartbeat transitions. Then, for an input instance I over Υin, a quiescence
configuration containing Q(I) is always reached by doing only heartbeat transitions.
Now consider any other network N , any instance I over Υin, and the horizontal partition

H that places the entire instance I at every node. Since Π is oblivious, nodes cannot detect
that they are on a network with multiple nodes unless they receive a message. So, by
doing only heartbeat transitions initially, every node will act the same as if in a single-node
network and will already output the entire Q(I). Because Π is network-independent, the
nodes cannot output more than Q(I) when they receive messages afterwards. �

5.2. Main Results
Now we can formalize the original Conjecture 5.1. We will take the terms “program” and
“to have an execution strategy” to mean “query” and “to be distributedly computed by
a transducer”, respectively. The term “eventually consistent” is then formalized by our
notions of consistency and network-independence. Under this interpretation, the conjecture
becomes:

Conjecture 5.9. A query can be distributedly computed by a coordination-free trans-
ducer if and only if it is expressible in Datalog.

Let us immediately get the if-side of this conjecture out of the way. It holds, because a
query in Datalog is monotone, and then by Theorem 4.10 there exists an oblivious transducer
to compute the query, but we have seen in Proposition 5.8 that oblivious transducers are
coordination-free.
As to the only-if side, the explicit mention of Datalog is a bit of a nuisance because

Datalog is limited to polynomial time whereas there certainly are monotone queries outside
PTIME. We also mention the celebrated paper [Afrati et al. 1995] where Afrati, Cosmadakis
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and Yannakakis show that even within PTIME there exist queries that are monotone but
not expressible in Datalog.
But Datalog aside, however, the true emphasis of the CALM Conjecture clearly lies in

the monotonicity aspect. Indeed, we confirm it in this sense:
Theorem 5.10. Let L be a query language. Every query that is distributedly computed

by a coordination-free L-transducer is monotone.
Proof. Let Π be a coordination-free L-transducer over a schema Υ that distributedly

computes a query Q. Let I and J be two database instances over the schema Υin such that
I ⊆ J . We must show that Q(I) ⊆ Q(J). Consider a fact f ∈ Q(I). Consider a network N
with at least two nodes. Let T denote the transducer network based on N and Π. Since Π is
coordination-free and network-independent, there exists a horizontal partition H of I and
a run R of T on input H in which a quiescence configuration, containing the facts Q(I), is
already reached by letting the nodes do only heartbeat transitions. Let x be a node where
f is output in the quiescence configuration. Let y be a node different from x and consider
a horizontal partition H ′ of J where H ′(x) = H(x) and H ′(y) = H(y) ∪ (J \ I). Let n
be the number of initial heartbeat transitions with recipient x in run R that were needed
to output f at x. Consider a prefix of a run of T on input H ′ in which we initially do n
heartbeat transitions, all with active node x. Because local transitions are deterministic, the
node x goes through the same state changes as in run R before f is output and therefore
f is output again in this prefix. The prefix can be extended to a full fair run R′ of T on
input H ′. Since T is consistent, the fact f will be output on any partition of J , during
any fair run. Hence, f belongs to the query computed by T applied to J . Moreover, Π is
network-independent, so f belongs to Q(J). �

We can now obtain the following result:
Theorem 5.11. Let L be a query language containing UCQ. For every query Q that is

expressible in L, the following are equivalent:
(1 ) Q can be distributedly computed by a coordination-free L-transducer;
(2 ) Q can be distributedly computed by an oblivious L-transducer; and,
(3 ) Q is monotone.

Proof. Theorem 4.10 yields (3)⇒ (2); Proposition 5.8 yields (2)⇒ (1); Theorem 5.10
yields (1)⇒ (3). �

In particular, if L is computationally complete, then the previous equivalences hold for
any computable query. As a small remark, now it is of no surprise that Example 5.5 required
coordination; indeed, there we distributedly compute a non-monotone query.

5.2.1. Discussion. Theorem 5.11 can be used as follows in practice. Essentially, by restricting
a language, its execution can in general be optimized more thoroughly than the unrestricted
language. A well-known example is SQL versus a Turing-complete programming language.
For our situation, the programmer of a distributed (query) algorithm can write a program
in a high-level declarative formalism, like the transducer model presented in this paper,
or a Datalog-variant like e.g. [Loo et al. 2006; Alvaro et al. 2011b; Abiteboul et al. 2011].
Suppose that the query is monotone. Then we know by Theorem 5.11 that it can be im-
plemented in a coordination-free manner. Moreover, we can prevent the programmer from
abusing coordination using the syntactic restriction of obliviousness. The main idea is that
the programmer is given only a few communication primitives, like sending a message to
its neighbors, and a syntactic restriction is imposed to prevent the programmer from using
network relations like Id or All (or equivalent information). Next, the programmer, or a
software tool, needs to assert that the program is network-independent, i.e., on every net-
work, all fair runs produce the desired outcome. Then, using Theorem 5.11, if the runtime
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is told that the program is oblivious and network-independent, the runtime can execute the
program without any coordination. By contrast, if the programmer uses Id and All, then
this semantic property is no longer guaranteed, and one would have to resort to a general
execution strategy that has built-in coordination, which seems a waste if the program ex-
presses a monotone computation. This way, obliviousness could be a useful guiding principle
for distributed query evaluation. The works of Loo et al. [Loo et al. 2006] and Nigam et
al. [Nigam et al. 2012] provide coordination-free distributed execution engines for Datalog.

5.3. Further Results
It is natural to wonder about variations of our model. One question may be about the
system relations Id and All. Without them (the oblivious case), we know that we are
always coordination-free and thus monotone.
What if we would read precisely one system relation; only Id or only All? As to

coordination-freeness, the argument given in the proof of Proposition 5.8 still works when
the transducer reads only Id, because then nodes still cannot detect that they are on a
network with multiple nodes. However, the argument fails when the transducer reads only
All, and indeed we have the following counterexample.

Example 5.12. We describe a transducer that is network-independent, reads only All,
but that is not coordination-free. The query expressed is simply the identity query on a
unary relation R. The transducer can observe the difference between a single-node and a
multi-node network by looking at the relation All. If it is a single-node network, the node
simply outputs the result directly. If it is a multi-node network, every node sends out a
message. Only upon receiving a message will a node then output the result. Thus on a
multi-node network, regardless of the horizontal partition, communication is needed for the
transducer network to produce the required output. �

So, coordination-freeness is not guaranteed when reading only All, but yet, monotonicity
is not lost.

Theorem 5.13. Let L be a query language. Every query distributedly computed by an
L-transducer that reads only relation All, is monotone.

Proof. Let Π be a network-independent transducer that reads only All. As a technical
convenience, we assume that runs can use concurrent global transitions, in which multiple
nodes can be active at the same time, each receiving messages from their own message
buffer. At the end of such a concurrent global transition, for each node, its message buffer is
extended with the multiset union of all messages sent to it by its neighbors. These concurrent
transitions can be simulated by a sequence of ordinary single-node transitions, as remarked
at the end of Section 3.1.
Let Υ be the schema of Π. Let Q be the query distributedly computed by Π. Let I and J

be two database instances over Υin such that I ⊆ J . Let f ∈ Q(I). We have to show that
f ∈ Q(J). The main trick used in this proof is that although Π can count the number of
nodes of a network (using relation All), it cannot directly observe the edges of the network.
So, when f is output on input I in one network, we can fool the transducer to output f on
input J in another network that has only slightly different edges.

Run on I. Consider a network N1 in the form of a ring, containing at least four nodes.
See Figure 1 for an example. Let T denote the transducer network based on N1 and Π. Let
H1 be the horizontal partition of I that places I on every node of N1.
We show now that there exists a run R1 of T on input H1 with sequence of configurations

ρ1 = (s1, b1), ρ2 = (s2, b2), . . ., such that for each i ≥ 1 and each x, y ∈ nodes(N1) we have
si(x) = si(y) and bi(x) = bi(y). In words: in every configuration, all nodes have the same
transducer state and the same message buffer. We inductively construct R1. For the base
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case (i = 1), configuration ρ1 satisfies the property because it is the start configuration: all
nodes are given the entire input I, and all message buffers are empty. For the induction
hypothesis, assume that the property holds for i. For the inductive step, we show how to
continue the partially constructed run R1 so that the property holds for i + 1. Denote
m = bi(x) for some node x. Possibly m = ∅. We next do a concurrent global transition in
which each node is the recipient of delivered message multisetm. This is possible by using the
induction hypothesis. So, we are delivering the entire message buffer at once to each node.
Again by the induction hypothesis, all nodes have the same state in configuration ρi, and
since local transitions are deterministic, all nodes will have the same state in configuration
ρi+1. Also, if one node sends a message set Jsnd on delivery ofm, then all nodes will send this
set on delivery of m. Hence, because N1 is a ring, for each node, the messages of Jsnd will
have been added twice to its message buffer at the end of the concurrent global transition.
Since all nodes emptied their message buffer at the beginning of the concurrent transition,
we see that in ρi+1 the nodes again have the same message buffer.

The run R1 can be converted to a fair run R′1 with only non-concurrent global transitions
and that produces the same output as R1. Moreover, because Π is network-independent,
we know that R′1 outputs Q(I), and thus R1 outputs Q(I). Therefore, we can consider a
node u of N1 and an index k ≥ 1 such that u outputs f during the kth concurrent global
transition of R1.

Run on J . Let u be the node as previously defined. Let z be a node of N1 that is not a
neighbor of u. We obtain a new network N2 from N1 by adding an edge between the two
neighbors of z. Because N1 is a ring with at least four nodes, we know that this edge was
not previously there and thus N2 contains a smaller ring without node z. Let T ′ denote the
transducer network based on N2 and Π. Importantly, note that N1 and N2 have precisely
the same nodes. Let H2 be the horizontal partition of J that places I on every node except
z and that places J \ I on z.
Let us abbreviate N = nodes(N2) \ {z}. Recall the sequence of configurations ρ1, ρ2, . . .,

of run R1 from above. We now show that there exists an (unfair) run R2 of T ′ on input H2
with sequence of configurations ρ′1 = (s′1, b′1), ρ′2 = (s′2, b′2), . . ., such that for each i ≥ 1 and
each y ∈ N we have s′i(y) = si(y) and b′i(y) = bi(y). In words: the smaller ring of nodes N
follows exactly the states and message buffers of run R1. We inductively construct R2. For
the base case (i = 1), the property is satisfied because input partitionH2 initializes the nodes
of N in the same way as input partition H1. For the induction hypothesis, we assume that
the property holds for index i. For the inductive step, we show that the property holds for
index i+1. As in the construction of R1, we next do a concurrent global transition in which
we deliver to every node of N the contents of its entire message buffer. Using the induction
hypothesis, this causes each node of N to send the same message instance Jsnd to their
neighbors. This message instance was also sent during the corresponding global transition
of R1. Let y1 and y2 denote the two neighbors of node z in N1. We have {y1, y2} ⊆ N .
Because we have added the extra edge between y1 and y2 in N2, node y1 sends Jsnd to z and
to y2. This is similar for y2. Node z does not send anything because it is ignored. So, like
in R1, both y1 and y2 have Jsnd added precisely twice to their message buffer at the end of
the concurrent global transition. The rest of the reasoning is the same as in the inductive
step for constructing R1. We obtain that the nodes of N have the same state and message
buffers in configuration ρ′i+1 as in configuration ρi+1.

Consider again the run R2. Because u ∈ N , the fact f is eventually output at u during
R2, during some global transition k. But R2 is clearly not fair because the node z is ignored.
However, we can make a new run R′2 by copying only the first k global transitions of R2,
converting each of them to a sequence of ordinary (non-concurrent) global transitions and
then extending this prefix arbitrarily to a full fair run. Thus, we obtain that f is output in
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Fig. 1. Ring network topology

a fair run of T ′ on input H2. Since Π is network-independent, we obtain that f ∈ Q(J), as
desired. �

As a corollary, we can add two more statements to the three equivalent statements of
Theorem 5.11:

Corollary 5.14. Let L be a query language containing UCQ. The following statements
are equivalent for any query Q expressible in L:

(1 ) Q can be distributedly computed by an oblivious L-transducer;
(2 ) Q can be distributedly computed by an L-transducer that is given only Id; and,
(3 ) Q can be distributedly computed by an L-transducer that is given only All.

Proof. The directions (1) ⇒ (2) and (1) ⇒ (3) are immediate because an oblivious
transducer is given neither of Id or All. For (2)⇒ (1), when only Id is read, the query Q
is monotone as argued above. Then, by also using that Q is expressible in L, we can apply
Theorem 4.10 to know that Q is computable by an oblivious L-transducer. The direction
(3)⇒ (1) is similar, but this time Theorem 5.13 is used. �

To conclude this section, we note that distributed algorithms involving a form of coor-
dination typically require the participating nodes to have some knowledge about the other
participating nodes [Attiya and Welch 2004]. This justifies our modeling of this knowledge
in the form of the system relations Id and All. Importantly, we have shown that these
relations are only necessary if one wants to compute a nonmonotone query in a distributed
fashion.

6. EXPRESSIVENESS ANALYSIS
In this section we want to better understand the transducer model itself. The main question
we would like to address is how the transducer model can be combined with a local query
language to express a global query. It is not obvious what peculiarities of the model can
be exploited in the local queries, and how. It will turn out actually that the global query
language expressed by the transducer is the while-closure of its local query language. Intu-
itively, this is because each node can do multiple local transitions in a run, which can be
seen as iterations of an implicit while-loop. This is very natural, and we believe this shows
that our (distributed) transducer model is relatively elegant, because it respects previous
results about well-known query languages [Abiteboul et al. 1995].
Table I summarizes the expressiveness results.

6.1. While versus FO
We first show the following property, and although the result might not sound very surpris-
ing, writing out the details turned out to be rather intricate.

Lemma 6.1. A query is expressible in While if and only if it is computable by an FO-
transducer on a single-node network.
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Table I. Expressiveness Summary

Queries expressible in While
= queries computable by FO-transducers
= queries computable by UCQ¬-transducers

Monotone queries expressible in While
= queries computable by oblivious FO-transducers

Queries expressible in Datalog
= queries computable by inflationary NrDatalog-transducers

Queries in PSPACE
= queries computable by multi-node FO-transducer networks under

1-delivery semantics

Proof (sketch). For the only-if direction, we have to simulate a While-program on a
single-node FO-transducer network. A While-program can be simulated by iterated heart-
beats using well-known techniques [Abiteboul and Vianu 1991a]. The main idea is that the
loops in the while-program are rewritten with explicit “goto” statements. The statements of
this rewritten program can then be simulated by an FO-transducer that keeps track of which
statement is to be executed next, and goto-statements can make the simulation jump back
to a previous statement (simulating a loop). We illustrate this technique in Appendix B.1.
For the if-direction, let Π be an FO-transducer over a schema Υ that computes a query

Q on a single-node network T . A While-program that computes the query Q has to use
exactly the same input and output schema as Π, namely, Υin and Υout respectively. The
While-program is however allowed to declare any number of temporary relations. We may
assume that Π does not read message relations in its internal queries, because no messages
can be received on a single-node network. As a first case, let us additionally assume that
the internal FO-queries of Π do not read relations Id and All (the oblivious case). Now,
because the memory relations of Π start empty, and temporary relations declared in the
While-program also start empty, we can easily construct a While-program P that consists
of one big loop, of which one iteration performs the same state changes as Π during one
heartbeat transition. We provide an example in Appendix B.2. In order to terminate, P
must detect repetition of transducer states, because this implies that Π has repeated a
state and will output no new output facts. Detecting such a repetition is possible by using
the technique of Abiteboul and Simon [Abiteboul and Simon 1991].
Let us now consider the second case where Π reads Id or All (or both) in its internal

queries. These relations can not be simulated by the While-program. Indeed, these relations
are always non-empty from the perspective of Π, and a While-program can not create
temporary relations to represent them: when the input is empty, the While-program can
not invent a value to store in Id and All, and when the input is nonempty, the While-
program can in general not choose one value to store in Id and All. Therefore, we will first
eliminate the use of Id and All from the queries of Π. Once this is done, we can apply the
above translation for the oblivious case.

Remove relation All. Note that in the FO-queries of Π we can replace the use of rela-
tion All by Id because, on a single-node network, both relations have the same contents.
Formally, in a transducer state there is a fact Id(a) iff there is a fact All(a).

Remove relation Id. Assume that relation All is not used in Π. Next, we remove the
use of relation Id from Π. We will only sketch the approach, and the details can be found
in Appendix B.3. We use the work of Van den Bussche and Cabibbo [Van den Bussche
and Cabibbo 1998], who have shown how to convert an ordinary (untyped) FO-formula
to a typed formula that computes the same query. In typed formulas, each variable is of
a specific sort, meaning that it ranges over an isolated domain of values. In our case, we
distinguish between two sorts: (i) values in the active domain of an input database instance
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over Υin; and, (ii) the identifier x of the single node in T (with T as defined above). We
will denote these sorts as respectively adom and id. A type τ is a tuple of sort symbols, like
(adom, id, id).
Based on Π, we construct a second transducer Π2 as follows. For each relation R(k) ∈

Υout∪Υmem of Π and each type τ of arity k, transducer Π2 has a relation Rτ (k). Transducer
Π2 also has a memory relation Adom in which it stores all values from its input. We now
describe how Π2 updates such a relation Rτ (k). Let ϕ denote the FO-formula used by Π to
insert tuples in relation R (deletion is similar). If for example τ = (adom, adom, . . . , id),
then transducer Π2 will use a formula of the form

ψ(u1, . . . , uk) ∧ Adom(u1) ∧ Adom(u2) ∧ . . . ∧ Id(uk)
to insert into Rτ the tuples of type τ that are computed by ϕ. The formula ψ is basically
the formula ϕ, but modified to cope with the separation of tuples by their type: each time
ϕ reads a tuple from a relation S(l), formula ψ reads a tuple from the union

⋃
τ∈α Sτ

(l),
where α is all types of arity l. This way, Π2 also computes the same query as Π.
Now, we can apply Proposition 1 of [Van den Bussche and Cabibbo 1998] to the formulas

in Π2 to obtain new formulas in which there is no explicit reference to relations Adom and Id.
Instead, the converted formulas use variables of two sorts (the adom and id sorts). In a last
step, we can syntactically eliminate any reference to id variables, and obtain back normal
FO-formulas. These can be used in a new transducer Π3, which is oblivious, to compute the
same query as Π. �

Now we can obtain the following result:
Theorem 6.2. A query is expressible in While if and only if it can be distributedly

computed by an FO-transducer.
Proof. For the if-direction, let Π be an FO-transducer that distributedly computes

a query Q. Because Π is network-independent, the query Q must also be computed when
executing Π on a single-node network. Then, by using Lemma 6.1, there is a While-program
that computes Q.
For the only-if direction, let Q be a query that can be computed by a While-program.

We specify an FO-transducer to compute Q in two steps. First we use Lemma 4.8 to obtain
the entire input instance at every node. Every node can then act as if it was alone, ignoring
any further messages, and simulate the While-program again using Lemma 6.1. �

For monotone queries we have the following, more specific result:
Theorem 6.3. Every monotone query expressible in While can be distributedly com-

puted by an oblivious FO-transducer.
Proof. Let Q be a monotone query expressible in While. We construct an oblivious FO-

transducer to compute Q. Note that Theorem 4.10 is not applicable, because that would
give us an oblivious While-transducer, and not an oblivious FO-transducer. But the proof
idea of the theorem can still be used.
First, we use the simple UCQ-protocol of Lemma 4.7 to let all nodes accumulate all in-

put facts in memory. This does not require Id or All. Next, every time a node receives a
new input fact, it starts or restarts a simulation of the While-program for Q. The simu-
lation uses the techniques of the proof of Lemma 6.1 (only-if direction), where specifically
the output facts are first computed in temporary memory relations before being officially
output. Checking whether a new input fact is received is done by comparing a received
input fact with the previously accumulated input facts in memory. The restarting of the
simulation of the While-program is done by emptying all memory relations, and restarting
the program counter. The restart can happen at the moment a simulation is busy, in which
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case the temporary output is discarded. The restart can also happen after a simulation was
already successfully ended. Since the query Q is monotone, no incorrect facts were output
by previous simulations.
Eventually, every node will have accumulated all input facts, so the simulation can surely

run to completion on all input facts. We also do not need relations Id and All to simulate
the While-program. Hence, the transducer is oblivious. �

Note that the converse of Theorem 6.3, to the effect that every query distributedly com-
puted by an oblivious FO-transducer is monotone and expressible in While, holds by com-
bining Theorems 5.11 and 6.2 that give respectively the monotonicity of the query and the
expressibility in While.
For our next result, we will use that FO is equivalent to NrDatalog¬ [Abiteboul et al.

1995]. Basically, a program in NrDatalog¬ is a sequence of UCQ¬ statements. The following
proposition shows that transducers can simulate this sequential composition of simpler
statements:

Proposition 6.4.
(i) Every query that can be distributedly computed by an FO-transducer can be distributedly

computed by an UCQ¬-transducer.
(ii) Every monotone query that can be distributedly computed by an FO-transducer can be

distributedly computed by an oblivious UCQ¬-transducer.
Proof. First, we make a general observation. For every query Q that is distributedly

computed by an FO-transducer, we can apply Theorem 6.2 to know that Q is expressible
with a While-program P . Moreover, since the language FO is equivalent to NrDatalog¬
[Abiteboul et al. 1995], every FO-statement in P can be replaced by a sequence of UCQ¬-
statements, to obtain a new program P ′. Then, it is clear that program P ′ can be simulated
by an UCQ¬-transducer on a single-node network using iterated heartbeats, very similar to
the proof of the only-if direction for Lemma 6.1.
For result (i), we let each node first collect a local copy of the entire input by using the

protocol of Lemma 4.8, which can be done with a UCQ¬-transducer. After collecting the
input, each node can simulate the program P ′ is isolation.
For result (ii), where Q is monotone, we use instead Lemma 4.7 to let each node gradually

accumulate all input, and we restart the simulation of P ′ when new inputs arrive. �

6.2. Datalog versus NrDatalog
What if we are only interested in Datalog? Between the languages Datalog and NrDatalog,
a similar relation exists as between While and FO:

Theorem 6.5. A query is expressible in Datalog if and only if it can be distributedly
computed by an inflationary NrDatalog-transducer.

Proof. First we consider the only-if direction. We construct an oblivious, inflationary
transducer to simulate a Datalog program. The basic idea is the same as in the proof
of Theorem 4.10. The input tuples are sent out and accumulated on every node. During
every transition, we apply the immediate consequence operator of the Datalog program
[Abiteboul et al. 1995], that can be expressed by NrDatalog. The relations Id and All are
not needed, and the transducer can be made oblivious. Also, by the monotone nature of
Datalog evaluation, deletions are never needed, and the transducer can be made inflationary.
Now we consider the if-direction. Let Q be a query distributedly computed by an infla-

tionary NrDatalog-transducer Π over a schema Υ. We show that Q can be expressed in
Datalog. Because of network-independence, it is sufficient to look at the behavior of Π on a
single-node network. We simulate this behavior with a Datalog program P as follows. We
assume that the logical “and” and the universal quantifier are not core primitives of FO,
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since these can be simulated by negation together with respectively the logical “or” and the
existential quantifier. We call an FO-formula positive if each atom and existential quantifier
occurs under an even number of negation symbols. The language NrDatalog is equivalent to
positive FO. So, Π is just an inflationary FO-transducer, in which the internal FO-queries
are positive. Now, the same transformation as in the proof of the if-direction for Lemma
6.1 can be applied to transform Π into a new FO-transducer Π′ that computes Q without
reading relations Id and All. Moreover, this transformation preserves the positivity of the
formula. Hence, Π′ can be immediately seen as an inflationary NrDatalog transducer that
does not read Id and All. Next, we unite all NrDatalog rules of Π′ in a Datalog program P .
Because P by the nature of Datalog can only accumulate its generated facts, P has at least
the opportunities of Π′ to join facts, and P outputs at least the output of Π′. Moreover,
because Π′ is inflationary itself, Π′ eventually has the same opportunities to join facts as
P . In conclusion, P computes exactly the original query Q. �

It remains open if we can drop the word “inflationary” from Theorem 6.5.

6.3. Restrict Delivery
It is well-known that providing an order on the active domain increases the expressiveness
of a query language [Abiteboul et al. 1995]. This result transfers nicely to our transducer
model. By guaranteeing that only one message is delivered during every global transition,
referred to as 1-delivery semantics (cf. Section 3.3), an order can be established on each
node:

Proposition 6.6. Under 1-delivery semantics, every PSPACE query can be computed
by an FO-transducer network with at least two nodes.

Proof. In a network with at least two nodes, under 1-delivery semantics, each node can
establish a linear order on the active domain by cooperating with the other nodes as follows.
When a node has collected all inputs of the network (by means of Lemma 4.8), it sends out
the elements of the active domain, that get forwarded by other nodes. Eventually, all these
elements arrive back at the node, and the order can be established because at most one value
is received at once. Then, each node can simulate a While-program on the collected input,
that uses the established order. The transducer involved is not truly network-independent,
as this only works when there are at least two nodes. �

6.4. Specialized CALM Properties
Using our previous results about expressivity, we obtain the following variants of Theorem
5.11. Especially, the second variant, which deals with Datalog, may come closest to the
CALM conjecture as originally imagined by Hellerstein [Hellerstein 2010b].

Corollary 6.7. Within each of the following two groups, the statements are equivalent,
for any query Q:

(1 ) (a) Q can be distributedly computed by a coordination-free FO-transducer.
(b) Q can be distributedly computed by an oblivious FO-transducer.
(c) Q is monotone and expressible in the language While.

(2 ) (a) Q can be distributedly computed by a coordination-free, inflationary NrDatalog-
transducer.

(b) Q can be distributedly computed by an oblivious, inflationary NrDatalog-transducer.
(c) Q is expressible in Datalog.
Proof. Regarding (1), for (c) ⇒ (b) use Theorem 6.3; for (b) ⇒ (a) use Proposition

5.8; for (a)⇒ (c) use Theorems 5.10 and 6.2 to obtain respectively the properties of “Q is
monotone” and “expressible in the language While”.
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Regarding (2), for (c)⇒ (b) use (proof of if-direction in) Theorem 6.5; for (b)⇒ (a) use
Proposition 5.8; for (a)⇒ (c) use Theorem 6.5. �

7. VARIATION OF THE MODEL
In the literature on declarative networking, a seemingly common language feature seems to
be that nodes do not simply send each message to all of their neighbors, but instead to a
specifically addressed neighbor [Loo et al. 2009; Grumbach and Wang 2010; Alvaro et al.
2011b; Nigam et al. 2012]. We call this the addressing model. One could argue that this
model lies closer to how real networks operate, and that is why we devote a small section
to this model.

7.1. Addressing Transducers
Recall our original epidemic transducer model that was presented in Sections 2.2 and 3. An
addressing transducer Π over a transducer schema Υ is the same as an epidemic transducer
over Υ with the only difference that for a message relation R(k) ∈ Υmsg, the sending query
will produce facts of arity k+1 instead of k. The extra component will contain the addressee
of each message, which is by convention the first component. Now we look at how the
operational semantics must be changed accordingly. With Π as above, consider a transducer
network T = 〈N ,Υ,Π〉. We define how an active node x ∈ N does a global transition.
Similarly to the original definition of global transition (in Section 3), we let x receive some
messages from its message buffer. Then, x does a local transition in which it generates a set
of newly sent messages Jsnd, each having the addressee specified as their first component.
Now, the messages that are effectively added to the message buffer of another node y,
denoted K→y, is defined as: if y is a neighbor of x then K→y = {R(ā) | R(y, ā) ∈ Jsnd}
and otherwise K→y = ∅, i.e., we select precisely the messages that are sent to y when
y is a neighbor. An addressee value that is not a neighbor of x will result in the loss of
the corresponding message. Note that the message buffers contain facts without an explicit
addressee-component, like in the operational semantics for epidemic transducers.
As a special case, if N forms a complete graph, every node can send a message to every

individual other node.

7.2. Properties
First, all our previous results that do not explicitly mention “oblivious” transducers still
hold for addressing transducers because, when there is no restriction on using Id or All,
addressing transducers and epidemic transducers are equivalent in terms of what queries
they can compute. Indeed, it was already noted in Section 3.4 that the epidemic model
can simulate the addressing model by manually adding an addressee-component to every
message relation in the transducer schema, and by comparing for each received message
the addressee component with the value in the local relation Id. The other direction is also
possible, namely that an addressing transducer can simulate an epidemic one. It suffices for
the addressing transducer to send each message explicitly to every neighbor.

Interestingly, a notion of obliviousness can also be defined for addressing transducers.
Formally, we say that an addressing transducer is oblivious if the relations Id and All are
only used in the message sending queries.4
Now, most of our results involving oblivious epidemic transducers also hold for oblivious

addressing transducers, because of the following reasons. First, the proof techniques fre-
quently use that every node sends out its local input facts, and these are forwarded so that
eventually all nodes accumulate all inputs. This can be done with an oblivious addressing
transducer as well. Second, these results are mostly about network-independent transducers,
and a frequently occurring idea in those proofs is that we only focus on the behaviour of a

4Note, we can not completely forbid the use of node relations because we need to indicate addressees.
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single node: an oblivious transducer can not distinguish between a single-node network and
a multi-node network unless it receives a message, so on a single-node network it should
exhibit predictable behaviour if it wants to be network-independent. This trick is also ap-
plicable to oblivious addressing transducers, because they too can not distinguish between
single-node and multi-node networks unless they receive a message. We now explicitly give
the results that are not transferable, and why this is the case.
First, Proposition 4.2 does not hold for oblivious addressing transducer networks, because

this result talks about a concrete transducer network. The transducer may now exploit the
number of nodes. In particular, if there are multiple nodes, the transducer may assume
messages are eventually delivered. So, it is possible to construct a multi-node transducer
network in which the oblivious addressing transducer smuggles node identifiers in the sent
messages (by reading All), and when these arrive, it is possible to only output the input
facts whose active domain is contained in the set of node identifiers. This would prevent
the transducer network from computing a generic query.
Although not purely about obliviousness, the result of Theorem 5.13 is also not transfer-

able to addressing transducers, as illustrated by the following example, where relation All
is used to make the nodes dependent on message arrival.

Example 7.1. We give an addressing transducer that reads only relation All and that
computes the nonmonotone emptiness query on a nullary input relation R (see also Example
5.5). Reading relation All in output or memory queries, a node can know from the start
if it is alone or not. If the node is alone, then it can immediately output the desired result
by looking at the local relation R. But if there are multiple nodes, every node x sends each
local fact All(y) as a message A(y) to node y. Although the operational semantics drops
the message when y is not a neighbor of x, because each network is connected, y has at
least one neighbor from which it will receive A(y). This way, each node can establish its
own identity. Next, the same protocol as in Example 5.5 can be followed. �

8. CONCLUSION
Encouraged by Hellerstein [Hellerstein 2010a; Hellerstein 2010b], we have tried in this paper
to formalize and prove the CALM Conjecture. We do not claim that our approach is the
only one that works. Yet, we believe our approach is natural because it is firmly grounded in
previous database theory practice, and delivers solid results. Much further work is possible;
we list a few obvious topics:
— Look at Hellerstein’s other conjectures (e.g. the CRON conjecture [Ameloot and Van den

Bussche 2012b]);
— Investigate the expressiveness of variations or extensions of the basic distributed compu-

tation model presented here; and,
— Identify special cases where essential semantic notions such as monotonicity, consistency

[Ameloot and Van den Bussche 2012a], network-independence, coordination-freeness, etc,
are decidable.

APPENDIX
A. EXPRESSING QUERIES
A.1. Undecidability

Proposition A.1. Consistency for FO-transducer networks is undecidable.
Proof. We reduce the finite satisfiability problem for FO to deciding consistency for

FO-transducer networks. Let ϕ be an FO-sentence over a database schema D. We construct
a transducer network T that is consistent iff ϕ is not finitely satisfiable.

Consider the transducer Π from Example 4.5, that is over transducer schema Υ. We may
assume without loss of generality that the relation names of Υ do not occur in D. We obtain
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a new transducer schema Υ′ from Υ by adding D to Υin. We obtain a new transducer Π′
from Π by modifying the send rule for relation U to only send facts when ϕ is satisfied on
the local input over D.
Suppose that ϕ is finitely satisfiable. Consider a network N with two (connected) nodes

x and y. Let T denote the transducer network with Π on both nodes. Let I be a database
instance over D on which ϕ is true. Consider the input distributed database instance H with
H(x) = I ∪ {R(1), R(2)} and H(y) = ∅. Consider the prefix of a fair run of T on H where
first x does a heartbeat transition: because ϕ is true on I, node x sends messages U(1) and
U(2) to y. In the second transition, we can deliver message U(1) to y or message U(2),
or both. Each choice results in a different output at y, which results in a different global
output because x never outputs anything (x does not receive messages from y). Hence, the
transducer network is not consistent.
For the other direction, suppose that ϕ is not finitely satisfiable. Then there is no input

distributed database instance for T on which messages will be sent, in which case T is
consistent because on every input, every run produces the empty output. �

Proposition A.2. Network independence for FO-transducers is undecidable.

Proof. We reduce the finite satisfiability problem of FO to deciding network-
independence of FO-transducers. Let ϕ be an FO-sentence over a database schema D. We
construct a transducer Π that is network-independent iff ϕ is not finitely satisfiable.

Consider the transducer Π in Example 4.6, that is over schema Υ. We may assume
without loss of generality that the relation names of Υ do not occur in D. We obtain a new
transducer Π′ by modifying Π as follows:

— using the protocol of Lemma 4.8, we let all nodes collect all the input facts of D available
on the network; and,

— the output query is modified so that output can only be produced if the formula ϕ is
satisfied on the (fully) collected instance over D in memory, in addition to detecting a
complete network-topology (as before).

It is possible to construct Π′ so that its output, message, and memory relations are not in
D. Note that on any network, the transducer network resulting from Π′ is consistent: this
is because before the output can be produced at a node, it should have obtained the entire
input over D, and it should have detected that the network topology is complete.
Suppose that ϕ is finitely satisfiable. Let I be a database instance over D on which ϕ

is true. Denote I ′ = I ∪ {R(1)}. Then, on a complete network-topology, the transducer
network resulting from Π′ outputs T (1) on any horizontal partition of I ′. Indeed, the nodes
forward all facts of I to each other and in any run there will be a moment when all nodes
have these facts and have detected that the network-topology is complete. On any other
network-topology, for every input partition of I ′, the resulting transducer network outputs
nothing. Therefore Π′ is not network-independent.
For the other direction, suppose that ϕ is not finitely satisfiable. Then every transducer

network for Π′ computes the empty query and Π′ is therefore network-independent. �

A.2. Proof of Lemma 4.8
First, we specify the parts of the transducer-schema Υ that we need: Υin = D; Υmsg =
{(Rmsg, k + 1), (Rack, k + 2) | R(k) ∈ D} ∪ {done(2)}; and,

Υmem = {(Rmem, k), (RackMem, k + 2) | R(k) ∈ D}
∪ {doneMem(2), notDone(1), missing(0)} ∪ {started(0), ready(0)}.
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We have not specified the database schema Υout because this schema is not used in
the transducer construction. The idea is that a node x will send its local input facts over
relation R(k) ∈ Υin as facts with predicate Rmsg, with as the last component its own node
identifier to indicate the origin of the fact (hence the increased arity of k + 1). We call this
last component the “tag”. Next, when a node y receives a tagged Rmsg-fact, it removes the
tag and stores the fact in its relation Rmem and it sends an Rack-fact to acknowledge the
receipt of it. These acknowledgments have the contents of the received Rmsg-fact (including
the tag), with an additional last component containing the identifier of y. The node x
checks whether y has (eventually) acknowledged all input facts of x. If yes, then x sends
out done(x, y). From the viewpoint of y, if y has received done(x, y) from all other nodes x
then it knows that it has accumulated all the input facts on the network.
Some further details are as follows. Let x be a node. For a relation R in Υin, node x uses

the relation RackMem to store all received acknowledgments for its local input facts over
relation R. The relation notDone is used by x to remember all the other nodes that have
not yet acknowledged all input facts of x. The relation doneMem is used by x to remember
all done-messages having as the second component its own identifier. The relation missing
is nonempty at x as long as x has not received a done-message from all other nodes.
The relation started helps x to differentiate between its first local transition and all the
following local transitions. This makes sure that other memory relations have been correctly
initialized before they are read.
Now we specify the transducer Π over Υ. We describe the queries with the language

UCQ¬, which is contained in FO. As usual, unions are then expressed by having multiple
rules with the same head. As a general remark about message sending, for each message
relation, we always have a “forwarding” rule that just resends all received messages, so that
eventually all nodes can receive those messages.
First, for each R(k) ∈ D we have the following rules to let all nodes forward their (tagged)

input R-facts to each other, and to store the received facts in memory (including acknowl-
edgments):

Rmsg
snd (u1, . . . , uk, x)← R(u1, . . . , uk), Id(x).

Rmsg
snd (u1, . . . , uk, x)← Rmsg(u1, . . . , uk, x).

Rmem
ins (u1, . . . , uk)← R(u1, . . . , uk).

Rmem
ins (u1, . . . , uk)← Rmsg(u1, . . . , uk, x).

Rack
snd(u1, . . . , uk, x, y)← Rmsg(u1, . . . , uk, x), Id(y).

Rack
snd(u1, . . . , uk, x, y)← Rack(u1, . . . , uk, x, y).

RackMem
ins (u1, . . . , uk, x, y)← Rack(u1, . . . , uk, x, y), Id(x).

We also specify rules for the other relations in Υ. For convenience, let us denote D =
{R(k1)

1 , R
(k2)
2 , . . . , R

(kn)
n }. First, we need to remember that the first local transition has

already happened, using the following rule:
startedins( )← .

Next, on each node x, the relation notDone contains all nodes that have not yet acknowl-
edged the receipt of all local input facts of x. A node does not have to acknowledge its own
input facts, so notDone will not contain x itself. This relation is recomputed during every
local transition, using the following rules:
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notDoneins(y)←R1(u1, . . . , uk1), Id(x), All(y), ¬Id(y),
¬RackMem

1 (u1, . . . , uk1 , x, y).
...
notDoneins(y)←Rn(u1, . . . , ukn), Id(x), All(y), ¬Id(y),

¬RackMem
n (u1, . . . , ukn , x, y).

notDonedel(y)← notDone(y).

Note that if a node was initialized with no local input tuples over some relation R(ki)
i ∈ D,

then the corresponding insertion rule for notDone will not fire. In that case, the node will
not consider any other nodes “responsible” for acknowledging the receipt of its input facts
over relation Ri. This is the desired behavior. Also, the deletion rule for notDone allows
for the recomputation of notDone during every local step: only the nodes that have not
confirmed every local input fact are reinserted again. Thus, after a while, relation notDone
will become (and remain) empty.
When a node x notices that another node y has acknowledged all local input facts of x,

node x sends out done(x, y). This is accomplished by the following rules:

donesnd(x, y)← started( ), Id(x), All(y), ¬Id(y), ¬notDone(y).
donesnd(x, y)← done(x, y).

These done-messages are stored at the addressed node:
doneMemins(x, y)← done(x, y), Id(y).

Finally, when a node y has received done from all other nodes , it can output the ready
flag. This is accomplished by the following rules:

missingins( )← Id(y), All(z), ¬Id(z), ¬doneMem(z, y).

missingdel( )← missing( ).

readyins( )← started( ), ¬missing( ).

Note that in a single-node network, the missing-fact is never created. In that case, the
ready-fact is already produced in the second transition (thus after started( ) is created).

The transducer Π above can actually be made inflationary as well. In particular, using
the equivalence FO = NrDatalog¬, we can write a NrDatalog¬-transducer where relations
notDone and missing do not appear in the memory schema Υmem but are computed locally:
one would locally compute notDone in the sending query for the done-relation, and one
would locally compute missing in the insertion query for the ready-relation.

B. EXPRESSIVENESS ANALYSIS
B.1. Proof of Lemma 6.1 (While to FO-transducer)
We show how to simulate a While-program on a single-node FO-transducer network. A
While-program can be simulated by iterated heartbeats using well-known techniques [Abite-
boul and Vianu 1991a]. Because this is not entirely obvious, we will illustrate the technique.
Consider the simple While-program in Algorithm 1 over input schema D = {R(2), S(1)} and
output schema D′ = {T (2)}. Intuitively, if R represents a graph then the While program
collects all edges that are reachable from the nodes in relation S. By introducing a tempo-
rary relation U , we can rewrite this program so that T is only modified at the very end. See
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Algorithm 1 A While-program.
T := {T (u,v) | R(u, v) ∧ S(u)};
T prev := ∅;
while (T \ T prev 6= ∅) do

T prev := T ;
T := T ∪

{
T (v, w) | ∃u

(
T (u, v) ∧R(v, w)

)}
;

end

Algorithm 2 Rewritten version of Algorithm 1.
U := {U(u, v) | R(u, v) ∧ S(u)};
Uprev := ∅;
while (U \ Uprev 6= ∅) do

Uprev := U ;
U := U ∪

{
U(v, w) | ∃u

(
U(u, v) ∧R(v, w)

)}
;

end
T := U ;

Algorithm 3 List program for Algorithm 2.
step1: U := {U(u, v) | R(u, v) ∧ S(u)};
step2: Uprev := ∅;
step3: V := {V ( ) | U(u, v) ∧ ¬Uprev(u, v)};
step4: if 〈V = ∅〉 goto 〈step8〉;
step5: Uprev := U ;
step6: U := U ∪

{
U(v, w) | ∃u

(
U(u, v) ∧R(v, w)

)}
;

step7: goto 〈step3〉;
step8: T := U ;

Algorithm 2. Next, any While-program can be translated to a list of statements in which
explicit control flow is represented by conditional and unconditional “goto” statements. This
also works for nested while-loops. When translating Algorithm 2 to this form, we obtain
Algorithm 3. There, V holds the result of the expression that is tested for non-emptiness
by the while-loop condition. Let us refer to this form as a “list program”.
We will now simulate Algorithm 3 with an FO-transducer. First, we define a transducer

schema Υ with Υin = D, Υout = D′, Υmsg = ∅ and

Υmem = {(U, 2), (Uprev, 2), (step1, 0), . . . , (step8, 0)}.
Relations step1 to step8 model the program counter of the list program. The idea is that
at any moment in time at most one of these relations is active (nonempty) and that they
activate each other in the correct way in order to represent the desired control flow. We
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now specify a transducer Π over Υ that simulates Algorithm 3 on a single-node network.
As a general remark, some stepi-relations with i ∈ {1, . . . , 8} are read inside the queries
that update relations U and Uprev, to make sure that U and Uprev are updated only at
the moment when the original list program updates them. We will also specify the deletion
queries for U and Uprev because assignment in a While-program is destructive in the sense
that previous facts can only stay in the relation if they are on the right hand side of the
assignment. The queries are as follows:

step1
ins( )← ¬step1( ), ¬step2( ), . . . , ¬step8( ).

Uins(u, v)← step1( ), R(u, v), S(u).
Uins(u, v)← step6( ), U(u, v).
Uins(v, w)← step6( ), U(u, v), R(v, w).

Udel(u, v)← step6( ), U(u, v).

step2
ins( )← step1( ).

step3
ins( )← step2( ).

step3
ins( )← step7( ).

Vins( )← step3( ), U(u, v), ¬Uprev(u, v).

Vdel( )← step4( ).

step4
ins( )← step3( ).

step5
ins( )← step4( ), V ( ).

Uprev
ins (u, v)← step5( ), U(u, v).

Uprev
del (u, v)← step5( ), Uprev(u, v).

step6
ins( )← step5( ).

step7
ins( )← step6( ).

step8
ins( )← step4( ),¬V ( ).

Tout(u, v)← step8( ), U(u, v).

For i ∈ {1, . . . , 7}: stepidel( )← stepi( ).

We never delete step8( ) because we do not want to accidentally restart the simulation of
the While program: indeed, when stepi( ) for each i ∈ {1, . . . , 8} is missing, a new step1( )
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fact is created. Note that the queries for inserting into relations step5 and step8 together
simulate the if-goto statement at line 4 of Algorithm 3.

B.2. Proof of Lemma 6.1 (FO-transducer to While)
Let T be a single-node transducer network, running an oblivious FO-transducer Π that
does not read message relations. Let Q denote the query computed by T . We describe a
While-program P to compute Q. Intuitively, P consists of one big loop that during one
iteration performs the same state changes as Π during one heartbeat transition. Also, in
order to terminate, the While-program must detect repetition of transducer states.
To illustrate, consider the transducer given in Algorithm 4, that computes the query of

Section B.1 intentionally in a more complex way. Specifically, the memory relation A con-
tinuously alternates between being empty and nonempty. The insertion queries for relations
U and T only produce a nonempty output when A is nonempty.
For two sets S1 and S2, let diff (S1, S2) abbreviate the expression

(
(S1 \ S2) ∪ (S2 \ S1)

)
.

Consider now the While-program P in Algorithm 5 to explicitly simulate the transducer
of Algorithm 4. The program P keeps simulating the updates to the relations A, U and T
until no more changes occur to all of them. Surely, if the transducer state stops changing,
no more output facts can be produced because only heartbeat transitions can occur and
because local transitions are deterministic. However, because of the alternating behavior of
relation A, the program P never stops if it uses only this test. For the transducer itself, the
alternating behavior of relation A is no problem because its output is defined on infinite runs
anyway. But program P needs to halt because otherwise its output is undefined. Using the
technique of Abiteboul and Simon [Abiteboul and Simon 1991], however, P can be modified
to detect that it is in an infinite loop. This implies that the transducer has repeated a state
and will output no new output facts. After detecting the infinite loop, the program P then
breaks the loop and the final contents of relation T is the output.

Algorithm 4 A simple FO-transducer.
Schema: Υin = {R(2), S(1)}; Υout = {T (2)}; Υmsg = ∅; Υmem = {A(0), U (2)}.
Queries:

Ains( )← ¬A( ).

Adel( )← A( ).

Uins(v, w)← A( ), T (u, v), R(v, w).

Udel(u, v)← A( ), U(u, v).

Tout(u, v)← A( ), R(u, v), S(u).
Tout(u, v)← A( ), U(u, v).

B.3. Proof of Lemma 6.1 (eliminate Id)
Let T be a single-node transducer network, with FO-transducer Π over transducer schema
Υ. Let x denote the single node. Let Q denote the query computed by T . We assume that
Π does not read relation All and does not read message relations. Here we will show how to
rewrite Π to eliminate the use of relation Id as well. We thus obtain an oblivious transducer.
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Algorithm 5 While-program based on the transducer of Algorithm 4.
[All auxiliary relations start empty]

while
(
¬started( ) ∨ (diff (A,Aprev) ∪ diff (U,Uprev) ∪ diff (T, T prev) 6= ∅)

)
do

started := {started( )};
Aprev := A;
Uprev := U ;
T prev := T ;
Ains := {A( ) | ¬Aprev( )};
Adel := {A( ) | Aprev( )};
Uins :=

{
U(v, w) | ∃u

(
Aprev( ) ∧ T prev(u, v) ∧R(v, w)

)}
;

Udel := {U(u, v) | Aprev( ) ∧ Uprev(u, v)};

[We explicitly simulate the updating of memory relations]

A :=
(
Aprev ∪ (Ains \Adel)

)
\ (Adel \Ains);

U :=
(
Uprev ∪ (Uins \ Udel)

)
\ (Udel \ Uins);

T := T ∪ {T (u, v) | Aprev( ) ∧R(u, v) ∧ S(u)}
∪ {T (u, v) | Aprev( ) ∧ Uprev(u, v)};

end

B.3.1. Definitions and Notations. Van den Bussche and Cabibbo [Van den Bussche and
Cabibbo 1998] have shown how to convert an untyped FO-formula to a typed one that
computes the same query (over a typed relation schema). We will use that result here. We
distinguish between two sorts of values:

— values in the active domain of an input over Υin; and,
— the single node x of T .

For these sorts we use the symbols adom and id respectively. The technique of [Van den
Bussche and Cabibbo 1998] requires that each sort has a completely separated domain of
values. Hence, we will assume that x does not occur in the adom values. We will see later
that this assumption has no undesired consequences.
The definitions below are specifically tailored for the two sorts above and therefore less

general as in the paper [Van den Bussche and Cabibbo 1998]. A type τ is a tuple of sort
symbols. An example is (adom, id, adom, adom). A k-type is a type with arity k.

A typed database schema F is a finite set of pairs (R, τ) with R a relation name and τ
the associated type of R, such that no relation name occurs twice. This corresponds to an
ordinary database schema untyped(F) that consists of

— a relation R(k) for each (R, τ) ∈ F with k the arity of τ ; and,
— the relations Id(1) and Adom(1) (assumed not to be in F already).

We define a typed database instance I over F as a normal database instance over untyped(F)
such that

— I|Id = {Id(x)},
— I|Adom = {Adom(a) | a ∈ adom(I), a 6= x},

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Relational Transducers for Declarative Networking A:33

— for each fact R(a1, . . . , ak) ∈ I, where R is not Id or Adom, and τ = (s1, . . . , sk) is the
type of R in F , we require for each i ∈ {1, . . . , k} that ai 6= x if si = adom and ai = x if
si = id. We say that this fact has type τ .

Also, we will specify the queries of FO-transducers with relational calculus to make a
better connection with the previous work [Van den Bussche and Cabibbo 1998].5 We assume
that the active domain semantics is used to evaluate these queries [Abiteboul et al. 1995].

B.3.2. Split tuples by type. We now construct an intermediate transducer Π2 to compute
on the single-node network x the same query Q as Π, when we restrict attention to input
instances I over Υin with x /∈ adom(I). We define the schema Υ2 of Π2 as follows. First,
Υ2

in = Υin; Υ2
out = Υout; Υ2

msg = ∅; and Υ2
mem consists of

— relation Adom(1);
— relation started(0); and,
— the relations Rτ (k) for each R(k) ∈ Υmem ∪Υout and each k-type τ .

Concerning Υ2
mem, the idea is that in Π2 the facts over relation R(k) ∈ Υmem ∪ Υout of Π

are represented by all the disjoint relations {R(k)
τ | τ is a k-type}.

We now describe the FO-queries of Π2. To start, in the first transition, we initialize
relation Adom to contain the active domain of the input over Υin, and we also compute the
fact started( ) so that other queries can know that relation Adom has been initialized. We
omit the details of these relatively simple queries.
Next, we define the queries for the other memory relations of Π2. Consider R(k)

τ ∈ Υ2
mem,

with R(k) ∈ Υmem. Let the insertion query for R in Π be the following relational calculus
query:

{(u1, . . . , uk) | ϕ(u1, . . . , uk)}.

The FO-formula ϕ is over Υin ∪ Υout ∪ Υmem ∪ {Id(1)}. We write ϕsplit to denote the
modification of ϕ that is obtained by replacing for each R(k) ∈ Υmem∪Υout, each occurrence
of an atomic subformula R(u1, . . . , uk) by the non-atomic formula

(∨
τ∈αRτ (u1, . . . , uk)

)
where α is the set of all k-types. Now, denoting τ = (s1, . . . , sk), we define the insertion
query for relation Rτ in Π2 to be the following relational calculus query:

{(u1, . . . , uk) | ϕsplit(u1, . . . , uk) ∧ S1(u1) ∧ . . . ∧ Sk(uk) ∧ started( )}
where for each i ∈ {1, . . . , k} we define Si = Adom if si = adom and Si = Id if si = id. The
deletion query for Rτ in Π2 can be defined in a similar way, based on the deletion query of
R in Π. Again, this is similar for a relation Rτ (k) with R(k) ∈ Υout, but with the difference
that the deletion query in Π2 will always return empty (because output only accumulates).
Finally, for R(k) ∈ Υ2

out = Υout we define the output query of R in Π2 to copy the contents
of memory relation Rτ where τ is the k-type (adom, . . . , adom). This way, the value x can
not be output on input instances that do not contain x in their active domain (see our
earlier assumption). This completes the description of transducer Π2.
As for notation, for a fact f = Rτ (a1, . . . , ak) we write f̂ to denote R(a1, . . . , ak), i.e.,

to drop the type subscript. The following lemma can now be shown by induction on the
structure of FO-formulas.

Lemma B.1. Let I be an input instance over Υin = Υ2
in such that x /∈ adom(I). On input

I, on the single-node network x, let J1 and J2 be transducer states for Π and Π2 respectively.

5For easier technical presentation, we assume that relational calculus queries produce tuples instead of facts.
These tuples can be easily turned into facts by prepending the correct predicate.
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This implies Id(x) ∈ J1|(sys) and Id(x) ∈ J2|(sys). Suppose for each R(k) ∈ Υmem ∪ Υout
that

J1|R =
⋃
τ∈α
{f̂ | f ∈ J2|Rτ }

where α is the set of all k-types. In words: the relation R in J1 is represented exactly by the
split R-relations in J2.
Consider some relational calculus query over input schema Υin ∪Υout ∪Υmem ∪ {Id(1)}:

C1 = {(u1, . . . , uk) | ϕ(u1, . . . , uk)}.
Consider the modified relational calculus query:

C2 = {(u1, . . . , uk) | ϕsplit(u1, . . . , uk)}.
We have C(J1) = C2(J2). �

Let T 2 denote the transducer network where we run Π2 on x. Now we have the following
property:

Lemma B.2. T 2 computes the query Q when restricted to inputs not containing x.
Proof. Let I be a database instance over Υin with x /∈ adom(I). Let R and R2 denote

the unique runs of T and T 2 on input I respectively.6 Let ρ1, ρ2, . . ., and ρ′1, ρ′2, . . ., denote
the sequences of configurations of R and R2 respectively. For i ≥ 1 we denote ρi = (si, bi)
and ρ′i = (s′i, b′i). Using Lemma B.1, it can be shown by induction on i ≥ 1 that for each
relation R(k) ∈ Υmem ∪Υout we have

si(x)|R =
⋃
τ∈α
{f̂ | f ∈ s′i+1(x)|Rτ }.

In words: although in Π2 the tuples are divided by their type, they still represent exactly
the same tuples as in Π. In this expression, the configuration-index for run R2 is offset by
1 because the queries of Π2 first have to wait until relation started becomes nonempty.
We are left to show that Π2 outputs Q(I). Let R(k) ∈ Υout. Let f = R(a1, . . . , ak) be

an output fact produced in run R. Because by assumption x /∈ adom(I) and because the
query Q is generic, we must have that f has k-type τ = (adom, . . . , adom). Using the above
property, the memory fact Rτ (a1, . . . , ak) is produced in run R2 (and is never deleted). By
specification of the output queries in Π2, the fact R(a1, . . . , ak) is output in R2 as well. The
other direction is similar. �

B.3.3. Well-typed formulas. Consider the typed database schema E that consists of:
— the relation (R, τ) for each R(k) ∈ Υin where τ is k-type (adom, . . . , adom); and,
— the relation (Rτ , τ) for each R(k) ∈ Υmem ∪Υout and each k-type τ .
Let ϕ be an FO-formula used in a query of Π2. Formula ϕ is over the schema Υ2

in ∪Υ2
mem ∪

{Id(1)}. When we would ignore the (simple) usage of relation started in ϕ, formula ϕ is over
the schema untyped(E). Now we can apply Proposition 1 of [Van den Bussche and Cabibbo
1998] to ϕ, to obtain ϕwell, which is a well-typed formula over E . Formula ϕwell computes
the same query as ϕ when applied to a typed database instance over E , but importantly,
ϕwell does not read the relations Adom and Id directly. Instead, it has variables with the sort
adom or id that range over the active domain of the input instance and {x}, respectively.
Since ϕwell does not read relation Adom anymore, we can also safely remove the occurrence
of relation started from it.

6The runs are unique because there are only heartbeat transitions.
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Because formula ϕwell uses two sorts of variables, it is not directly usable for a (normal)
FO-transducer. We now explain how to remove the id-variables from ϕwell so that only the
adom-variables remain, giving us again a (normal) formula with a single sort of variable. So,
let ϕ be an FO-formula used for a memory relation in Π2, either for insertion or deletion.
Abbreviate ψ = ϕwell. Let us also define the following sentences: true := ∀u(u = u) and
false := ∃u(u 6= u), where u is an adom-variable not yet occurring in ψ. By structural
induction, we now convert ψ to a normal FO-formula ψ↓, by keeping only the adom variables
as follows:

— Suppose ψ is (u = v) with u an adom-variable and v an id-variable. We define ψ↓ as
(u = u)∧ false, because adom- and id-variables can never point to the same value (using
our assumption that inputs do not contain value x).

— Suppose ψ is (v1 = v2) with v1 and v2 being id-variables. We define ψ↓ as true, because
id-variables can only point to the same value x.

— Suppose ψ is (u1 = u2) with u1 and u2 being adom-variables. We define ψ↓ as (u1 = u2).
— Suppose ψ is R(w1, . . . , wk) with R(k) ∈ Υin. Then R has type (adom, . . . , adom) in E .

Hence, each variable wi is an adom-variable. We define ψ↓ as R(w1, . . . , wk).
— Suppose ψ is Rτ (w1, . . . , wk) with R

(k)
τ ∈ Υmem ∪ Υout. Denote τ = (s1, . . . , sk). Let

u1, . . . , un be the adom-variables of w1, . . . , wk in order. By construction of ψ, for each
i ∈ {1, . . . , k}, the sort of wi is si. We define ψ↓ as Rτ (u1, . . . , un).

— Suppose ψ is ψ1 ∨ψ2. Let ψ1
↓ and ψ2

↓ denote the conversions of ψ1 and ψ2 respectively.
We define ψ↓ as ψ1

↓ ∨ ψ2
↓.

— Suppose ψ is ∃w(ψ1). If w is an adom-variable then we define ψ↓ as ∃w(ψ1
↓) and otherwise

we define ψ↓ as ψ1
↓.

— Suppose ψ = ¬ψ1. We define ψ↓ as ¬(ψ1
↓).

In ψ↓, there are no id-variables and all adom-variables have been preserved. In conclusion,
to remove relation Id from an FO-formula ϕ of Π2, we use the transformation (ϕwell)↓. We
will use this below.

B.3.4. Construct new transducer. We construct a third and last FO-transducer Π3 that com-
putes the query Q.

For a type τ , we write #τ to denote the number of adom-components. We now define
the schema Υ3 of Π3 as

— Υ3
in = Υin; Υ3

out = Υout; Υ3
msg = ∅; and,

— Υ3
mem = {R(#τ)

τ | R(k) ∈ Υmem ∪Υout, τ is a k-type}.

Note that Υ3 is very similar to schema Υ2, with the difference that (i) the memory relations
in Υ3 in general have a lower arity to store just the adom-values, and (ii) relation started
is omitted because the relation Adom does not need to be computed anymore.
Now we define the queries of Π3. First, let Rτ (l) ∈ Υ3

mem. By definition, l = #τ . Let k be
the arity of τ . We have Rτ (k) ∈ Υ2

mem. Let the insertion query for Rτ (k) in Π2 be
{(w1, . . . , wk) | ϕ(w1, . . . , wk)}.

We define the insertion query for Rτ (l) in Π3 to be:

{(u1, . . . , un) | (ϕwell)↓(u1, . . . , un)}

where u1, . . . , un are the adom-variables of w1, . . . , wk (in order). The deletion query for Rτ (l)

in Π3 is defined similarly. For R(k) ∈ Υ3
out, we define the output query in Π3 as the one that

copies the memory relation Rτ to R with τ the k-type (adom, . . . , adom).
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Before we can look at the properties of Π3, we need some additional notation. Consider
R

(l)
τ ∈ Υ3

mem. Let k be the arity of τ . We have R(k)
τ ∈ Υ2

mem. Let A ⊆ {1, . . . , k} be
the component indices of τ corresponding to an adom-variable. Let f : A → N be the
strictly increasing function that maps A to contiguous integers starting at 1. For example,
if A = {3, 6, 7} then f = {3 7→ 1, 6 7→ 2, 7 7→ 3}. Let t̄ be a tuple (a1, . . . , al). We write
t̄↑(τ) to denote the tuple (b1, . . . , bk) where for each i ∈ {1, . . . , k} we have bi = af(i) if i ∈ A
and bi = x otherwise. Intuitively, we insert the single id-value x back to obtain a k-tuple.
We use this notation for facts as well.
Let T 3 denote the transducer network obtained by putting Π3 at node x. The following

lemma can again be shown by structural induction on the (well-typed) FO-formulas.

Lemma B.3. Let I be a database instance over Υin = Υ2
in = Υ3

in with x /∈ adom(I). On
input I, on the single-node network x, let J2 and J3 be transducer states for Π2 and Π3

respectively. Suppose for each Rτ (k) ∈ Υ2
mem that

J2|Rτ = {f↑(τ) | f ∈ J3|Rτ }.
Let σ be a type. Consider some relational calculus query over input schema Υin ∪Υ2

mem ∪
{Id(1)} that produces only tuples of type σ:

C2 = {(w1, . . . , wk) | ϕ(w1, . . . , wk)}.
Consider the following transformed query, which is over input schema Υin ∪Υ3

mem:

C3 = {(u1, . . . , un) | (ϕwell)↓(u1, . . . , un)}

where u1, . . . , un are the free adom-variables of (ϕwell)↓, in the same relative order as they
occur in w1, . . . , wk. We have C2(J2) = {t̄↑(σ) | t̄ ∈ C3(J3)}. �

We now have the following property:

Lemma B.4. T 3 computes the query Q.

Proof. Similarly to the proof of Lemma B.2, we can show by using Lemma B.3 that
T 3 computes the same query as T 2 when restricted to inputs not containing x, which (by
Lemma B.2) is the original query Q restricted to those inputs. At this point, we cannot say
yet that T 3 computes the full query Q, i.e., for all inputs on which Q is defined. We will
show now that this is actually the case.
First, observe that transducer Π3 is oblivious. Indeed, Π does not use All, and we have

further eliminated the use of Id from transducer Π to obtain Π3. Then, Lemma 4.2 tells
us that T 3 computes a generic query Q′. Let I be an instance over Υin with possibly
x ∈ adom(I). There is another instance J over Υin and a permutation h of dom such that
h(J) = I and x /∈ adom(J). As seen above, we have Q′(J) = Q(J) and thus h(Q′(J)) =
h(Q(J)). By genericity of both Q′ and Q we then have Q′(h(J)) = Q(h(J)) and thus
Q′(I) = Q(I). In conclusion, the transducer network T 3 computes the same query Q as the
original transducer network T but without reading the relations Id and All. �
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