yniversitel
»p»NAsSselt

KNOWLEDGE IN ACTION

Relational Database
Representation and Manipulation
in DNA

Jan Van den Bussche

joint work with
Joris Gillis, Robert Brijder

Hasselt University, Belgium

Natural Computing

1. Conventional computing, inspired by nature
— Evolutionary systems, algorithms, programs
— Parallel systems, swarm computing

2. Physics as a computation model
— Analog computers
— Quantum computing

3. “Wet” computing: use hardware from nature
s> DNA computing

— Reprogrammed bacteria & viruses

DNA, QUANTUM BITS, AND THE
FUTURE OF SMART MACHINES

DENNIS SHASHA
wo CATHY LAZERE

DNA Computing: What it is NOT

* Solving NP-complete problems

— First DNA computing experiment solved a small
instance of the Hamiltonian Path problem

— [Adleman, Science 1994]

* Genetic engineering
— DNA computing works with dead material
— Synthetic DNA

* Bioinformatics

— Conventional databases, algorithms to store,
analyse genetic information

DNA Computing: What it IS

Use synthetic DNA molecules as data carrier
Programmed nanotechnology

Computation on the DNA carried out by:
— Biotechnology laboratory protocols
— Enzymes

— DNA itself: self-assembly

Computation goes on in:
— In vitro: Test tube (watery solution)
— DNA chips, diamond surfaces

— In vivo (smart medicine)

DNA Computing
a vibrant field

Two annual international meetings

— International Conference on DNA Computing and
Molecular Programming

— Conference on Foundations of Nanoscience

Diverse community

— Experimental chemists, physicists
— Theoretical computer scientists
— Computer simulations

Papers in Nature, Science
Large gap between theory and practice

Use synthetic DNA molecules as
data carrier

* |n digital computers, all data is in strings of
bits
—0and 1

* Single-stranded DNA molecule:
= string over the 4-letter alphabet {A,C,G,T}

Data storage in DNA

Enormous capacity
— Theoretical capacity ~ 455 EB per gram
—~ 2.2 PB per gram with reliable encode & decode

— [Goldman et al., Nature 2013]
Very robust

Long term
— 1000nds of years
— Can be copied

Archiving

Databases in DNA?

e We need much more than mere archival
write/read

* Structured data

* Efficient and flexible access
* Logical data model

* Query language

> DNA computing

N o U AW N e

Talk Outline

Primer on databases

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

DNA complexes: the DNAQL data model

. Typechecking

. Expressive power of DNAQL

Relational database

* A collection of tables called relations
* Column headings are called attributes
* Rows are called tuples

Database schema

e Consists of:
— Names of the relations
— Attributes of each relation

* Example:
— Likes(drinker,beer)
— Visits(drinker,bar)
— Serves(bar,beer)

Database instance

e Actual content (tuples) of the relations

John Hoegaerden Zur Laube Duvel

John Westmalle Zur Laube Westmalle

Mary Hoegaerden m_ Zur Laube Hoegaerden

Mary Chouffe John Zur Laube Albrecht Hoegaerden
John Albrecht Albrecht Chouffe

Mary Albrecht Kugel Westmalle

Relational algebra

* Operations applied to relations
 Compute new relations from given ones
* Answer queries to the database

— selection (o) — union (U)
— projection (m) - set difference (-)
— renaming (p) — join (>)

Selection (o)

* Ogrinker=onn - S€lEct tuples with specified value
for given attribute

Odrinker="John’ (Likes)

John
John
Mary
Mary

Hoegaerden 9 John Hoegaerden
Westmalle John Westmalle
Hoegaerden

Chouffe

Projection (m)

* T : Select specified attribute(s)

nbeer(odrinker=‘John' (LikES))

odrinker=‘John’ (LikES)

John Hoegaerden 9 Hoegaerden

John Westmalle Westmalle

Set difference (-)

* R, — R, :all tuples from R, that are notin R,

e “List all beers served by Albrecht that John
does not like”

T[beer(Gbar=’AIbrecht’ (SEI’VES)) B T[beer(odrinker=’John' (LIkES))

Join ()

* Pairs up compatible tuples from two relations
e “List bars that serve a beer that John likes”
Oyrinker=lonry (LIKES) > Serves

rinker [beer SR bor [beer [arnker [bar _Jbeer

John Hoegaerden Zur Laube Duvel John Zur Laube Hoegaerden
John Westmalle Zur Laube Westmalle John Albrecht Hoegaerden
Zur Laube Hoegaerden John Kugel Westmalle
Albrecht Hoegaerden
Albrecht Chouffe

Kugel Westmalle

N o U A N e

Talk Outline

Primer on databases

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

DNA complexes: the DNAQL data model

. Typechecking

. Expressive power of DNAQL

Use of DNA codewords

e 4-letter alphabet is a bit limiting

* Can use larger alphabet

— Encode different letters by noninteracting DNA
strands

— library of DNA codewords

The alphabet we use

Bits 0 and 1
— Data entries in tuples: strings of € bits

Position markers: @, ..., ¢,
Attributes

Tags: #,, #,, ..., #

— Used for punctuation, marking, splitting

Tuples as DNA strands
o Tuple: FCSEEE

0101 1000

At.d,0d,1d,00,1#,4.Bt.db,1d,0¢,00,04,

5’ > 3

e Relation: set of DNA strings
 Content of a test tube

N o s N

Talk Outline

Primer on database

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

DNA complexes: the DNAQL data model
Typechecking

. Expressive power of DNAQL

Selection by affinity purification

 “Retrieve all tuples from test tube where
some bit is 0”

* Perform affinity purification
* Probe: complementary codeword for 0

Abstract DNA operations

* Abstract protocol voor affinity purification:
nsert probe
Hybridize

ush: wash away tuples that did not stick

Cleanup: recover remaining tuples

a A wN e

some bit is O(R)
cleanup(flush(hybridize(R U immob(0’))))

More selection

* So far we have done o, . ..t iso(R)

* More interesting is 0, or—onn(LIKES)
* Let’s do 05 bt of a-0(R)

 Assume R has attributes B, A, C

HoBH#, .. H A0, 1d,0b,0d,0H#,#,CH,...#,

Circularize

1. block B (use ddB’) 4. use bridge #,'#,’
2. polymerase (primer C’) 5. ligate
3. immobilize (probe #,’)

Circularize

1. block B (use ddB’) 4. use bridge #,'#,’
2. polymerase (primer C’) 5. ligate
3. immobilize (probe #,’)

O34 bit of A=0(R)

1. block C 4. polymerase with #,’
2. polymerase (primer ¢;’) 5. probe for 0’
3. block ¢,

Join (>), Cartesian product (x)

* R xS combines each tuple from R with each
tuple from S

RxS={tt,:t;inRand t,inS}

Algorithm for R x S

1. append #; to every 2. prepend #, to every
tuple of S (use bridge tuple of R (use bridge

#:'#, and ligate) #,'#," and ligate)
— —
S e #, R

Algorithm for R x S

1. append #. to every 3. concatenate (use
tuple of S bridge #,'#:')

2. prepend #, to every
tuple of R

Algorithm for R x S

1. append #; to every 3. concatenate

tup

2. pre
tup

eofS 4. immobilize
pend #, to every
e of R
e
#5 #1
S R

Algorithm for R x S

concatenate
immobilize
circularize

cleave at #. and #,

. append #: to every
tuple of S

. prepend #, to every
tuple of R

oUW

Other relational algebra operations

* Projection, renaming
— similar methods
e Set differenceR-S
— subtractive hybridization

— tuples in R and S have same length

Shuffling attributes by double bridging

Shuffling attributes by double bridging

Shuffling attributes by double bridging

>

Abstract DNA operations

Test-tube variables

Probes
Length-two bridges

Union

Difference

For-loop

Hybridize
Ligate
Flush
Cleanup
Cleave
Block

Polymerase, primer

For-loop

* DNAQL program for o, _;(R) :

for s:=1r iter 72 do

Op—004—0(s)Uop_.104—,1(5)

(expression) ::

(foreach) ::

(if)

(let)
)

(operator

(constant) ::
(splitpoint) ::

DNA Query Language

(complexvar) |(foreach) |(if) |(let) |(operator) |{ constant)
for (complexvar) := (expression) iter (counter) do (expression)
if empty({complexvar)) then (expression) else (expression)
let x := (expression) in (expression)

(((expression)) U ((expression))) | (({expression)) — ({expression)))
hybridize({ezpression)) | ligate({expression))
flush((expression)) | split((expression), (splitpoint))
block({expression),> — A) | blockfrom({expression), > — A)
blockexcept((expression), (counter)) | cleanup({expression))
ST (E=A)(E—A) | immob(X) | empty

#o | #s | #a | #e | #s

Fig. 5. Syntax of DNAQL.

“the relational algebra for DNA”

N oV R W e

Talk Outline

Primer on databases

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

DNA complexes: the DNAQL data model

. Typechecking

. Expressive power of DNAQL

Complexes

Relation in DNA: set of DNA strings

During execution of DNAQL program, more
complex structures are formed

Complexes formalized as directed graph
Data model for DNAQL

DNA complex as a graph structure

a b C c d a b a
é : i C i C
b C d a a

b 1
b ¢
o O
P
S

¢
-6

Types

* |f complexes are the “instances” in our data
model, what are the “schemes”?

e Approach:
— All data values are carried by strings of value bits

— All other nodes are for structuring

-> Type of a complex:

— Replace all value strings by wildcard “*’

Type of a relation

relation type
#,A#,0011#,#,B#,1100#,
#,A#,0001#,#,B#,1101#,

#,A#,1011#,# BH#,1100#, #,AH#,"#,#,BH.*H#,
#,A#,0011#,#,B#,1111#,
#,A#,0000#,#,B#,1111#,

o U R W N e

Talk Outline

Primer on databases

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

. DNA complexes: the DNAQL data model

. Typechecking

7. Expressive power of DNAQL

Well-definedness of
DNAQL operations

* Implementability by biotechnological
operations imposes some preconditions
* Always well-defined:
— Union
— Ligate
— Split
— Cleanup

Well-definedness conditions

* Difference:

— single strands only, all same length
* Blocking:

— complex must be hybridized
* Hybridize:

— termination (no chain reactions)

— can be statically characterized in terms of absence
of certain alternating cycles

Typechecking and inference

* Check well-definedness condition for
operation statically, based on given input

types

* |Infer type for output, so that next operation
can be typechecked

Type inference example

e e(x) = hybridize(x U immob(a))
e Ifx:Sthene(x):T

Typechecking Cleanup

* |nput: any complex (always well-defined)

* Output: denature, remove all stickers, probes,
keep only longest strands

* Gel electrophoresis

Typechecking Cleanup

* Consider type S = A*A*A U AA*AA
* “Dimension” of a complex:

— Number of value bits used for data values
— Like word length in a digital computer

e Suppose dimension =0
— Strands of type A*A*A have length 2d+3
— Strands of type AA*AA length 4+d
— 4+d < 2d+3 for all d

=> If x : S then Cleanup(x) : A*A*A

Type inference algorithm

Given input types for program:
— Decides if “well-typed”
— If so, computes result type

Soundness: Well-typed programs always
succeed on inputs of given type

— Output guaranteed to be of computed result type
Maximality: Converse to soundness

— Only for individual operations

Tightness

N o U AW e

Talk Outline

Primer on databases

Representing tuples, relations in DNA
Doing relational algebra by DNA computing
DNAQL, the language

. DNA complexes: the DNAQL data model

. Typechecking

. Expressive power of DNAQL

Expressive power

* We have seen that every relational algebra
computation can be expressed by a DNAQL
program

* Converse Theorem: DNA complexes can be
simulated by relational databases, and DNAQL
programs by relational algebra computations.

DNAQL to relational algebra

Type S § * o * TypeT L
Sq 0—=b -
#4 #2 #4 #2
S,

If x : S then Hybridize(x) : T

Store values in components of type S, in a
relation R, similar for S,

Then pairs of values in components of
Hybridize(x) can be computed R, x R,

Hybridization = Cartesian product!

Summary

DNA computing develops algorithms for data
represented in DNA

Novel application area for biotechnology

We have tried to find the equivalent of
relational data model, relational algebra in the

world of DNA computing
Resulting DNAQL data model can stand on itself

Outlook

Experiments?

Simulation?

Reliability?

Self-assembly models of DNA computing

— strand displacement

References:
— alpha.uhasselt.be/jan.vandenbussche

