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Abstract

This paper introduces a re�ective extension of the relational al�

gebra� Re�ection is achieved by storing and manipulating relational

algebra programs as relations and by adding a LISP�like evaluation

operation to the algebra� We �rst show that this extension� which

we call the re�ective algebra� can serve as a unifying formalization

of various forms of procedural data management which have been

considered in database systems research� We then study the expres�

sive power and complexity of the re�ective algebra� In particular�

we establish a close correspondence between re�ection and bounded

looping� and between tail�recursive re�ection and unbounded looping�

These correspondences yield new logical characterizations of PTIME

and PSPACE�
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� Introduction

The concept of re�ection was introduced by Smith ���� ��� to study programs
that need to analyze� and potentially modify� their own behavior� Re�ection
has since received attention in di	erent areas of computer science� In pro

gramming languages� it has been used as a tool in the study of interpreters
��� ��� ��� ���� the design of extensible programming languages ����� and
polymorphism ����� In A�I�� re�ection has been used to study programs that
must explain their own reasoning strategy ��� �
�� In databases� Stemple et
al� ��
� applied re�ection in the dynamic creation of data types in database
programming languages�

A very rough de�nition of re�ection is that programs can be treated
as data and vice versa� The meta
programming facilities of languages like
LISP provide a simple and good example� In LISP� both programs and data
are represented in a uniform format� namely lists� It is thus possible to
build representations of LISP programs by using the quote function and
list constructors� Programs represented as data in this form can then be
executed dynamically by explicit application of LISP�s evaluation operator
eval� �In the literature� the process of constructing data representations of
programs is often called rei�cation� and only the process of evaluating these
representations is then called re�ection��

Of course� the idea of re�ection is as old as the concept of computation�
dating back to the universal Turing machine� universal recursive functions�
and the von Neumann architecture� For example� it is straightforward to
write an interpreter for Pascal programs in Pascal� Indeed� adding re�ec

tive features to a computationally complete programming language will not
enhance its expressive power� the features are typically only meant to allow
for a more natural or succinct expression of certain advanced programming
constructions� This is no longer true� however� if we work with languages
that are not computationally complete� In this paper� we will study re

�ective programming in the context of the relational algebra� Viewing the
relational algebra as a programming language to express database queries�
this language is certainly not computationally complete �in fact� it is con

tained in LOGSPACE ������ Well
known examples of computable queries not
expressible in the relational algebra are parity checking and transitive closure
computation�

Our motivation for this study stems from the increasing attention that
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is being paid to procedural data management in database systems� To our
knowledge� Stonebraker et al� ���� ��� were the �rst to investigate the treat

ment of programs as data in the �eld of databases� Taking an informal
point of view� they argued that a wide range of applications can bene�t
from procedural data� Then there is the current interest in so
called active

databases ���� ���� dealing with procedural data in the form of rules which
can be stored together with the ordinary data in the database �e�g�� ������
Also in object
oriented database systems ����� procedural data in the form
of methods play a central role� Moreover� note that even current commercial
relational database systems maintain various data dictionary relations con

taining meta
information like relation names or view de�nitions� To date�
most of the discussion on the management of meta data� and more impor

tantly procedural data� in database systems has been held on an informal
level� and only few theoretical models are available� F
Logic� for instance�
uni�es data and meta data ����� Ross ���� introduced an algebra for �rst

order logic with higher
order syntax �HiLog� ����� extending the relational
algebra with a modest form of re�ection to deal with relations containing
relation names�

As already mentioned� our purpose in the present paper is to de�ne an
extension of the relational algebra with a general re�ection mechanism� and
to study its properties� Our extension is based on a format for storing rela

tional algebra programs in relations introduced by Saxton� Van Gucht and
Gandhi ����� In analogy with LISP� re�ective capabilities can thus be added
to the relational algebra simply by providing an evaluation operator which
executes its argument relation containing a program� Importantly� relations
containing programs can be created and manipulated in just the same way
as relations containing ordinary data� In particular� program relations can
be constructed by means of relational algebra computations taking ordinary
relations as input�

The further contents of this paper can be summarized as follows� In
Section �� we introduce our model for re�ective programming in the relational
algebra� In Section �� we show that this model can serve as a unifying
formalization of the various forms of procedural and meta data management
in database systems mentioned earlier�

In Section �� we turn to expressiveness and complexity issues� Since re�ec

tion treats programs as data� the notion of expression complexity ���� is very
relevant in this context� We also study the power of re�ection when used
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purely as a language construct for expressing conventional queries� Since
re�ection makes it possible to specify programs� the structure or length of
which can depend on the input database� the re�ective algebra will turn out
to be more expressive than the ordinary relational algebra� Speci�cally� we
show that adding basic re�ection is in a sense equivalent to adding bounded
looping� and that adding tail
recursive re�ection is equivalent to adding un

bounded looping� These correspondences yield new logical characterizations
of PTIME and PSPACE�

� Extending the relational algebra with re�

�ection

In this section� we de�ne a query language based on the relational algebra�
and show how programs in this language can be stored in relations� We then
introduce the re�ective eval operation�

We will use the following version of the relational database model� As

sume disjoint� countably in�nite sets of attributes and relation names� A
relation scheme is a set of attributes� A database scheme S is a �nite set
of relation names in which each relation name R has an associated relation
scheme sch�R��

We further assume that each attribute A has an associated domain�
dom�A�� of data elements� Given a relation scheme � � a tuple over � is a
mapping t on the attributes in � such that� for each A � � � t�A� � dom�A��
A relation over � is a �nite set of tuples over � � Finally� given a database
scheme S� a database instance over S is a mapping I on S such that for each
R � S� I�R� is a relation over sch�R��

Remark ��� �� We assume that a total order is known on the universe
U of all data elements� The results of this paper rely heavily on this
assumption�

�� We also assume that there is a �xed total order on the universe of
attributes �this order will always be clear from the context�� Combining
this assumption with the previous one� it follows that there is a natural
lexicographical ordering on the tuples of every relation�
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�� Finally� we assume that the universe of attributes includes in�nitely
many natural number attributes whose domain is the set of natural
numbers� and that the natural ordering of the natural numbers is com

patible with the total order on U �

Following �
�� we view the relational algebra as a programming language�
denoted A� as follows� Programs in A are sequences of assignment state�
ments� Each assignment statement has the form �X �� E�� where X is a
variable and E is a term� Each variable X has an associated relation scheme
sch�X�� and can take relations over sch�X� as values� Each term is one of
the following�

� a relation name is a term�

� a constant one
attribute one
tuple relation� of the form �A � a� where
A is an attribute and a � dom�A�� is a term�

� a variable is a term�

� if X�X�� X� are variables� then the following are terms�

� X� �X� �union��

� X� �X� �di	erence��

� X� � X� �natural join��

� ��A�X� �projecting out attribute A��

� �A�B�X� �equality selection��

� �A�B�X� �less
than selection�� and

� �A�A��X� �renaming of A to A���

We assume familiarity with the usual operators of the relational algebra
�cf� ������ the only unusual one here is ��� Indeed� we de�ne projection ��A as
projecting out the attribute A� formally� if r is a relation over scheme � � then
��A�r� equals ���fAg�r� where � is the classical projection operator of the
relational algebra� While � has a variable number of attribute parameters�
�� has exactly one� This will make it easier in Subsection ��� to reify A

programs� Obviously� � can be de�ned in terms of ���






�� X� �� R� �� X� �� X� � X��
�� X� �� �P � Fred�� �� X� �� ��C��X���
�� X� �� X� � X�� �� X� �� X� �X��
�� X� �� �C�C��X��� �� X� �� ��P �X���

� X� �� �P�C��X���

Figure �� Program of Example ���

Now given an A
program P � let S be the set of all relation names occur

ring in P � Then P can be applied to any database instance I over S� The
relation names take their values from I� the variables are initialized to the
empty relation� and the assignment statements are executed in order� The �

nal result of the program is� by default� the value of the variable occurring on
the left
hand side of the last assignment statement� Since relation names and
variables are typed �by their associated relation schemes�� programs should
be type
checked� but we will ignore this in this discussion�

Example ��� Consider a database containing a parent
child relation R over
scheme fP�Cg� The program shown in Figure � computes� in variableX�� the
set of all children and grandchildren of Fred� The statements are numbered
for easy reference�

��� Rei�cation of relational algebra programs

In LISP� re�ective programming is facilitated by the uniform format in which
both programs and data are represented� namely lists� LISP has the re�ective
eval operator which takes a list constituting a program �we say that the
program is rei�ed� as argument and executes it� If we de�ne a format in which
programs can be stored as relations we can de�ne an analogous re�ective
operation for the relational algebra� We next show how this is possible�
following �����

Example ��� The program shown in Figure � can be stored in a relation
over the attributes fsno� var� op� att��� att��� arg��� arg��� rel� constg� as
shown in Figure �� There is a tuple for each statement� containing� where
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sno var op att�� att�� arg�� arg�� rel const

� X� R

� X� P Fred
� X� � X� X�

� X� � C C � X�


 X� � P C � X�

� X� � X� X�

� X� �� C � X�

� X� � X� X�

� X� �� P X�

Figure �� Program of Figure � stored in a relation

applicable� the assigned
to variable var� the algebra operator op� the possible
attribute parameter�s� att��� att�� of the operator� and the argument�s� arg�
�� arg��� Note how statements � and �� which have no operator� have their
own encoding format� Non
applicable entries are �lled with a blank �or some
other �xed data element�� Finally� every statement has a statement number
sno� a natural number�

We call the relation scheme fsno� var � op� att��� att��� arg��� arg��� rel �
constg the program scheme� Using the format illustrated in Example ����
every A
program can be stored in a relation over the program scheme� such
relations are called program relations� The domains of the program
scheme
attributes are as follows�

� sno is a natural number attribute� i�e�� dom�sno� is the set of natural
numbers�

� dom�op� equals f������ ��� �� ��� ��g�

� dom�att��� and dom�att��� equal the set of attributes�

� dom�var�� dom�arg���� and dom�arg��� equal the set of variables�

� dom�rel� is the set of relation names� and

� dom�const� is the set of all data elements�
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To be entirely correct� the blank symbol should be added to all of these
domains�

Remark ��� �� Variables� operator symbols� attributes� relation names�
and the blank symbol are called lexical symbols� Note that the above
implies that we consider each lexical symbol to be contained in the
universe of data elements�

�� In a program relation� statements need not be numbered consecutively�
It su�ces that the attribute sno is a key for the relation� The �rst
statement is then the statement with the smallest number� and for
each statement in the sequence �except the last�� the next statement is
the statement with the smallest higher number�

Program relations could be given in the database� but they can also be
constructed using A
programs� A very simple case of the latter is given by
the following easy but important lemma�

Lemma ��� For every program relation r there exists an A�program that

computes r�

Proof� The program P assembles r from constant relations using union
and join� The constant relations hold the di	erent symbols used in r� For
example� for the program relation of Figure �� we will have �sno � ��� �var �
X��� �op � ��� etc�

Programs used to construct program relations are called meta�programs�
Of course� meta
programs of the basic type considered in Lemma ��
 are not
su�cient� as only constant program relations can be constructed in this way�
Indeed� one of the key potentials of re�ection seems to be that programs
can be speci�ed whose structure or length is not determined a priori� but
rather depends on the actual database instance to which the meta
program
is applied� In order to be able to exploit this potential� we need at least be
able to generate sets of new statement numbers� A practically convenient
approach to accomplish this is to use an invention mechanism similar to the
one used in update languages ��� and object
oriented query languages ��� ����
In our algebraic context� we de�ne this mechanism as an additional algebra
operator on relations as follows�
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R �

A

a

b

c

X� �

N A sno

�� a �
�� a �
�� b �
�� b �
�
 c �
�� c �

Figure �� Illustration of identi�er
generating program from Example ���

De�nition ��� Let � be a relation scheme� and let N be a natural number
attribute not in � � Let r be a relation over � � Then numberN�r� is a relation
over fNg � � obtained by extending the tuples of r with a new attribute N �
such that each tuple is numbered with a new natural number� in increasing
order according to the lexicographical ordering of the tuples in the relation�

We can extend the programming language A by allowing terms of the
form �numberN �X��� with X a variable�

Example ��	 Recall the motivation for introducing the numbering opera

tor� given before De�nition ���� Assume the database scheme contains a
relation name R with unary relation scheme sch�R� � fAg� The following
program shows how� starting from a constant �k� a priori given statement
numbers� k � n new ones can be generated� where n is the size of relation R

in the database instance� In this example� k � ��

X� �� �sno � ���
X� �� X� � �sno � ���
X� �� R � X��
X� �� numberN�X���

The result of this program applied to a particular R relation is shown in
Figure ��

��� Re�ection in the relational algebra

We are now ready to extend the language A with a LISP
like evaluation
operator �and the numbering operator of the previous subsection�� yielding
the re�ective relational algebra� denoted RA�
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De�nition ��
 A term of RA is either

�� a term of A�

�� an expression of the form numberN�X�� with X a variable� or

�� an expression of the form eval�X�� with X a variable over the program
scheme�

The semantics of the number operator was already de�ned in De�nition ����
The semantics of a term eval�X� is as follows� If X holds a program relation
representing an A
program P � then eval�X� executes P and evaluates to
P �s �nal result� If X does not hold a syntactically correct program� then
eval�X� yields the empty relation by default�

� Applications

In this section� we discuss the applicability of the re�ective algebra� and
situate it within related work� In particular� we demonstrate� mostly by way
of examples� that the re�ective algebra leads to an improved exploitation
of a data dictionary as well as to a uniform treatment of procedural data�
As will be seen� this has additional implications� including the possibility to
simulate the algebra introduced in �����

��� Using data dictionaries

Recall that a program relation is built up using lexical data elements that
make up the program the relation contains� Two particular kinds of lexical
symbols are relation names and attribute names� These symbols are not only
useful for program relations� they can also be used to describe the database
scheme� In fact� relational database systems typically store a description of
every database scheme they handle in a relation called the data dictionary�
Using the re�ective algebra� we can better exploit the presence of such a
dictionary�

Consider the data dictionary shown in Figure � �left�� Now consider the
query �What is known about John�� As answer to this query� we want all
triples �rel � R� att � A� val � v�� such that the R relation contains a tuple t
in which �John� appears� and t�A� � v� An illustration is given in Figure �
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rel att

Persons name

Persons age

Children parent

Children child

Hobbies person

Hobbies hobby

rel att val

Persons name John
Persons age ��
Children parent John
Children child Steve
Children child Iris
Hobbies person John
Hobbies hobby ping
pong
Hobbies hobby math

Figure �� Left� Example of a data dictionary� Right� All that is known about
John in a database over this dictionary� �John�s age is ��� has children Steve
and Iris� etc��

�right�� For every �xed database scheme� this query can be expressed in the
relational algebra as

�

R�A�A�

�rel � R� � �att � A� � �A�val�A�A��John�R�

where R is a relation name of the scheme and A�A� are �not necessarily
distinct� attributes in sch�R�� We can easily implement this expression with
an A
program� but of course the program �like the expression� will depend
on the database scheme�

However� in the re�ective algebra� we can write one single program that
will work for any database scheme� The idea is to write a meta
program
that implements the above expression only at run time� by accessing the
data dictionary� The program thus constructed can then be executed using
eval� The result� but no longer the query itself� will still depend on the
scheme �and the contents� of the database under consideration�

Roughly� the meta
program constructs the program according to the fol

lowing procedure� First� using the dictionary� all triples of the form �R� A�
A��� where both A and A� are attributes of R� are generated by a straightfor

ward A program� Next� auxiliary program relation variables for the necessary
selections and projections are constructed� which are then joined appropri

ately with the previously derived triples� in order to turn the triples into
algebra statements� Finally� the auxiliary program relations are united� and
the number operator is applied to the result in order to obtain a proper
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statement sequencing�
Another aspect to be mentioned in connection with dictionaries� which

represents another application area for the re�ective algebra� is query opti

mization� Assume that P is a program relation whose contents represents
the relational algebra query ��A�a�R � S��� In A� this query is written as
follows��

X� �� R� X� �� S�
X� �� X� � X�� X� �� �A�a�X���

If A is an attribute of R� but not of S� query optimization would suggest
to rewrite the given query as ��A�a�R� � S�� which is represented by the
following program�

X� �� R� X� �� S�
X� �� �A�a�X��� X� �� X� � X��

Besides a renumbering of some of the variables occurring in this program� the
latter basically results from the former by an exchange of two statements�
Hence� it is possible to write an expression in the re�ective algebra which
detects� by an inspection of a given program relation and the dictionary�
whether query optimization is possible and� if so� modi�es P such that this
program relation �nally contains the optimized expression�

��� Simulation of Ross�s algebra

Recently� Ross ���� proposed a model and an algebra supporting databases
where not only the data dictionary� but also other relations can contain rela

tion names� Ross�s algebra extends the relational algebra with an expansion

operator called �� Slightly adapted to the present context� this operator
takes a relation scheme � as parameter and a unary relation U as argument�
and replaces every relation name R with sch�R� � � appearing in U by its
associated relation�

We illustrate this operator using a simple example� Assume relation U

has scheme frelg and contains fR� S� Tg� where R and S are relation names
with scheme fA�Bg and T is a relation name having another scheme� Let R
and S have the following contents�

�The selection by attribute value �A�a is a shorthand for a join with the constant
relation �A 	 a��
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R� A B

a b

b c

S� A B

b c

d e

Then �A�B�U� would produce a relation with the following contents�

R a b

R b c

S b c

S d e

Using a similar technique as described in the previous subsection� we can
express the � operator in the re�ective algebra� we now indicate how to do
this using the above example� First� we select from the data dictionary those
relation names in U that have scheme fA�Bg� which is easily expressed
in relational algebra� Let the result be fR�� � � � � Rkg� Then� a relation is
constructed containing the following statements for each Ri�

X �� Ri� Y �� �rel � Ri�� Z �� Y � X�

Finally� using the number operator� the di	erent groups of statements are
linked together by newly generated statement numbers� yielding a program
which when evaluated using eval will simulate �A�B�U��

As a further implication of the above exposition� the following can be
noted� Relational database systems commonly also store view de�nitions in a
speci�c relation of the data dictionary� Rather than �relation name� attribute
name� pairs� this relation contains �view name� view de�nition� pairs� Since
relational algebra can be used as a tool for de�ning views� view de�nitions
are often �equivalent to� A programs� Hence� in our model� we store them
not in the dictionary itself� but in program relations that have the same name
as the view name� For example� suppose we have a program relation named
john�hobbies whose contents is a program to retrieve John�s hobbies from
relation Hobbies� and assume that john�hobbies appears in the dictionary�
Construct a program relation P holding the statement �X� �� john�hobbies��
Then
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X� �� eval�P ��

yields the contents of john�hobbies� and

X� �� eval�X���

computes the view�
It follows that we can translate an ordinary program which uses views to

an RA program that looks up the de�nition of each view only at run time�

��� Procedural data

Analogous to the way Ross�s model and algebra generalize the notion of a
dictionary� procedural data generalizes the idea of storing view de�nitions in
relations� Storing programs as data has been investigated earlier by Stone

braker et al� ���� ���� In a practical context� they proposed a system� called
QUEL�� allowing QUEL programs to be stored as strings in tuple compo

nents and executed dynamically� QUEL� can easily be formalized in the
re�ective algebra� as will be described next�

Recall the Persons
Hobbies database from Subsection ���� In QUEL�� we
could add an attribute hobbies to the Persons relation� containing a QUEL
program retrieving all hobbies of a speci�c person� A typical tuple in this
extended Persons relation would be �name � John� age � ��� hobbies � Q��
where Q is the QUEL query

retrieve Hobbies�hobby where person�param
��

To �nd all age
hobby pairs� we can then use the following QUEL� query�

retrieve �Persons�age� Persons�hobbies with name�

The with operator binds the parameter of the executed queries�
To model the above example� we store Q in a program relation which we

also call Q� The selection �person�param
�� is expressed using a join with
a constant holding� initially� the literal symbol �param
��� Thus� program
relation Q will encode the following program�

X	 �� Hobbies�
X� �� �person � param
���
X� �� X	 � X��
X� �� X� �X�
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This program has to be executed repeatedly� once for each value of the param

eter� Hence the union at the end� which collects the results of all executions
�X� is initially empty��

The QUEL� query is expressed by constructing� for each person in the
Persons relation� a copy of Q where param
� is replaced by the person�s name
�and to which a join with the person�s age is attached� which is not included
below�� Finally� using number generation� the programs thus obtained are
concatenated and the resulting concatenation is executed� Formally� �for
clarity of presentation� some operators have been composed�

X� �� ��age�Person��
X� �� X� � Q�
X� �� �const�param
��X���
X� �� �name�name ���name�name ��X�� � X���
X� �� �name ��const ��const�X���
X� �� �X� �X�� �X��
X�	 �� numberN �X���
X�� �� �N�sno ��sno��name�X�	��
eval�X����

Note that it is important that the application of the number operator cor

rectly groups together the statements of each program copy in the concate

nation� Thereto� recall that statement numbers are generated in accordance
with the lexicographical ordering of the tuples in X�� For the operation to
work correctly� it su�ces that in this lexicographical ordering� the name at

tribute �coming from X�� is considered as the �rst component of each tuple�
and the sno attribute �coming from Q� as the second�

In this simple example� every Person tuple contains the same QUEL
query Q� This need not be the case in general� Di	erent queries can be
stored in di	erent tuples by the name of their program relation� Instead of
joining each person with the same program Q as above� one then uses the �
operator of the previous subsection to look up the appropriate program for
each person� The formal details are tedious but straightforward�

Stonebraker et al� argued that using procedural data� unnormalized
�nested� relations and complex objects can be represented� For example� the
procedural �eld hobbies can be alternatively viewed as a nested relation��

�For an introduction to nested relations� see ���� Chapter ���
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However� the manipulative aspect of this representation has not yet been
considered� For example� one could think of the above
discussed QUEL�
program as unnesting the hobbies �eld� For more complex operations� how

ever� a simple execution of stored procedures is not always su�cient� and
one needs the ability to construct new procedures� As stressed from the out

set� the re�ective algebra supports such constructions� As a simple example�
the nesting �fBg�R� of a relation R over the scheme fA�Bg can be con

structed as the program relation containing the relational algebra expression
�B�R � �A � param
����

We �nally mention that the re�ective algebra allows not only to store
procedural data like ordinary data� but also the possibility to query procedu

ral data� For example� a query like �which programs in the database depend
on relation R�� can be answered by inspecting a program relation� One
application of this feature is the area of active databases �cf� the Introduc

tion�� which commonly support rules of the form �if condition then action��
since both the condition and the action can be modeled as programs in the
database�

��� Manipulation of methods in OODBS

In object
oriented database systems� objects have not only data attributes
but also procedural attributes� called methods� Just like the view dictionary
discussed in Section ���� it would be interesting if these methods can be stored
in the database itself� If the methods are implemented using the relational
algebra �e�g�� ������ we can again store them in program relations�

The re�ective algebra can now be used to model applications that require
the construction of derived method implementations from existing ones� For
example� consider an OODB application where di	erent persons can have
di	erent implementations of the hobbies method� due to overriding� Each
person tuple contains the name of the program relation containing its method
implementation� Suppose we now want to de�ne a view consisting of all
married couples� having a method hobbies which returns the union of the
hobbies of the husband and those of the wife� To do this� we need to construct
for each couple a new program that computes the union of the results of two
other programs� This construction can also be carried out in the re�ective
algebra�
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� Expressiveness and complexity

In Sections � and �� we used value invention �the number operator� as a
practically convenient tool to generate natural numbers as statement num

bers in run
time created program relations� However� there is an alternative
approach which avoids the introduction of new data elements �up to a con

stant number�� and which is more ameable to theoretical study� allowing
sharper expressiveness and complexity results� The main idea behind this
approach is to better exploit the order assumption on data elements �cf�
Remark ����� This idea is worked out in Subsection ����

To formally study the expressiveness and complexity of RA and some of
its variations� we need to introduce additional query languages and review
the notions of the data and expression complexity of a query language� This
is done in Subsection ����

In Subsection ���� we then establish various expressiveness and complexity
results about RA� In this analysis� it will prove useful to distinguish between
eval�s interpretative power and its implicit looping semantics�

Finally� in Subsection ���� we extend RA in turn by allowing eval state

ments to occur in program relations� The resulting language will be called
the recursive re�ective algebra� denoted R�A� We establish various expres

siveness and complexity results about this language�

��� Re�ection without object creation

Consider an instance I over scheme S� De�ne the active domain of I� denoted
adom�I�� to be the set of data elements occurring in I �this unary relation
can be derived via a program in A�� Without loss of generality� we assume
that adom�I� has at least two elements� �Indeed� we can always write an
A program that uses constant terms to meet this requirement�� Because
data elements are totally ordered �cf� Remark ����� it is natural to think of
adom�I� as representing the initial segment �� � � � � jadom�I�j of the �positive�
natural numbers� We can therefore use data elements in adom�I� in the role
of sno values� To reify A programs of length greater than jadom�I�j� the
join operation can be used to represent larger numbers than jadom�I�j� For
example� assuming that adom�I� is de�ned over the relation scheme fAg� the
statementX �� adom � �A�A��adom� will generate a set of pairs which can be
interpreted as representing the initial segment �� � � � � jadom�I�j�� Additional
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joins are required to represent larger numbers�
Another remark related to the issue of statement numbers is that any

relation r� because it is also ordered� can be thought of as representing the
initial segment �� � � � � jrj� This remark will become relevant in the proof of
Theorem ����

The previous discussion gives two strategies to exploit the order on data
elements as a means to represent natural numbers which� in turn� can be
used as statement numbers in program relations� However� it is also clear
that� under these strategies� we can no longer maintain the notion of a single
program scheme as in Section ���� in fact� there now are in�nitely many
variable
sized program schemes�

De�nition ��� A program scheme is a relation scheme fsno�� � � �� snok� var �
op� att��� att��� arg��� arg��� rel � constg� for some k � �� The domains of
var � op� att��� � � � � const are as in Section ���� however� sno� � � � � � snok are
no longer required to be natural number attributes�

We can without di�culty adapt the de�nition of the eval operation to
this setting� The only di	erence is that the sequencing of statements in
program relations is secured by natural numbers represented as series of sno

attributes values �as just explained above�� instead of as single sno
attribute
natural number values �as used in Section �����

Henceforth� we will no longer consider the number operator as part
of the language RA� Indeed� we have just shown that its use for rei�ca

tion purposes can be circumvented� It should be pointed out� however� that
�value
invention� operations like the number operator also have other im

portant uses� e�g�� in obtaining computationally complete query languages
and in object
oriented query languages ��� �� ���� We will not consider these
aspects in the present paper�

��� Query languages and complexity

Two relational query languages will play a key role in our further analysis of
the expressiveness and complexity of re�ection� BA� the relational algebra
extended with bounded looping� and WA� the relational algebra extended
with unbounded looping �
��

Formally� BA extends A with a for construct� as follows�
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De�nition ��� Let P be an A program� and let X be a variable� Then
�for jXj do P od� is an allowed statement in BA� Its semantics is that P is
repeated n times� where n is the cardinality of the value of X upon entry of
the loop��

Example ��� Recall from Example ��� the program P computing the chil

dren and grandchildren of Fred� We can adapt this program to compute all
descendants of Fred� by surrounding the main body of the program with a
for
loop as follows� �statement numbers refer to statements of P �

�� �� ��
for jX�j do
�� 
� �� �� �
od�

�

Formally� WA extends A with a while construct� as follows�

De�nition ��� Let P be an A program� and let X be a variable� Then
�while X �� � do P od� is an allowed statement in WA� Its semantics is
that P is repeated as long as the value of X is not the empty relation �which
might be inde�nitely���

Example ��� The BA program in Example ��� can be easily adapted to a
WA program as follows�

X	 �� R� �� �� ��
while X	 �� � do
�� 
� �� �� �� X	 �� X� �X	

od�
�

�Note that the loop�body P must be an A program and cannot be a BA program in
turn� On ordered databases� nesting of for�loops does not yield more expressive power� but
whether the same holds on unordered databases is� to our knowledge� an open problem�

�It is known �
� that nesting of while�loops does not increase the expressive power�
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We also need to review the notions of data and expression complexity of
queries and query languages �����

De�nition ��� Let S be a database scheme and � a relation scheme� A
query of type S � � is a function Q� mapping instances over S to relations
over � � such that adom�Q�I�� 	 adom�I� for each I�

A query Q is said to be in some complexity class C if the set f�I� t� j I
an instance� t � Q�I�g is in C� The query is called complete for C if the set
is complete for C� A query language L is said to have data complexity in C
if every query expressible in L is in C� If one of the queries is complete for C
then the data complexity is said to be complete for C�

There is also another measure of complexity of a query language� which
is based on the size of the programs rather than on the size of the data�
A query language L is said to have expression complexity in C if for every
database instance I� the set f�Q� t� j Q a query in L de�ned on I� t � Q�I�g
is in C� If one of these sets is complete for C then the expression complexity
of L is said to be complete for C�

To appreciate the di	erence between data complexity and expression com

plexity� we recall the following result of Vardi ����� which we will also need
later on�

Lemma ��	 The data complexity of A is in LOGSPACE� The expression

complexity of A is PSPACE�complete�

It is easy to see that the data complexities of BA andWA are in PTIME
and PSPACE� respectively� Actually� also the converse holds�

Lemma ��
 �� Every PTIME query is expressible in BA�

�� Every PSPACE query is expressible in WA�

Proof�

�� It is easy to see that every �xpoint query ���� is expressible in BA�
Also� it is well
known ���� ��� that every PTIME query is a �xpoint
query on ordered databases� Since in this paper� we work with ordered
databases� this result applies to our context�

�� This is well
known �����
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��� Re�ection and bounded looping

As a �rst illustration of the expressiveness of re�ection as a query language
construct� we show that bounded looping can be simulated by run
time pro

gram construction and execution�

Theorem ��� The BA statement for jXj do P od can be simulated in RA�

Proof� First� using Lemma ��
� we construct in variable X	 a program
relation for P � Next� we perform the following statements� �we assume that
the scheme of X is fA�� � � � � Akg�

X� �� �A��sno��X��
X� �� �A��sno��X���
�
�
�
Xk �� �Ak�snok�Xk����
Xk�� �� �sno��snok���X	��
Xk�� �� Xk � Xk���
result �� eval�Xk����

The �rst k statements simply rename the attributes A�� � � � � Ak into sno��
� � � � snok� respectively� The contents of Xk is therefore a copy of X �but with
renamed attributes�� As discussed in Subsection ���� the order assumption
allows us to interpret Xk as representing the initial segment of the natural
numbers �� � � � � jXj�

The �k���
th statement renames the statement number attribute sno in
X	 to snok���

In the �k � ��
th statement� Xk�� is assigned the cartesian product of
Xk and Xk��� The scheme of Xk�� is the program scheme fsno�� � � � � snok�
snok��� var � op� att��� att��� arg��� arg��� rel � constg� and the contents of
Xk�� corresponds to an A program representing the jXj
fold composition of
P �

Hence� applying the eval operator to Xk�� yields the same result as
running the original for loop�

Lemma ��� and Theorem ��� imply�
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Corollary ���
 Every PTIME query is expressible in RA�

The converse of Corollary ����� i�e�� the possibility that the data com

plexity of RA is in PTIME� is highly implausible� Indeed� we have�

Proposition ���� The data complexity of RA is PSPACE�hard�

Proof� It su�ces to make the following observation�

The data complexity of RA is at least the expression complexity
of A�

Indeed� the expression complexity of A is de�ned in terms of the sets
f�Q� t� j t � Q�I�g for each database instance I� Each such set corresponds
to the query in RA which takes as input a program relation Q and returns
as output the result of Q applied to I �using the eval operator�� Since the
expression complexity of A is PSPACE
complete �cf� Lemma ���� the propo

sition follows�

Informally� the expression complexity of some query language L is the
complexity of an interpreter for L �in the sense of programming languages��
From the preceding discussion it follows that it is implausible that one can
write an interpreter for A in BA��

As just observed� the intractability of the eval�X� operator stems from
the fact that X can hold completely arbitrary A
programs� In particular�
we have no a priori knowledge about the relation variables and attribute
names used in the program relations to be evaluated� It is therefore natural
to consider the situation wherein we do have this knowledge� We can make
this formal as follows�

De�nition ���� An RA program P is called lexically constrained if there
exists a �nite set C of lexical symbols �cf� Remark ����� such that all lexical
symbols occurring in program relations to which eval is applied during any
possible execution of P are elements of C�

�It is worthwhile to mention that it is possible to interpret A using bounded looping on
nested relations �
��� The data complexity of the latter language is EXPTIME�complete
�����

��



Example ���� The simulation of the QUEL� program shown in Section ���
is lexically
constrained �since only a single QUEL query Q is used�� On
the other hand� suppose R is a relation in the database whose scheme is a
program scheme� Then the programX� �� R�X� �� eval�X�� is not lexically
constrained�

Note that the proof of Theorem ��� remains valid under the lexically

constrained program assumption� provided the appropriate set of lexical con

stants is chosen� Note also that the assumption does not prevent that the
structure or length of the constructed programs can depend on the contents
of the stored relations� We can now prove the following converse to Theo

rem ����

Theorem ���� If P is a lexically�constrained RA program� then P can be

simulated in BA�

Proof� Let X� �� eval�X�� be an eval statement occurring in P � First�
we need to check that X� indeed contains an A program� If so� since P is
lexically constrained by some �nite set C� all lexical symbols occurring in X�

belong to C� Therefore� the number of possibilities for the �sub�
tuples of X�

de�ned over the attributes var � op� att��� att��� arg��� arg��� rel � and const

is �nite� whence the syntax check can be performed in A following a tedious
but straightforward procedure�

The evaluation of X� is now simulated using a for statement� which
repeatedly takes the next statement from X� and executes it after inspection
by a constant number of if
then
else tests� More speci�cally� the loop has the
following structure�

X �� X��
for jXj do
� put in S the �rst statement remaining in X  �
� we assume that S has k sno
attributes  �
S �� ft � X j 
�t� � X � t��sno�� � � � � snok� � t�sno�� � � � � snok�g�
X �� X � S�
� let S � ftg  �
if t�var� � �Yi� then
if t�op� � ��� then

��



if t�arg��� � �Yj� then
if t�arg��� � �Yk� then
Yi �� Yj � Yk

else � � �
else � � �

else � � �
else � � �

od

The comparison t��sno�� � � � � snok� � t�sno�� � � � � snok� in the relational
calculus formula is with respect to the lexicographical order and can be
expressed as a Boolean combination of atomic comparisons of the form
t��snoi� � t�snoi�� The tuple relational calculus formula and the if
then

else tests are only shorthands and can be translated into A �����

The only remaining technical detail is to indicate how� inside the above
for loop� statements involving constant relations� i�e�� of the form �Y �� �A �
a�� are handled� Thereto� the following subprogram is used�

if t�var� � �Y � then
if t�att��� � �A� then
Constant �� ft�const�g�
Y �� �const�A�Constant�

else � � �
else � � �

As a corollary to Lemma ��� and Theorems ��� and ����� we obtain�

Corollary ���� The class of lexically�constrained RA programs coincides

with the class of PTIME queries�

A drawback of the concept of lexically
constrained programs is that it is
semantic rather than syntactic�

Proposition ���� The problem whether a given RA program is lexically

constrained is undecidable�
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Proof� We reduce the equivalence problem forA programs� well
known to be
undecidable� to the lexically constrainedness problem for RA programs� Let
P� and P� be two A programs working on an input relation R� We assume�
without loss of generality� that P� and P� use di	erent variables� Let the
result variable of Pi be Xi� for i � �� �� Let X be another variable� and let
P be an A meta
program which constructs in a program relation variable Z
the program consisting of all possible statements of the form Y �� 	� where
Y is some �xed variable and 	 is a data element occurring in the value of
X� Then the following RA program is lexically constrained i	 P� and P� are
equivalent�

P��P��
if X� � X� then X �� �
else X �� R�
P �
eval�Z��

Indeed� assume P� and P� do not yield the same result on some input rela

tion R� Then they will not yield the same result on an in�nite number of
other input relations R� isomorphic to R� Some of these relations R� will
consists exclusively of lexical symbols such as relation variables� Hence� the
application eval�Z� is not lexically constrained� The converse implication is
trivial�

However� we can avoid this problem by considering a �decidable!� restric

tion on the databases� rather than on the programs� We de�ne�

De�nition ���	 Let C be a �nite set of lexical symbols� A database in

stance I is called C�lexical�free if all lexical symbols �cf� Remark ���� ap

pearing as data elements in one of the relations of I are among C�

Since lexical symbols are only useful to store program relations� lexical

free databases can be thought of as databases in which the possible procedural
or meta
data are �static�� In particular� �
lexical
free databases are �ordi

nary� databases which do not contain any procedural data� By considering
RA as a query language working on lexical
free databases only� we can study
re�ection purely as a language mechanism for expressing standard� classical
queries�

We observe�
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Proposition ���
 For any �nite set C of lexical symbols� RA expresses

precisely the PTIME queries on C�lexical�free databases�

Proof� When restricting attention to C
lexical
free databases only� every
RA program is automatically lexically constrained� since it can only in

troduce a constant number of extra lexical symbols through its constant
relations� Hence� the arguments developed in the proofs of Theorems ���
and ���� remain valid when considering lexical
free databases rather than
lexically
constrained programs�

��� Recursive re�ection and unbounded looping

The type of re�ection allowed in RA is non
recursive� More speci�cally� up
to now� the eval operator is only de�ned to work on �program relations con

taining�A
programs� not RA
programs in turn� In this section� we drop this
restriction� allowing eval to interpret programs containing eval
statements�
We will call the resulting language the recursive re�ective algebra� denoted
R�A�

Strictly speaking� the syntax of RA and R�A can be the same� Their
di	erence would result from associating di	erent semantics to the eval oper

ator� However� for clarity� it will be advantagous to syntacticaly di	erentiate
between RA and R�A� This leads us to the following de�nition of the re

cursive eval operator reval�

De�nition ���� A term of R�A is either a term of RA� or an expression
of the form �reval�X��� where X is a variable such that sch�X� is a program
scheme� The semantics of the recursive evaluation operator is the following�
If r is a program relation containing an A program� then reval�r� has the
same e	ect as eval�r�� If r is a program relation containing an RA program
P then reval�r� executes P and evaluates to P �s �nal result� And similarly�
if r is a program relation containing an R�A program P then reval�r� �re

cursively� executes P and evaluates to P �s �nal result� Finally� if r does not
contain a syntactically correct R�A program then reval�r� yields the empty
relation by default�

Remark ���
 The notion of lexically
constrained RA program can be ex

tended to R�A in a straightforward way�
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We will show that the expressive power of R�A is closely related to that
of WA� This relationship will allow us to derive results about the data
complexity of R�A�

Theorem ���� TheWA statement while X �� � do P od can be simulated

by a lexically�constrained program in R�A�

Proof� LetWP be a program relation containing the followingR�A program�

P �
CallP � �� reval�P ��

Furthermore� let P � be a program relation containing the following R�A
program�

Xtest �� X � WP �
WP �� ���
X��Xtest��
CallP �� reval�WP �

The second statement is an abbreviation for a sequence of statements which
project out� one by one� the attributes of ��X��

If X �� � at the start of an execution of the program stored in P �� then the
contents of WP after the second statement will be identical to the contents
of WP at the start� In that case� the third statement executes P �once� and
subsequently re
evaluates the program stored in P �� �Notice that X can be
side
e	ected by the execution of the program P ��

If X � � at the start of the program� however� then the contents of WP

will be erased� As a consequence� the third statement will have no e	ect�
Hence� the R�A program�

Initialize�WP ��
Initialize�P ���
Xwhile �� reval�P ���

correctly simulates the while
loop statement while X �� � do P od� The ini

tializations ofWP and P � can be done by lexically
constrainedRA programs�

A notable feature of the program relations used in the above proof is that
their sole use of re�ection is by reval statements occurring in tail�recursive

position� We now show the following converse to Theorem �����
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Theorem ���� Let P be a lexically�constrained R�A program in which all

program relations used during the execution of P are either A�programs or
tail�recursive� Then P can be simulated by an WA program�

Proof� Consider a statement of the form �X� �� eval�X��� or �X� ��
reval�X��� in P � When simulating this statement� we know that X� has
the form of an A
program� possibily followed by a statement of the form
�X� �� reval�X���� Hence� we can use a while
loop with a structure similar
to the for
loop used in the proof of Theorem ����� We only indicate the
di	erences�

X �� X��
while X �� � do
���
if t�op� � �reval� then
if t�arg��� � �X�� then
X �� X�

else � � �
else � � �

od

Note that� due the lexically
constrained and tail
recursive nature of the
reval
calls� the return values of these calls can be ignored without loss of
generality�

As a corollary to Lemma ���� and Theorems ���� and ����� we obtain�

Corollary ���� The class of lexically�constrained� tail�recursive R�A pro�

grams coincides with the class of PSPACE queries� Alternatively� on lexical�

free databases� tail�recursive R�A expresses precisely the PSPACE queries�

� Conclusion

The ideas presented in this paper can serve as the beginning of a more
comprehensive investigation of the representation� manipulation� and execu

tion of programs �queries� procedures� methods� � � � � that are stored in the
database together with �ordinary� data� We hope they can also contribute to
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the ongoing discussion among database practitioners as to whether the sep

aration of data and programs� one of the original ideas upon which current
database systems have been built� is still tenable�

An interesting open problem �suggested by C� Beeri� is the question of
what becomes of the notion of computable query ��� in the presence of pro

cedural data�

From a more practical perspective� it would be useful to design syntac

tic variants of RA �or other re�ective database languages� that are more
user
friendly and�or amenable to static type checking� issues which we have
ignored in this paper� In this respect it will probably be advantageous to
move to an object
oriented data model�
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