First-order queries on
finite structures over the reals

Jan Paredaens, University of Antwerp*

Jan Van den Bussche, University of Limburg!
Dirk Van Gucht, Indiana University?

Abstract

We investigate properties of finite relational structures over the
reals expressed by first-order sentences whose predicates are the re-
lations of the structure plus arbitrary polynomial inequalities, and
whose quantifiers can range over the whole set of reals. In constraint
programming terminology, this corresponds to Boolean real polyno-
mial constraint queries on finite structures. The fact that quantifiers
range over all reals seems crucial; however, we observe that each sen-
tence in the first-order theory of the reals can be evaluated by letting
each quantifier range over only a finite set of real numbers without
changing its truth value. Inspired by this observation, we then show
that when all polynomials used are linear, each query can be expressed
uniformly on all finite structures by a sentence of which the quanti-
fiers range only over the finite domain of the structure. In other words,
linear constraint programming on finite structures can be reduced to
ordinary query evaluation as usual in finite model theory and databa-
ses. Moreover, if only “generic” queries are taken into consideration,
we show that this can be reduced even further by proving that such

*Dept. Math. & Computer Sci., University of Antwerp (UIA), Universiteitsplein 1,
B-2610 Antwerp, Belgium. E-mail: paredaQuia.ac.be.

"Dept. WNI, University of Limburg (LUC), B-3590 Diepenbeek, Belgium. E-mail:
vdbuss@luc.ac.be.

tComputer Science Department, Indiana University, Bloomington, IN 47405-4101,
USA. E-mail: vgucht@cs.indiana.edu.

queries can be expressed by sentences using as polynomial inequalities
only those of the simple form z < y.

1 Introduction

In this paper we are motivated by two fields of computer science which heavily
rely on logic: relational databases and constraint programming. We will look
at the latter from the perspective of the former.

In classical relational database theory [1], a database is modeled as a
relational structure. The domain of this structure is some fixed universe U
of possible data elements (such as all strings, or all natural numbers), and
is typically infinite. The relations of the structure, in contrast, are always
finite as they model finite tables holding data. As a consequence, the active
domain of the database, consisting of all data elements actually occurring in
one or more of the relations, is finite as well.

A (Boolean) query is a mapping from databases (over some fixed rela-
tional signature) to true or false. A basic way of expressing a query is by
a first-order sentence over the relational signature. For example, on a data-
base containing information on children and hobbies, the query “does each
parent have at least all hobbies of his children?” is expressed by the sentence
(Vp)(Ve)(Vh)(Child(p, c) A Hobby(c, h) — Hobby(p, h)).

Since the domain of each database is U, the quantifiers in a sentence
expressing a query will naturally range over the whole infinite U. However,
Aylamazyan, Gilula, Stolboushkin, and Schwartz [5] showed that in order
to obtain the result of the query it suffices to let the quantifiers range over
the active domain augmented with a finite set of ¢ additional data elements,
where ¢ is the number of quantified variables in the formula expressing the
query. The intuition behind this result is that all data elements outside the
active domain of a given database are alike with respect to that database.

Alternatively, we can choose to let the quantifiers range over the active
domain only, thus obtaining a semantics which is quite different from the nat-
ural interpretation. For example, consider databases over the single unary
relation symbol P. Then the sentence (Vx)P(z) will always be false under the
natural interpretation, while under the active-domain interpretation it will
always be true. In fact, it is not obvious that each query expressible under
the natural interpretation is also expressible under the active-domain inter-

pretation. Hull and Su [14] established that the implication indeed holds.
(The converse implication holds as well, since the active-domain interpreta-
tion can easily be simulated under the natural interpretation using bounded
quantification.)

In recent years, much attention has been paid to “constraint program-
ming languages” (e.g., [8]). In particular, in 1990, Kanellakis, Kuper and
Revesz demonstrated that the idea of constraint programming also applies
to database query languages by introducing the framework of “constraint
query languages” [15]. An important instance of this framework is that of
real polynomial constraints. Here, the universe U of data elements is the
field R of real numbers. Databases then are relational structures over R,
but the database relations need no longer be finite; it suffices that they are
definable as finite Boolean combinations of polynomial inequalities. In other
words, each k-ary relation of the structure must be a semi-algebraic subset
of R¥ [9].

A basic way of querying real polynomial constraint databases is again
by first-order sentences, which can now contain polynomial inequalities in
addition to the predicate symbols of the relational signature. For example,
if the database holds a set S of points in R?, the query “do all points in S
lie on a common circle?” is expressed by (3zg)(Jyo) (3r)(Vz)(Vy)(S(z,y) —
(z — 20)® + (y — y0)* = r?). Note that quantifiers are naturally interpreted
as ranging over the whole of R. In order to evaluate such a sentence on a
database, we replace each predicate symbol in the formula by the polynomial
definition of the corresponding database relation, and obtain a sentence in
the pure first-order theory of the reals. As is well-known, this theory is
decidable [22]; the truth value of the obtained sentence yields the result of
the query. So, real polynomial constraint queries are effectively computable.

Finite relations are semi-algebraic, so that finite relational databases over
the reals form an important special case of real polynomial constraint data-
bases. For example, if we want to model a database holding a finite number
of rectangles, we can either choose to store the full extents of the rectangles,
resulting in the infinite set of all points on the rectangles (represented in
terms of linear inequalities in the obvious way), or we can choose to store
only the corner points of each rectangle, resulting in a finite relation.

In the present paper, we investigate whether the results by Aylamazyan
et al. and by Hull and Su, mentioned in the beginning of this Introduction,
carry over from classical first-order queries on relational databases to poly-

nomial constraint queries on finite databases over the reals. Indeed, as in
the classical case, one can give an alternative active-domain semantics to
constraint sentences and again ask whether this is without loss of expres-
sive power. Note, however, that active-domain quantification defies the very
nature of constraint programming as a means to reason about intentionally
defined, potentially infinite, ranges of values. Hence, it is not obvious that
the results just mentioned might carry over at all.

Nonetheless, we have found a natural analog of the Aylamazyan et al. the-
orem, and we have been able to establish the verbatim analog of the Hull-Su
theorem in the case when only linear polynomials are used. This is often
the case in practice. Our result might be paraphrased by saying that on
finite structures, first-order linear constraint programming can be reduced to
ordinary query evaluation as usual in finite model theory and databases.

Our development is based upon the following observation. Consider a
prenex normal form sentence (Q1xy)...(Qnxn)M(xy,...,2,) in the first-
order theory of the reals. For any finite set Dqy of real numbers, there exists
a sequence Dy C Dy C --- C D, of finite sets of reals such that the sentence
can be evaluated by letting each quantifier @); range over D; only (rather
than over the whole of R) without changing the sentence’s truth value. By
taking Dy to be the active domain of a given finite database over the reals,
we get the analog in the real case of the Aylamazyan et al. theorem.

The reader familiar with Collins’s method for quantifier elimination in
real-closed fields through cylindrical algebraic decomposition (cad) [3, 4, 11]
will not be surprised by the above observation. Indeed, it follows more or less
directly from an obvious adaptation of the cad construction. However, we
give an alternative self-contained proof from first principles which abstracts
away the purely algorithmical aspects of the cad construction and focuses
on the logic behind it. Importantly, this proof provides us with a basis to
show how in the case of linear polynomials, the construction of the sequence
D, C---C D, departing from the active domain Dy can be simulated using
a linear constraint formula. As a result, we obtain the analog in the real case
of the Hull-Su theorem.

In a final section of this paper, we look at queries that are “generic,” i.e.,
that do not distinguish between isomorphic databases. Genericity is a natural
criterion in the context of classical relational databases [2, 10]. Perhaps this is
a little less so for databases over the reals; in other work [18] we have proposed
alternative, “spatial” genericity criterions based on geometrical intuitions.

Y

4

Nevertheless, it remains interesting to investigate which classically generic
queries can be expressed using linear constraint sentences.

Sentences that do not contain any polynomial inequalities always express
generic queries, but from the moment a sentence even contains only simple
inequalities of the form x < y it can already be non-generic. Furthermore,
examples are known (e.g., [1, Exercise 17.27]) of generic queries expressible
with such simple inequalities but not without. In other words, simple in-
equalities, though inherently non-generic when viewed in isolation, help to
express more generic queries. The natural question now is to ask whether
general linear polynomial inequalities help even more. We will answer this
question negatively.!

This paper is organized as follows. We start with a rather general Sec-
tion 2 in which we introduce the notion of domain sequence on which much
of our development will hinge. In Section 3 we then introduce the subject
of queries on real databases. In Section 4 we focus on the linear case. In
Section 5 we discuss generic queries.

After we presented the original ideas contained in the present paper at a
conference [19], several researchers have been able to generalize our results.
We provide a brief summary of these generalizations in Section 6.

2 Domain sequences

We will use the basic terminology from mathematical logic [12]. Let A be a
structure over a finite relational vocabulary L. The domain of A is denoted
by A. Let ®(xy,...,zx) be a first-order formula over L written in prenex
normal form

(Qrr1Tks1) - - (Qurn) M (21, ..., xy), (%)

with each @; either 4 or V and M quantifier-free. If £ = 0 then & is a
sentence; if £ = n then ® is quantifier-free. If @ = aq,...,a; € A is a tuple of
elements in A then the truth of ® in A with q; substituted for z; is denoted
by A = ®|a).

If Dyy1, ..., D, are subsets of A, then we write

(A; Dysr, - .., D) = @[]

'We thus provide a partial rectification of Kuper’s original intuitions [16] (which are
incorrect as stated).

if ®[a] evaluates to true in A when we let each quantifier (); range over D
only rather than over the whole of A.

Example 2.1 Let A consist of the integers together with the predicate y =
z?, and let @ be the sentence (Vz)(Jy)y = z*. Then (A; {-1,2},{1,4}) = @,

In this section, we prove the following theorem:

Theorem 2.2 Let ® be a sentence (Q121) ... (Qnxn)M(21,...,2,), and let
Dy be a finite subset of A. Then there exists an increasing sequence Dy C
D, C---C D, of finite subsets of A such that

A=® < (A4Dy,....,D,) 2.

Example 2.3 As a trivial illustration, let A consist of the integers together
with the predicate z = y?, and let ® be the sentence (Vz;)(Iz2)zs = (21)?.
Let Dy be the empty set. We have A = ®, and indeed for D; = {—1,2} and
Dy = {—1,2,1,4} we have (A; Dy, D,) = ®.

To prove Theorem 2.2 we introduce various auxiliary notions on which
we will also rely in later sections.
We will use the following natural equivalence relation on A™:

Definition 2.4 Two points @ and b in A™ are called equivalent, denoted @ =

b, if for each atomic formula F(z,...,x,) we have A |= Fla] iff A = F[b].

In model-theoretic terminology, @ and b are equivalent if they are of the same
basic type in A.

Example 2.5 Let A consist of the reals together with the predicates C(x,y) 6
0, Li(z,y) 6 0, and Ly(x,y) 6 0, where 0 is <, =, or >, and C, L; and L,
are polynomials describing the circle and two lines depicted in Figure 1. The
same figure shows that there are 19 equivalence classes in A% {a}, {b,c},
{d,e}, A, BUD,C,E,FUH,G, I, JUL, K, o, 3,7, §UA, €, n and k.

We now extend this equivalence relation inductively to lower dimensions
such that the equivalence classes at each dimension are “cylindrical” over the
equivalence classes at the next lower dimension:

6

Figure 1: Equivalence classes in the plane induced by a circle and two lines.

Definition 2.6 Let : < n and assume = is already defined on A Then
for a,b € A we say @ = b if for each a;;1 € A there is a b;;; € A such that

(@, a;+1) = (b,b;41) and conversely, for each b;y; there is an a;;; such that
(0, bi1) = (@, ait1).

Example 2.7 In Figure 2 there are 12 equivalence classes in A: {p}, {q},
{r}, {s}, {t}, {u}, P, QUV, R, S, T and U.

We note for further use:
Lemma 2.8 For each i, = is of finite index on A?.

Proof. By downward induction on i. The base case i = n is trivial since
the number of atomic formulas F'(zy,...,x,) is finite (we assumed a finite
relational vocabulary). So assume i < n. For a € A’, let k(@) be the
set of equivalence classes in A"l intersecting the “vertical line through @”
{(@,a;41) | aiy1 € A}. Clearly, for a,b € A*, a # b implies x(a) # x(b). Since
by induction, = is of finite index on A**!, k can have only a finite number of
possible values and hence = is of finite index on A as well. [|

The relevance of the equivalence relations just defined is demonstrated
by the following lemma. We use the following notation: let ®(Z) be as in (x)
above. For k <i < n, ®|; stands for the formula

(Qi—l—lxi—l—l) e (in'n)M(fL'l, e ,l’n).

7

I
I
I
I
I
I
I
p

I
I
I
|
P Q dR

Figure 2: From equivalence classes in A? (Example 2.5) to equivalence classes
in A.

So, | equals ® and ®|,, equals M.

Lemma 2.9 Let k < i <n, and let a = b be equivalent points in A*. Then
AE®)a < AR ao;[b.

Proof. The proof is a straightforward downward induction on i. The base
case, i = n and @[, being quantifier-free, is obvious. Now let k£ < i < n. We
have ®|; = (Qi117i11)®@|ir1. We first consider the case @;;; = 3. Note that
we only have to prove the implication from left to right; the other direction
follows by symmetry. If A | ®|;[a] then there exists a;1; € A such that
A = ®|;,1[a,a;,1]. Since @ = b, there exists b;y; € A such that (a,a;41) =
(b,bi11). By the induction hypothesis, it follows that A | ®|;,1[b, b;41] and
hence A | ®|;[b].

The case ;11 = Vis similar. If A = ®|;[a] then for each a;11 € A we have
A ®|;;1]a,a;41]. Since @ = b, for each b, € A there exists an a;;; € A
such that [b,b;11] = [@, a;1]. By the induction hypothesis, it follows that for
each by 1, A = ®|;11[b,b;11] and hence A | ®|[b]. |

Example 2.10 Continuing Examples 2.5 and 2.7, let C'(z,y) = 2® + y* —
200 + 75, Li(x,y) =x+y —5, and Ly(x,y) =y — 14. Let ® be the sentence

8

| (5.10)

| |
| [[
| [[
I [| [|
-9 -5 -3 0 3 5
Figure 3: Equivalent points and formula satisfaction.

(Vo) (3xs) (z14+29—5 = OA (22— 14 > OV (21)?+ (22)?> — 202, +75 < 0)). This
is illustrated in Figure 3. We have ®|y = @, ®|; = (Jy)(x1+22—5 = OA (20—
14 > 0V (21)?+ (22)2 =202, +75 < 0)), and |y = 21 +25—5 = OA (23— 14 >
0V (x1)* + (z2)? — 20z; + 75 < 0). As can be deduced from Example 2.7
the equivalence classes in A are (—oo0,—9), [—9], (—=9,—5) U (5,00), [-5],
(=5,-3), [-3], (=3,0), [0], (0,3), [3], (3,5) and [5]. We have A = ®|,[a] for
each a € (—o0, —9) U (-5, —3) [—3] U (—3,0].

The notion of domain sequence is defined next:

Definition 2.11 A sequence Dy C Dy, C --- C D, of finite subsets of A
is called a domain sequence if for each k <i < n:

Va € (D;)', Va1 € A, 3aly € Diyy : (a,a,41) = (a,aly,).

Example 2.12 Continuing Example 2.10, from Figure 4 we see that (Dy, Dy, D),
with

DO — {O},

Dy = {~10,-9, ~7,—5,—4,-3,-2,0,1,3,4,5} and

D2 = D1 U {7,]_4,]_45,]_5},

T

Figure 4: Domain sequence construction.

is a domain sequence.
Since = is of finite index (Lemma 2.8), we know:

Lemma 2.13 For any given finite Dy C A, there exists a domain sequence

starting from Dy.

The following technical lemma now directly implies Theorem 2.2:
Lemma 2.14 Let

® D C Dy €+ C Dy, be a domain sequence;

® ay,...,ap € Dy,

o k<1< n;and

e a; € D; fork <j<u.
Then

A= ®jlay,...,a] <= (A Dit1,...,Dy) = Ofifay, ..., a].

10

Proof. By downward induction on i. Denote (ai,...,a;) by a. The case

i = n is trivial. So assume i < n. We have ®|; = (Q;11%;11)®|i+1. Con-
sider first the case ;11 = 3. For the implication from left to right, assume

A = ®|;[a]. Then there exists a;+; € A such that A = ®|;11[G,a;41]. Ac-
cording to Definition 2.11, there exists a;,, € D;i; such that (@,a;41) =
(a,aj,,). By Lemma 2.9, we also have A |= ®|;;1[a,a;,,]. By induction,

(A; Diyo, ..., Dy) = ®liyi]a, aj,,]. We can thus conclude that (A; Djiyq, ..., Dy) =
®|;[al.

For the implication from right to left, assume (A; D1, ..., D,) = @|;[a].
Then there exists a;11 € D;yq such that (Do, ..., D,) E ®|i1]a@, ai11]. By
induction, we have A = ®;,1[a, a;41]. Since a;4q is trivially in A, we can
thus conclude that A | ®|;[a].

Next consider the case ();;; = V. For the implication from left to right,
assume A = ®|;[a]. Then for each a;1; € A we have A | ®|;11[a, ajyq].
In particular, this holds for each a;;; € D;,;, and by induction, we have
(A; Diyo, ..., Dy) = ®|iy1]a, aiv1]. We can thus conclude that (A; Dy, ..., Dy) E
®|;al.

For the implication from right to left, assume (A; D4, ..., D,) E @|;[al].
Then for each @ € D;,1 we have (A; Do, ..., D,) E ®|;11]a, o], and thus, by
induction, also A = ®|;41[a, a]. Now take an arbitrary a;,1 € A. According
to Definition 2.11, there exists aj,, € D;y1 such that (a,a;41) = (a,a;,,).
By Lemma 2.9, since A |= ®|;41[a, aj,], we also have A |= ®|;11[a, a;41]. We
can thus conclude that A E ®,[al.]

Corollary 2.15 Let ® be a sentence (Q1x1) ... (Quxn)M(xy,...,x,), and
let Dy €Dy C---C D, be a domain sequence. Then
AE® < (A;Dy,...,D,) EO.

Proof. Set 1 = k = 0 in Lemma 2.14. [

3 Queries on real databases

Fix a relational vocabulary o consisting of a finite number of relation symbols
S with associated arity. A real database B is a structure of type o having
the set R of real numbers as domain, assigning to each relation symbol S of

11

arity a in o a finite relation S® of rank a on R.? The active domain of B,
denoted by adom(B), is the (finite) set of all real numbers appearing in one
or more relations in B.

A query is a mapping from databases of type o to true or false. A
basic way of expressing queries is by query formulas, which are standard
first-order formulas built using Boolean connectives and quantification from
atomic formulas of one of the following two forms:

e p > 0, with p a multivariate polynomial with real coefficients;

e S(p1,-..,pa), with S a relation symbol in o of arity a, and each p; a
polynomial as in the previous item.

If ®(Z) is a query formula and B is a database, then the truth of ® in B,
denoted by B = ®[al, is defined in the standard way. In particular, if ® is
a sentence, it expresses the query yielding true on an input database B iff

BEo.

Example 3.1 Assume o = {S} with a(S) = 2. The query “do all points in
S lie on a common circle?” can be expressed as

(F20) (Fyo) (Br) (Va) (V) (S (2, y) = (¥ — 20)” + (y — yo)* = 1)

(Conditions of the form p = 0 are expressible in terms of conditions of the
form p > 0 as =(p > 0) A =(—p > 0).)

The query “is there a point in S whose coordinates are greater than or
equal to 1?7” can be expressed as (3z)(y)S(2? + 1,y* + 1). Note that the
quantifiers are naturally interpreted as ranging over the whole of R.

Formulas that do not mention any of the relation names in o are called
real formulas. Let ¥ be a real formula and let all variables occurring in W
be among zy,...,x,. Let II be the set of all polynomials p for which the
inequality p > 0 occurs in W. For such a set II of polynomials over the
variables x1,...,x, we define:

Definition 3.2 The structure Ry is the structure having as domain the set
R of real numbers, and having as relations the n-ary relations {(r,...,7,) |
p(ri,...,m,) > 0} for each p € II.

2Formally, S® C R x --- x R (a times).

12

If IT comes from a formula ¥ as above we will also refer to Ry as Ry. Note
that ¥ can be naturally evaluated in the structure Ry.
If ® is a query sentence and B is a database, then we can produce a real

sentence ®F in a very natural way as follows. Let S(py, ..., p,) be an atomic
subformula of ®, with S a relation symbol in o. We know that S% is a finite
relation consisting of, say, the m tuples {(e11,...,€14),---, (€m1,--+,€ma)}-

Then replace S(p1,...,p,) in ® by VI, p1 = €1 A...ADy = €j4. It is obvious
that
B): q) < R@B): (I)B.

Now assume the query sentence ® is in prenex normal form:

(Q1x1) - (Quan) M (21, ..., 2y). (1)

If B is a database and Dq,..., D, are subsets of R, then we say that & is
satisfied on (B; Dy, ..., D,), written (B; Dy,...,D,) E ®, if ® evaluates to
true on B when we let each quantifier (); range over D; only, rather than over
the whole of R.

Corollary 2.15 immediately implies the following:

Theorem 3.3 Let @ be a query sentence as in () above and let B be a real
database. For each domain sequence Dy C Dy C --- C D, in the context of
the structure Res,

B=® <« (B;Dy,...,D,) 2.

When we choose Dy = adom(B), this theorem can be viewed as the
analog in the real case of the Aylamazyan et al. theorem [5] mentioned in
the Introduction.

4 The linear case

In this section, we focus on linear queries, expressed by query sentences
in which all occurring polynomials are linear. We prove that each linear
query is expressible by a linear query sentence wherein the quantifiers range
over the active domain of the input database only. Thereto, we introduce
a particular way to construct a domain sequence starting with the active
domain of a database, based on Gaussian elimination. We then show that

13

this construction can be simulated in a uniform (i.e., database-independent)
way by a linear query formula.

Let II be a set of linear polynomials on the variables x1,...,z,. Recall
Definition 3.2 of the structure Rg. Within the context of this structure we
can consider equivalence of points in R, for i < n, as defined in Definitions
2.4 and 2.6.

Each polynomial p € ITis of the form cf 4+ }_, ¢jx;. We define a sequence
IT,,...,II; of linear polynomials inductively as follows:

Definition 4.1 II,, =1II, and for 7z < n,

I; = {p eIl | C€+1 = O}U{P'Cgﬂ—Q'CfH | p,q € 4, C€+1 #0# Cg+1}-

In words, each II; is a set of linear polynomials over zy, ..., z; obtained from
II;+1 by Gaussian elimination.

In the next proposition, equivalence of points in R’ with respect to Ry
will be characterized in terms of the polynomials in II;. Thereto we need an
easy-to-prove lemma:

Lemma 4.2 Let oy, s, (1, and By be elements from some densely ordered
domain. The following are equivalent:

1. For (1,7) € {(1,2), (2,1)},
a > & 3> 6.
2. For each « there exists 3 such that for i =1, 2,
a>a e fi>f,
and conversely, for each [there exists a such that the same holds.

Proposition 4.3 Let 1 < i < n and let a,b € R'. Then @ and b are
equivalent with respect to Ry if and only if for each polynomaial p in 11;,

p(@) >0 < p(b)>0.

14

Proof. By downward induction on i. The case ¢ = n is just the definition
of equivalence of n-tuples. So assume i < n. Let @ = b. Then for each a;,
there is a b;;; such that (@, a;;,) = (b,b;;1) (and conversely). Equivalently,
by induction, for each a;,; there is a b;;; such that for each polynomial p in
i1, p(@,ai1) > 0 < p(b,bipy) > 0. If ¢p = 0 then p € II; and we get
p(a) > 0 < p(b) > 0; this deals with the first kind of elements of II;.

For the other kind of elements of II;, consider p, ¢ € II;;; with ¢f | # 0 #

¢l ;. From the above, for each a;;; there is a b;;; such that

(cb+_cay)/ctis > —ainn & (g + D &by)/clir > —bi
j=1

=1

and

i i
(@ +> daj)/cly, > —ain & (f+clb)/cly > —bip.
7=1 7=1

Conversely, for each b;;; there is an a;;; such that the same holds. By
Lemma 4.2 we thus deduce

(C’6+Z C?aj)/cf_i_l > (03+Z c?aj)/cgﬂ ~ (C’8+Z Cgbj)/clijﬂ > (63+Z C?bj)/C?H
7=1

J=1 Jj=1 Jj=1

and hence

i

(eh+>_ cjag)-clyy > (4D cjaj) el & (4D fby)clin > (cf+3_ cjby)-cls

j=1 j=1 i=1 j=1

or

(Pl —q-)@ >0 & (p-cly —q-dy)(b) >0,
which, by definition of II;, is what had to be proven. This argument for the
‘only-if” implication can simply be reversed to prove the ‘if” implication. ®

Now let @ be a linear query sentence (Q121) ... (Qnx,)M in prenex nor-
mal form, and let B be a database. Recall the definition of the real formula
®B described in the previous section; note that since ® is linear, ®% is linear
as well.

15

Definition 4.4 Fix II to be the set of all polynomials occurring in ®5 plus all
those of the form p; —e, where p; occurs in some atomic formula S(py, .. ., pa)
of ® and e € adom(B).

We can then consider the sequence II =11,,,...,II; as in Definition 4.1. For
what follows it is important to note that, since II contains at least all poly-
nomials occurring in ®%, equivalence of points w.r.t. Ry implies equivalence
w.r.t. the structure Rgs mentioned in Theorem 3.3.

Example 4.5 Let ® = (Vz)(3z2)(S(x1 + 22 + 1) A (21 + 222 + 2 = 0)).
Then IT =1l = {1 —e+x; + 25 | e € adom(B)} U {2 + z; + 225} and
I, = {—2e+x, | e € adom(B)}.

We observe:

Lemma 4.6 Let 1 < i <n. Then Il; is a finite union of sets of the form

2(n—9) i

{CO + Z djej + Z C;T; | €1,...,E9mn—i) € adom(B)}
j=1 j=1

Both the number of these sets and the coefficients ¢; and d; for each set do
not depend on the particular database B.

Proof. By downward induction on 7. The base case ¢ = n is clear since
IT,, = II is clearly of the good form. So assume i < n. By definition, II; is a
union of two sets:

{p €M | &y =0}
and
{p : c§+1 —q- C€+1 | p,q € L4, C€+1 #0# c§+1}.

By the induction hypothesis, the first set is clearly of the good form. Also by
the induction hypothesis, the second set is a finite union of sets of the form

o(n—i—1) i+l 2(n—i—1) i+1

’ ’ It ’

{Ci+1 co + Z djej + Z CiTi | — Cit1 | G + Z djej + Z le'j |
Jj=1 Jj=1 Jj=1 Jj=1

! !
€1y -5 €9n—i=1), €1, ..., Eyn—i-1) € adOHl(B)}.

After simplification this is readily seen to be also of the good form. [|

16

We are now in a position to define a particular domain sequence with re-
spect to the structure Rgs, based on the sequence IIy, ..., II,. The sequence
is inductively constructed: Dy is empty, and D; (i > 0) is constructed as fol-
lows: first consider the set E; of all the i-th coordinates of the 7-dimensional
points that are in a hyperplane of II; and whose first i — 1 coordinates are in
D;_y. Add D;_, to Ej;, resulting in D;. Finally, to be sure to obtain a point
in every equivalence class, we add the mean value of every pair of elements
of D}, as well as every element increased by one and every element decreased
by one, resulting in D;. Formally, we define:

Definition 4.7 The linear sequence on B with respect to ® is the sequence
) = Dy C D, C --- C D, inductively defined as follows: for 1 < i < n, D;
equals

Y1 +y
Diu{y | (Qyye) €Dy === Vy=y—1Vy=y+1},
where D} is D; | U E; with
2(n—19) i—1 2(n—19) i
Ei = {—CO/Ci — Z (dj/ci)ej — Z(cj/ci)yj | Co + Z djej + Zle‘j - Hi,
j=1 7=1 7=1 7=1

G #0, Yy, ¥i1 €D q, €1, 65m0) € adom(B)}.
Example 4.8 In Example 4.5 we have
D} = {2e; | e; € adom(B)},

D1 = {261 + n | ne {_1707 1}}7

and

Ey = {—1 + ez — (2e1 + 1),
—1+e3— (e1 +e3),
—1— (26, +1)/2,
—1—(e1+e€)/2]
e1, e, e3 € adom(B), n€ {-1,0,1}}.

Proposition 4.9 The linear sequence on B with respect to ® is a domain
sequence with respect to Rgs.

17

Proof. According to Definition 2.11, we must show for each 1 < i < n that
Va € (D;_y)"", Ya; € R, 3d; € D; : (a,a;) = (a,a}).

So, let @ € (D;_;)" ' and assume a; ¢ D;. Consider the definition of D;
in terms of D} = D;_y U E; from Definition 4.7 above. We distinguish the
following possibilities for a;:

1. a; < min(E;); then put a} := min(E;) — 1;
2. a; > max(E;); then put o) := max(FE;) + 1;

3. min(E;) < a; < max(E;); then put a} := (e; + e3)/2, where e; is the
maximal element in E; such that e; < a;, and e; is the minimal element
such that a; < e,.

It is obvious that a; € D;; moreover, we invite the reader to convince himself
that from the way F; is defined, it follows that all polynomials in II; have the
same sign on (a,a;) and (@, a}). Hence, by Proposition 4.3, the proposition
follows. [|

After one final lemma we will be able to state and prove the main result
of this section:

Lemma 4.10 For each 0 < i < n there exists a finite set P of linear polyno-
mials such that for each database B, the i-th member D; of the linear sequence
on B with respect to ® equals {p(y1,...,v,) | y1,...,y, € adom(B) Ap € P},
with z independent of B.

Proof. By induction on i. The case i = 0 is trivial since Dy =) (put P := ().
So assume ¢ > 0. The definition of D; in terms of D] in Definition 4.7 is clearly
of the form D; = {p(y1,y2) | v1,¥2 € D, Ap € P'} where P’ consists of the
four polynomials (y; +42)/2, y1 — 1, y1 + 1, and y;. We have D = D;_UE};,
where F; is clearly of the form {p(y1,...,%i—1,€1,- -, €3m-0) | Y1,.-.,Yi_1 €
D;_1 Ney,...,eymi € adom(B) Ap € P"}, for some P”, and by induction,
D, is of the form {p(y1,...,v.) | y1,...,y. € adom(B) Ap € P"}, for some
P". By combining these expressions using a tedious but straightforward
substitution process, we obtain the desired form for D;. [|

18

Theorem 4.11 For each linear query sentence ® there is a linear query
sentence WV, which can be effectively constructed from ®, such that for each
database B, B |= ® if and only if B Faqom ¥, where Fadom denotes that the
quantifiers in U range over the active domain of the database only.

Proof. Let) € D; C --- C D, be the linear sequence on B with re-
spect to ®. By Theorem 3.3 and Proposition 4.9, we know that B | & iff
(B; D1,...,D,) E ®. We can write the latter explicitly as B = (Qiz1 €
Dy) ... (Qux, € Dy)M(xy,...,x,). From Lemma 4.10 we know that D; can
be written as {p(y1,...,v.) | v1,...,y. € adom(B) Ap € P}. If Q; is 3, we
can rewrite the above formula as

BE Gy)...(3y.) V (Quzz € Dy) ... (Qunzy € Do) M(p(y1, ..., Y2), T2y - .., Ty),

peP

where each (Jy;) ranges only over adom(B). If), is V we have

BE (Vy)...(Vy.) N (Qezz € Ds) ... (Qnxy € Dp)M(p(y1,. .. y2), Tay ..., Ty).

peEP

By replacing @)y, ..., @, in a similar manner, we obtain the desired
sentence W.

If adom(B) is empty then the above strategy will not work. However, the
sentence ¥ obtained above can be modified so as to test for this special case,
and if this test succeeds, a fixed truth value can be returned. This fixed truth
value is the result of evaluating (By = ®), where By denotes the database
with empty active domain.? [

5 (eneric queries

Two databases B and B’ over the same relational signature o are called
isomorphic if there is a bijection p : adom(B) — adom(B') such that p(S?) =
SB' for each relation symbol S in 0. A query which yields the same result
on isomorphic databases is called generic.

3 An exception occurs when the signature o contains relation symbols of arity zero. In
this case, there is no unique By but rather a fixed finite number of them. The sentence
can test which one it is dealing with and return the appropriate truth value.

19

For example, assume that o consists of a single binary relation symbol
S. Databases of type o can be viewed as finite directed graphs whose nodes
are real numbers. Of course, any query expressed in the language £ of pure
first-order sentences over o (i.e., not containing any polynomial inequalities)
is generic. Other examples of generic queries are “is the graph connected?”
or “is the number of edges even?”.

In the language L= consisting of those query sentences where all inequal-
ities are of the simple form z < y (with x and y variables),® non-generic
queries can be easily expressed, such as (Vx)(Vy)S(z,y) — = < y. As pointed
out in the Introduction, however, there are generic queries expressible in £<
but not in £. We have been able to prove that there is no similar gain in
expressiveness when moving from £< to full linear query sentences:

Theorem 5.1 For each linear query sentence ® expressing a generic query
there is a query sentence W in L=, which can be effectively constructed from
®, such that for each database B, B Fagom ® if and only if B Eaqom V.

As in Theorem 4.11, Faq4om denotes that quantifiers range over the active do-
main only; we know by Theorem 4.11 that this active-domain interpretation
is without loss of generality.

We next present an elementary proof of Theorem 5.1 based on three
lemmas and one auxiliary definition.

The following fact is easy to prove:

Lemma 5.2 Let q(z) = zglzo a;x' be a polynomial with real coefficients, in
one variable, of degree d (aq #0). Let
rs d. aXosica|ai]

minog]‘gd |aj| '
aj9é0

Then q(r) has the same sign as ay.

We define:

4As an aside, we would like the reader to note that Theorem 4.11 specializes to query
sentences in £<. This follows from general results in 7], but can also be proven in a direct
way using an argument similar to our proof of Theorem 4.11.

20

Definition 5.3 Let p(zy,...,x,) = >I, bijz; + by be a linear polynomial
with real coefficients in n variables. We associate with p a function =, :
R"™ — R as follows. Consider § = (y1,...,y,) € R™ Associate a “weight”

WY (y;) to each y; by

1<j<n
Yi=y;

If all weights are zero, define Z,(y1, ..., y,) := bp. Otherwise, define

Ep(yla v 7yn) = W}?(yM)a

where y), is maximal with non-zero weight, i.e., y,, = max{y; | 1 < i <

n, Wiy:) #0}.
Example 5.4 We illustrate the above definition with three examples:
1. Let p(xy, 29, x3) = 21 — by + 3x3 — 8. Then

e =,(7,3,9) = 3;

o 5,(7,9,3) = —5.
2. Let p(x1,2) = 221 — 225+ 5. Then Z,(5,5) = 5.
3. Let p(z x7) = 3x; — 3wy + 623 — 624 + S5 + x5 — 627. Then

o 5,(4,4,2,2,2,2,2) = 0;

e 2,(5,5,4,4,3,2,1) = 5;
0(5,5,4,4,1,2,3) = —6.

[1]

[]
The relevance of =, stems from the following observation:

Lemma 5.5 Let p(xy,...,x,) = Y0y bjx; + by and let s > 0 be a natural
number. Then there exists a number oy, such that for all 3 > oy, and for any
sequence of integers Z = zy, ..., 2, € {0,..., s},

p(B7, ..., ") >0 <= Z,(z1,...,2,) > 0.

21

Proof. Note that
p(ﬂna s 7ﬁzn) = Z bzﬂzz + by = Z sz(zj)6z] + bOa
i=1 j

where j in the latter sum ranges over a set of indices consisting of one j for
each distinct value z;. Hence, the value p(3*',..., 3**) can be viewed as the
value of a univariate polynomial ¢ in 3. The highest-degree coefficient of ¢
is Z,(21,...,2n). The degree of ¢ is max; z;. Hence, if we take

maxp | B]
=8 ————,
P min| |20 | B|
where B ranges over all partial sums of b;’s, then any 3 > «, satisfies the
condition of Lemma 5.2 and thus for such 3, p(3*,...,3*) = ¢(f) has the

same sign as =,(z1, ..., 2p).]
As a last lemma towards the proof of Theorem 5.1 we note:

Lemma 5.6 For a fized polynomial p as above, the predicate =Z,(y1, . . ., yn) >
0 can be expressed by a formula §(y1, ..., y,) in L.

Proof. The crucial observation is that the value of =,(yy,...,y,) depends
not on the actual values of the y;’s but only on their relative positions (in
model-theoretic terms, the order type of yi,...,y,). The number of possible
order types (n being fixed) is finite, so the formula &, simply consists of the
disjunction of those order types for which the value =,(yi, ..., yy) is positive.

|

Example 5.7 Let p(x, x2) = 22, —2x5+5. Then Z,(yy, y2) > 0 is expressed
by y1 =y2 Vy1 > yo.

Proof of Theorem 5.1. Replace in ® every inequality p(z1,...,z,) > 0 by
the formula &,(zy,...,2,) > 0 of Lemma 5.6. In this way we obtain a query
sentence ¥ in £=. We still have to show that B E.qom @ iff B Fadom Y.
Let s be the cardinality of adom(B). Each polynomial p occurring in ® has
an associated lower bound «, of Lemma 5.5. Let 3 be larger than any of

22

these a,’s and let p be an order-preserving (i.e., monotone) bijection from
adom(B) to {3, 3%, ...,0°}. Then

B):a.dom ® & P(B)):a.dom ®
g p(B)):a.dom v
< B):adom .

The first equivalence holds since ® is generic, the second holds by Lemma 5.5,
and the third holds since p is monotone and V¥ is a formula in £<; the truth
of formulas in £= is preserved under order-preserving isomorphisms. [|

Inspection of the above proof shows that Theorem 5.1 can be sharpened
a little bit. Indeed, of the given that ® expresses a generic query, we actu-
ally use only that this query yields the same result on databases that are
isomorphic via an order-preserving, rather than an arbitrary, bijection.

We can conclude that all generic queries that are not expressible in £<
are not expressible as a linear query either (by Theorem 4.11, both under
the active-domain interpretation as under the natural interpretation). In
particular this holds for the queries, already mentioned at the beginning of
this Section, of testing for connectivity or even cardinality of a finite graph
over the reals:

Corollary 5.8 Graph connectivity and even cardinality are not expressible
by linear query sentences.

Proof. By the above it suffices to show that these queries are not expressible
in £< with quantification on the active domain. But this is well-known [1].
|

Grumbach, Su, and Tollu [13] have also obtained inexpressibility results
for linear queries, using complexity arguments. In particular, they showed
that in the context of the rationals Q rather than the reals R, linear queries
are in the complexity class ACy, while even cardinality and connectivity are
not. We would like to point out (as is readily verified) that our technical
development applies equally well to the rationals.

23

6 Concluding remarks

After we presented the original ideas contained in the present paper at a
conference [19], several researchers have been able to generalize our results:

e In this paper we have considered databases and queries over the struc-
ture R of the reals. One can do the same for any arbitrary fixed
infinite “universe-structure”. Using the Ehrenfeucht-Mostowski theo-
rem on first-order indiscernibles, Otto and Van den Bussche [17] have
shown that Theorem 5.1 generalizes from R to any arbitrary fixed in-
finite structure.

e Benedikt et al. [6] have generalized Theorem 5.1 in two senses: again
to more universes than just the reals, and more importantly, to quan-
tification on the whole universe rather than on the active domain only.
One consequence of the results in [6] is a generalization of our Corol-
lary 5.8: graph connectivity and even cardinality are not expressible by
any (not necessarily linear) real query sentence, both under the natural
interpretation as under the active-domain interpretation.

e Belegradek, Stolboushkin and Taitslin [20, 21] have generalized Theo-
rem 5.1 in another sense: instead of finite databases they considered
possibly infinite databases definable by real formulas involving only
simple inequalities.

e Benedikt and Libkin [7] have shown that Theorem 4.11 holds in any
densely ordered structure that satisfies the property of o-minimality
and admits elimination of quantifiers. In particular, their result im-
plies that Theorem 4.11 generalizes to the non-linear case (since the
structure of the reals with addition and multiplication admits elimina-
tion of quantifiers).

In constrast to the proofs of these generalizations, the proofs of our results
as given in the present paper are elementary and constructive (the results in
[20] are also constructive).

Acknowledgment We are grateful to Bart Kuijpers for his careful reading
of earlier drafts of the material presented in this paper, to Alex Stolboushkin

24

for helpful comments on a first presentation of our results, and to an anony-
mous referee for pointing out a mistake in the submitted draft of this paper.

References

1]

2]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1994.

A.V. Aho and J.D. Ullman. Universality of data retrieval languages.
Proceedings ACM Symposium on Principles of Programming Languages,
1979.

D.S. Arnon. Geometric reasoning with logic and algebra. Artificial In-
telligence 37, 37-60 (1988).

D.S. Arnon, G.E. Collins and S. McCallum. Cylindrical algebraic de-
composition, I: The basic algorithm. SIAM Journal on Computing 13,
865-877, 1984.

A.K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, and G.F. Schwartz.
Reduction of the relational model with infinite domains to the case of
finite domains. Doklady Akademii Nauk SSSR, 286(2):308-311, 1986. In
Russian.

M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive
power of constraint query languages. Proceedings 15th ACM Symposium
on Principles of Database Systems, 1996.

M. Benedikt and L. Libkin. On the structure of first-order queries in
constraint query languages. Proceedings 11th IEEE Symposium on Logic
wn Computer Science, 1996.

F. Benhamon and A. Colmerauer, editors. Constraint Logic Program-
ming: Selected Research. The MIT Press, 1993.

J. Bochnak, M. Coste, and M.-F. Roy. Géometrie Algébrique Réelle.
Springer-Verlag, 1987.

25

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A.K. Chandra and D. Harel. Computable queries for relational data
bases. Journal of Computer and System Sciences 21(2):156-178 (1980).

G.E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. Lecture Notes in Computer Science 33, 134—
183 (1975).

H.B. Enderton. A mathematical introduction to logic. Academic Press,
1972.

S. Grumbach, J. Su, and C. Tollu. Linear constraint databases. In
D. Leivant, editor, Logic and Computational Complexity, Lecture Notes
wn Computer Science 960, 1995.

R. Hull and J. Su. Domain independence and the relational calculus.
Acta Informatica 31, 513-524 (1994).

P.C. Kanellakis, G.M. Kuper, and P. Revesz. Constraint query lan-
guages. Journal of Computer and System Sciences, 51(1)26-52, 1995.

G.M. Kuper. On the expressive power of the relational calculus with
arithmetic constraints. Lecture Notes in Computer Science 470, 202—
211, 1990.

M. Otto and J. Van den Bussche. First-order queries on databases em-
bedded in an infinite structure. Information Processing Letters, to ap-
pear.

J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a the-
ory of spatial database queries. Proceedings 13th ACM Symposium on
Principles of Database Systems, 1994.

J. Paredaens, J. Van den Bussche, and D. Van Gucht. First-order queries
on finite structures over the reals (extended abstract). Proceedings 10th
IEEE Symposium on Logic in Computer Science, 1995.

A.P. Stolboushkin and M.A. Taitslin. Linear vs. order constraints over
rational databases. Proceedings 15th ACM Symposium on Principles of
Database Systems, 1996.

26

[21] O.V. Belegradek, A.P. Stolboushkin, and M.A. Taitslin. On order-
generic queries. DIMACS Technical Report 96-01, 1996.

[22] L. Van Den Dries. Alfred Tarski’s elimination theory for real closed
fields. Journal of Symbolic Logic 53, 7-19 (1988).

27

