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Abstract

It is well known in descriptive computational complexity theory

that �xpoint logic captures polynomial time on the class of ordered

�nite structures� The same is true on any class of structures on which

a polynomial number of orders are de�nable in �xpoint logic� We call

a class having this property polynomially orderable� We investigate

this property� and give examples of polynomially orderable classes of

graphs and groups�

� Introduction and summary

In the �eld of descriptive computational complexity theory ���� �� �� ��� the
complexity of computational problems is investigated in terms of the logics
that can express them� Instances of a problem are represented as �nite logi�
cal structures of some �xed similarity type� A standard result of the theory
��	� �
� is that a property of ordered structures is recognizable in polynomial
time if and only if it is de�nable in �xpoint logic� The restriction to ordered
structures is important� many very simple polynomial�time properties of un�
ordered �nite sets� such as even cardinality� are not expressible in �xpoint
logic ���� Also on other classes of unordered structures� such as the complete
binary trees ��
�� �xpoint logic does not equal polynomial time�

The question thus arises how much the restriction to ordered structures
can be relaxed without losing the equivalence between �xpoint logic and
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polynomial time� One approach to this question is to investigate classes of
structures that do not explicitly include an order� but on which an order is
de�nable in �xpoint logic �e�g�� ��� ��� ���� or� more generally� to investigate
classes of rigid structures �e�g�� ������ An example of such a class is the
binary trees with children labeled left or right �as opposed to unordered
binary trees��

In the present paper� we propose another approach and look for classes
of structures on which not a single order� but a polynomial number of orders
are de�nable in �xpoint logic� We call such classes polynomially orderable� A
polynomially orderable class may contain non�rigid structures� however� we
observe that the number of automorphisms of any structure in the class is
polynomially bounded� We also show that isomorphism among structures in
a polynomially orderable class is decidable in polynomial time�

Polynomially orderable classes of structures are mainly interesting be�
cause �xpoint logic is still equivalent to polynomial time on these classes� as
we will show� It is therefore interesting to look for general examples of poly�
nomially orderable classes� We give two such examples� one dealing with
graph structures �the so�called �k�sparse graphs��� the other dealing with
group structures �the so�called �k�generated groups���

Apart from the problem of looking for other interesting examples of poly�
nomially orderable classes� some other interesting open problems remain
which we discuss at the end of the paper�

� Preliminaries

For our purposes� a similarity type � is a �nite set of relation names� where
each relation name R is given with a natural number ��R� called the arity
of R� A ��nite� structure A over � consists of

� a �nite set A� called the domain� together with�

� for each R � �� a relation RA on A of width ��R��

The cardinality of A is called the size of A�
Fixpoint logic ���� 
� �� is usually de�ned as an extension of �rst�order

logic with an operator �� expressing the least �xpoint of the mapping from
relations to relations de�ned by the formula �� For our purposes we prefer






to alternatively view �xpoint logic as a programming language built from
�rst�order logic using the programming constructs of relational assignment�
composition� and in�ationary while�change loop� It is well known ��� �� that
our alternative view on �xpoint logic is equivalent to the usual one�

We omit formal de�nitions of syntax and semantics of �xpoint logic pro�
grams� instead� we give an example�

Example ��� Let � consists of a single binary relation name E� Structures
over � can be viewed as directed graphs� The following program tests whether
the input graph is connected or not by computing the transitive closure of
the edge relation E in an auxiliary binary relation C�

C �� E�
while change do
C �� C � f�x� z� j ��y��C�x� y� � C�y� z��g�

Connected �� ��x �� y��C�x� y� � C�y� x���

All assignments in the body of while�loops used in �xpoint logic programs
must be �in�ationary�� An assignment statement is called in�ationary if it
is of the form X �� X � expr � with X a relation name and expr a �rst�
order expression� The while�loop in the above example is in�ationary� The
in�ationary restriction on while�loops guarantees that �xpoint logic programs
run to completion in polynomial time�

The outcome of a program P on an input structure A can be conveniently
thought of as a structure P �A� over � � where � consists of all relation names
occurring on the left�hand side of an assignment statement in P � This struc�
ture P �A� has the same domain as A and consists of the relations computed
by executing P on A�

Let C be a class of structures over �� A query on C is a property of
structures in C �i�e�� a subset of C� that is closed under isomorphism�� A
fundamental characteristic of �xpoint logic is that every property of struc�
tures that is expressible in �xpoint logic �i�e�� that can be tested for by a
�xpoint logic program� is indeed closed under isomorphism�

�Two structures A and B are called isomorphic if there is a bijection from the domain
of A to the domain of B such that f�A� � B�
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� Polynomially orderable classes of struc�

tures

As noted in the previous section� every query expressible in �xpoint logic is
in polynomial time� By a well�known theorem due to Immerman ��	� and
Vardi ��
�� on classes of �ordered� structures� the converse implication holds
as well� A structure A over � is called ordered if � contains the binary
relation symbol � and �A is a total order on the domain of A�

Theorem ��� ����� ��	
 Every polynomial�time query on a class of ordered
structures is expressible in �xpoint logic�

We will assume the reader to be familiar with the standard proof of this
theorem �a detailed exposition can be found in ����� The general idea of the
proof is� given a polynomial�time Turing machine M recognizing the query�
to construct a �xpoint logic program working in two stages� ��� create an
encoding of the input structure� in accordance with the way it is ordered�
�
� simulate the computation of M on this encoding�

We will point out that Theorem ��� can be generalized� Thereto� we
introduce the following generalization of the notion of ordered structure�

De�nition ��� Assume � contains a k�ary relation name T and a k�
�ary
relation name O� A structure A over � is called polynomially ordered if

� TA �� 	� and

� for each tuple t � �t�� � � � � tk� � TA� the relation

OA
t �� f�a� b� j �t�� � � � � tk� a� b� � OAg

is a total order on the domain of A�

Intuitively� relation T is a set of �tags�� each tag denoting an order� The
relation O then indicates the order belonging to each tag� If n is the size of
A then OA can hold at most nk orders� Since k is �xed� this is polynomial
in n� hence the name �polynomially ordered��

Theorem ��� Every polynomial�time query on a class of polynomially or�
dered structures is expressible in �xpoint logic�
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Proof� Let q be a polynomial�time query on a class C of polynomially
ordered structures over �� We can make any structure A over � into an
ordered structure over � �f�g by extending A with an arbitrary total order
�� over its domain� We call such an extension an �ordered version� of A�
Now consider the class C� of all ordered versions of all structures in C� This
is a class of ordered structures� De�ne the query q� on C� as follows�

�A���� � q� 
� A � q�

This query is in polynomial time and thus� by Theorem ���� expressible in
�xpoint logic� The standard proof of that theorem gives us a program Q�

that� on input �A����� creates an encoding of A in accordance with ���
and then simulates� on this encoding� the computation of a polynomial�time
Turing machine M� recognizing q��

Now recall that each A � C is polynomially ordered� and thus e�ectively
represents� for each tag t � TA� an ordered version of itself� namely �A� OA

t �
�cf� De�nition ����� Either all of these ordered versions will satisfy q�� or
none of them� depending on whether A satis�es q or not� Hence� in order to
express q� it su�ces to �parallelize� the program Q� so that� on input A� it
will test whether �A� OA

t � satis�es q�� in parallel for each t � TA� For each
of the orders given in the structure� the parallelized program will create a
separate encoding� and it will then perform� in parallel� the simulations of
the di�erent computations of M� on these di�erent encodings�

This parallelization can be obtained as follows� Let k be the arity of T �
Increase� by k� the arity of the auxiliary relations used for representing the
Turing machine tape and for doing the necessary bookkeeping during the
simulation� Replace each assignment statement

X �� f�x�� � � � � xm� j �g

by
X �� f�t�� � � � � tk� x�� � � � � xm� j T �t�� � � � � tk� � ��g�

where �� is obtained from � by replacing each atomic formula Y �y�� � � � � y��
by

Y �t�� � � � � tk� y�� � � � � y���

where Y is an auxiliary relation name� and by replacing each atomic formula
x � y by

O�t�� � � � � tk� x� y��
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This concludes the proof�

It is� of course� not very natural to assume that a structure given as input
to a query is polynomially ordered� We are therefore interested in classes of
structures that are �polynomially orderable� in �xpoint logic�

De�nition ��� Assume � does not contain the relation names T and O� A
class C of structures over � is called polynomially orderable if there exists
a �xpoint logic program P computing a k�ary relation T and a k � 
�ary
relation O� such that for each structure A in C� the extended structure
�A� T P �A�� OP �A�� over � � fT�Og is polynomially ordered�

Example ��� Assume � contains a binary relation name C� and let A be a
structure over � such that CA is of the form

a� a� an

where fa�� � � � � ang is the domain� We call A a cycle �with respect to C��
To each domain element a of A we can associate an order Oa as follows�

Let Ca be the binary relation obtained by cutting the cycle just before a� or
formally�

Ca �� f�x� y� j C�x� y� � y �� ag�

Then de�ne Oa as the re�exive and transitive closure of Ca� So� we can
polynomially order A by de�ning T to be the domain and de�ning

O ��
�

a�T

�fag � Oa��

This can be computed in �xpoint logic�
Hence� any class of cycles is polynomially orderable�

As a corollary to Theorem ��
 we obtain�

Corollary ��� Every polynomial�time query on a polynomially orderable
class of structures is expressible in �xpoint logic�
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Proof� Let q be a polynomial�time query on a class C of structures over
�� and assume C is polynomially orderable by the �xpoint logic program P �
Consider the class CT�O �� f�A� T P �A�� OP �A�� j A � Cg� This is a class of
polynomially ordered structures over � � fT�Og� De�ne the query qT�O on
CT�O as follows�

�A� T p�A�� OP �A�� � qT�O 
� A � q�

This query is in polynomial time and thus� by Theorem ��
� expressible
by a �xpoint logic program QT�O� Hence� the composed program P �QT�O

expresses q�

� Examples

In this section� we present two rather general examples of polynomially or�
derable classes of structures� One deals with graphs� the other with groups�

��� Graphs

By a graph structure �or simply graph� we actually mean any structure G
containing some binary relation E� This relation describes a directed graph
over the domain of the structure�

De�nition ��� A graph G is called a chain if there is a natural number
n � 	 such that G is isomorphic to the graph with nodes �� � � � � n and set of
edges f�i� i � �� j � � i � ng� The nodes in G corresponding to � and n are
called the startpoint and the endpoint of the chain� respectively�

De�nition ��� Let k be a natural number� A graph G is called k�sparse if
G can be obtained as follows�

�� take the disjoint union of k chains�


� add zero or more additional edges� such that each of these edges starts
in an endpoint of some chain�






Figure �� The graph shown on top is ��sparse� This is illustrated at the
bottom� the three chains �one of which consists of one single point� are
shown in full lines and the additional edges starting in endpoints are shown
in dotted lines�

Example ��� Taking the degenerate case n � � in De�nition ��� we see
that one single node can be viewed as a chain� Hence� a graph on m nodes
is always m�sparse� However� the same graph may also be k�sparse for some
k � m� For example� Figure � shows a ��sparse graph which is not 
�sparse�
The same �gure also illustrates that every cycle graph �cf� Example ���� is
��sparse�

Proposition ��� Let k be an arbitrary �xed natural number� Every class of
k�sparse graphs is polynomially orderable�

Proof� We describe a �xpoint logic program by which any k�sparse graph
can be polynomially ordered� The tag relation T can be computed as follows�

E � �� f�x� y� j x �� y � E�x� y� � 
��z��E�x� z� � z �� y�g�
P �� f�x� x� x� j trueg�
while change do
P �� P � f�x� y� z� j ��u�P �x� u� y�� E ��y� z� � 
��v�P �x� z� v�g

�



od�
T �� f�t�� � � � � tk� j

V
��i�j�k ti �� tj
� ��v�

Wk
i����x�P �ti� x� v��

� 
��v�
W
��i�j�k���x�P �ti� x� v� � ��x�P �tj� x� v��g�

For each tag �t�� � � � � tk� � T and each i � �� � � � � k� the relation

Pti �� f�x� y� j P �ti� x� y� � x �� yg

spells out a simple path starting in ti� such that every node on the path except
possibly the last one has out�degree one� Moreover� every node in the graph
lies in precisely one of the Pti � Hence� the concatenation Pt� � � � Ptk yields
a total order of the domain� It is straightforward to write a �xpoint logic
program that formally associates a total order to each tag in this manner�
We thus obtain the desired k � 
�ary relation O�

Because the input graph is known to be k�sparse� T is not empty� Indeed�
assume 	�� � � � � 	k are k disjoint chains from which the graph is built up� Then
�t�� � � � � tk�� with ti the startnode of 	i� will be a tag in T �

Proposition ��� gives only a su�cient condition for a class of graphs to
be polynomially orderable� For example� the class of graphs consisting of all
those of the form

is polynomially orderable� but these graphs are not all k�sparse for some �xed
k� �An order can be derived by �rst taking all nodes on the top and then
taking all those at the bottom� each time in the order from left to right� The
top nodes are characterized by their out�degree being two� the bottom ones
by their out�degree being one��

��� Groups

By a group structure �or simply group� we actually mean any structure G
containing some ternary relation 
 that� when interpreted as a binary op�
eration on the domain of G� satis�es the well�known group axioms� In this
paragraph we assume some familiarity with basic group theory�
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De�nition ��� Let k be a natural number� A group is called k�generated if
it can be generated by k of its elements�

A group of n elements is always n�generated� however� the same group
can also be k�generated for k � n� Three natural examples of k�generated
groups are�

� any group of order pk� where p is prime �this follows from the First
Sylow Theorem��

� any Abelian group that is a sum of at most k cyclic groups �we know
that every Abelian group is a sum of cyclic groups��

� any dihedral group �symmetry group of a regular polygon� is 
�
generated as it is generated by a rotation and a re�ection�

Proposition ��� Let k be an arbitrary �xed natural number� Any class of
k�generated groups is polynomially orderable�

Proof� For each k�tuple �x�� � � � � xk� of elements� we generate all products of
xi�s and keep them in order lexicographically� If �x�� � � � � xk� is a generating
set for the group� all elements of the group will be generated in this way�
Because the group is k�generated we know such generating set exists and we
obtain a tagged total order as desired� The formal �xpoint logic program
computing the wanted relations T and O is shown in Figure 
�

� Some implications

Every ordered structure is rigid� its only automorphism is the identity�� Like�
wise� every class of polynomially ordered structures is �polynomially� rigid�
in the following sense�

De�nition 
�� A class C of structures is called polynomially rigid if there
exists a polynomial p such that for each A in C� the number of automor�
phisms of A is at most p�n�� where n is the size of A�

�An automorphism is an isomorphism from a structure to itself�
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S �� f��x� e� j ��y��
�y� e� y�� 
�e� y� y��g�
O �� f��x� e� e� j S��x� e�g�
while change do
S� �� f��x� y� z� j S��x� y� � 
�y� x�� z�g�
S� �� f��x� y� z� j S��x� y� � 
�y� x�� z� � 
��y�� 
 �y�� x�� z�g�
���
Sk �� f��x� y� z� j S��x� y� � 
�y� xk� z� � 
��y

��
Wk��
i�� 
�y

�� xi� z�g�

Let� in what follows� Snew ��x� z� be a shorthand for

S��x� z� � ��y�

Wk
i�� Si��x� y� z��

O �� f��x� z� z�� j �S��x� z� � Snew��x� z
���

� �Snew ��x� z� � z� � z�

� �Snew��x� z� � Snew��x� z
�� �

Wk
i�����y�Si��x� y� z� � ��y��Si��x� y

�� z��

� ��y��Si��x� y� z� � ��y���Si��x� y
�� z��� O��x� y� y������

� �Snew��x� z� � Snew��x� z
�� �

W
��i�j�k���y�Si��x� y� z� � ��y��Sj��x� y�� z����g�

S �� f��x� z� j ��y��S���x� y� z� � � � � � Sk��x� y� z��g
od�
T �� f��x� j ��y�S��x� y�g�

Figure 
� A program that polynomially orders any k�generated group� The
notation �x is a shorthand for x�� � � � � xk� and the notation X �� � � � is a
shorthand for X �� X � � � ��
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Proposition 
�� Every polynomially orderable class C of structures is poly�
nomially rigid�

Proof� Assume C is polynomially ordered by the program P � Assume
the tag relation T has arity k� Let A be a structure in C of size n� Let
us denote the polynomially ordered structure �A� T P �A�� OP �A�� simply by
�A� T� O�� Recall from De�nition ��� that Ot� for t a tag in T � denotes the
order belonging to t�

Because �xpoint logic programs preserve isomorphisms� any automor�
phism ofA is also an automorphism of �A� T� O�� Let t � T be a tag� and let f
and g be two automorphisms of A such that f�t� � g�t�� Since f�Ot� � Of�t��
and similarly for g� we have f�Ot� � g�Ot� and thus g��f�Ot� � Ot� But
any permutation of a �nite domain that leaves a total order on this domain
invariant must be the identity� Hence g��f is the identity and thus g � f �

We have shown that the mapping f �� f�t� is an injection from the set
of automorphisms of A into T � But T contains at most nk tuples� hence� A
has at most nk automorphisms�

The converse to Proposition ��� does not hold even if we replace �poly�
nomially rigid� by �rigid�� Gurevich and Shelah �
� de�ned a class of rigid
structures called �odd multipedes� and proved the theorem that no single
linear order is de�nable on this class in �xpoint logic� However� an obvious
adaptation of their proof actually shows that the class is not polynomially
orderable either�

Another implication of polynomial orderability is the following�

Proposition 
�� Isomorphism among structures in a polynomially orderable
class C is decidable in polynomial time�

Proof� AssumeC is polynomially ordered by the program P � LetA and B be
structures inC� Denote the polynomially ordered structure �A� T P �A�� OP �A��
by A� and similarly for B��

Because �xpoint logic programs preserve isomorphisms� any isomorphism
f from A to B is also an isomorphism from A� to B�� Hence� if t � TA

�

then
f�t� � T B

�

� and in this case� f is entirely determined by the pair of total
orders �OA�

t � OB�

f�t��� Indeed� there can be only one isomorphism between two
total orders�

As a result� to verify whether A and B are isomorphic we can use the
following procedure�

�




�� if the sizes of A and B are di�erent� they are not isomorphic�


� otherwise� perform for each pair of tags �t� u� � TA�

�T B
�

� the following�

�a� determine the unique isomorphism f from OA�

t to OB�

u � namely the
one that maps the �rst element on the left to the �rst element on
the right� the second element on the left to the second element on
the right� and so on�

�b� verify whether f is an isomorphism from A to B�

�� if none of the above tests succeeds� A and B are not isomorphic�

This procedure clearly runs in polynomial time�

The converse to Proposition ��
 does not hold� Indeed� isomorphism of
graphs of bounded degree is in polynomial time ����� However� the class of
graphs of bounded degree of the following form�

is not polynomially rigid �a graph of length n has 
n automorphisms� and
thus not polynomially orderable� by Proposition ����

� Open problems

We have seen that if a class is polynomially orderable� then �xpoint logic
equals PTIME on this class� Is the converse true�

If one single order is de�nable on each structure of some class� then
certainly that class is polynomially orderable� The converse is not true in
general� since we have seen examples of polynomially orderable classes of non�
rigid structures� while a single order can only be de�ned on a rigid structure�
But the problem remains whether for classes of structures that are rigid�
polynomial orderability implies de�nability of one single order� �This prob�
lem was suggested by Y� Gurevich��
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