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Abstract

It is well known in descriptive computational complexity theory
that fixpoint logic captures polynomial time on the class of ordered
finite structures. The same is true on any class of structures on which
a polynomial number of orders are definable in fixpoint logic. We call
a class having this property polynomially orderable. We investigate
this property, and give examples of polynomially orderable classes of
graphs and groups.

1 Introduction and summary

In the field of descriptive computational complexity theory [11, 6, 1, 5], the
complexity of computational problems is investigated in terms of the logics
that can express them. Instances of a problem are represented as finite logi-
cal structures of some fixed similarity type. A standard result of the theory
[10, 17] is that a property of ordered structures is recognizable in polynomial
time if and only if it is definable in fixpoint logic. The restriction to ordered
structures is important; many very simple polynomial-time properties of un-
ordered finite sets, such as even cardinality, are not expressible in fixpoint
logic [3]. Also on other classes of unordered structures, such as the complete
binary trees [12], fixpoint logic does not equal polynomial time.

The question thus arises how much the restriction to ordered structures
can be relaxed without losing the equivalence between fixpoint logic and
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polynomial time. One approach to this question is to investigate classes of
structures that do not explicitly include an order, but on which an order is
definable in fixpoint logic (e.g., [4, 16, 9]), or, more generally, to investigate
classes of rigid structures (e.g., [15]). An example of such a class is the
binary trees with children labeled left or right (as opposed to unordered
binary trees).

In the present paper, we propose another approach and look for classes
of structures on which not a single order, but a polynomial number of orders
are definable in fixpoint logic. We call such classes polynomially orderable. A
polynomially orderable class may contain non-rigid structures; however, we
observe that the number of automorphisms of any structure in the class is
polynomially bounded. We also show that isomorphism among structures in
a polynomially orderable class is decidable in polynomial time.

Polynomially orderable classes of structures are mainly interesting be-
cause fixpoint logic is still equivalent to polynomial time on these classes, as
we will show. It is therefore interesting to look for general examples of poly-
nomially orderable classes. We give two such examples: one dealing with
graph structures (the so-called “k-sparse graphs”), the other dealing with
group structures (the so-called “k-generated groups”).

Apart from the problem of looking for other interesting examples of poly-
nomially orderable classes, some other interesting open problems remain
which we discuss at the end of the paper.

2 Preliminaries

For our purposes, a similarity type o is a finite set of relation names, where
each relation name R is given with a natural number «a(R) called the arity
of R. A (finite) structure A over o consists of

e a finite set A, called the domain, together with,
e for each R € o, a relation R on A of width a(R).

The cardinality of A is called the size of A.

Fizpoint logic [14, 2, 3] is usually defined as an extension of first-order
logic with an operator it ¢ expressing the least fixpoint of the mapping from
relations to relations defined by the formula ¢. For our purposes we prefer



to alternatively view fixpoint logic as a programming language built from
first-order logic using the programming constructs of relational assignment,
composition, and inflationary while-change loop. It is well known [8, 1] that
our alternative view on fixpoint logic is equivalent to the usual one.

We omit formal definitions of syntax and semantics of fixpoint logic pro-
grams; instead, we give an example.

Example 2.1 Let o consists of a single binary relation name E. Structures
over o can be viewed as directed graphs. The following program tests whether
the input graph is connected or not by computing the transitive closure of
the edge relation F in an auxiliary binary relation C":

C:=F,
while change do
C:=CU{(z,2) | (F(C(z,y) ANC(y,2))};
Connected := (Vx # y)(C(z,y) V C(y, x)). [ |

All assignments in the body of while-loops used in fixpoint logic programs
must be “inflationary”. An assignment statement is called inflationary if it
is of the form X := X U ezpr, with X a relation name and expr a first-
order expression. The while-loop in the above example is inflationary. The
inflationary restriction on while-loops guarantees that fixpoint logic programs
run to completion in polynomial time.

The outcome of a program P on an input structure A can be conveniently
thought of as a structure P(.A) over 7, where 7 consists of all relation names
occurring on the left-hand side of an assignment statement in P. This struc-
ture P(A) has the same domain as A and consists of the relations computed
by executing P on A.

Let C be a class of structures over 0. A query on C is a property of
structures in C (i.e., a subset of C) that is closed under isomorphism.! A
fundamental characteristic of fixpoint logic is that every property of struc-
tures that is expressible in fixpoint logic (i.e., that can be tested for by a
fixpoint logic program) is indeed closed under isomorphism.

!Two structures A and B are called isomorphic if there is a bijection from the domain
of A to the domain of B such that f(A) = B.



3 Polynomially orderable classes of struc-
tures

As noted in the previous section, every query expressible in fixpoint logic is
in polynomial time. By a well-known theorem due to Immerman [10] and
Vardi [17], on classes of “ordered” structures, the converse implication holds
as well. A structure A over o is called ordered if o contains the binary
relation symbol < and <4 is a total order on the domain of A.

Theorem 3.1 ([10, 17]) Every polynomial-time query on a class of ordered
structures is expressible in fixpoint logic.

We will assume the reader to be familiar with the standard proof of this
theorem (a detailed exposition can be found in [1]). The general idea of the
proof is, given a polynomial-time Turing machine M recognizing the query,
to construct a fixpoint logic program working in two stages: (1) create an
encoding of the input structure, in accordance with the way it is ordered;
(2) simulate the computation of M on this encoding.

We will point out that Theorem 3.1 can be generalized. Thereto, we
introduce the following generalization of the notion of ordered structure:

Definition 3.1 Assume o contains a k-ary relation name 7T and a k + 2-ary
relation name O. A structure A over o is called polynomially ordered if

o TA£(: and
e for each tuple t = (ty,...,t;) € T4, the relation
o7 = {(a,b) | (tr,...,ty,a,b) € O*}
is a total order on the domain of A.

Intuitively, relation 7' is a set of “tags”, each tag denoting an order. The
relation O then indicates the order belonging to each tag. If n is the size of
A then O* can hold at most n* orders. Since k is fixed, this is polynomial
in n; hence the name “polynomially ordered”.

Theorem 3.2 FEvery polynomial-time query on a class of polynomially or-
dered structures is expressible in fixrpoint logic.
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Proof. Let ¢ be a polynomial-time query on a class C of polynomially
ordered structures over 0. We can make any structure A over ¢ into an
ordered structure over o U{<} by extending A with an arbitrary total order
<, over its domain. We call such an extension an “ordered version” of A.
Now consider the class C< of all ordered versions of all structures in C. This
is a class of ordered structures. Define the query ¢< on C< as follows:

(A,<p) €g<c <= Ae€q.

This query is in polynomial time and thus, by Theorem 3.1, expressible in
fixpoint logic. The standard proof of that theorem gives us a program ()<
that, on input (A, <j), creates an encoding of A in accordance with <y,
and then simulates, on this encoding, the computation of a polynomial-time
Turing machine M< recognizing g<.

Now recall that each A € C is polynomially ordered, and thus effectively
represents, for each tag t € T, an ordered version of itself, namely (A, O7)
(cf. Definition 3.1). Either all of these ordered versions will satisfy ¢<, or
none of them, depending on whether A satisfies ¢ or not. Hence, in order to
express ¢, it suffices to “parallelize” the program ()< so that, on input A, it
will test whether (A, O7) satisfies g<, in parallel for each ¢ € TA. For each
of the orders given in the structure, the parallelized program will create a
separate encoding, and it will then perform, in parallel, the simulations of
the different computations of M< on these different encodings.

This parallelization can be obtained as follows. Let k£ be the arity of T.
Increase, by k, the arity of the auxiliary relations used for representing the
Turing machine tape and for doing the necessary bookkeeping during the
simulation. Replace each assignment statement

X = {(z1,...,2m) | ¢}

by

X = {(tla .. .,tk,xl,. .. ,.’L'm) | T(tl, .. .,tk) A 90,},
where ¢’ is obtained from ¢ by replacing each atomic formula Y (yy, ..., y,)
by

Y(tla s 7tkay17 s 7yl)7
where YV is an auxiliary relation name, and by replacing each atomic formula
z <y by
Oty g, z,y).



This concludes the proof. [ |

It is, of course, not very natural to assume that a structure given as input
to a query is polynomially ordered. We are therefore interested in classes of
structures that are “polynomially orderable” in fixpoint logic:

Definition 3.2 Assume o does not contain the relation names T and O. A
class C of structures over o is called polynomially orderable if there exists
a fixpoint logic program P computing a k-ary relation 7" and a k + 2-ary
relation O, such that for each structure A in C, the extended structure
(A, TP OFA)Y over o U {T, O} is polynomially ordered.

Example 3.1 Assume o contains a binary relation name C, and let A be a
structure over o such that C* is of the form

Q——® Qg ——*q,

.

where {ay,...,a,} is the domain. We call A a cycle (with respect to C).

To each domain element a of A we can associate an order O, as follows.
Let C, be the binary relation obtained by cutting the cycle just before a, or
formally:

Co:={(,9) | C(x,y) Ny # a}.

Then define O, as the reflexive and transitive closure of C,. So, we can
polynomially order A by defining 7" to be the domain and defining

0 := [J({a} x 0,).

acT

This can be computed in fixpoint logic.
Hence, any class of cycles is polynomially orderable. [ |

As a corollary to Theorem 3.2 we obtain:

Corollary 3.1 FEvery polynomial-time query on a polynomially orderable
class of structures is expressible in fizpoint logic.



Proof. Let ¢ be a polynomial-time query on a class C of structures over
o, and assume C is polynomially orderable by the fixpoint logic program P.
Consider the class Crp := {(A,T", O") | A € C}. This is a class of
polynomially ordered structures over o U {7, O}. Define the query ¢ro on
Cro as follows:

(A, TP 0T € grp = Acq.

This query is in polynomial time and thus, by Theorem 3.2, expressible
by a fixpoint logic program Q7. Hence, the composed program P;Qro
expresses q. |

4 Examples

In this section, we present two rather general examples of polynomially or-
derable classes of structures. One deals with graphs, the other with groups.

4.1 Graphs

By a graph structure (or simply graph) we actually mean any structure G
containing some binary relation E. This relation describes a directed graph
over the domain of the structure.

Definition 4.1 A graph G is called a chain if there is a natural number
n > 0 such that G is isomorphic to the graph with nodes 1, ..., n and set of
edges {(i,7+1) | 1 <i < n}. The nodes in G corresponding to 1 and n are
called the startpoint and the endpoint of the chain, respectively.

Definition 4.2 Let k£ be a natural number. A graph G is called k-sparse if
GG can be obtained as follows:

1. take the disjoint union of k chains;

2. add zero or more additional edges, such that each of these edges starts
in an endpoint of some chain.



Figure 1: The graph shown on top is 3-sparse. This is illustrated at the
bottom: the three chains (one of which consists of one single point) are
shown in full lines and the additional edges starting in endpoints are shown
in dotted lines.

Example 4.1 Taking the degenerate case n = 1 in Definition 4.1 we see
that one single node can be viewed as a chain. Hence, a graph on m nodes
is always m-sparse. However, the same graph may also be k-sparse for some
k < m. For example, Figure 1 shows a 3-sparse graph which is not 2-sparse.
The same figure also illustrates that every cycle graph (cf. Example 3.1) is
1-sparse. [ ]

Proposition 4.1 Let k be an arbitrary fived natural number. Every class of
k-sparse graphs is polynomially orderable.

Proof. We describe a fixpoint logic program by which any k-sparse graph
can be polynomially ordered. The tag relation 7" can be computed as follows:

E = {(z,y) |z # y NE(z,y) A(32)(E(x,2) Az # y) )5
P :={(x,z,z) | true};
while change do
P =P U{(z,y.2) | Bu)P(z,uy) A E'(y,2) A~E0)P(z, 2,0)}



od;
T .= {(tl, Ce ,tk) | /\ISi<j§k tz §£ t]'
A (Vo) VE_, (32) P(t;, 2, v))
A =(30) Vicicj<r((B) Pt m,0) A (3z) P(t, 2, 0)) }-

For each tag (t1,...,tx) € T and each i = 1,...,k, the relation

Pti = {(l‘,y) | P(ti,l‘,y)/\l‘?éy}

spells out a simple path starting in ¢;, such that every node on the path except
possibly the last one has out-degree one. Moreover, every node in the graph
lies in precisely one of the P,,. Hence, the concatenation P, ... P, yields
a total order of the domain. It is straightforward to write a fixpoint logic
program that formally associates a total order to each tag in this manner.
We thus obtain the desired k + 2-ary relation O.

Because the input graph is known to be k-sparse, T" is not empty. Indeed,
assume i, ..., v are k disjoint chains from which the graph is built up. Then
(t1,...,tg), with ¢; the startnode of v;, will be a tag in T. [ |

Proposition 4.1 gives only a sufficient condition for a class of graphs to
be polynomially orderable. For example, the class of graphs consisting of all
those of the form

— o 0—— o 0—— & e

R SR

O — o 00— o 06— o —e 0

is polynomially orderable, but these graphs are not all k-sparse for some fixed
k. (An order can be derived by first taking all nodes on the top and then
taking all those at the bottom, each time in the order from left to right. The
top nodes are characterized by their out-degree being two, the bottom ones
by their out-degree being one.)

4.2 Groups

By a group structure (or simply group) we actually mean any structure G
containing some ternary relation x that, when interpreted as a binary op-
eration on the domain of GG, satisfies the well-known group axioms. In this
paragraph we assume some familiarity with basic group theory.



Definition 4.3 Let £ be a natural number. A group is called k-generated if
it can be generated by k of its elements.

A group of n elements is always n-generated; however, the same group
can also be k-generated for £ < n. Three natural examples of k-generated
groups are:

e any group of order p¥, where p is prime (this follows from the First
Sylow Theorem);

e any Abelian group that is a sum of at most k cyclic groups (we know
that every Abelian group is a sum of cyclic groups).

e any dihedral group (symmetry group of a regular polygon) is 2-
generated as it is generated by a rotation and a reflection.

Proposition 4.2 Let k be an arbitrary fired natural number. Any class of
k-generated groups is polynomially orderable.

Proof. For each k-tuple (21, ..., zx) of elements, we generate all products of
x;’s and keep them in order lexicographically. If (zy,...,zy) is a generating
set for the group, all elements of the group will be generated in this way.
Because the group is k-generated we know such generating set exists and we
obtain a tagged total order as desired. The formal fixpoint logic program
computing the wanted relations 7" and O is shown in Figure 2. [ |

5 Some implications

Every ordered structure is rigid; its only automorphism is the identity.? Like-
wise, every class of polynomially ordered structures is “polynomially” rigid,
in the following sense:

Definition 5.1 A class C of structures is called polynomially rigid if there
exists a polynomial p such that for each A in C, the number of automor-
phisms of A is at most p(n), where n is the size of A.

2An automorphism is an isomorphism from a structure to itself.
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Si={(z,e) | (Vy)(x(y,e,y) Ax(e,y,y) }
0 :={(z,e,e) | S(z,€)};
while change do
S1U={(Z,y,2) | S(Z,y) Ax(y,x1,2) };
Sy U= {(Z,y,2) | S(Z,y) A*(y, 2, 2) A =(TY') * (v, 21, 2) |5

S U= {(21.2) | S(2.y) A x(ys 20, 2) A ~Gy) VEL (o, 72, 2)

Let, in what follows, Sy, (Z, 2) be a shorthand for
_'S(ja Z) A (Hy) \/;C:l Sz("i.a Y, Z)

O U={(,2,2) | (S(Z,2) A\ Sneu(T, 2'))
(Snew(T,2) N2 —z)
[S ew(Ty2) A Spew (T, 2") A
((y) i(Z,y,2) A (3Y)Si(z, Y, 2')
A (By)(Si(z, y,) (Vy')(S ( L2 = 0(2,y,9))))]
\/[Snew(x z YA

)
V1§i<j§k((3y)5i(a_jv ya Z) A (Hyl)sj(a_ja yl7 ZI))]}’
dS U= {("E?Z) | (Ely)(sl(jvyvz) VeV Sk(jaya Z))}

T:={(@) | (vy)S(z,y)}.

|
v
v

Figure 2: A program that polynomially orders any k-generated group. The
notation z is a shorthand for xi,..., 7, and the notation X U= ... is a
shorthand for X := X U....
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Proposition 5.1 FEvery polynomially orderable class C of structures is poly-
nomaially rigid.

Proof. Assume C is polynomially ordered by the program P. Assume
the tag relation T has arity k. Let A be a structure in C of size n. Let
us denote the polynomially ordered structure (A, T OFA) simply by
(A, T,0). Recall from Definition 3.1 that Oy, for ¢ a tag in T, denotes the
order belonging to t.

Because fixpoint logic programs preserve isomorphisms, any automor-
phism of A is also an automorphism of (A, T, O). Let t € T be a tag, and let f
and g be two automorphisms of .4 such that f(t) = g(t). Since f(O;) = Oy,
and similarly for g, we have f(0;) = g(O,) and thus ¢g='f(O;) = O;. But
any permutation of a finite domain that leaves a total order on this domain
invariant must be the identity. Hence g ' f is the identity and thus g = f.

We have shown that the mapping f — f(¢) is an injection from the set
of automorphisms of A into T. But T contains at most n* tuples; hence, A
has at most n* automorphisms. [ |

The converse to Proposition 5.1 does not hold even if we replace “poly-
nomially rigid” by “rigid”. Gurevich and Shelah [7] defined a class of rigid
structures called “odd multipedes” and proved the theorem that no single
linear order is definable on this class in fixpoint logic. However, an obvious
adaptation of their proof actually shows that the class is not polynomially
orderable either.

Another implication of polynomial orderability is the following:

Proposition 5.2 Isomorphism among structures in a polynomially orderable
class C 1s decidable in polynomial time.

Proof. Assume C is polynomially ordered by the program P. Let A and B be
structures in C. Denote the polynomially ordered structure (A, 77, OF()
by A’ and similarly for B’.

Because fixpoint logic programs preserve isomorphisms, any isomorphism
f from A to B is also an isomorphism from A’ to B'. Hence, if t € T# then
f(t) € T, and in this case, f is entirely determined by the pair of total
orders (07", O?Et)). Indeed, there can be only one isomorphism between two
total orders.

As a result, to verify whether A and B are isomorphic we can use the
following procedure:

12



1. if the sizes of A and B are different, they are not isomorphic.
2. otherwise, perform for each pair of tags (t,u) € T4 xT?', the following:

(a) determine the unique isomorphism f from Oy to O, namely the
one that maps the first element on the left to the first element on
the right, the second element on the left to the second element on
the right, and so on.

(b) verify whether f is an isomorphism from A to B.
3. if none of the above tests succeeds, A and B are not isomorphic.

This procedure clearly runs in polynomial time. [ |

The converse to Proposition 5.2 does not hold. Indeed, isomorphism of
graphs of bounded degree is in polynomial time [13]. However, the class of
graphs of bounded degree of the following form:

‘X.X.X y‘
O — o 0——— o 0—— o —e 0

is not polynomially rigid (a graph of length n has 2" automorphisms) and
thus not polynomially orderable, by Proposition 5.1.

6 Open problems

We have seen that if a class is polynomially orderable, then fixpoint logic
equals PTIME on this class. Is the converse true?

If one single order is definable on each structure of some class, then
certainly that class is polynomially orderable. The converse is not true in
general, since we have seen examples of polynomially orderable classes of non-
rigid structures, while a single order can only be defined on a rigid structure.
But the problem remains whether for classes of structures that are rigid,
polynomial orderability implies definability of one single order. (This prob-
lem was suggested by Y. Gurevich.)
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