
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Information Systems 33 (2008) 261–284

DFL: A dataflow language based on Petri nets
and nested relational calculus$

Jan Hiddersa, Natalia Kwasnikowskac,d, Jacek Srokab,�,1,
Jerzy Tyszkiewiczb,1, Jan Van den Busschec,d

aDepartment of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
bInstitute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland

cTheoretical Computer Science Group, Hasselt University, Belgium
dTransnational University of Limburg, Belgium

Received 16 November 2006; received in revised form 13 April 2007; accepted 27 September 2007

Recommended by B. Kemme

Abstract

In this paper we propose DFL—a formal, graphical workflow language for dataflows, i.e., workflows where large

amounts of complex data are manipulated, and the structure of the manipulated data is reflected in the structure of the

workflow. It is a common extension of (1) Petri nets, which are responsible for the organization of the processing tasks,

and (2) nested relational calculus, which is a database query language over complex objects, and is responsible for handling

collections of data items (in particular, for iteration) and for the typing system. We demonstrate that dataflows constructed

in a hierarchical manner, according to a set of refinement rules we propose, are semi-sound, i.e., initiated with a single token

(which may represent a complex scientific data collection) in the input node, terminate with a single token in the output

node (which represents the output data collection). In particular they never leave any ‘‘debris data’’ behind and an output

is always eventually computed regardless of how the computation proceeds.

r 2007 Elsevier B.V. All rights reserved.

Keywords: DFL; Petri net; Workflow system; Dataflow; Scientific workflow; Nested relational calculus

1. Introduction

In this paper we are concerned with the creation
of a formal language to define dataflows—DFL
(a dataflow language). Dataflows are often met in
practice, e.g., in silico experiments in bioinformatics
and systems processing data collected in physics,
astronomy or other sciences. Their common feature
is that large amounts of structured data are
analyzed by a software system organized into a
kind of network, through which the data flows and

ARTICLE IN PRESS

www.elsevier.com/locate/infosys

0306-4379/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2007.09.002

$A preliminary version of this paper was presented at the 2005

International Conference on Cooperative Information Systems.
�Corresponding author. Tel.: +4822 55 44 430;

fax: +4822 55 44 400.

E-mail addresses: jan.hidders@ua.ac.be (J. Hidders),

natalia.kwasnikowska@uhasselt.be (N. Kwasnikowska),

sroka@mimuw.edu.pl (J. Sroka), jty@mimuw.edu.pl

(J. Tyszkiewicz), jan.vandenbussche@uhasselt.be

(J. Van den Bussche).
1Supported by KBN Grant 4 T11C 042 25.

Author's personal copy

is processed. Nodes in the network represent
external computations like web-service or local
program calls.

There are well-developed formalisms for workflows

that are based on Petri nets [1]. However, we claim
that for dataflows these should be extended with data
manipulation aspects to describe workflows that
manipulate structured complex values and where the
structure of this data is reflected in the structure of
the workflow. For this purpose we adopt the data
model from the nested relational calculus (NRC),
which is a well-known and well-understood formal-
ism in the domain of database theory.

Consequently, in a dataflow, tokens (which are
generally assumed to be atomic in workflows) are
typed and transport complex data values. There-
fore, apart from classical places and transitions, we
need transitions which perform operations on such
data values. Of course, the operations are those of
the NRC.

The resulting language can be given a graphical
syntax, thus allowing one to draw rather than to
write programs. This seems very important for a
language designed for users that are not profes-
sional computer scientists.

Next, we can give a formal semantics for
dataflows. This is crucial, since we believe that
formal, and yet executable, descriptions of all
computational processes in the sciences should be
published along with their domain-specific conclu-
sions. Used for that purpose, dataflows can be
precisely analyzed and understood, which is
important for: (i) debugging by the authors,
(ii) effective and objective assessment of their merit
by the reviewers, and (iii) clear understanding by the
readers, once published.

Moreover, the formal semantics makes it possible
to perform formal analysis of the behavior of
programs, including (automated) optimization and
verification.

We demonstrate the potential of the formal
methods by proving the following theorem, pre-
sented here in an informal manner.

Theorem. Dataflow constructed hierarchically, i.e.,
according to a certain set of refinement rules we

propose, is semi-sound, i.e., initiated in the input node

with a single token representing a scientific data

collection, terminate with a single token in the output

node. In particular it never leaves any ‘‘debris data’’
behind and the output is always eventually computed,
regardless of how the computation proceeds.

We would like to emphasize that the above
theorem is quite general—it applies uniformly
to a very wide class of dataflows. Yet, not every
meaningful dataflow can be constructed hierarchi-
cally. However, we believe that the prevailing
majority of those met in practice are indeed
hierarchical.

Our idea of extending classical Petri nets is not
new in general. Colored Petri nets [2] permit tokens
to be colored (with finitely many colors), and thus
tokens carry some information. In the nets-within-
nets paradigm [3] individual tokens have Petri net
structure themselves. This way they can represent
objects with their own, proper dynamics. Finally,
self-modifying nets [4] assume standard tokens, but
permit the transitions to consume and produce them
in quantities functionally dependent on the occu-
pancies of the places.

To compare, our approach assumes tokens to
represent complex data values, which are, however,
static. The transitions are allowed to perform
operations on the tokens’ contents. Edges can be
annotated with conditions and pass only tokens
which values satisfy those conditions. There is also a
special unnest/nest annotation. When unnest is
applied to an output edge of a transition, the output
token with a set value is transformed into a set of
tokens, one for each element of the set. When nest is
applied to an input edge of a transition, the set of
tokens is grouped back into a single ‘‘composite’’
token.

Also the introduction of complex value manip-
ulation into Petri nets was already proposed by
others. Oberweis and Sander [5] proposed a
formalism called NR/T-nets where places represent
nested relations in a database schema and transi-
tions represent operations that can be applied to the
database. Although somewhat similar, the purpose
of that formalism, i.e., representing the database
schema and possible operations on it, is very
different from the one presented here. For example,
the structure of the Petri net in NR/T-nets does not
reflect the workflow, but only which relations are
involved in which operations. In our DFL formal-
ism, we can easily integrate external functions and
tools as special transitions and use them at arbitrary
levels of the data structures. The latter is an
important feature for describing and managing
dataflows as found in scientific settings. Therefore
we claim that, together with other differences, this
makes DFL a better formalism for representing
dataflows.

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284262

Author's personal copy

An initial version of DFL and the set of
refinement rules was presented in [6]. This paper
extends that work by giving more elaborate proofs
and explaining the semantics of the language in
more detail.

1.1. Nested relational calculus

The NRC [7] is a query language allowing one to
describe functional programs using collection types,
e.g., lists, bags, sets, etc. The most important feature
of the language is the possibility to iterate over a
collection. NRC assumes a set of base types which
can be combined to form nested record and
collection types. The only collection type we will
use are sets.

Besides standard language constructs enabling
manipulation of records and sets, NRC contains the
three constructs sng, map and flatten. For a value v

of a certain type, sngðvÞ yields the singleton set
containing v. Operation map, applied to a function
of type t! s, yields a function on sets of type
ftg ! fsg. Finally, the operation flatten, given a set
of sets of type t, yields a flattened set of type t, by
taking the union. These three basic operations are
powerful enough for specifying functions by struc-
tural recursion over collections [7].

Under its usual semantics the NRC can already
be seen as a dataflow description language, but it
only describes which computations have to be
performed and not in what order, i.e., it is rather
weak in expressing control flow. For some dataflows
this order can be important because a dataflow can
include calls to external functions, such as Web
services, which may have side-effects or are re-
stricted by a certain protocol.

1.2. Petri nets

A classical Petri net [8,9] is a bipartite graph with
two types of nodes called places and transitions. The
nodes are connected by directed edges. Only nodes
of different types can be connected. Places are
represented by circles and transitions by rectangles.

Definition 1 (Petri net). A Petri net is a triple
hP;T ;Ei where:

� P is a finite set of places,
� T is a finite set of transitions ðP \ T ¼ ;Þ,
� E � ðP� TÞ [ðT � PÞ is a set of edges.

A place p is called an input place of a transition t,
if there exists an edge from p to t. A place p is called
an output place of a transition t, if there exists an
edge from t to p. Given a Petri net hP;T ;Ei we will
use the following notations:

� p ¼ ftjht; pi 2 Eg; p� ¼ ftjhp; ti 2 Eg,

� t ¼ fpjhp; ti 2 Eg; t� ¼ fpjht; pi 2 Eg,

� p ¼ fht; pijht; pi 2 Eg; p� ¼ fhp; tijhp; ti 2 Eg,

� t ¼ fhp; tijhp; ti 2 Eg; t� ¼ fht; pijht; pi 2 Eg

and their generalizations for sets:

� A ¼
[
x2A

�x; A� ¼
[
x2A

x � ,

� A ¼
[
x2A

�x; A� ¼
[
x2A

x � ,

where A � P [T . Places are stores for tokens,
which are depicted as black dots inside places when
describing the run of a Petri net. Edges define the
possible token flow. The semantics of a Petri net is
defined as a transition system. A state is a
distribution of tokens over places. It is often
referred to as a marking M 2 P! ðN [f0gÞ. The
state of a net changes when a transitions fires. For a
transition t to fire it has to be enabled, that is, each
of its input places has to contain at least one token.
If transition t fires, it consumes one token from each
of the places in �t and produces one token on each
of the places in t�.

Petri nets are a well-founded process modeling
technique. The interest in them is constantly
growing for the last 15 years. Many theoretical
results are available. One of the better studied
classes are workflow nets, which are used in work-
flow management [1].

Definition 2 (Strongly connected). A Petri net is
strongly connected if and only if for every two
nodes n1 and n2 there exists a directed path leading
from n1 to n2.

Definition 3 (Workflow net). A Petri net PN ¼

hP;T ;Ei is a workflow net if and only if:

(i) PN has two special places: a source and a sink.
The source has no input edges, i.e., �source ¼ ;,
and the sink has no output edges, i.e., sink� ¼ ;.

(ii) If we add to PN a transition t� and two edges
hsink; t�i, ht�; sourcei, then the resulting Petri net
is strongly connected.

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284 263

Author's personal copy

1.3. How we combine NRC and Petri nets

In this paper we propose a formal, graphical
workflow language for dataflows—data-centric,
scientific workflows. We call the proposed language
DFL. From NRC we inherit the set of basic
operators and the type system. This should make
reusing of existing database theory results easy.
Dataflows could for example undergo an optimiza-
tion process as database queries do. To deal with
the synchronization issues arising from processing
of the data by distributed services we will use a
Petri-net based formalism which is a clear and
simple graphical notation and has an abundance of
correctness analysis results. We believe that these
techniques can be reused and combined with known
results from database theory for verifying the
correctness of dataflows which can be described in
DFL.

The fundamental operation in NRC is the map
operation map. In order to allow a similar kind of
iteration in Petri nets we introduce special unnest
and nest edges. Unnest edges are outgoing edges of
transitions and nest edges are incoming edges.
Unnest edges can be used if the function associated
with the transition produces a set value. If an
outgoing edge is marked as an unnest edge then, if
the transition fires, instead of producing in the
associated place a single token with the set that is
the result of the transition, it will produce a set of
tokens, one for each element of the set. Nest edges
can be used if the function associated with the
transition requires a set value as a parameter. If an

incoming edge is marked as a nest edge then, if the
transition fires, instead of consuming from the
associated place a single token with a set value, it
will consume a set of tokens and combine them into
a single set that is used as the parameter of the
function.

A simple example with a nested iteration is given
in Fig. 1. If the dataflow is initiated in the left most
place with a token representing a set of sets, it will
be processed by the identity transition id and
unnested. Next, the resulting tokens representing
sets that were elements of the input set are unnested
themselves by the second pair of identity transition
and unnest edge. Finally, function f ð Þ is applied to
each of the elements of the unnested subsets and the
result is twice nested by two subsequent identity
transitions with nest edges. To assure that tokens
originating from different sets are not intermixed
while nesting and that nesting appears only when all
the necessary tokens have arrived, each token
carries its unnesting history, which is described in
Section 4.1.

The unnest and nest edges allow a straightfor-
ward representation of the NRC map operation in a
Petri net formalism and make it possible to reflect
the structure of the iteration in the structure of the
net, which is desired for data-centric workflows.

2. The DFL language

We define DFL by starting with Petri nets and
adding labels to transitions to define the computa-
tion done by them. Then we associate NRC values

ARTICLE IN PRESS

Fig. 1. Nested iteration example.

J. Hidders et al. / Information Systems 33 (2008) 261–284264

Author's personal copy

with the tokens to represent the manipulated data.
As it is usual with workflows that are described by
Petri nets we mandate one special input place and
one special output place. If there is external
communication, this is modeled by transitions that
correspond to calls to external functions. We use
edge labeling to define how values of the consumed
tokens map onto the parameters of operations
represented by transitions. To express conditional
behavior we propose edge annotations indicating
conditions that the value associated with a token
must satisfy, so it can be transferred through the
annotated edge. We also introduce a special unnest/
nest annotation, to enable explicit iteration over
values of a collection.

A dataflow will be defined by an acyclic workflow
net, transition labeling, edge labeling, and edge
annotation. The underlying Petri net will be called a
dataflow net.

Definition 4 (Dataflow net). A DFN ¼ hP;T ;E;
source; sinki is a dataflow net if and only if:

(i) hP;T ;Ei is a workflow net and is acyclic,
(ii) source 2 P is the source place,
(iii) sink 2 P is the sink place.

The restriction to acyclic nets is introduced to
keep the presentation of the main ideas simple. The
formalism can be easily extended such that cycles
are allowed. Usually they are used to express
iteration over all elements of a list, but for this type
of iteration we will introduce alternatives in the
form of constructs for unnesting and nesting values.
Obviously this does not cover all types of iteration,
but we conjecture that it is sufficient for the purpose
of scientific dataflows. In addition, an advantages of
the restriction is that the termination is always
guaranteed, but note that termination does not
ensure correct termination, i.e., termination with
only one token left which is in the sink and contains
the output value.

2.1. The type system

Dataflows are strongly typed, which here means
that each transition consumes and produces tokens
with values of a well-determined type. The type of
the value of a token is called the token type. We will
identify a type and the set of objects of that type.
The type system is similar to that of NRC. We
assume a finite but user-extensible set of basic types

which might for example be given by

bH ¼ booleanjintegerjstringjXML,

where the type boolean contains the boolean values
true and false, integer contains all integer numbers,
string contains all strings and XML contains all
well-formed XML documents. Although this set can
be arbitrarily chosen we will require that it at least
contains the boolean type. Assuming that the non-
terminal l denotes the set of field labels, from these
basic types we can build complex types as defined by

tH ¼ bjhl: t; . . . ; l: tijftg.

The type hl1: t1; . . . ; ln: tni, where li are distinct
labels, is the type of all records having exactly fields
l1; . . . ; ln of types t1; . . . ; tn, respectively (records
with no fields are also included). Finally ftg is the
type of all finite sets of elements of type t. For later
use we define CT to be the set of all complex types
and CV the set of all possible complex values.

NRC can be also defined on other collection types
such as lists or bags. Moreover they are included in
existing scientific workflow systems, for example
Taverna [10] supports lists. However, after a careful
analysis of various use cases in bioinformatics and
examples distributed with existing scientific work-
flow systems we have concluded that sets are
sufficient.

2.2. Edge naming function

Dataflows are not only models used to reason
about data-processing experiments but are meant to
be executed and produce computation results. In
particular, when a transition has several input
edges, we need a way to distinguish those, so as to
know how the tokens map onto the operation
arguments. This is solved by edge labeling. Only
edges leading from places to transitions are labeled.
This labeling is determined by an edge naming
function EN: �T ! EL (note that �T ¼ P�), where
EL is some countably infinite set of edge label
names, e.g., all strings over a certain non-empty
alphabet. The function EN is injective when
restricted to incoming edges of a certain transition,
i.e., there cannot be two distinct incoming edges
with the same edge label for the same transition.

2.3. Transition naming function

To specify the desired operations and functions
we also label the transitions. The transition labeling

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284 265

Author's personal copy

is defined by a transition naming function
TN:T ! TL, where TL is a set of transition labels.
Each transition label determines the number and
possible labeling of input edges as well as the types
of tokens that the transition consumes and produces
when it fires. For this purpose the input typing and
output typing functions are used: IT :TL! CT

maps each transition label to the input type which
must be a tuple type, and OT :TL! CT maps each
transition label to the output type. Note that these
two functions are at the global level in the sense that
they are the same for every dataflow and therefore
not part of the dataflow itself. This is similar to the
signatures of system functions which are not part of
a specific program. For detailed specification of
transition labels see Section 3.

2.4. Edge annotation function

To introduce conditional behavior we annotate
edges with conditions. If an edge is annotated
with a condition, then it can only transport
tokens that satisfy the condition. Conditions are
visualized on diagrams in UML [11] fashion, i.e.,
in square brackets. Only edges leading from places
to transitions are annotated with conditions.
There are four possible condition annotations:
‘‘¼ true’’, ‘‘¼ false’’, ‘‘¼ ;’’, ‘‘a;’’. Their meaning
is self-explanatory. For detailed specification see
Section 4.

There is another annotation ‘‘�’’ used to indicate
a special unnest/nest branch. On diagrams it is
visualized by addition of the symbol ‘‘�’’ in the
middle of the edge. This annotation can occur on
edges leading from transitions to places as well as on
edges from places to transitions. When an edge
leading from a transition to a place is annotated in
such manner, it means that a set value produced by
this transition is unnested. That is, instead of
inserting a token with a set value into the destina-
tion place, a set of tokens representing each element
in the set value gets inserted. Such edges will be
called unnest edges. When an edge leading from a
place to a transition is annotated in such manner, it
means that in order to fire the destination transition
a set of tokens that originated from unnesting of
some set value will be used. That is, a set of tokens
that originated from unnesting of some set value
will be consumed and a set of their values will be an
input data for the destination transition. Such edges
will be called nest edges. The precise semantics and
explanation of the mechanism that is used to make

sure that all the tokens that originated from
unnesting of some set value are already there is
described in Section 4.

The annotations are defined by an edge annota-
tion function:

EA: ð�T ! f‘‘ ¼ true’’; ‘‘ ¼ false’’,

‘‘ ¼ ;’’; ‘‘a;’’; ‘‘ � ’’; egÞ

[ð�P! f‘‘ � ’’; egÞ,

where e indicates the absence of an annotation.

2.5. Place type function

With each place in a dataflow net we associate a
specific type that restricts the allowed values for
tokens in that place. This is represented by a place
type function PT :P! CT .

2.6. Dataflow

The dataflow net with edge naming, transition
naming, edge annotation and place typing functions
specifies a dataflow.

Definition 5 (Dataflow). A dataflow is a five-tuple
hDFN ;EN;TN;EA;PTi where:

� DFN ¼ hP;T ;E; source; sinki is a dataflow net,
� EN: �T ! EL is an edge naming function such

that for each transition t the partial function
ENj�t is injective,
� TN:T ! TL is a transition naming function,
� EA: ð�T ! f‘‘ ¼ true’’; ‘‘ ¼ false’’; ‘‘ ¼ ;’’; ‘‘a;’’;

‘‘ � ’’; egÞ [ð�P! f‘‘ � ’’; egÞ is an edge annotation
function,
� PT :P! CT is a place type function.

In order to ensure that the different labelings and
annotations in a dataflow are consistent, we
introduce the notion of legality. Informally, a
dataflow is legal, if for each transition t: (1) the
input edge labels and the types of their correspond-
ing places, with the nest edges taken into account,
define the input type of t; (2) if any of the input
edges of t are annotated with conditions, then the
annotations are consistent with the types of the
associated input places; (3) if an output edge of t is
not an unnest edge, then the type of the connected
place is equal the output type of t, but if an output
edge of t is an unnest edge, then the output type of t

is a set type and the type of the connected place is
equal to the element type of this set type.

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284266

Author's personal copy

Definition 6 (Legal). A dataflow hDFN ;EN;TN;
EA;PTi is legal if and only if each transition t 2 T

satisfies the following:

(1) if fhp1; ti; . . . ; hpn; tig ¼ �t and for 1pipn we
have

li ¼ ENðhpi; tiÞ and

ti ¼
PTðpiÞ if EAðhpi; tiÞa‘‘ � ’’;

fPTðpiÞg if EAðhpi; tiÞ ¼ ‘‘ � ’’

(

then ITðTNðtÞÞ ¼ hl1: t1; . . . ; ln: tni,
(2) for each hp; ti 2 �t:
� if EAðhp; tiÞ 2 f‘‘ ¼ true’’; ‘‘ ¼ false’’g, then

PTðpÞ ¼ boolean, and
� if EAðhp; tiÞ 2 f‘‘ ¼ ;’’; ‘‘a;’’g, then PTðpÞ is
a set type,

(3) for each ht; pi 2 t�:
� if EAðht; piÞa‘‘ � ’’, then OTðTNðtÞÞ ¼ PTðpÞ,
and
� if EAðht; piÞ ¼ ‘‘ � ’’, then OT ðTNðtÞÞ ¼

fPTðpÞg.

Henceforth, dataflows will always be assumed to
be legal. Legality is an easy syntactic check.

An example dataflow representing an if u ¼ v then

f ðxÞ else gðxÞ expression is shown in Fig. 2.
Although the transition labels and a precise execu-
tion semantics are defined in the next two sections,
the example is self-explanatory. First, three copies
of the input tuple of type hu: b; v: b;x: ti are made.
Then, each copy is projected on another field, basic
values u and v are compared, and a choice of upper
or lower dataflow branch is made on the basis of the
boolean comparison result. The boolean value is
disposed in a projection and depending on the
branch that was chosen either f ðxÞ or gðxÞ is
computed.

3. Transition labels

Since it is impossible to gather all scientific
analysis tools that one may want to use and data

repositories that one may want to query,
DFL defines only a core label subset that is sufficient
to express typical operations on the values from
our type system. Similarly to NRC, DFL can
be extended with new extension transition labels.
Such extension labels will usually represent compu-
tations done by external services. Examples from
the domain of bioinformatics include: sequence
similarity searches with BLAST [12], queries to the
Swiss-Prot [13] protein knowledgebase, or local
enactments of the tools from the EMBOSS [14]
package.

3.1. Core transition labels

The core transition labels are based on the
NRC operator set and are shown in Table 1. A
transition label is defined as a combination
of the basic symbol, from the first column, and a
list of parameters which consists of types and
edge labels, from the second column. The values
of the input type function IT and the output
type function OT are given by the last two
columns. For example, a concrete instance of the
tuple constructor label, i.e., a constructor label
with concrete parameter values, would be tl 0 ¼

h�; �ia;bool;b;int where the parameters are indicated in
subscript and for which the functions IT and OT

are defined such that ITðtl 0Þ ¼ OTðtl0Þ ¼ ha: bool;
b: inti. Another example would be tl00 ¼ p½b�a;b;
bool; c; int, where ITðtl 00Þ ¼ ha: hb: bool; c: intii and

OTðtl00Þ ¼ bool.
Moreover, for every transition label tl, there

exists an associated function Ftl : ITðtlÞ ! OTðtlÞ

which represents a computation that is perfor-
med when the transition fires. For the core
transition label subset all functions are determin-
istic and correspond to those given in NRC
definition [7].

To keep this presentation simple we will omit
edge names and label parameters on diagrams, if it
does not introduce ambiguity.

ARTICLE IN PRESS

Fig. 2. If–then–else example.

J. Hidders et al. / Information Systems 33 (2008) 261–284 267

Author's personal copy

3.2. Extension transition labels

Next to the set of core transition labels, the set of
transition labels TL also contains user-defined
transition labels. As for core transition labels the
functions IT and OT must be defined for each of
them, as well as an associated function Ftl : ITðtlÞ !

OTðtlÞ which can represent a possibly non-determi-
nistic computation that is performed when the
transition fires.

To give a concrete example, a bioinformatician
may define a getSWPrByAC extension transition
label, for which ITðgetSWPrByACÞ ¼ hac: stringi

and OTðgetSWPrByACÞ ¼ XML. The FgetSWPrByAC

function would represent a call to a Swiss-Prot
knowledgebase and return an XML formatted entry
for a given primary accession number.

4. Transition system semantics

The semantics of a dataflow hDFN ;EN ;TN ;
EA;PTi is defined as a transition system (see
Section 4.2). Each place contains zero or more
tokens, which represent data values. Formally a
token is a pair k ¼ hv; hi, where v 2 CV is the
transported value and h 2 H is this value’s unnesting

history. This unnesting history is defined in Section
4.1. The set of all possible tokens is then
K ¼ CV �H. By the type of a token we mean the
type of its value, i.e., hv; hi : t if and only if v : t.

The state of a dataflow, also called marking, is the
distribution M : ðP� KÞ ! ðN [f0gÞ of tokens
over places, where Mðp; kÞ ¼ n means that place p

contains n copies of the token k. Distributions are
legal as markings only if the token types match the
types of places their are in, i.e., for all places p 2 P

and tokens k 2 K such that Mðp; kÞ40 we must
have k : PTðpÞ.

Transitions are the active components in a
dataflow. They can change the state by firing, i.e.,
consuming tokens from their input places and
producing tokens in their output places. In distinc-
tion to classical workflow nets, transitions may
produce/consume an arbitrary number of tokens in/
from a place. This is the case when an edge
connecting such a place with the transition is
annotated with ‘‘�’’, i.e., is an unnest/nest edge. A
transition that can fire in a given state will be called
enabled. Firing of a transition t represents a
computation step determined by the function
FTNðtÞ associated with its transition label. Tokens
consumed from input places determine the compu-
tation’s input value with respect to the definitions in
Table 1.

4.1. Token unnesting history

Every time a transition with an unnest edge fires,
a set of tokens is produced. Each token corresponds
to an element of the set value that was produced as a
result of a computation carried out by that
transition. The history of each of the tokens is
extended with a pair that contains the unnested set
and an element of that set to which the given token
corresponds. The full history is taken into account
when it is being determined whether a transition
with nest edge can fire, that is if tokens representing
all of the elements of the set that is being nested are
already there to be consumed. If it is the case, then a
set of tokens will be consumed and the set of their
values will be used to compute the result.

This is illustrated in Fig. 3. In (a) in the top place
we see a single token with value f1; 2; 3g and an

ARTICLE IN PRESS

Table 1

Core transition labels

Sym. Parameters Operation name Input type Output type

; l; t1; t2 empty-set constr. hl: t1i ft2g
f�g l; t singleton-set constr. hl: ti ftg
[l1; l2; t set union hl1: ftg; l2: ftgi ftg
j l; t flatten hl: fftggi ftg
� l1; t1; l2; t2 Cartesian product hl1: ft1g; l2: ft2gi fhl1: t1; l2: t2ig
¼ l1; l2; b atomic-value equal. hl1: b; l2: bi boolean

h i l; t empty tuple constr. hl: ti h i

h�; �i l1; t1; . . . ; ln; tn tuple constr. hl1: t1; . . . ; ln: tni hl1: t1; . . . ; ln: tni

p½li � l; l1; t1; . . . ; ln; tn field projection hl: hl1: t1; . . . ; ln: tnii ti

id l; t identity hl: ti t

J. Hidders et al. / Information Systems 33 (2008) 261–284268

Author's personal copy

empty history. When the upper id transition fires, a
token for each element of the output value f1; 2; 3g is
produced as shown in (b). The history is extended at
the end with a pair that contains, first, the set that
was unnested and, second, the element for which
this particular token was produced. As is shown in
(b)–(d) transitions without any unnest or nest edge
will produce tokens with histories identical to that
of the consumed input tokens. Once all the tokens
that belong to the same unnesting group have
arrived in the input place of the bottom id

transition, as is shown in (d), it can fire and combine
them into a single set-valued token as is shown in
(e). A transition can verify if all the tokens that
belong to the same unnesting group have arrived by
looking at their histories. Note that where the firing
of a transition with an unnest edge adds a pair to the
history, firing a transition with a nest edge removes
a pair from the history.

The second example (see Fig. 4) presents what
happens when one transition has unnest/nest edges
as well as normal edges. The initial state is presented
in (a). As shown in (b), after firing transition id, the
token representing an empty set has been consumed.
Since id has an unnest edge, the result of its
computation—an empty set—has been unnested
and zero tokens have been inserted into the right
output place. Yet the left output place is connected
by a normal edge and a token has been produced
there. Because unnesting has been performed on the
‘‘�’’ annotated edges, its history has been extended

with a pair consisting of twice the unnested set.
After some additional processing this token trans-
ports a set of three numbers f1; 2; 3g as can be
observed in (c). Now the set union transition can
fire. Although one of its input places is empty, it is
enabled because it is connected by a nest edge and
the examination of the history of the token from the
other input place that was connected by a normal
edge shows that tokens representing elements of an
empty set are to be expected there (so no tokens
need to be consumed). When the set union
transition fires, a set of f1; 2; 3g will be produced
as a result of the union of f1; 2; 3g with an empty set.
As is shown in (d) another unnest can be performed
and this time tokens are inserted to both output
places.

In the case of transitions with many input edges
tokens consumed from distinct input places must
either have the same history or must represent the
same set. This way the history of the tokens
produced by such a transition can be unambigu-
ously determined, tokens representing elements of
different sets do not interfere with each other in the
body of the iteration and at the same time the order
of execution is free of any unnecessary restrictions.
This is illustrated on the third example (see Fig. 5).
The transition in (a) can fire only if h1 ¼ h3 or
h2 ¼ h3. Otherwise it is not enabled even though
some tokens are in both of its input places. The
transition in (b) can fire consuming tokens with
values x1 and x2 from the left input place and x3

ARTICLE IN PRESS

Fig. 3. An illustration of the unnest/nest edges and the unnesting history.

J. Hidders et al. / Information Systems 33 (2008) 261–284 269

Author's personal copy

from the right input place since they represent the
same sets. A token with value x4 cannot be
consumed in this state, because there is no token
representing the element of set fv1g in the left input
place.

Since sets can be unnested and nested several
times, the history is a sequence of pairs, where each
pair contains the unnesting information of one
unnesting step. Therefore we formally define the set

of all histories H as the set of all sequences of pairs
hs;xi, where s 2 CV is a set and x 2 s or x ¼ s. To
manipulate histories we will use the following
notation for extending a sequence with an element
ða1; a2; . . . ; anÞ 	 anþ1:¼ða1; a2; . . . ; an; anþ1Þ.

The fourth and final example presents why the
whole history and not only its last element is taken
into account while nesting. The dataflow in Fig. 6
unnest the input set of type fhv : fintegerg; b :
booleanig and processes each of its pair values
based on the boolean element. For pairs with a true
value, every element of the associated set of integers
is increased by one, while for pairs with a false
value, the elements are decreased by one. In (a) the

initial state with the input value is presented. In (b)
the input value has been already unnested and,
similarly as with the If–then–else example from
Section 2.6, the paired elements have been separated
to make the trueness based test. The h�; �i � p½v�
transitions are used to dispose of the boolean value
by creating a pair and projecting the boolean value
out. Although in this example it is not important,
since both pairs contained the same set f1; 2g, the
transitions labeled h�; �i � p½v� would not consume
values with different histories thus retaining the
original pairing. In (c) the integer sets have been
unnested and their values have been increased in the
upper branch and decreased in the lower branch.
The processed values are gathered in one place and
are ready to be nested back. Observe that inspecting
the last element of the history during nesting is not
enough and the whole history has to be taken into
account to prevent intermixing of the values
processed by the lower and the upper branch.

It should be noted that our approach does not
enforce iterating over elements of a set in any
particular order and the transition semantics is
local, yet it is always possible to determine if a given
transition can fire and even in the case of a nested
iteration over nested sets, tokens representing
elements of different sets will not become inter-
mixed.

4.2. Semantics of transitions

We define the semantics as a transition system,
where the states are the distributions of tokens over

ARTICLE IN PRESS

Fig. 4. An illustration of the unnesting history and iteration over empty sets.

Fig. 5. An illustration of how history affects transitions with

many input places.

J. Hidders et al. / Information Systems 33 (2008) 261–284270

Author's personal copy

places and state changes are caused by firing enabled
transitions. A transition is enabled in a given state, if
from each of its input places it can consume tokens
with matching histories—an arbitrary number from
places connected by nest edges or one if it is not the
case. Those tokens/sets of tokens represent values
that will become arguments for the function repre-
sented by the enabled transition. The choice of such
tokens and the function arguments determined by it
are called an enabling configuration.

The following shortcut will be used, since tokens
can only flow along a condition-annotated edge, if
the value of the token satisfies the condition:

hv; hiye ¼ ðEAðeÞ ¼ eÞ _ ðEAðeÞ ¼ ‘‘ � ’’Þ

_ ðEAðeÞ ¼ ‘‘ ¼ true’’ ^ v ¼ trueÞ

_ ðEAðeÞ ¼ ‘‘ ¼ false’’ ^ v ¼ falseÞ

_ ðEAðeÞ ¼ ‘‘ ¼ ;’’ ^ v ¼ ;Þ

_ ðEAðeÞ ¼ ‘‘a;’’ ^ va;Þ.

Definition 7 (Enabling configuration). Given a tran-
sition t in marking M, an enabling configuration is a
function EC : �t! 2K such that:

(i) for all places p 2 �t and for all tokens k 2

ECðpÞ it holds that Mðp; kÞX1 and kyhp; ti,
(ii) at least one token is in the range of EC, i.e.,S

p2�tECðpÞa;, and
(iii) there is a history h such that:

� if t has at least one nest edge, then there
exists a set S ¼ fx1; . . . ; xmg 2 CV such
that for all places p 2 �t it holds that

ECð pÞ

¼

fhvp;1; h	 hS;x1ii; . . . ; hvp;m; h	 hS; xmiig

if EAðhp; tiÞ ¼ ‘‘ � ’’;

fhvp; h	 hS;Siig

if EAðhp; tiÞa‘‘ � ’’

8>>>>><
>>>>>:

ARTICLE IN PRESS

Fig. 6. An illustration of a nested iteration.

J. Hidders et al. / Information Systems 33 (2008) 261–284 271

Author's personal copy

for some complex values vp;1; . . . ; vp;m

and vp,
� if t has no nest edge, then for all places

p 2 �t it holds that ECðpÞ ¼ fhvp; hig for
some complex value vp.

Note that since the range of the enabling config-
uration contains at least one token, it holds that if
such an EC exists, then h is uniquely determined, so
we denote it as hEC .

Moreover, given such an EC we define the
enabling configuration value function ECVEC : �t
! CV , which with a place p associates the value
represented by the tokens pointed by ECðpÞ, i.e., for
all places p 2 �t it holds that

ECVECðpÞ ¼
fvp;1; . . . ; vp;mg if EAðhp; tiÞ ¼ ‘‘ � ’’;

vp if EAðhp; tiÞa‘‘ � ’’:

(

A transition for which an enabling configuration
exists can fire and it is called enabled. In a given
state many enabling configurations can exist for
one transition. For example, if t has two input
places connected by normal edges, one of its input
place contains two tokens, the other contains three
tokens and all the tokens have the same history,
then there exist six enabling configurations for t in
this state.

Definition 8 (Enabled transition). Transition t is
enabled in a given marking M if and only if there
exists an enabling configuration for t in M.

When a transition fires, it consumes tokens
according to some enabling configuration EC and
the transition’s associated function is being com-
puted with the arguments pointed by ECVEC .

4.2.1. State transition (firing a transition)

For each t 2 T it holds that M1!
t

M2 if and only
if there exists an enabling configuration EC for t in
marking M1 such that:

(1) for all places p 2 �t it holds that:
(a) M2ðp; kÞ ¼M1ðp; kÞ
 1 if k 2 ECðpÞ, and
(b) M2ðp; kÞ ¼M1ðp; kÞ if keECðpÞ;

(2) if t has no unnest edges, then for all places p 2 t�

it holds that, if vres is the result of
FTNðtÞðhl1 : v1; . . . ; ln : vniÞ, in case when FTNðtÞ

is a deterministic function, or one of its possible
results, when it is non-deterministic, where
fhl1; v1i; . . . ; hln; vnig ¼ fhENðhp0; tiÞ;ECV ECðp

0Þi

jp0 2 �tg then:
(a) M2ðp; hvres; hECiÞ ¼M1ðp; hvres; hECiÞ þ 1,

and
(b) M2ðp; hv0; h

0
iÞ ¼M1ðp; hv0; h

0
iÞ if hv0; h0ia

hvres; hECi;
(3) if t has at least one unnest edge, then for all

places p 2 t� it holds that, if vres is the result of
FTNðtÞðhl1 : v1; . . . ; ln : vniÞ, in case when FTNðtÞ is
a deterministic function, or one of its possible
results, when it is non-deterministic, where
fhl1; v1i; . . . ; hln; vnig ¼ fhENðhp0; tiÞ;ECV ECðp

0Þi

jp0 2 �tg then:
(a) M2ðp; hvres; hEC 	 hvres; vresiiÞ ¼M1ðp; hvres;

hEC 	 hvres; vresiÞ þ 1 if EAðht; piÞa‘‘ � ’’,
and

(b) M2ðp; hv0; h
0
iÞ ¼M1ðp; hv0; h

0
iÞ if EAðht; piÞa

‘‘ � ’’ and hv0; h0iahvres; hEC 	 hvres; vresii

(c) M2ðp; hv; hEC 	 hvres; viiÞ ¼M1ðp; hv; hEC 	

hvres; viÞ þ 1 if EAðht; piÞ ¼ ‘‘ � ’’ and v 2 vres,
and

(d) M2ðp; hv0; h
0
iÞ ¼M1ðp; hv0; h

0
iÞ if EAðht; piÞ ¼

‘‘ � ’’ and hv0; h0iahv; hEC 	 hvres; vii for all
v 2 vres;

(4) for all places pe � t [t� it holds that M2ðp; kÞ ¼
M1ðp; kÞ for all tokens k 2 K .

It should be noted that for a given state M1, a
transition t and two not equal states M2 and M3 it
can hold that M1!

t
M2 and M1!

t
M3. This is

because in M1 there can be more than one enabling
configuration for t. It can also be the case that the
function represented by t is not a deterministic one
and transitions to M2 and M3 are possible for the
same enabling configuration, because two different
output values can be produced.

We adopt the following Petri net notations:

� M1 !M2: there is a transition t such that

M1!
t

M2;

� M1!
y

Mn: the firing sequence y ¼ t1t2 . . . tn
1

leads from state M1 to state Mn, i.e.,

9M2;M3;...;Mn
1
M1!

t1
M2!

t2
M3!

t3
. . .!

tn
1
Mn;

� M1!
�

Mn: M1 ¼Mn or there is a firing sequence

y ¼ t1t2 . . . tn
1 such that M1!
y

Mn.

A state Mn is called reachable from M1 if and
only if M1!

�
Mn.

Although the semantics of a dataflow is presented
as a transition system, as in classical Petri nets, two

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284272

Author's personal copy

or more enabled transitions may fire concurrently, if
there are enough input tokens for both of them.

5. A bioinformatics dataflow example

In this section we present a dataflow based on a
part of a real bioinformatics example [15]. The
dataflow is shown in Fig. 7. The goal of this
dataflow is to find differences in peptide content of
two samples of cerebrospinal fluid (a peptide is an
amino acid polymer). One sample belongs to a
diseased person and the other to a healthy one. A

mass spectrometry wet-lab experiment has provided
data about observed polymers in each sample. A
peptide-identification algorithm was invoked to
identify the sequences of those polymers, providing
an amino-acid sequence and a confidence score for
each identified polymer.

The dataflow starts with a tuple containing two
sets of data from the identification algorithm, one
obtained from the ‘‘healthy’’ sample and the other
from the ‘‘diseased’’ sample: complex input type
h healthy: PepList, diseased :PepList i with
complex type PepList ¼ {hpeptide: String,
score: Numberi}. Each data set contains tuples
consisting of an identified peptide, represented by
the basic type String, and the associated confidence
score, represented by the basic type Number. The
dataflow transforms this input into a set of tuples
containing the identified peptide, a singleton contain-
ing the confidence score from the ‘‘healthy’’ data set
or an empty set if the identified peptide was absent in
the ‘‘healthy’’ data set, and similarly, the confidence
score from the ‘‘diseased’’ data set. The complex
output type is the following: {hpeptide: String,
healthy: {Number}, diseased: {Number}i}.

The global structure of the dataflow can be
described as follows. In the first part up to and
including the first transition labeled � it computes
the Cartesian product of two sets. The first set is
computed in the left branch, which consists again of
two sub-branches, and is the union of all mentioned
peptides in the initial tuple. The second set is
computed in the right branch and is the singleton set
containing the initial tuple. In the second part of the
workflow, between the first Cartesian product and
the final place, the workflow iterates over the result
of the first part and processes the tuples in the
Cartesian product in parallel in three branches,
where the rightmost two branches themselves
consist of two sub-branches, and combines their
results into a single tuple with a tuple constructor.
The first branch simply projects on the peptide in
tuple. The second and third branch compute the
scores of this peptide in the ‘‘healthy’’ peptide list
and the ‘‘diseased’’ peptide list, respectively. They
do so by computing the Cartesian product of the
peptide and the relevant peptide list, iterating over
the result and applying to each tuple the function
score_h (or score_d) which compares the first
peptide with the peptide in the nested tuple and if
they are equal returns a singleton set with the score
or an empty set otherwise. Note that the transitions
labeled score_h and score_d could have been

ARTICLE IN PRESS

Fig. 7. Finding differences in peptide content of two samples.

J. Hidders et al. / Information Systems 33 (2008) 261–284 273

Author's personal copy

decomposed further and replaced with dataflows,
but are represented here by single transitions for
brevity. Finally the dataflow collects all the tuples
consisting of the peptide and its scores in the
‘‘healthy’’ and the ‘‘diseased’’ peptide list, into a
single set.

6. Hierarchical dataflows

Our extension of workflow nets allows the reuse
of various technical and theoretical results that are
known about them. This is what we intend to
demonstrate here by discussing a way of construct-
ing workflows that guarantees that they always
satisfy certain correctness criteria. A well-known
technique for this is the use of refinement rules that
allow the step-wise generation of Petri nets by
replacing a transition or place with a slightly bigger
net. Such refinement rules were studied by Berthelot
in [16] and Murata in [8] as reduction rules that
preserve liveness and boundedness properties of
Petri nets. They are used by van der Aalst in [17], by
Reijers in [18] and by Chrzastowski-Wachtel et al. in
[19] to generate workflow nets. We show that the
same principles can be applied to our extended
notion of workflow net, and can be adapted to deal
with the new problem of data-dependent control
flow.

DFL is developed to model data-centric work-
flows and in particular scientific data-processing
experiments. The data to be processed should be
placed in the dataflow’s source and after the
processing, the result should appear in its sink. A
special notation is introduced to distinguish be-
tween two state families.

Definition 9 (Input state). Given dataflow D¼hDFN;
EN;TN;EA;PTi with DFN¼hP;T ;E; source; sinki

and value v : PTðsourceÞ we define the input state

inputD
v as a marking such that:

� inputD
v ðsource; hv; ðÞiÞ ¼ 1, and

� for all places p 2 P and tokens k 2 K such that
hp; kiahsource; hv; ðÞii it holds that inputD

v ðp; kÞ¼0.

Definition 10 (Output state). Given dataflow D ¼

hDFN ;EN;TN;EA;PTi with DFN ¼ hP;T ;E;
source; sinki and value v : PTðsinkÞ we define the
output state outputD

v as a marking such that:

� outputD
v ðsink; hv; ðÞiÞ ¼ 1, and

� for all places p 2 P and tokens k 2 K such that
hp; kiahsink; hv; ðÞii it holds that outputD

v ðp; kÞ
¼ 0.

Starting with one token in the source and
executing the dataflow need not always produce a
result in the form of a single token in the sink place.
For some dataflows the computation may halt in a
state in which none of the transitions is enabled, yet
the sink is empty. For other dataflows the result
token may be produced, but there still may be
tokens left in other places. Furthermore, for some
dataflows reaching a state in which there are no
tokens at all is possible.

Examples of dataflows for which starting with
one token does not always produce a result in the
form of a single token in the sink place are shown in
Fig. 8. For the dataflow (a) the token from the
source can be consumed by a transition t1 or t2, but
not by both of them at the same time. Transition t3

ARTICLE IN PRESS

Fig. 8. Dataflows that may not finish properly.

J. Hidders et al. / Information Systems 33 (2008) 261–284274

Author's personal copy

will not become enabled then, because one of its
input places will stay empty. The (b) case presents
an opposite scenario. Transition t1 produces two
output tokens and after either t2 or t3 consumes one
of them and produces a computation result, the
second token is still there and another computation
result can be produced. In the (c) case t2 will never
become enabled, since the tokens with history
appropriate for nesting will never be produced by
t1. Similarly in case (d) if t2 gets the source token, t3
will not become enabled, because only t1 can
produce a token with the required history. But for
(d) it may even be not enough, when the t1
consumes the source token. If the source token
carried an empty set, then in the resulting state all
places would be empty.

Similar problems were also studied in the context
of procedures modeled by classical workflow nets.
The procedures without such problems are called
sound [1]. A workflow net is considered to be sound
if an only if:

(1) if a token is inserted into the sink, then there are
no other tokens left,

(2) the computation can always be completed, that
is, if one starts with a single token in the source
and regardless of how the computation proceeds
at start, it is always possible to reach a state with
the only token in the sink place, and

(3) every transition can be fired, if one starts with a
single token in the source.

This classical notion of soundness can be directly
applied to dataflows such as (a) and (b) in Fig. 8 where
the control flow does not depend upon the data, but in
dataflows such as (c) and (d) where the control flow
may depend upon the values and the unnesting
histories associated with a token the notion needs to
be adapted. Here tokens carry values, so there are
many possible input states from which a computation
can be started—one for each possible value for the first
token. It is natural to require that each transition
becomes enabled in some input state, but not in all.

Definition 11 (Soundness). A dataflow D ¼

hDFN ;EN;TN;EA;PTi with DFN ¼ hP;T ;E;
source; sinki is sound if and only if:

(i) for each value v0 : PTðsourceÞ and every mark-
ing M such that inputD

v0 !
�

M, if for some value
v00 : PTðsinkÞ and history h00 2 H it holds that
Mðsink; hv00; h00iÞ40, then M ¼ outputD

v00 ,

(ii) for each value v0 : PTðsourceÞ and every mark-
ing M such that inputD

v0 !
�

M there exists a value
v00 : PTðsinkÞ such that M!

�
outputD

v00 , and
(iii) for each transition t 2 T there exists a value

v0 : PTðsourceÞ and two markings M and M 0

such that inputD
v0 !
�

M!
t

M 0.

Although it seems desirable to require soundness
of dataflows, many of the systems with conditional
behavior will not satisfy (iii). The problem is
often not caused by the structure of the net, but
by operations associated with transition labels that
are being used. An appearance of a value that
activates some part of the net may be dependent on
the value with which the dataflow is initiated.
Checking if the right value can appear would be
undecidable as is determining if an NRC expression
returns an empty set. Indeed, it is well known
that NRC can simulate the relational algebra [7].
That is why we introduce a weaker semi-soundness

notion:

Definition 12 (Semi-soundness). A dataflow D ¼

hDFN ;EN;TN;EA;PTi with DFN ¼ hP;T ;E;
source; sinki is semi-sound if and only if:

(i) for each value v0 : PTðsourceÞ and every marking
M such that inputD

v0 !
�

M, if for some value v00 :
PTðsinkÞ and history h00 2 H it holds that
Mðsink; hv00; h00iÞ40, then M ¼ outputD

v00 , and
(ii) for each value v0 : PTðsourceÞ and every marking

M such that inputD
v0 !
�

M there exists a value v00 :
PTðsinkÞ such that M!

�
outputD

v00 .

6.1. Refinement rules

In this section we introduce refinement rules
for generating what may be considered a well-
structured dataflow. As we will show later, all
dataflows generated in this way are semi-sound. By
starting from a single place and applying the rules in
a top-down manner we generate blank dataflows—
dataflows without edge and transition naming. We
call such generated blank dataflows hierarchical

blank dataflows. From these we then obtain data-
flows by adding edge and transition naming
functions. These will be called hierarchical data-

flows.

Definition 13 (Blank dataflow). A blank dataflow is
a tuple hDFN ;EAi where:
� DFN ¼ hP;T ;E; source; sinki is a dataflow net,

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284 275

Author's personal copy

� EA : ð�T ! f‘‘¼ true’’; ‘‘¼ false’’; ‘‘¼;’’; ‘‘a;’’;
‘‘ � ’’; egÞ [ð�P! f‘‘ � ’’; egÞ is an edge annota-
tion function.

The refinement rules are presented in Fig. 9. Each
refinement replaces a subgraph presented on the
left-hand side of the rule by the right-hand side one.
The edge annotation for the replaced subgraph and
the subgraph that it is replaced with is exactly as
indicated. For each rule we define the concepts of
input nodes, output nodes and body nodes as
indicated in Table 2.

The right-hand side subgraph is connected to the
rest of the blank dataflow as follows:

� All the incoming edges of the left-hand side input
node are reconnected to all the input nodes of the
right-hand side. The annotations are preserved.
A visualization is presented in Fig. 10.
� For rules d and e all the remaining, i.e., not

shown in the rule, outgoing edges of the input
nodes on the left-hand side are reconnected to the
input nodes on the right-hand side. The annota-
tions are preserved. A visualization is presented
in Fig. 11.
� All the outgoing edges of the left-hand side

output node are reconnected to all the output
nodes of the right-hand side. The annotations are
preserved, with the exception that for rule f

condition annotations are preserved only for
outgoing edges of the node b1 and outgoing edges
of node b2 are not annotated with conditions. A
visualization is presented in Fig. 10.

� For rules d and e all the remaining, i.e., not
shown in the rule, incoming edges of the output
nodes on the left-hand side are reconnected to the
output nodes on the right-hand side. The
annotations are preserved. A visualization is
presented in Fig. 11.
� All the incoming and outgoing edges of the left-

hand side body nodes are reconnected to all the
right-hand side body nodes. The annotations are
preserved. A visualization is presented in Fig. 11.

There are certain preconditions that must hold
when the rules are applied:

(i) For rule d to be applied, all the transitions in
�a1 that are connected with a1 by a non-
annotated edge cannot have any unnest edges,
i.e., for all t 2 �a1 it holds that: if
EAðht; a1iÞ ¼ �, then for all p 2 t� it holds that
EAðht; piÞa‘‘ � ’’.

(ii) For rule d to be applied, all the transitions in
�a1 cannot have any other output places that
are connected by an edge annotated in the same
way and on which an emptiness based decision is

ARTICLE IN PRESS

Fig. 9. Refinement rules. (a) sequential place split, (b) sequential transition split, (c) iteration split, (d) trueness based decision,

(e) emptiness based decision, (f) AND-split.

Table 2

Input, output and body nodes

Rule a Rule b Rule c Rule d Rule e Rule f

Input nodes a; b1 a; b1 a; b1 a1; b1 a1; b1 a; b1; b2
Output nodes a; b3 a; b3 a; b4 a3; b4 a3; b4 a; b1; b2
Body nodes b2 b2 b2; b3 a2; b2; b3 a2; b2; b3

J. Hidders et al. / Information Systems 33 (2008) 261–284276

Author's personal copy

performed, i.e., for all t 2 �a1 and for all p 2 t�

it holds that: if paa1 and EAðht; a1iÞ ¼

EAðht; piÞ, then for all t0 2 p� it holds that
EAðhp; t0iÞef‘‘ ¼ ;’’; ‘‘a;’’g.

(iii) For rule e to be applied, all the transitions
in �a1 cannot have any other output places
that are connected by an edge annotated
in the same way and on which a trueness

based decision is performed, i.e., for all t 2 �a1

and for all p 2 t� it holds that: if paa1

and EAðht; a1iÞ ¼ EAðht; piÞ, then it holds that
for all t0 2 p� it holds that EAðhp; t0iÞe
f‘‘ ¼ true’’; ‘‘ ¼ false’’g.

(iv) For rule f to be applied, a hasto have at least
one incoming and one outgoing edge.

The first three preconditions are necessary so that
it is always possible to label the generated blank
dataflow such that it becomes a legal dataflow. (i)
deals with a requirement that a token representing
set values cannot be used to make a trueness based

decision (see Fig. 12(i)), while (ii) and (iii) prevent
using tokens with the same values in different kinds
of tests (see Fig. 12(ii) and (iii)). Precondition (iv)
guarantees that there is exactly one input and
output place.

ARTICLE IN PRESS

Fig. 10. Reconnecting of subgraphs. (a) sequential place split, (b) sequential transition split, (c) iteration split, (d) trueness based decision,

(e) emptiness based decision, (f) AND-split.

Fig. 11. Reconnecting of subgraphs—additional edges for rules d and e. (d) trueness based decision, (e) emptiness based decision.

J. Hidders et al. / Information Systems 33 (2008) 261–284 277

Author's personal copy

Definition 14 (Hierarchical blank dataflow). A
blank dataflow which is obtained by starting with
a blank dataflow that consists of a single place with
no transitions and performing the transformations
presented in Fig. 9 is called a hierarchical blank
dataflow.

Definition 15 (Hierarchical dataflow). A hierarchi-
cal dataflow is a legal dataflow D ¼ hDFN ;
EN;TN;EA;PTi obtained by labeling transitions
and edges in a hierarchical blank dataflow
BDF ¼ hDFN ;EAi.

The rules and the aim to make dataflows
structured as in structured programming languages
were inspired by the work done on workflow nets by
Chrzastowski-Wachtel et al. [19].

An instance of a computation of a particular
dataflow, which starts in some input state, will be
called a run. We will represent it as a pair of two
sequences. The first one will contain successive
transitions that were fired and the second one
subsequent states including the input state.

Definition 16 (Run). Let D ¼ hDFN ;EN ;TN ;
EA;PTi be a dataflow with a dataflow net
DFN ¼ hP;T ;E; source; sinki. A sequence of transi-
tions t1; . . . ; tn 2 T with a sequence of markings
M0; . . . ;Mn of D, where M0 is an input state,
forms a run if and only if it holds that
M0!

t1
M1!

t2
� � �!

tn
Mn.

The run will be denoted as M0!
t1

M1!
t2
� � �

!
tn

Mn. If Mn is an output state of D, then we will
call such a run complete.

For a run M0!
t1

M1!
t2
� � �!

tn
Mn, a place p and

history h we define a delta of tokens in p after firing
a given transition tiþ1 in a state Mi:

Diðp; hÞ ¼
X

v2CV

Miþ1ðp; hv; hiÞ

X

v2CV

Miðp; hv; hiÞ.

We will also want to count tokens inserted to a
place (since there are no cycles, during one
transition tokens are never inserted to and con-
sumed from a place at the same time):

Dþi ðp; hÞ ¼
Diðp; hÞ if Diðp; hÞ40;

0 otherwise:

�

The number of tokens with a given history h

inserted into a place p during a run M0!
t1

M1!
t2
� � �!

tn
Mn will be called a trace of p and

defined as Trðp; hÞ ¼
Pn
1

i¼0 D
þ
i ðp; hÞ.

Lemma 17. For each hierarchical dataflow D ¼

hDFN ;EN;TN;EA;PTi with a dataflow net DFN ¼

hP;T ;E; source; sinki and for each run M0!
t1

M1!
t2
� � �!

tn
Mn of dataflow D, the trace of each

place is bounded by 1, i.e., it holds that

8h2H8p2PTrðp; hÞp1.

Theorem 18. Every hierarchical dataflow is semi-
sound.

Proof of Lemma 17 and Theorem 18. We will prove
Lemma 17 and Theorem 18 together, by induction
on the number of refinements applied in the
generation of the blank dataflow. During this proof
we will assume that in TL there are labels
representing all the NRC expressions on the
available external functions.

ARTICLE IN PRESS

Fig. 12. Preconditions.

J. Hidders et al. / Information Systems 33 (2008) 261–284278

Author's personal copy

For a hierarchical dataflow consisting of only one
place, all runs have empty transition sequence and
the state sequence consists of only one state, which
is an input and an output state at the same time.
Therefore such dataflow is semi-sound and the sum
in Lemma 17 contains no elements, thus is equal 0.

Let us assume by mathematical induction that for
each hierarchical dataflow Dn ¼ hDFNn;ENn;TNn;
EAn;PTni with a dataflow net DFNn ¼ hPn;Tn;En;
sourcen; sinkni whose hierarchical blank dataflow
was generated in nX0 refinements it holds that:

(1) for each run M 0
0!

t1
M 0

1!
t2
� � �!

td
M 0

d of Dn every
trace of every place is bounded by 1,

(2) for each value v0 : PTnðsourcenÞ and marking M 0

such that inputDn

v0 !
�

M 0, if for some value v00 :
PTnðsinknÞ and history h00 2 H it holds that
M 0ðsinkn; hv00; h

00
iÞ40, then M 0 ¼ outputDn

v00 , and
(3) for each value v0 : PTnðsourcenÞ and marking M 0

such that inputDn

v0 !
�

M 0 there exists a value v00 :
PTnðsinknÞ such that M 0 !

�
outputDn

v00 .

We will show that if Dnþ1 ¼ hDFNnþ1;
ENnþ1;TNnþ1;EAnþ1;PTnþ1i with a dataflow net
DFNnþ1 ¼ hPnþ1;Tnþ1;Enþ1; sourcenþ1; sinknþ1i is
an arbitrary hierarchical dataflow whose hierarch-
ical blank dataflow was generated in nþ 1 refine-
ments, then:

(i) for each run M0!
t1

M1!
t2
� � �!

tm
Mm of Dnþ1

every trace of every place is bounded by 1,
(ii) for each value v0 : PTnþ1ðsourcenþ1Þ and each

marking M such that input
Dnþ1

v0 !
�

M, if for
some value v00 : PTnþ1ðsinknþ1Þ and history h00 2

H it holds that Mðsinknþ1; hv00; h
00
iÞ40, then

M ¼ output
Dnþ1

v00 , and
(iii) for each value v0 : PTnþ1ðsourcenþ1Þ and each

marking M such that input
Dnþ1

v0 !
�

M there exists
a value v00 : PTnþ1ðsinknþ1Þ such that
M!

�
output

Dnþ1

v00 .

Let us consider each possible case for the last,
(nþ 1)th, refinement applied.

(a) The last applied refinement was a sequential

place split (see Fig. 9a). Let BDF n ¼ hDFNn;EAni

with a dataflow net DFNn ¼ hPn;Tn;En; sourcen;
sinkni be a blank hierarchical dataflow generated by
the first n refinements that generated the blank
dataflow of Dnþ1. Let Dn ¼ hDFNn;ENn;
TNn;EAn;PTni be a hierarchical dataflow labeled
accordingly to the labeling of Dnþ1. Since there is no
b2 transition in Dn, to keep Dn legal, the function

that it computes is incorporated into the transitions
that follow it directly, if there are any, or is omitted
otherwise. That is PTnðaÞ ¼ PTnþ1ðb1Þ and for each
t 2 a� it holds that

TNnðtÞ ¼
TNnþ1ðtÞj

FTNnþ1 ðb2 Þ

ENnþ1ðhb3 ;tiÞ
if EAðha; tiÞa‘‘ � ’’;

TNnþ1ðtÞj
mapðFTNnþ1 ðb2 Þ

Þ

ENnþ1ðhb3 ;tiÞ
if EAðha; tiÞ ¼ ‘‘ � ’’:

8<
:

Here tlj
f
li
means the transition label obtained from the

transition label tl, by letting the input from edge li

through f first. Namely, if ITðtlÞ ¼ hl1 : t1; . . . ; lk : tki

and f : t0i ! ti, then ITðtlj
f
li
Þ ¼ hl1 : t1; . . . ; li : t0i; . . . ;

lk : tki, OTðtlj
f
li
Þ ¼ OTðtlÞ and for all values v1; . . . ; vk

of the appropriate types F
tlj

f

li

ðhl1 : v1; . . . ; lk : vkiÞ¼

Ftlðhl1 : v1; . . . ; li : f ðviÞ; . . . ; lk : vkiÞ.

For each run M0!
t1

M1!
t2
� � �!

tm
Mm of Dnþ1 we

define a corresponding run M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d

of Dn. The transitions are fired in the same order,
they consume the same tokens and functions
produce the same results, but all occurrences
of b2 are omitted. It is easy to see that

M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d is indeed a run of Dn and

that it is unambiguously defined. Let us assume that
the subsequence of not omitted transitions have
indices i1; . . . ; id . The markings of Dn are equal to
their counterparts in Dnþ1 on all the places that
appear in both of the dataflows (i.e., for every p 2

Pn \ Pnþ1 and k 2 K it holds that M0ðp; kÞ ¼
M 0

0ðp; kÞ and Mi1 ðp; kÞ ¼M 0
1ðp; kÞ,y, Mid

ðp; kÞ ¼
M 0

dðp; kÞ). Whereas place a contains all the tokens

that in the counterpart marking are stored in b1 as
well as all the tokens that were consumed from b1 in
order to produce the tokens that in the counterpart
are stored in b3. This correspondence in not an
injection, though. For each run of Dn there can be
many corresponding runs of Dnþ1. This is because
there is a choice when to fire b2, if tokens inserted
into a are not immediately consumed.

As for (i), the content of places in
M0;Mi1 ; . . . ;Mid is bounded by the content of
places in M 0

0;M
0
1; . . . ;M

0
d , respectively. In the

remaining markings the only difference is that some
tokens are consumed from b1, processed by b2 and
the result is placed in b3. Thus the traces of places in
markings of Dnþ1 are limited by the traces of places
in markings of Dn, for which the induction
assumption holds.

As for (ii), we can assume without loss of
generality that Mm is the first marking in
M0; . . . ;Mm in which sinknþ1 is not empty. We will

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284 279

Author's personal copy

first consider the case when sinknþ1ab3 and tmab2.
In the M 0

d of the corresponding run sinkn is also not
empty (sinkn ¼ sinknþ1). From the induction as-
sumption in M 0

d there is only one token—the one in
sinkn. Since in Mm there is the same number of
tokens, then also in Md there is only one token—the
one in the sinknþ1. In the case where sinknþ1 ¼ b3, it
is only possible for a token to be inserted into
sinknþ1 ¼ b3, when there was a token to be
consumed from b1. Yet, when the first token is
inserted into b1, there are no other tokens since in
the corresponding run a token is inserted into a,
which is a sink there. Since M0; . . . ;Mm was
arbitrarily chosen, (ii) holds.

As for (iii), let v0 : PTnþ1ðsourcenþ1Þ and let M be

a marking of Dnþ1 such that input
Dnþ1

v0 !
�

M. By the

definition of marking reachability there exists a run

M0!
t1

M1!
t2
� � �!

tm
Mm, where M0 ¼ input

Dnþ1

v0 and

Mm ¼M. We know that for this run in Dn there

exists a corresponding run M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d ,

where M 0
0 ¼ inputDn

v0 . From the semi-soundness of

Dn it follows that for some v00 : PTnðsinknÞ this
corresponding run can be extended into a com-

plete run M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d !

t0
dþ1

M 0
dþ1!

t0
dþ2

� � �

!
t0
dþq

M 0
dþq, where M 0

dþq ¼ outputDn

v00 . For it in turn

there exists a corresponding complete run

M0!
t1

M1!
t2
� � �!

tm
Mm !

tmþ1

Mmþ1!
tmþ2

� � � !
tmþr

Mmþr

in Dnþ1, which at the beginning is identical to the
run of Dnþ1 we started from and in Mmþr place b1 is
empty (if b3 ¼ sinknþ1, b1 can be emptied by firing
b2). This completes the proof, since we have shown

that Mm!
�

output
Dnþ1

v000 , for

v000 ¼
FTNnþ1ðb2Þðv

00Þ if a ¼ sinkn;

v00 otherwise:

�

(b) The last refinement was a sequential transition

split (see Fig. 9b). As previously, with the first n

refinements, we can construct a blank hierarchical
dataflow and label it accordingly to the labeling of
Dnþ1. In the resulting dataflow Dn, the label of a

represents the composition of functions FðTNnþ1ðb3ÞÞ

and FðTNnþ1ðb1ÞÞ. That is ITnðTNnðaÞÞ ¼ ITnþ1

ðTNnþ1ðb1ÞÞ, OTnðTNnðaÞÞ ¼ OTnþ1ðTNnþ1ðb3ÞÞ

and FTNnðaÞ ¼ FTNnþ1ðb3Þ� FTNnþ1ðb1Þ.

For each run M0!
t1

M1!
t2
� � �!

tm
Mm of Dnþ1 we

define a corresponding run M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d

of Dn. The transitions are fired in the same order,

they consume the same tokens and functions
produce the same results, but all occurrences of b1

are omitted and all occurrences of b3 are replaced

with a. It is easy to see that M 0
0!

t0
1

M 0
1!

t0
2
� � �!

t0
d

M 0
d

is indeed a run of Dn and that it is unambiguously
defined. Let us assume that the subsequence of not
omitted (other that b1) transitions have indices
i1; . . . ; id . The markings of Dn are equal to their
counterparts in Dnþ1 on all the places that appear in
both of the dataflows except the ones in �a ¼ �b1

(i.e., for every p 2 ððPn \ Pnþ1Þn � aÞ and k 2 K it
holds that M0ðp; kÞ ¼M 0

0ðp; kÞ and Mi1 ðp; kÞ ¼
M 0

1ðp; kÞ,y, Mid
ðp; kÞ ¼M 0

dðp; kÞ)). Whereas each

place in �a contains all the tokens that in the
counterpart marking are stored in the correspond-
ing place in �b1 as well all the tokens that were
consumed from that place in order to produce the
tokens that are in the counterpart stored in b2. This
correspondence in not an injection, though. For
each run of Dn there can be many corresponding
runs of Dnþ1. This is because there is a choice when
to fire b3, if tokens produced by a into a� are not
immediately consumed.

The rest of the proof follows the one given for (a).
(c) The last refinement was an iteration split (see

Fig. 9c). As previously, with the first n refinements,
we can construct a blank hierarchical dataflow and
label it accordingly to the labeling of Dnþ1. In the
resulting dataflow Dn, the label of transition a

represents a composition of three functions:
FTNnþ1ðb4Þ, a pair function of appropriate type that
constructs a pair of twice its argument, and a function
FTNnþ1ðb1Þ. That is ITnðTNnðaÞÞ ¼ ITnþ1ðTNnþ1ðb1ÞÞ,
OTnðTNnðaÞÞ ¼ OTnþ1ðTNnþ1ðb4ÞÞ and FTNnðaÞ ¼

FTNnþ1ðb4Þ� pair � FTNnþ1ðb1Þ. The correspondence of
runs is analogous as in (b). The rest of the proof
follows.

(d) The last refinement was a trueness based

decision (see Fig. 9d). As previously, with the first n

refinements, we can construct a blank hierarchical
dataflow and label it accordingly to the labeling of
Dnþ1. That is ITnðTNnða2ÞÞ ¼ ITnþ1ðTNnþ1ðb2ÞÞ ¼

ITnþ1ðTNnþ1ðb3ÞÞ and OTnðTNnða2ÞÞ ¼ OTnþ1

ðTNnþ1ðb2ÞÞ ¼ OTnþ1ðTNnþ1ðb3ÞÞ, and for the edge
names ENnðha1; a2iÞ ¼ ENnþ1ðhb1; b2iÞ ¼ ENnþ1

ðhb1; b3iÞ. Assume ITnþ1ðTNnþ1ðb2ÞÞ ¼ hl1 : t1; . . . ;
lk : tk; ENnðha1; a2iÞ : PTða1Þi. TNnða2Þ represents
a function computing if–then–else expression that
results in evaluating of either of FTNnþ1ðb2Þ or
FTNnþ1ðb3Þ. Which means that for every values
v1; . . . ; vk of appropriate types and every v : PTða1Þ

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284280

Author's personal copy

the result of function FTNnða2Þðhl1 : v1; . . . ; lk : vk;
ENnðha1; a2iÞ : viÞ equals FTNðb2Þðhl1 : v1; . . . ; lk :
vk;ENnðha1; a2iÞ : viÞ, if v ¼ false, or FTNðb3Þðhl1 :
v1; . . . ; lk : vk;ENnðha1; a2iÞ : viÞ, otherwise.

The correspondence of runs in this case is a
bijection. Transitions are fired in the same order,
but all occurrences of b2 and b3 are replaced with a2

or depending on the consumed token value a2 is
replaced by b2 or b3. The markings are equal to their
counterparts in all the place that appear in both of
the dataflows. Whereas a1 contains the same tokens
as b1 and a3 the same tokens as b4.

The rest of the proof follows.
(e) The last refinement was an emptiness based

decision (see Fig. 9e). The proof follows the one
given for (d).

(f) The last refinement was an AND-split (see Fig.
9f). As previously, with the first n refinements, we
can construct a blank hierarchical dataflow and
label it accordingly to the labeling of Dnþ1. Since
AND-split was the last refinement applied in
generation of blank dataflow of Dnþ1, we know
that b1� ¼ b2�, �b1 ¼ �b2 and thus PTnþ1ðb1Þ ¼

PTnþ1ðb2Þ. For every transition tnþ1 2 b1�,
where ITðTNnþ1ðtnþ1ÞÞ ¼ hl1 : t1; . . . ; lk : tk;ENnþ1

ðhb1; tnþ1iÞ : PTnþ1ðb1Þ;ENnþ1ðhb2; tnþ1iÞ : PTnþ1

ðb2Þi, its corresponding transition tn 2 a� is defined
as follows:

� ITðTNnðtnÞÞ ¼ hl1 : t1; . . . ; lk : tk;ENnþ1ðhb1;
tnþ1iÞ : PTnþ1ðb1Þi, that is ENnðha; tniÞ ¼

ENnþ1hb1; tnþ1i,
� OTðTNnðtnÞÞ ¼ OT ðTNnþ1ðtnþ1ÞÞ,
� for all values v1; . . . ; vk of appropriate types and

all v : PTn the function computed by this
transition is defined as follows FTNnðtnÞðhl1 :
v1; . . . ; lk : vk;ENnþ1ðhb1; tnþ1iÞ : viÞ ¼ FTNnþ1ðtnþ1Þ

ðhl1 : v1; . . . ; lk : vk;ENnþ1ðhb1; tnþ1iÞ : v;ENnþ1

ðhb2; tnþ1iÞ : viÞ.

The observation that in Dnþ1 places b1 and b2 get
the same tokens as a gets in Dn completes the proof
of Lemma 17.

The correspondence of runs in this case is a
bijection. Transitions are fired in the same order.
The markings are equal to their counterparts in all
the place that appear in both of the dataflows.
Whereas a contains the same tokens as b1 and b2,
which have to have identical content because, each
of the transitions consuming token from one of
those places consumes a token with identical history
from the other one (b1� ¼ b2�) and from Lemma 17

we know that there is no choice of such tokens, so it
must be exactly the one consumed from the first
place. The rest of the proof follows. &

7. The bioinformatics dataflow example revisited

We conjecture that in terms of expressible
functions hierarchical dataflows are equivalent to
NRC and thus, by following our claim in [20], are
sufficient to describe most data-centric experiments
in life sciences such as bioinformatics. To illustrate
this we consider again the dataflow in Fig. 7. Closer
inspection of this dataflow shows that it is not
hierarchical. This is because the iterations in the
dataflow start with a transition that only has
unnesting edges as outgoing edges. This is in conflict
with the iteration split rule in Fig. 9 which requires
that next to the unnest-nest branch there is another
branch that does not unnest and nest. Recall that
the reason for this requirement is that if the function
associated with the initial transition produces the
empty set then the transition produces no tokens
and the workflow will probably not terminate
properly. Observe that this is indeed what happens
if the workflow is presented with an empty
‘‘healthy’’ or ‘‘diseased’’ peptide list since the [
transition will never be enabled. The dataflow is
therefore strictly speaking not semi-sound and
cannot deal correctly with all possible input values.
This soundness problem can be easily solved by
introducing extra branches for the synchronization
of the iterations as is shown in Fig. 13.

The corrected version of the dataflow can be
shown to be hierarchical, which is demonstrated in
Fig. 14 where the corresponding blank dataflow,
called BDF 8 here, is generated from the blank
dataflow with only one place, called BDF 1. The gray
boxes indicate groups of nodes that were generated
by expanding a single node in the preceding blank
dataflow. For example, all nodes in BDF 2 where
generated from the place in BDF 1 by applying the
sequential place split and sequential transition split.
For BDF 3 a place is split by using the AND-split

and a transition is split by applying iteration split. In
the following step BDF4 is generated by applying
the sequential place split to two places. Then BDF 5

is generated by using the AND-split for two places.
Then for constructing BDF 6 some of the places that
were just introduced are expanded with the sequen-

tial place split. In the next step BDF 7 is constructed
by applying the iteration split to four transitions and
the AND-split to two places. Finally, to construct

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284 281

Author's personal copy

BDF 7 the sequential place split and sequential

transition split are applied several times.
As the preceding example shows, the hierarchical

analysis of a dataflow can sometimes reveal subtle
soundness problems. We intend to create a tool in
which it would not only be possible to construct
dataflows by refinement, but also arbitrarily con-
structed dataflows could be tested if they are
hierarchical. For the rules proposed by Chrzastows-

ki-Wachtel et al. for plain Petri nets a similar test is
possible in polynomial time [21].

8. Conclusions and further research

In this paper we have presented DFL—a graphi-
cal language for describing dataflows, i.e., work-
flows where large amounts of complex data are
manipulated and the structure of the manipulated
data is reflected in the structure of the workflow. In
order to be able to describe both the control flow
and the data flow the language is based on Petri nets
and the nested relational calculus and has a formal
semantics that is based upon these two formalisms.
This ensures that from the large body of existing
research on these we can reuse or adapt certain
results. This is illustrated by taking a well-known
technique for generating sound workflow nets and
using it to generate semi-sound dataflows.

In future research we intend to compare, inves-
tigate and extend this formalism in several ways.
Since the dataflow nets tend to become quite large
for relatively simple dataflows, we intend to
introduce syntactic sugar. We also want to investi-
gate whether a similar control-flow semantics can be
given for the textual NRC and see how the two
formalisms compare under these semantics. Since
existing systems for data-intensive workflows often
lack formal semantics, we will investigate if our
formalism can be used to provide these. It is also
our intention to add the notions of provenance and
run of a dataflow to the semantics such that these
can be queried with a suitable query language such
as the NRC. This can be achieved in a straightfor-
ward and intuitive way by remembering all tokens
that passed through a certain place and defining the
provenance as a special binary relation over these
tokens. Storing all these tokens makes it not only
possible to query the run of a dataflow but also to
reuse intermediate results of previous versions of a
dataflow. Another subject is querying dataflows,
where a special language is defined to query
dataflow repositories, to find for example similar
dataflows or dataflows that can be reused for the
current research problem. Since dataflows in our
language are essentially labeled graphs it seems
likely that a suitable existing graph-based query
formalism could be employed for this. Finally we
will investigate the possibilities of workflow optimi-
zation by applying known techniques from NRC
research. Since optimization often depends on the
changing of the order of certain operations it will

ARTICLE IN PRESS

Fig. 13. Finding differences in peptide content of two samples

(hierarchical).

J. Hidders et al. / Information Systems 33 (2008) 261–284282

Author's personal copy

then be important to extend the formalism with a
notion of ‘‘color’’ for extension transitions that
indicates whether their relative order may be
changed by the optimizer.

References

[1] W.M.P. van der Aalst, The application of petri nets to

workflow management, J. Circuits Syst. Comput. 8 (1)

(1998) 21–66.

[2] K. Jensen, Coloured Petri Nets Basic Concepts Analysis

Methods and Practical Use. vols. 1 and 2, second ed.,

Springer, London, UK, 1996.

[3] R. Valk, Object Petri nets: using the nets-within-nets

paradigm, in: Lectures on Concurrency and Petri Nets,

2003, pp. 819–848.

[4] R. Valk, Self-modifying nets a natural extension of Petri

nets, in: ICALP, 1978, pp. 464–476.

[5] A. Oberweis, P. Sander, Information system behavior

specification by high level petri nets, ACM Trans. Inf. Syst.

14 (4) (1996) 380–420.

[6] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, J.

Van den Bussche, Petri netþnested relational calculus¼data-

flow, in: OTM Conferences (1), 2005, pp. 220–237.

[7] P. Buneman, S. Naqvi, V. Tannen, L. Wong, Principles of

programming with complex objects and collection types,

Theor. Comput. Sci. 149 (1) (1995) 3–48.

[8] T. Murata, Petri nets: properties analysis and applications,

Proc. IEEE 77 (4) (1989) 541–580.

[9] W. Reisig, Petri Nets: An Introduction, Springer, New

York, Inc., NY, USA, 1985.

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood,

T. Carver, A. Wipat, P. Li, Taverna: a tool for the

composition and enactment of bioinformatics workflows,

Bioinformatics 20 (17) (2004) 3045–3054.

[11] Object Management Group, Unified modeling language

resource page, hhttp://www.uml.org/i.

ARTICLE IN PRESS

Fig. 14. The generation of the blank dataflow from Fig. 7.

J. Hidders et al. / Information Systems 33 (2008) 261–284 283

Author's personal copy

[12] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic

local alignment search tool, J. Mol. Biol. 215 (3) (1990)

403–410.

[13] B. Boeckmann, A. Bairoch, R. Apweiler, MC. Blatter, A.

Estreicher, et al., The swiss-prot protein knowledgebase and

its supplement trembl in 2003, Nucleic Acids Res. 31 (2003)

365–370.

[14] P. Rice, I. Longden, A. Bleasby, Emboss: the European

molecular biology open software suite (2000), Trends Genet.

16 (6) (2000) 276–277.

[15] D. Dumont, J.P. Noben, J. Raus, P. Stinissen, J. Robben,

Proteomic analysis of cerebrospinal fluid from multiple

sclerosis patients, Proteomics 4 (7) (2004).

[16] G. Berthelot, Checking properties of nets using transforma-

tion, in: Advances in Petri Nets 1985, Covers the

6th European Workshop on Applications and Theory in

Petri Nets-selected Papers, Lecture Notes in Computer

Science, vol. 222. London, UK, Springer, Berlin, 1986,

pp. 19–40.

[17] W.M.P. van der Aalst, Verification of workflow nets, in:

ICATPN ’97: Proceedings of the 18th International Con-

ference on Application and Theory of Petri Nets, London,

UK, Springer, Berlin, 1997, pp. 407–426

[18] H.A. Reijers, Design and Control of Workflow Processes:

Business Process Management for the Service Industry,

Lecture Notes in Computer Science, vol. 2617, Springer,

New York, Inc., Secaucus, NJ, USA, 2003.

[19] P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M.

O’Dell, A. Susanto, A top-down petri net-based approach

for dynamic workflow modeling, in: W.M.P. van der Aalst,

A.H.M. ter Hofstede, M. Weske (Eds.), Business Process

Management, Lecture Notes in Computer Science, vol. 2678,

Springer, Berlin, 2003 pp. 336–353.

[20] A. Gambin, J. Hidders, N. Kwasnikowska, S. Lasota, J.

Sroka, J. Tyszkiewicz, J. Van den Bussche, NRC as a formal

model for expressing bioinformatics workflows, Poster at

ISMB, 2005.

[21] P. Chrzastowski-Wachtel, private communication, 2007.

ARTICLE IN PRESS
J. Hidders et al. / Information Systems 33 (2008) 261–284284

