A Formal Basis for Extending SQL to
Object-Oriented Databases

Jan Van den Bussche*
University of Antwerp (UIA)

Abstract

A formal basis for extending SQL in a natural way to complex ob-
ject databases is laid. N'SQL, a language equivalent to the standard
algebra for nested relational databases, is obtained. It is also shown
that, when allowing subqueries in the from-clause, the facility of sub-
queries in where-clauses becomes redundant with regard to expressive
power.

1 Introduction

Much research work in database theory [6, 11, 13, 18] is spent on finding
possible successors of the relational database model, as introduced by Codd
in the early seventies [7, 8, 9]. Indeed, for more unconventional applications
like CAD and office automation [4, 14], it became inacceptable that complex
structures had to be decomposed in several different relations in order to be
manageable by relational database systems [16]. In the quest for designing
systems that overcome the drawbacks of the relational model, much attention
has been paid to object-oriented database systems [2, 3].

The database language SQL is now widely accepted as the standard query
language for relational database systems. Therefore it is meaningful to ask

*Author’s address: Dept. Math. & Comp. Science, University of Antwerp (UIA), Uni-
versiteitsplein 1, B-2610 Antwerpen, Belgium. E-mail: vdbuss@ccu.uia.ac.be The au-
thor’s work is supported by a grant from the I. W.O.N.L.

how this language can be extended in order to deal with object-oriented
database systems. It is the aim of this paper to partially answer this question.

Two of the most appealing object-oriented concepts in the database con-
text are object identity and complex modelling. In this paper, we concen-
trate on the latter one. General complex object databases were presented in
[1, 5]. A particular and well-known model supporting complex objects is the
nested relational database model [17, 19]. It is an extension of the relational
database model in which a table element can be an atomic value, as in or-
dinary relations, but also a nested relation in turn. Complex structures can
be represented more naturally using nested relations.

The paper is organized as follows. Section 2 introduces the necessary
terminology regarding the nested relational database model and the associ-
ated formal query system, the nested algebra. Section 3 formally introduces
NSQL, an extension of SQL in the context of nested relations. In Section 4
it is shown that A'SQL has the full expressibility of the nested algebra. Sec-
tion 5 gives conclusions and provides some issues for future work. This paper
reports on a part of the work done by the author in [21].

It should be noted that Roth, Korth and Batory [15] introduced SQL/NF,
which is also a query language for nested relations, based on SQL. However,
the author feels that SQL/NF is a complete redesign of SQL (motivated by
[10]), whereby the important aspect of extending from flat to nested rela-
tions is somewhat neglected. Therefore, the author cannot see SQL/NF as a
solution for the problem this paper partially tries to solve.

2 Nested relations

A certain familiarity with the relational database model [7, 16, 20] is assumed.
In this section, a formal model for working with nested relations is presented.

It is essentially that of Gyssens and Van Gucht, as can be found in e.g.
12, 16].

Basically we have an infinitely enumerable set U of atomic attributes and
an infinitely enumerable set V' of atomic values. The set U of attributes can
be defined inductively as follows: every atomic attribute is an attribute, and

every finite set of attributes in which no atomic attribute appears' more than
once is an attribute. As an example, suppose A, B, C' are atomic attributes.
Then {A, B,{B,C}} is no legal attribute because B appears twice in it;
{{A}} is legal, as is {C,{B}}. Elements of Y — U are called composed
attributes. A relation scheme is simply a composed attribute.

For a scheme (2, an instance w over () is a finite set of tuples over €.
A tuple t over a scheme (Q is a function on €2 such that for every atomic
attribute A € Q, t(A) € V, and for every composed attribute X € Q, ¢(X) is
an instance over X. Finally, a nested relation is an ordered pair (£, w) such
that €2 is a scheme and w is an instance over).

A scheme € is flat if @ C U. Note that relations over flat schemes
are exactly the relations of the conventional relational model, so the nested
relational model is a proper extension of this model. Of course, we need
also a formal query system for nested relations, like the relational algebra is
for flat relations. To this end, the algebra is extended to the nested algebra
as follows. The union, difference, cartesian product, equality selection and
projection are either canonical extensions or natural generalizations of their
flat counterparts. Remain two restructuring operations that do not have a
flat equivalent: nesting and unnesting. Because tuple components may be
relations themselves, we need mechanisms to access the contents of these
relations. Informally speaking, nesting a relation over a set of attributes X
consists of grouping all tuples that are equal outside X together into one
nested tuple, with a new composed attribute X containing all the X-values
of the grouped tuples. Unnesting a relation over the composed attribute X
is similar to undoing a nest operation over X. So unnesting can be used
to reach the tuples of a subrelation; nesting provides a way back. Formal

definitions of nest and unnest follow. Let w be an instance over €2. Then the
nesting vx (2, w) equals (€', w'), where Q' :=Q — X U {X} and

W=t W ew:tlox = o x&t(X) = {t"|x | t" € w&t"|o_x =]a_x}}

Let Z € Q — U. Then the unnesting pz(2,w) equals (£',w"), where Q' :=
Q—{Z}UZ and

Wi={t|IH ew: t|Q_{Z} = t,|Q—{Z} &tz et (Z)}

I The term appears in refers to any level: A appears in X if A € X or if A appears in
Y for some Y € X.

Concerning unnesting, it is frequently the case that we want to access a
subrelation that is nested more than one level deep. Then, a sequence of
unnest operations is needed. For this, we use the following notation: for a
relation (2, w), let X; € --- € X, € Q with X; a composed attribute. Then
Tix, (Q,w) equals

fx, - px, (Q2,w)

Finally we mention renamings. Applying a renaming to a relation changes
one or more atomic attributes appearing in its scheme. Renaming is mostly
used as a remedy in cases when the cartesian product is to be taken of two
relations that do not have completely “independent” schemes, i.e., where one
or more atomic attributes appear in both schemes. In such cases the resulting
scheme would be ill-defined since these atomic attributes would appear more
than once in it (recall the definition of composed attributes).

For an excellent overview of nested relational structures and their prop-
erties the reader is referred to chapter 7 of [16].

3 NSQL

In the section above, the relational algebra was extended to the nested alge-
bra. In this section the same will be done for the relational query language
SQL. Although the language is widely used, formal definitions of the se-
mantics of SQL are rare. In [16], a representative subset of SQL is formally
proven to be equivalent with the relational algebra. This subset will be ex-
tended here to the query language N'SQL. The semantics of A'SQL will be
defined formally using the nested algebra.

The syntax of NSQL is shown in Figure 1. As usual, vertical bars de-
note logical or; square brackets denote an optional construct; curly brackets
indicate that the construct may appear zero or more times; round brack-
ets serve for grouping. Lexical entities are written in a different typestyle.
When quoted, like in "{" or ")", the brackets are lexical entities, not meta
characters.

Some remarks about the representation of attributes in A'SQL are in place
here. We assume that every atomic attribute has its own attribute identi-
fier. Composed attributes are sets of attributes; they can be syntactically

query < elementary-query [(difference|union) query]
elementary-query < simple-query [group by [group-list]]
simple-query < select (x|select-list) from relation-list [where condi-
tion|

select-list < attribute-spec {, attribute-spec}
attribute-spec < [tuple-id .| attribute-repr

attribute-repr < (attribute-id|set-enum,)

set-enum < "{" attribute-repr {, attribute-repr} "}"
relation-list < relation-spec {, relation-spec}
relation-spec <— (relation-id|" (" query")") [tuple-id]
condition <— elementary-cond

condition <— not condition

condition < condition (or|and) condition

condition < " (" condition")"

elementary-cond < comparison

elementary-cond < exists " ("simple-query")"
comparison < attribute-spec (=|subset of) attribute-spec
comparison <— attribute-list element of attribute-spec
group-list +— attribute-spec {, attribute-spec}

Figure 1: Syntax of A’'SQL.

described as such (see set-enum in Figure 1). However, composed attributes
may also have an attribute identifier? (see attribute-repr in Figure 1).

One difference between A'SQL and SQL is fundamental: the possibility
for the relations in the from-clause to be queries themselves (see relation-list
and relation-spec in the syntax description). This was proposed before in
[10, 15]. It will turn out to be a powerful feature, with interesting properties.

The labeling technique of SQL is adopted by N'SQL. Labeling means
providing a tuple identifier with a relation in a from-clause (see relation-
spec in Figure 1). We could interpret the labeling of a relation as renaming
the relation by prefixing every attribute appearing in the scheme with “t.”.
In this way, the attributes of labeled relations are specified in N'SQL; see
attribute-spec in Figure 1.

We now can give a formal definition of the meaning of an A’'SQL query, by
inductively associating it with an equivalent expression in the nested algebra.

e As induction hypothesis, we assume that there is a nested algebra ex-
pression associated with each relation specifier of a relation list. In
case this relation specifier is just an identifier, the expression is just
the named relation; this is the basis of the induction. In each expres-
sion, the relation could be renamed due to labeling (see above). Then
we can associate a nested algebra expression with a relation list (see
relation-list in Figure 1) as follows: take the cartesian product of all
the relations represented in the relation list.

e Consider

select *
from relation-list

This query is equivalent with the nested algebra expression associated
with relation-list.

e Let (0,0) € {(=,=), (subset of, C)}. Consider

2 Such an identifier might be given in the data definition language, but this goes beyond
the scope of this paper.

select *
from relation-list
where attribute-specy © attribute-specs

If attribute-spec; represents the attribute X;, and if E is the nested
algebra expression associated relation-list, this query is equivalent with
OX10X> (E)

e The query

select *
from relation-list
where attribute-list element of attribute-spec

is equivalent to oxcz(E), where E is as above, X is the set of at-
tributes represented by attribute-list and Z is the attribute represented
by attribute-spec.

The attentive reader will observe that, although we only defined se-
lections with respect to equality, we use in this and the previous item
selections with respect to set membership and inclusion. In an ap-
pendix we show that such selections can be expressed in the nested
algebra.

e The result of the query

select *

from relation-list,

where exists
(select select-list
from relation-listy
where condition)

is equal to the result of the query

select select-listy
from relation-list,, relation-listy
where condition

Here, select-list, is a list representing the scheme of the nested algebra
expression associated with relation-list;.

7

e Let (A,0) € {(and,N), (or,U)}. The query

select x*
from relation-list
where condition, A conditions

is equivalent with E; § E,, where E; is the nested algebra expression
associated with the query

select x*
from relation-list
where condition;

e The query

select x*
from relation-list
where not condition

is equivalent with F — E' where E is the nested algebra expression
associated with relation-list, and E' is the nested algebra expression
associated with the query

select x*
from relation-list
where condition

e Let @ denote a simple query (see syntax of NSQL, Figure 1). Consider
the query

Q
group by group-list

Let GG be the set of attributes represented by group-list; if group-list is
empty, put G = (). Then this query is equivalent with vq ¢ (F) where
E is the nested algebra expression associated with (), and € is the
resulting scheme of E.

e Let Q denote an elementary query (see Figure 1), with select-clause
of the form

select select-list

Let Q' be the elementary query obtained from @ by replacing select-list
with “*”, and let £’ be the nested algebra expression associated to @',
with resulting scheme 2. Furthermore let X be the set of attributes
represented by select-list. The set Y is defined as consisting of those

composed attributes Z appearing in €2 such that Z contains an attribute
of X. f Y ={Z,...,Z,}, the query @ is equivalent with

TXHyg ** 'ﬁzm(E,)

e Finally, let (®, ¢) € {(difference, —), (union, U)}, and let @); and Q)
be two N'SQL queries. Then the query

o
)
Q2

is equivalent with F;, ¢ Ey where E; is the nested algebra expression
associated with @);.

So, with every N'SQL-query a nested algebra expression can be associated.
Rather straightforwardly, the meaning of an N'SQL-query is said to be well-
defined iff the associated nested algebra expression is well-defined.

Comparing the formal query systems (the algebras) of the relational and
the nested relational model, it is quite clear that in extending a relational
language to a nested language, it is important to provide for nest and unnest
mechanisms. In the case of NSQL, nesting is achieved by means of an
extension of the group by facility in SQL. Actually, the SQL group by
facility already does a kind of nesting; the problem however is that nesting
does not fit in the formalism of flat relations. Furthermore, N'SQL provides
for some kind of “automatic unnesting”: if a lower-level attribute is needed,
simply listing it in the select-clause will cause repeated unnesting down to
the desired level. So NSQL really can be seen as a natural adaption of the
SQL query system to the context of nested relations.

4 The expressiveness of N'SQL

We now turn to the expressiveness of N'SQL. We establish:

THEOREM N SQL and the nested algebra are equivalent with respect to
the queries they can express.

Since N'SQL was defined in terms of the nested algebra, every NSQL-
query is expressible in the nested algebra. So we only have to prove that also
conversely, N'SQL can express the full range of nested algebra queries. The
proof proceeds inductively on the size of nested algebra expressions.

As basis for the induction, an arbitrary fixed relation r is represented in

NSQL by

select x*
from r

Suppose now that the nested algebra expressions E, F, E, are expressed by
the N'SQL-queries @, Q1, Q2. Q is the resulting scheme of E.

e Let (P,¢) € {(union,U), (difference, —)}. Then E; ¢ E, is expressed
by

Ch
d
Q2
e I x Es is expressed by

select x*

from (1), (Q2)
e Let X ={A,...,An} C Q. mx(F) is expressed by

select Aq,..., A,
from (Q)

e With X as above, assume Q — X = {By,..., By}. vx(F) is expressed
by

10

select *
from (Q)
group by Bi,..., DB

o Let Z={A,,..., A} € Q—U, and assume Q — {Z} = {By,..., B;}.
pz(E) is expressed by

select Ay,..., A, By,..., By
from (@)

e Finally let X, Xy € Q. 0x,-x,(F) is expressed by

select x*
from (@)
where X =X,

Hence, every nested algebra expression has an equivalent counterpart in
NSQL. An important observation is that in the above reduction of the nested
algebra to N'SQL, the exists facility, allowing emptyness test of subqueries
in the where-clause, is not used. However, the ability to have subqueries in
the from-clause is a key technique in the proof. This means that the construct
of exists-subqueries does not add to expressive power in the presence of the
construct of subqueries in the from-clause. Stated in another way, allowing
subqueries in from-clauses makes the construct of subqueries in where-clauses
redundant with respect to expressive power. This is an interesting property:
in SQL, this construct is necessary in order to obtain full expressiveness, for
it is shown in [16] that certain queries in the relational algebra cannot be ex-
pressed in SQL without using a subquery in the where-clause. On the other
hand, it should be pointed out that union- and difference-like queries can
be expressed using where-queries. So, these constructs in turn can be called
redundant in the presence of where-subqueries. Therefore, it is preferrable
to retain all the discussed facilities in the language N'SQL, as is done.

5 Conclusion

The relational query language SQL was extended to deal with nested rela-
tions. Emphasis was put on formal definitions, in analogy with the extension
of the relational algebra to the nested algebra. Care was taken that the

11

obtained extension, N'SQL, respects the original philosophy behind SQL as
faithfully as possible.

NSQL is of course not meant to be an operational database language.
Only a representative subset of SQL, containing the most fundamental as-
pects, is extended. The language as it stands now is just a theoretical realiza-
tion of the standard nested algebra, and does not allow an effective manipu-
lation of nested relations. In order to allow for this, operations of extended
nested algebras, such as nested application of projection [17] and more gen-
eral, flexible selection conditions have to be incorporated. Other important
aspects from a more practical point of view, such as aggregate functions and
arithmetic, should not cause too much problems to be integrated in N'SQL.
A more fundamental issue for further research, as indicated in the introduc-
tion, is to capture more object-oriented concepts, especially object identity.
This problem is considerably more difficult, because up to now there is no
appropriate generally accepted and well-defined formalism available yet, as
it is for nested relations. The author is presently working on these subjects.

Acknowledgement

Jan Paredaens and Marc Gyssens are kindly acknowledged for their helpful
comments and stimulating support.

References

[1] S. Abiteboul, C. Beeri: “On the power of languages for the manipulation
of complex objects”, INRIA technical report 846, May 1988.

[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S.
Zdonik: “The object-oriented database system manifesto”, Proceedings
1st DOODS, Kyoto, December 1989.

(3] F. Bancilhon: “Object-oriented database systems”, Proceedings 7th
PODS, pp. 152-162, Austin, March 1988.

[4] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou, H. Kim:
“Data model issues for object-oriented applications”, ACM TOIS 5,1,
pp- 3-26, January 1987.

12

[5] C. Beeri: “Data models and languages for databases”, Proceedings 2nd
ICDT, pp. 1941, Bruges, August/September 1988.

[6] C. Beeriet al.: “Sets and negation in a logic database language (LDL1)”,
Proceedings 6th PODS, pp. 21-37, San Diego, March 1987.

[7] E. Codd: “A relational model for large shared databanks”, Communi-
cations of the ACM 13,6, pp. 377-387, June 1970.

8] E. Codd: “Further normalization of the data base relational model”,
Data base systems, R. Rustin, ed., Prentice-Hall, 1972.

9] E. Codd: “Relational completeness of data base sublanguages”, Data
base systems, R. Rustin, ed., Prentice-Hall, 1972.

[10] C. Date: “A critique of the SQL database language”, ACM SIGMOD
Record 14,3, pp. 8-54, 1984.

[11] M. Gyssens, J. Paredaens, D. Van Gucht: “A grammar-based approach
towards unifying hierarchical data models”, Proceedings ACM SIGMOD
89, pp. 263-272, June 1989.

[12] M. Gyssens, D. Van Gucht: “The powerset operator as a result of adding
programming constructs to the nested algebra”, Proceedings ACM SIG-
MOD 88, pp. 225-232, June 1988.

[13] R. Hull, R. King: “Semantic database modelling: Survey, applications,
and research issues”, ACM Computing surveys 19,3, pp. 201-260, 1987.

[14] D. Maier, D. Price: “Data model requirements for engineering applica-
tions”, Proceedings 1st IEEE international workshop on expert database
systems, pp. 759-765, 1984.

[15] M. Roth, H. Korth, D. Batory: “SQL/NF: A query language for =1NF
relational databases”, Information systems 12,1, pp. 99—-114, 1987.

[16] J. Paredaens, P. De Bra, M. Gyssens, D. Van Gucht: “The structure
of the relational database model”, EATCS Monographs on theoretical

computer science, W. Brauer, G. Rozenberg, A. Salomaa, eds., Springer-
Verlag, 1989.

13

[17] H.-J. Scheck, M. Scholl: “The relational model with relation-valued at-
tributes”, Information systems 11,2, pp. 137-147, 1986.

[18] D. Shipman: “The functional data model and the data language
DAPLEX”, ACM TODS 6,10, pp. 140-173, 1981.

[19] S. Thomas, P. Fischer: “Nested relational structures”, The theory of
databases, P. Kanellakis, ed., pp. 269-307, JAI Press, 1986.

[20] J. Ullman: “Principles of database and knowledge-base systems, Volume
[”, Computer Science Press, 1988.

[21] J. Van den Bussche: “Query Systems in the Nested Relational Database
Model”, Graduate dissertation UIA, 1989.

Appendix

We show that two additional kinds of selection operations, inclusion selection
and membership selection, are expressible using the standard operations in
the nested algebra. See also [12].

Let (©,w) be a relation. Renaming operations are formally defined as
follows: let ¢ be a permutation of U. 1 can be extended to composed
attributes, tuples and instances in a canonical way (make ¢ the identity on
V). The renaming p¥(Q,w) equals (/(92), ¥ (w)).

Let X, X' € Q—U. Suppose there exists a permutation ¢ on U such that
X' = ¢(X) (p is extended to composed attributes, tuples and instances in
the canonical way). Then the inclusion selection oxcx/(£2,w) equals (€, w'),

where
whi={t € w [p(t(X)) CHX)}

If 9 is a permutation on U such that 2 and Q¥ have no atomic attributes in
common, the reader is invited to check the following equality:

O'XgXl (fL') —
TQOx=xvVx¢T quwxwzxwxgpuxwﬂ:m (93 X P¢(5B))
Umaoy—xe(r x ({XV},{0}))

14

Thus, inclusion selection is expressible in the nested algebra.

Now let X C €2, and suppose X¥ € () for some permutation ¢ on U. The
membership selection oxexe¢ (2, w) equals (©,w'), where

wi={t €w|p(tlx) € L{X?)}
If ¢ is as above, a nested algebra expression for oxcxe () is

TQOxv=xve hxveOQ=¥ (l" X Pw(x))

15

