
Non�Deterministic Aspects of
Object�Creating Database

Transformations

Jan Van den Bussche�

University of Antwerp

Antwerp� Belgium

Dirk Van Guchty

Indiana University

Bloomington� IN� USA

Abstract

Various non�deterministic aspects of object creation in database trans�
formations are discussed� from a modeling as well as from an expressive
power point of view�

� Introduction

In the past few years� a lot of attention has been paid to database transforma�
tions �AK��� AV��� AV��� AV��a� GPVG��� Hul��� HWWY��� HY���� Da	
tabase transformations are binary accessibility relationships between database
instances� and provide a simple� unifying model for the study of database query
languages and important notions in database dynamics� such as updates� up	
datable views� and database restructurings�

In that study� the issue of object creation has attracted particular interest
recently� After an object	creating database transformation 
as opposed to a
domain�preserving one�� the output can contain domain elements that were
not present in the input� Object creation di�ers from conventional insertion of
a new value in that it contains an implicit form of non�determinism� i�e�� the
particular choice of the new domain value to be added is irrelevant� as long as
it is new� This weak form of non	determinism is called determinacy �AK����

Object creation 
nds an obvious application in object	oriented database
systems� where� if a new object has to be added� the identity of this object must
be distinct from those of all objects already present� but the particular choice
of this new identi
er is an implementation detail� Similarly� object creation
is sometimes unavoidable to fully support updatable views in object	oriented
database systems� i�e�� derived information that is to be explicitly added in the
database �AB��� HS��a�� as well as database restructuring �AK��� GPVG����

The natural links between object	creating and non	deterministic database
transformations �AV��b� were recently explored by the authors �VdBVG���� for
the special case of queries and views 
modeled as type	increasing transforma	
tions�� In the present paper� we widen our scope to arbitrary updates� present
some new results and indicate some new open problems�

�Research Assistant of the N�F�W�O� Address� University of Antwerp �UIA�� Dept� Math�
� Comp� Science� Universiteitsplein �� B��	�
 Antwerp� Belgium� E�mail� vdbuss�uia�ac�be�

yIndiana University� Comp� Science Dept�� Bloomington� IN �
�
����
�� USA� E�mail�
vgucht�cs�indiana�edu�



In Section �� we de
ne a simpli
ed version of the IQL� model �AK��� for
reasoning about object	creating database transformations� We discuss deter	
minacy� originally explored for the special case of queries� and show that some
care must be taken when moving to arbitrary updates� We also compare the
determinate approach to object	creation of �AK��� as used in this paper� to
the functional approach proposed in �KW���� There� newly created objects are
interpreted as the result of functions applied to the existing objects� These
functions are usually expressed as Skolem function terms� as is used in Logic
Programming� We will show that the two approaches can be reconciled� in
both approaches� object creation can be interpreted as untyped tuple and set
construction� This reconciliation will also clarify the issue of the completeness
up to copies of IQL� w�r�t� determinate transformations �AK����

In Section �� we discuss semi�determinism� a natural generalization of deter	
minacy� We present a new result� linking object creation and non	determinism�
More concretely� we show that object creation in function of sets is in a pre	
cise sense equivalent to a special semi	deterministic choice operation� Semi	
determinism was again originally explored only for queries �VdBVG���� Ex	
tending the concept to arbitrary updates will turn out to yield several problems�
First� it is not clear how the composition of two semi	deterministic transforma	
tions should be de
ned� Second� it is not clear what a language complete for
all semi	deterministic transformations should look like� This contrasts sharply
with the situation in the special case of queries� as considered in �VdBVG����
where these two problems can be solved quite naturally� Perhaps we have
encountered a fundamental distinction between queries and updates�

� Determinate object�creating database
transformations

For simplicity� we shall work in the relational model� Generalizations to richer
complex object� semantic� or object	based models are straightforward�

Let Sin�Sout be database schemes� A database transformation of type Sin �
Sout is a binary relationship T � inst
Sin� � inst
Sout��

� such that for some

nite set C of constants� T is C�generic� meaning that for each C	permutation�

f of the domain� I
T
�� J implies f
I�

T
�� f
J�� 
Transformations that are

actually functions are called deterministic��
Genericity is a consistency criterion� well	established in the database 
eld

�AU���� Intuitively� it says that data elements should be treated uniformly

apart from a 
nite set of constants C that are particular to the application at
hand�� Pragmatically� it says that we are considering database computations�
not arbitrary computations on bit streams�

We say that transformation T above is object creating if there are instances

I
T
�� J for which the active domain of the output� J � contains elements that

were not in the input� I � nor in C�
For example� if P is a relation containing person tuples� then the insertion�

P
�
�� �name � john� age � ��� address � new york� 
��

�For a scheme S� inst�S� denotes the set of database instances over S�
�A C�permutation �xes every element of C�



name age address
je� �� dallas
john �� new york

id name age address
� je� �� dallas
� john �� new york

id name age address
� je� �� dallas
� john �� new york
� john �� new york

Figure �� Object creation�

is not object	creating� but simply C	generic� with C � fjohn� ��� new yorkg�
On the other hand� suppose PO is a class containing person objects� and we
want to insert a new object with a new id� The update�

PO
�
�� new�id� �name � john� age � ��� address � new york� 
��

where new�id� stands for an arbitrary new id not yet present in the input
database� is object	creating 
and C	generic��

We next de
ne a simple language for expressing database transformations�
Programs in the language are built from basic statements� Basic statements can
be divided into relational statements and object	creating statements� Finally�
programs can be iterated or called recursively� In this paper� we will not need
to be concerned with the particular form of the iteration construct�

The relational statements are of the forms

P
�
�� E� P

�

�� E� or drop P

where P is a relation name and E is an expression in the relational algebra or
calculus� The drop statement allows the destruction of an old relation with
name P � For the � and � statements� the semantics is that E is evaluated� and
the result is added to 
in case of �� or deleted from 
in case of �� relation P �
In the case of �� P may be a new relation name� in which case a new relation
with name P is created and initialized to the value of E� For example� the
simple insertion statement 
�� shown in the earlier example is a trivial example
of a relational statement 
the relational calculus expression is constant in this
example��

As just de
ned� relational statements are not object	creating� In order to
express object creation� simple variations of these statements can be used� The
new statement�

P
�
�� new�A�E

creates a new object for each tuple in the value of E� More precisely� the
value of the expression new�A�E is the relation obtained from the value of the
expression E� after tagging each tuple with a di�erent� new� A	attribute value�

To illustrate these concepts� consider the following example� Starting from
the person relation P shown in Figure �� left� we can create the set PO of person
objects with identity shown in Figure �� right� with the statement

PO
�
�� new�id� P� 
��



R�

a
b

R�

c c
d d

R�

a
b

R�

c a
d b

R�

a
b

R�

e a
f b

Figure �� Composition does not preserve determinacy�

Note that this set PO contains a person object with attributes �name�john�
age���� address�new york�� If we now apply the earlier object insertion update
statement 
��� another person with these attributes will be added to PO� with
another identity� as shown in Figure �� middle� If we want to add a new person
only if a person with the same attributes is not already present in the database�
we must use a more elaborate statement�

PO
�
�� new�id� �name�john�age����address�new york� �


� �t � PO� � t
name� � john � t
age� � �� � t
address� � new york

We point out that the new operation is but a common denomina	
tor for many mechanisms for object creation considered in the literature
�AV��a� AK��� GPVG��� HS��b� HY��� KW��� Zan����

An immediate consequence of genericity is that an object creating trans	
formation must be non	deterministic� For example� in Figure �� the particular
choice of � and � as new id�s is not crucial� we could have taken � and � as
well� However� we can leave it to that� and restrict the non	determinism only
to the particular choice of the newly created objects� This results in the notion
of determinate transformation �AK����

A transformation T is determinate if whenever I
T
�� J� and I

T
�� J�� there

exists an isomorphism f � J� � J� that is the identity on the objects in I �
So� determinacy is determinism up to the choice of the new objects in the

output�
Determinacy was originally considered in the context of queries 
and views��

These can be modeled as transformations that are type�increasing� A transfor	
mation T of type Sin � Sout is type	increasing if Sin 	 Sout� and for each

I
T
�� J and each relation name R � Sin� R

J � RI �
For type	increasing transformations� determinacy is a robust notion� deter	

minacy is preserved under composition� For arbitrary updates� however� this
robustness property breaks down� For example� let Sin consist of two relations
R�� R�� Consider transformation T�� which erases relation R�� and transforma	
tion T�� which adds to relation R� as many new objects as there are in R�� So�

T� 
 R�

�

�� R� and T� 
 R�

�
�� newR�� Then Figure �� middle and right�

shows two possible results of the composition T��T� applied to the instance
shown in Figure �� left� The determinacy requirement is clearly not satis
ed�
the reason being that in the middle instance� objects are created having be	
longed to R� in the past� while in the right instance� brand new objects are
created�

This di�culty can be remedied by disallowing such situations� once an
object has �died� 
has been deleted�� it can never be �reborn� 
created�� This is
a commonly heard requirement in discussions on object identity� but the above
discussion provides� to our knowledge� the 
rst formal argument of why this is



indeed necessary� Thus� rather than de
ning composition T��T� classically
as� f
I�K� j 
�J�T�
I� J� � T�
J�K�g� we formally de
ne it as� f
I�K� j

�J�T�
I� J� � T�
J�K� � for each object o appearing in I and K� o also
appears in Jg� Using this new de
nition of composition� we can now show�

Theorem� If T�� T� are determinate database transformations� then so is
T��T��

Proof� We know that T�� T� are C	generic for some C� To check whether
T��T� is C	generic as well� assume T��T�
I� J�� and let f be a C	permutation
of the universe� We show that also T��T�
f
I�� f
J��� There exists a K such
that Q�
I�K�� Q�
K� J�� and every object in I � J is also in K� We have
T�
f
I�� f
K�� and T�
f
K�� f
J��� Every object in f
I� � f
J� is also in
f
K�� Therefore� T��T�
f
I�� f
J���

To check determinacy� assume T��T�
I� J�� and T��T�
I� J��� Then Kr� for
r � �� �� exists such that T�
I�Kr�� T�
Kr� Jr�� and every object in I � Jr is
also in Kr� Since T� is determinate� there exists an isomorphism f� � K� � K�

such that f� is the identity on I�K�� Since T� is generic� T�
K�� f�
J���� Since
T� is determinate� there exists an isomorphism f� � f�
J��� J� such that f� is
the identity on K� � f
J��� Clearly� f �� f� � f� � J� � J� is an isomorphism�
It remains to show that f is the identity on I � J�� So� let o � I � J�� Then
also o � K�� and hence f�
o� � K� � f
J�� as well as f�
o� � o� Therefore�
f�
f�
o�� � f�
o� � o� �

The new operation just introduced creates new objects in function of the
tuples in some relation� One also needs a mechanism that creates objects in
function of sets� This is provided by the abstraction operation in the following
way� Let r be a binary relation� Then r can be viewed as a set	valued function�
in the standard way� The result of abstr�A�
r� is a ternary relation� obtained
from r after tagging each tuple with a new A	attribute� such that two tuples

x�� y�� and 
x�� y�� get the same tag if and only if the sets r
x�� and r
x��
are equal� This as opposed to the new operation� where every tuple gets a
di�erent tag�

The abstraction operation is determinate� We can incorporate abstraction

in our language by allowing statements of the form� P
�
�� abstr�A�E� For

example� if PC is a parent	child relation� then the transformation�

SPC
�
�� abstr�S�PC�

SC
�
�� �S�C
SPC�

creates a unique object for each set of siblings and represents these sets in
relation SC� See Figure �� If we now also apply the statements

PS
�
�� �P�S
SPC��

drop PC�
drop SPC

then the new relations PS and SC correspond to a useful restructuring of the
original PC relation� See Figure ��

Abstraction is the operational equivalent of the ability to treat set values as

rst	class citizens� As de
ned here� it was originally introduced in �GPVG���
VdBP���� but it is a mechanism that has been considered frequently in the



P C
sam toto
sam zaza
mary toto
mary zaza
fred nini

A P C
� sam toto
� sam zaza
� mary toto
� mary zaza
� fred nini

S C
� toto
� zaza
� nini

P S
sam �
mary �
fred �

Figure �� Abstraction�

literature� Abstraction corresponds to such concepts as grouping over sets
�BNR����� nesting �TF���� set	valued functions �AG���� and set	valued object
assignments �AK����

The transformation language with relational statements 
giving us 
rst	
order logic�� new 
giving us tuple	id creation�� abstr 
giving us set	id creation�
and recursion is essentially equivalent to the IQL� language� proposed in the
seminal paper �AK���� Therefore� we take the liberty to refer to it with the
same name IQL��

The semantics for object	creation considered above� has not been the only
approach adopted in the literature� An alternative approach is the one proposed
in �KW���� where object creation is interpreted as the construction of function
terms over the existing objects� as is done in Logic Programming� We will call
this the functional approach� The functional approach typically uses a calculus
framework� where the relational calculus is extended with 
rst	order function
symbols� There is no need then for a special new operation�

For example� recall the new statement 
��� The analogue in the functional
approach would be�

PO
�
�� f�id� f
x� y� z�� name�x� age� y� address� z� j P 
x� y� z�g

where f is a function symbol� Applying this statement to Figure � 
left� will
produce Figure � 
right�� however now� � and � are not arbitrary new values�
but equal the 
rst	order terms f
je�� ��� dallas� and f
john� ��� new york�� re	
spectively� If g is another function symbol� applying the functional analogue of
the insertion 
���

PO
�
�� f�id� g
john� ��� new york�� name� john� age� ��� address� new york�g

to Figure � 
right� will produce Figure � 
middle� with � equal to
g
john� ��� new york��

Note that if we would have used the same f � then no new object would have
been created� This technical di�erence between the determinate approach and
the functional approach is not really important� as we will see momentarily� In
fact� there are no fundamental di�erences at all between the two approaches�
we will next sketch how the one can simulate the other��

We start with simulating the determinate approach by the functional one�
For each relation name R that is used in the program� we have a di�erent
function symbol fR� Then the statement�

R
�
�� new�A�E

�A similar observation was made in �HY�
�� without proof�



is simulated by�

R
�
�� f�A � fR
x�� � � � � xn�� A� � x�� � � � � An � xn� j E
A� � x�� � � � � An � xn�g�

As just mentioned� this naive simulation fails in case object fR
x�� � � � � xn�
already exists in the database 
because it was created by a previous new state	
ment�� This problem can be circumvented by storing in an auxiliary table
CreatedR for each tuple x�� � � � � xn the last object o created in function of that
tuple� The above statement is then modi
ed to test 
rst if there was already an
object creation in function of x�� � � � � xn� if yes� then fR
o� x�� � � � � xn� is used
instead of fR
x�� � � � � xn��

�

To simulate the functional approach by the determinate one� it su�ces to
store for each function symbol f used in the program� an auxiliary table Rf

storing the current extension of f � If fR
x�� � � � � xn� is created� then� using
the new operation� a tuple 
o� x�� � � � � xn� is stored in Rf with o an arbitrary
new domain element playing the role of fR
x�� � � � � xn�� Further references to
fR
x�� � � � � xn� can then be handled by lookup in the auxiliary table�

The object	creation functions considered above are �syntactical� functions�
they form 
rst	order terms from their arguments� This is the standard Logic
Programming approach� An alternative formalism for the functional ap	
proach to object creation� based on �semantical� functions� was presented in
�GSVG���� where the so	called tagging functions are de
ned� There� all object
creation happens through a single tagging function� The syntactical functional
approach is a special case of the tagging functional approach� where this tag	
ging function is simply the identity� mapping its arguments x�� � � � � xn to the
tuple 
x�� � � � � xn�� 
See also �VG����� That there is one single tagging func	
tion is not a real restriction� if multiple function symbols are needed� one takes
for each such symbol f a di�erent constant cf and simulates f
x�� � � � � xn� by

cf � x�� � � � � xn��

So� object creation through the new operation� or� equivalently� functional
object creation� amounts to tuple construction� Note that this tuple construc	
tion is necessarily untyped� since the nested structure of the various tuples
is not 
xed� Generalizing this observation to include the abstr operation�
which creates objects representing sets� not tuples� means moving from tu	
ples to sets� Indeed� tuples are a special case of sets by the well	known ax	
ioms� 
x� y� � ffxg� fx� ygg and 
x�� � � � � xn� � 
x�� 
x�� � � � � xn��� Including
set	object creation in the functional approach could be done by introducing
set	valued functions 
as in �AG���� or set	terms 
as in �Kup����� We have thus
arrived at the important insight that object creation in IQL� can be interpreted
as untyped�set construction�

The use of untyped sets in database query languages has been studied in
the literature �DM��� HS���� It is known that the relational calculus or alge	
bra� extended with untyped sets and recursion or iteration� is computationally
complete for all computable generic untyped	sets queries� It thus follows that
IQL� can express exactly those determinate queries that correspond to a generic
untyped	sets query� This has been made precise in �VdBVGAG���� where the
constructive queries were de
ned as a natural subclass of the determinate ones�
Informally� a query is constructive if symmetries of the input database can
be naturally extended to symmetries of the query result� It thus follows that

�This is only one trick to circumvent the problem� others can be used as well�



P C
sam toto
mary zaza
fred nini

P C
sam zaza
mary zaza
fred nini

Figure �� Witness�

IQL� can express exactly the constructive queries� This clari
es the incom	
pleteness of IQL� w�r�t� the determinate queries� indeed� IQL� is known to be
only determinate	complete up to copies�� One possible philosophical interpre	
tation of all this is that� a posteriori� the notion of determinacy is not quite
restrictive enough� At any rate� there does not appear to be a natural example
of a determinate� non	constructive query�

The foregoing discussion 
and the presentation in �VdBVGAG���� went on
for the special case of queries� However� it can be shown that everything goes
through in general� In particular� one can consider general constructive data�
base transformations� and prove that IQL� expresses exactly all constructive
database transformations�

To conclude this section� we point out that in the functional approach�
once the object	creating function
s� have been 
xed� object	creation becomes
a deterministic operation� In other words� the non	deterministic characteristic
of object creation is entirely captured in the particular choice of the function�
As a consequence� there is no problem in using the classical composition of
database transformations� as in the determinate case� Also� it is interesting to
observe that the function	terms semantics was adopted in �AB��� to study the
view	update problem in the context of object	oriented database systems�

� Semi�determinism

IQL� is a determinate� hence nearly deterministic language� In order to express
arbitrarily non	deterministic transformations one can add the witness operation
to the language� 
See �Abi��� for motivations for non	determinism� and �AV��b�
for a survey��

Witness is a non	deterministic choice operation� Let r be a relation� and let
X be a subset of its attributes� Then WX
r� evaluates to a sub	instance of r�
obtained by choosing exactly one representative from each class ofX	equivalent
tuples of r� Here� two tuples are X	equivalent if they agree outside X �

For example� if r is the PC relation of Figure �� then two possible results
of WC
r� are shown in Figure �� For every parent� an arbitrary child is chosen

as a �witness� for his�her parenthood��

Witness can be incorporated in IQL� by allowing statements of the form�

P
���
�� WXE� The resulting language will be called NIQL� 
for non	determin	

istic IQL��� It is easy to see that NIQL� is equivalent to the languages TL
�AV��� and DL� �AV��a�� which are known to express exactly all computable
database transformations� So� NIQL� is well	understood� and also very power	
ful�

�In �AK���� it was conjectured that that IQL� is fully determinate�complete� but this was
later shown to be false �Abi�
� AP����



It is interesting to consider restrictions on the unlimited non	determinism
that NIQL� programs allow� 
For motivations we refer to �VdBVG����� To 
nd
sensible such restrictions� one can get inspiration from the de
nition of deter	
minate transformation� That de
nition required that two possible outcomes of
the transformations be isomorphic� but via an isomorphism that keeps the ex	
isting objects 
xed� In �VdBVG���� the present authors considered a weakened
version of this quali
cation� for the special case of queries� The adopted quali	

cation was to require that two possible outcomes of the query be isomorphic�
but via an isomorphism that is an automorphism 
also called symmetry� of the
input database� Such queries were called semi�deterministic�

Denote by SNIQLq � the sublanguage of NIQL� consisting of the programs
that express semi	deterministic queries� The class of semi	deterministic queries
exhibits a number of good properties �VdBVG���� It is therefore not surprising
that membership in SNIQLq is undecidable� Fortunately� we can replace the
witness operation by a weaker choice construct� called swap�choice� which is
guaranteed to be semi	deterministic 
and still e�cient to implement�� Swap	
choice was already implicit in �VdBVG���� we next de
ne it explicitly�

Let I be a database instance and R a relation name in the scheme of I �
The swap�choice swap�C�
R� I� evaluates to a unary relation with attribute C�
obtained by choosing from each equivalence class of swap�equivalent elements
of the domain of RI exactly one representative� Here� two domain elements
o�� o� are called swap	equivalent if the transposition 
o� o�� is a symmetry of
I �

We can incorporate swap	choice in IQL� by allowing statements of the form�

P
���
�� swapE� We will call the resulting language SIQL�� and its restriction

to queries SIQLq� It can be shown that queries expressed in SIQLq are semi	
deterministic�

While swap	choice may seem ad	hoc at 
rst� the following theorem gives
evidence for its naturalness� It says that in a semi	deterministic context� swap	
choice� and the set	based object creation operation abstraction� are equivalent
in expressive power� Since abstraction is naturally related to duplicate elimi	
nation in object creating languages� this result gives an intuitive technique to
remove duplicates� i�e�� retain only one version of otherwise indistinguishable
objects� The theorem should also be contrasted with the result in �VdBP���
that abstraction is primitive in IQL��

Theorem� Swap�choice is expressible in SNIQLq� using abstraction� Con�
versely� abstraction is not primitive in SIQLq�

Proof sketch� First� observe that swap	equivalence is de
nable in the rela	
tional calculus� Using abstraction� equivalence classes of swap	equivalent do	
main elements are grouped together and given a unique object identi
er� These
new identi
ers are swap	equivalent� and using witness� representatives can be
chosen in a semi	deterministic manner�

For the converse� observe that abstraction can be simulated using new
with duplicates� These duplicates are swap	equivalent� yielding a simulation of
abstraction using new and swap� �

The above theorem suggests that swap	choice� in combination with object
creation through new� allows the speci
cation of important data manipulation
operations� This was also suggested in �VdBVG���� where it was shown how
a subclass of the counting queries 
i�e�� queries that involve the cardinality



of certain sets� can be expressed in SIQLq in PTIME� We have since then
substantially extended the relevant techniques� and can prove that all counting
queries can be expressed in this way� 
We do not present this proof here��
The importance of this result stems from the observation that� unlike �ASV����
we rely only on the very weak form of non	determinism allowed by the swap	
choice operation� It is indeed well	known that unrestricted non	determinism
o�ers e�cient expressibility of all PTIME transformations� In other words�
as far as counting applications are concerned� the usage of non	determinism
can be heavily constrained� as to appear almost deterministic� however without
sacri
cing e�ciency� It would be interesting to 
nd other applications where
this is possible�

As argued in �VdBVG��� and further illustrate here� object	creation is vital
in order to make semi	determinism feasible� This is especially true for queries�
on which we have focused in our discussion up to now� We next turn to the
question of how semi	determinism can be adapted to the general case of ar	
bitrary database transformations� We will not give many answers� but rather
indicate directions for further research�

We start with an example which� although trivial� demonstrates how
the use of updates admits certain counting queries to be expressed semi	
deterministically without a need for object creation� Let I be a database and
consider a query based on the number of domain elements in a number of rela	
tions of I � This query can be solved semi	deterministically by 
rst computing
the active domain of these relations using a standard relational algebra expres	
sion� Subsequently every relation in I is dropped� We are now left with a unary
relation containing the wanted active domain� We can now order this unary
relation by repeatedly choosing elements from this unary relation� The choices
are semi	deterministic� since we choose from an unstructed set of elements�
Once the set is ordered� it is straightforward to test any PTIME	computable
property of its cardinality�

Recall that for queries� which are modeled as type	increasing transforma	
tions� semi	determinism requires that two possible outcomes of the query to the
same database I must be isomorphic� by an isomorphism that is a symmetry
of I � But note that the latter condition on the isomorphism is actually voidly
satis
ed� since queries are type	increasing� When applying the same de
nition
to arbitrary transformations� the condition becomes a real additional require	
ment� Formally� the requirement becomes� the isomorphism from J� to J�
must map I �J� to I �J�� where J� and J� are the two possible outcomes� For
this de
nition to be workable� it needs to satisfy a reasonable compositionality
criterion� At the end of Section � we gave such a criterion for determinate
transformations� Since the semi	determinate transformations ought to include
the determinate transformations� the searched for criterion needs to be at least
as restrictive�

The following example puts a damper on the above proposal for semi	deter	
ministic transformation� Let T� be the determinate transformation which adds
to a unary relation S as many new elements as it originally contained��

T� 
 S
�
�� �A��S�Anew�A�
S��

Furthermore� let T� be the transformation which deletes an arbitrary element

��A��S denotes a renaming�



from a unary relation S�

T� 
 S
�

�� swap
S��

Obviously� T� and T� are semi	deterministic according to the above proposal�
However� when T��T� 
de
ned as in the determinate case� is applied to a single	
ton relation S � f
a�g� a possible result of T�
S� is f
a�� 
b�g� and therefore two
possible results of T��T�
S� are f
a�g itself and f
b�g� which obviously violates
the proposed requirement 
since the intersection of S with the second result is
empty� while the intersection with the 
rst one is not��

Another possible natural generalization of the notion of semi	determinism
from queries to updates is to simply require that two possible results are plainly
isomorphic� In this case� compositionality is not a problem� In fact� even the
classical composition can be used then�

Many other candidate de
nitions for semi	deterministic database transfor	
mation can be considered� For any of them� apart from the compositionality
problem� there is another issue that must be taken into account� completeness�

Indeed� for the special case of queries� it can be shown that there exists
a decidable sublanguage of SNIQLq that is semi	deterministic	complete� This
can be shown using the strategy to prove that IQL� is determinate	complete up
to copies �AK���� In contrast to the determinate situation� these copies do not
pose a problem in a semi	deterministic setting� since they are isomorphic and
can be eliminated in a semi	deterministic manner�� One can furthermore prove
that the determinate strategy produces �su�ciently many� possible results�
this is in turn not an issue in the determinate setting��

Clearly� it is desirable to achieve semi	deterministic completeness also in the
general database transformation case� This is a challenging open problem�

We conclude with the remark that in principle� semi	determinism can also
be considered in the functional approach to object creation� However� in con	
trast to the determinate case� where the functional approach was not essentially
di�erent from the determinate approach� it is our belief that with respect to
semi	determinism� there is is a fundamental di�erence between the two ap	
proaches� In particular� none of the main theorems presented here and in
�VdBVG��� seem to hold for the functional approach�

Acknowledgment

We are indebted to Marc Gyssens for inspiring discussions on the issues of
compositionality of determinate database transformations and the completeness
of SNIQLq�

References

�AB��� S� Abiteboul and A� Bonner� Objects and views� In J� Cli�ord
and R� King� editors� Proceedings of the ���� ACM SIGMOD

�This description is a gross simpli�cation�
�We have indeed been able to settle the open problem mentioned in �VdBVG��� page ����

a�rmatively� contrary to the intuition expressed there�



International Conference on Management of Data� volume ����
of SIGMOD Record� pages �������� ACM Press� �����

�Abi��� S� Abiteboul� Updates� a new frontier� In M� Gyssens�
J� Paredaens� and D� Van Gucht� editors� ICDT���� volume ���
of Lecture Notes in Computer Science� pages ����� Springer	
Verlag� �����

�Abi��� S� Abiteboul� Personal communication� �����

�AG��� S� Abiteboul and S� Grumbach� A rule	based langauge with
functions and sets� ACM Transactions on Database Systems�
��
�������� �����

�AK��� S� Abiteboul and P� Kanellakis� Object identity as a query
language primitive� In J� Cli�ord� B� Lindsay� and D� Maier�
editors� Proceedings of the ���� ACM SIGMOD International
Conference on the Management of Data� volume ���� of SIG�
MOD Record� pages �������� ACM Press� �����

�AP��� M� Andries and J� Paredaens� A language for generic graph	
transformations� In Graph�Theoretic Concepts in Computer
Science� volume ��� of Lecture Notes in Computer Science�
pages ������ Springer	Verlag� �����

�ASV��� S� Abiteboul� E� Simon� and V� Vianu� Non	deterministic lan	
guages to express deterministic transformations� In PODS
�POD���� pages ��������

�AU��� A�V� Aho and J�D� Ullman� Universality of data retrieval lan	
guages� In Proceedings of the ACM Symposium on Principles
of Programming Languages� pages �������� �����

�AV��� S� Abiteboul and V� Vianu� Equivalence and optimization of
relational transactions� Journal of the ACM� ���������� �����

�AV��� S� Abiteboul and V� Vianu� Procedural languages for data	
base queries and updates� Journal of Computer and System
Sciences� ��
����������� �����

�AV��a� S� Abiteboul and V� Vianu� Datalog extensions for database
queries and updates� Journal of Computer and System Sci�
ences� ��
��� �����

�AV��b� S� Abiteboul and V� Vianu� Non	determinism in logic	based
languages� Annals of Mathematics and Arti�cial Intelligence�
���������� �����

�BNR���� C� Beeri� S� Naqvi� R� Ramakrishnan� O� Shmueli� and S� Tsur�
Sets and negation in a logic database language� In Proceedings
of the Sixth ACM Symposium on Principles of Database Sys�
tems� pages ������ ACM Press� �����



�DM��� E� Dahlhaus and J�A� Makowsky� Computable directory
queries� In Logic and Computer Science	 New Trends and Ap�
plications� Rend� Sem� Mat� Univ� Pol� Torino� pages ��������
����� An extended abstract appears in LNCS 
���

�GPVG��� M� Gyssens� J� Paredaens� and D� Van Gucht� A graph	oriented
object database model� In PODS �POD���� pages ��������

�GSVG��� M� Gyssens� L�V� Saxton� and D� Van Gucht� Tagging as an
alternative to object creation� In D� Maier and G� Vossen�
editors� Query Processing in Object�Oriented� Complex�Object
and Nested Relation Databases� Morgan Kaufmann� ����� To
appear�

�HS��� R� Hull and Y� Su� Untyped sets� invention� and computable
queries� In PODS �POD���� pages ��������

�HS��a� A� Heuer and P� Sander� Classifying object	oriented query re	
sults in a class�type lattice� In B� Thalheim� J� Demetrovics�
and H�	D� Gerhardt� editors� MFDBS ��� volume ��� of Lec�
ture Notes in Computer Science� pages ������ Springer	Verlag�
�����

�HS��b� A� Heuer and P� Sander� Preserving and generating objects in
the Living In A Lattice rule language� In Proceedings Seventh
International Conference on Data Engineering� pages ��������
IEEE Computer Society Press� �����

�Hul��� R� Hull� Relative information capacity of simple relational
schemata� SIAM Journal on Computing� ��
����������� �����

�HWWY��� R� Hull� S� Widjojo� D� Wile� and M� Yoshikawa� On data
restructuring and merging with object identity� IEEE Data
Engineering� ��
��������� June �����

�HY��� R� Hull and M� Yoshikawa� ILOG� Declarative creation and
manipulation of object identi
ers� In D� McLeod� R� Sacks	
Davis� and H� Schek� editors� Proceedings of the ��th Interna�
tional Conference on Very Large Data Bases� Morgan Kauf	
mann� �����

�HY��� R� Hull and M� Yoshikawa� On the equivalence of database
restructurings involving object identi
ers� In PODS �POD����
pages ��������

�Kup��� G� Kuper� Logic programming with sets� Journal of Computer
and System Sciences� ��
��������� �����

�KW��� M� Kifer and J� Wu� A logic for object	oriented logic program	
ming 
Maier�s O	logic revisited�� In PODS �POD���� pages
��������

�POD��� Proceedings of the Eighth ACM Symposium on Principles of
Database Systems� ACM Press� �����



�POD��� Proceedings of the Ninth ACM Symposium on Principles of
Database Systems� ACM Press� �����

�POD��� Proceedings of the Tenth ACM Symposium on Principles of
Database Systems� ACM Press� �����

�TF��� S� Thomas and P� Fischer� Nested relational structures� In
P� Kanellakis� editor� The Theory of Databases� pages ��������
JAI Press� �����

�VdBP��� J� Van den Bussche and J� Paredaens� The expressive power of
structured values in pure OODB�s� In PODS �POD���� pages
��������

�VdBVG��� J� Van den Bussche and D� Van Gucht� Semi	determinism� In
Proceedings ��th ACM Symposium on Principles of Database
Systems� pages �������� ACM Press� �����

�VdBVGAG��� J� Van den Bussche� D� Van Gucht� M� Andries� and
M� Gyssens� On the completeness of object	creating query
languages� In Proceedings 

rd Symposium on Foundations
of Computer Science� pages �������� IEEE Computer Society
Press� �����

�VG��� D� Van Gucht� Theory of unnormalized relational structures�
PhD thesis� Vanderbilt University� �����

�Zan��� C� Zaniolo� Object identity and inheritance in deductive
databases�an evolutionary approach� In W� Kim� J�	M� Nico	
las� and S� Nishio� editors� Proceedings �st International Con�
ference on Deductive and Object�Oriented Databases� pages ��
��� Elsevier Science Publishers� �����


