Non-Deterministic Aspects of
Object-Creating Database
Transformations

Jan Van den Bussche* Dirk Van Gucht!

University of Antwerp Indiana University
Antwerp, Belgium Bloomington, IN, USA

Abstract

Various non-deterministic aspects of object creation in database trans-
formations are discussed, from a modeling as well as from an expressive
power point of view.

1 Introduction

In the past few years, a lot of attention has been paid to database transforma-
tions [AK89, AV88, AV90, AV9la, GPVGI0, Hul86, HWWY91, HY91]. Da-
tabase transformations are binary accessibility relationships between database
instances, and provide a simple, unifying model for the study of database query
languages and important notions in database dynamics, such as updates, up-
datable views, and database restructurings.

In that study, the issue of object creation has attracted particular interest
recently. After an object-creating database transformation (as opposed to a
domain-preserving one), the output can contain domain elements that were
not present in the input. Object creation differs from conventional insertion of
a new value in that it contains an implicit form of non-determinism, i.e., the
particular choice of the new domain value to be added is irrelevant, as long as
it is new. This weak form of non-determinism is called determinacy [AK89].

Object creation finds an obvious application in object-oriented database
systems, where, if a new object has to be added, the identity of this object must
be distinct from those of all objects already present, but the particular choice
of this new identifier is an implementation detail. Similarly, object creation
is sometimes unavoidable to fully support updatable views in object-oriented
database systems, i.e., derived information that is to be explicitly added in the
database [AB91, HS91a], as well as database restructuring [AK89, GPVG90].

The natural links between object-creating and non-deterministic database
transformations [AV91b] were recently explored by the authors [VABVG92], for
the special case of queries and views (modeled as type-increasing transforma-
tions.) In the present paper, we widen our scope to arbitrary updates, present
some new results and indicate some new open problems.

*Research Assistant of the N.F.W.O. Address: University of Antwerp (UIA), Dept. Math.
& Comp. Science, Universiteitsplein 1, B-2610 Antwerp, Belgium. E-mail: vdbuss@uia.ac.be.

TIndiana University, Comp. Science Dept., Bloomington, IN 47405-4101, USA. E-mail:
vgucht@cs.indiana.edu.

In Section 2, we define a simplified version of the IQL* model [AK89] for
reasoning about object-creating database transformations. We discuss deter-
minacy, originally explored for the special case of queries, and show that some
care must be taken when moving to arbitrary updates. We also compare the
determinate approach to object-creation of [AK89] as used in this paper, to
the functional approach proposed in [KW89]. There, newly created objects are
interpreted as the result of functions applied to the existing objects. These
functions are usually expressed as Skolem function terms, as is used in Logic
Programming. We will show that the two approaches can be reconciled; in
both approaches, object creation can be interpreted as untyped tuple and set
construction. This reconciliation will also clarify the issue of the completeness
up to copies of IQL* w.r.t. determinate transformations [AK89].

In Section 3, we discuss semi-determinism, a natural generalization of deter-
minacy. We present a new result, linking object creation and non-determinism.
More concretely, we show that object creation in function of sets is in a pre-
cise sense equivalent to a special semi-deterministic choice operation. Semi-
determinism was again originally explored only for queries [VABVG92]. Ex-
tending the concept to arbitrary updates will turn out to yield several problems.
First, it is not clear how the composition of two semi-deterministic transforma-
tions should be defined. Second, it is not clear what a language complete for
all semi-deterministic transformations should look like. This contrasts sharply
with the situation in the special case of queries, as considered in [VABVG92],
where these two problems can be solved quite naturally. Perhaps we have
encountered a fundamental distinction between queries and updates?

2 Determinate object-creating database
transformations

For simplicity, we shall work in the relational model. Generalizations to richer
complex object, semantic, or object-based models are straightforward.

Let Sin, Sous be database schemes. A database transformation of type Sy, —
Sout is a binary relationship T' C inst(Sin) X inst(Sous),t such that for some
finite set C of constants, T is C-generic, meaning that for each C-permutation?

of the domain, T —— J implies f(n N f(J). (Transformations that are
actually functions are called deterministic.)

Genericity is a consistency criterion, well-established in the database field
[AUT79]. Intuitively, it says that data elements should be treated uniformly
(apart from a finite set of constants C that are particular to the application at
hand). Pragmatically, it says that we are considering database computations,
not arbitrary computations on bit streams.

We say that transformation T above is object creating if there are instances

I L J for which the active domain of the output, .J, contains elements that
were not in the input, I, nor in C.
For example, if P is a relation containing person tuples, then the insertion:

P& [name : john, age : 40, address : new york] (1)

IFor a scheme S, inst(S) denotes the set of database instances over S.
2A C-permutation fixes every element of C.

name age address id name age address
jeff 20 dallas a jeff 20 dallas
john 40 new york B john 40 new york

id name age address

a jeff 20 dallas

f john 40 new york

v john 40 new york

Figure 1: Object creation.

is not object-creating, but simply C-generic, with C' = {john, 40, new york}.
On the other hand, suppose PO is a class containing person objects, and we
want to insert a new object with a new id. The update:

PO <= new/[id] [name : john, age : 40, address : new york] (2)

where new[id] stands for an arbitrary new id not yet present in the input
database, is object-creating (and C-generic.)

We next define a simple language for expressing database transformations.
Programs in the language are built from basic statements. Basic statements can
be divided into relational statements and object-creating statements. Finally,
programs can be iterated or called recursively. In this paper, we will not need
to be concerned with the particular form of the iteration construct.

The relational statements are of the forms

P&~ E, P<E, ordrop P

where P is a relation name and F is an expression in the relational algebra or
calculus. The drop statement allows the destruction of an old relation with
name P. For the 4+ and — statements, the semantics is that E is evaluated, and
the result is added to (in case of +) or deleted from (in case of —) relation P.
In the case of 4+, P may be a new relation name, in which case a new relation
with name P is created and initialized to the value of E. For example, the
simple insertion statement (1) shown in the earlier example is a trivial example
of a relational statement (the relational calculus expression is constant in this
example.)

As just defined, relational statements are not object-creating. In order to
express object creation, simple variations of these statements can be used. The
new statement:

P& new[A]E

creates a new object for each tuple in the value of E. More precisely, the
value of the expression new[A]E is the relation obtained from the value of the
expression E, after tagging each tuple with a different, new, A-attribute value.

To illustrate these concepts, consider the following example. Starting from
the person relation P shown in Figure 1, left, we can create the set PO of person
objects with identity shown in Figure 1, right, with the statement

PO <= newlid] P. (3)

R1 R2 Rl R2 Rl R2
a C C a C a a
b d d b d b b f b

Figure 2: Composition does not preserve determinacy.

Note that this set PO contains a person object with attributes [name:john,
age:40, address:new york]. If we now apply the earlier object insertion update
statement (2), another person with these attributes will be added to PO, with
another identity, as shown in Figure 1, middle. If we want to add a new person
only if a person with the same attributes is not already present in the database,
we must use a more elaborate statement:

PO <= new|id] [name:john,age:40,address:mew york] A
(At € PO) : t(name) = john A t(age) = 40 A t(address) = new york

We point out that the new operation is but a common denomina-
tor for many mechanisms for object creation considered in the literature
[AV9la, AK89, GPVGI0, HS91b, HY90, KW89, Zang9).

An immediate consequence of genericity is that an object creating trans-
formation must be non-deterministic. For example, in Figure 1, the particular
choice of o and 3 as new id’s is not crucial: we could have taken ¢ and § as
well. However, we can leave it to that, and restrict the non-determinism only
to the particular choice of the newly created objects. This results in the notion
of determinate transformation [AK89].

A transformation T is determinate if whenever I i} Jyand [i} Js, there
exists an isomorphism f : J; — J, that is the identity on the objects in I.

So, determinacy is determinism up to the choice of the new objects in the
output.

Determinacy was originally considered in the context of queries (and views).
These can be modeled as transformations that are type-increasing. A transfor-
mation T of type Sin — Sous is type-increasing if S;, C Sout, and for each

I X5 J and each relation name R € Sin, R = R'.

For type-increasing transformations, determinacy is a robust notion: deter-
minacy is preserved under composition. For arbitrary updates, however, this
robustness property breaks down. For example, let S, consist of two relations
Ry, Ry. Consider transformation 77, which erases relation Rs, and transforma-
tion Ty, which adds to relation R, as many new objects as there are in R;. So,
T, =Ry <= Ry and T», = R» &£ newR;. Then Figure 2, middle and right,
shows two possible results of the composition T7;7T> applied to the instance
shown in Figure 2, left. The determinacy requirement is clearly not satisfied,
the reason being that in the middle instance, objects are created having be-
longed to Ro in the past, while in the right instance, brand new objects are
created.

This difficulty can be remedied by disallowing such situations: once an
object has “died” (has been deleted), it can never be “reborn” (created). This is
a commonly heard requirement in discussions on object identity, but the above
discussion provides, to our knowledge, the first formal argument of why this is

indeed necessary. Thus, rather than defining composition 77;7% classically
as: {(I,K) | @))Ti(I,J) A T=(J,K)}, we formally define it as: {(I,K) |
(3NTi(I,J) AN Ty(J,K) A for each object o appearing in I and K, o also
appears in J}. Using this new definition of composition, we can now show:

Theorem: If 77,7, are determinate database transformations, then so is
Tl;TQ.

Proof: We know that 77,7, are C-generic for some C. To check whether
Ty; T is C-generic as well, assume T7;T>(1,J), and let f be a C-permutation
of the universe. We show that also T1; T2 (f(I), f(J)). There exists a K such
that Q1(I,K), Q2(K,J), and every object in I N J is also in K. We have
Ty (f(I), f(K)) and To(f(K), f(J)). Every object in f(I) N f(J) is also in
f(K). Therefore, Ty; To(£(I), (7).

To check determinacy, assume T4;T>(I, J1) and T1;T>(1, J3). Then K, for
r = 1,2, exists such that T1(I, K,.), T2(K,, J;.), and every object in I N J, is
also in K,.. Since T} is determinate, there exists an isomorphism f; : K1 — K>
such that f; is the identity on TN K. Since T is generic, T>(Ka, f1(J1)). Since
T, is determinate, there exists an isomorphism fy : fi(J1) — Ja such that f5 is
the identity on Ko N f(J1). Clearly, f := fao f1 : J; — Jo is an isomorphism.
It remains to show that f is the identity on I N .J;. So, let 0 € I'NJ;. Then
also 0 € K1, and hence fi(0) € Ko N f(J1) as well as fi(0) = o. Therefore,
fa(fi(0)) = fi(o) = 0. O

The new operation just introduced creates new objects in function of the
tuples in some relation. One also needs a mechanism that creates objects in
function of sets. This is provided by the abstraction operation in the following
way. Let r be a binary relation. Then r can be viewed as a set-valued function,
in the standard way. The result of abstr[A](r) is a ternary relation, obtained
from r after tagging each tuple with a new A-attribute, such that two tuples
(z1,y1) and (z2,y2) get the same tag if and only if the sets r(z1) and r(z2)
are equal. This as opposed to the new operation, where every tuple gets a
different tag.

The abstraction operation is determinate. We can incorporate abstraction

in our language by allowing statements of the form: P <& abstr[A]E. For
example, if PC is a parent-child relation, then the transformation:

SPC <= abstr[S|PC;
SC <= 15.0(SPC)

creates a unique object for each set of siblings and represents these sets in
relation SC. See Figure 3. If we now also apply the statements

PS <= 1p.5(SPC);
drop PC
drop SPC

then the new relations PS and SC correspond to a useful restructuring of the
original PC relation. See Figure 3.

Abstraction is the operational equivalent of the ability to treat set values as
first-class citizens. As defined here, it was originally introduced in [GPVG90,
VdBPI1], but it is a mechanism that has been considered frequently in the

P C A P C
sam toto a sam toto S C P S
sam zaza «a sam zaza «a toto sam
mary toto a mary toto « zaza mary o«
mary zaza a mary zaza B nini fred g
fred nini B fred nini

Figure 3: Abstraction.

literature. Abstraction corresponds to such concepts as grouping over sets
[BNR*87], nesting [TF86], set-valued functions [AG91], and set-valued object
assignments [AK89].

The transformation language with relational statements (giving us first-
order logic), new (giving us tuple-id creation), abstr (giving us set-id creation)
and recursion is essentially equivalent to the IQL* language, proposed in the
seminal paper [AK89]. Therefore, we take the liberty to refer to it with the
same name IQL*.

The semantics for object-creation considered above, has not been the only
approach adopted in the literature. An alternative approach is the one proposed
in [KW89], where object creation is interpreted as the construction of function
terms over the existing objects, as is done in Logic Programming. We will call
this the functional approach. The functional approach typically uses a calculus
framework, where the relational calculus is extended with first-order function
symbols. There is no need then for a special new operation.

For example, recall the new statement (3). The analogue in the functional
approach would be:

PO <= {[id: f(z,y, z),name: x, age: y, address: z] | P(z,y,2)}

where f is a function symbol. Applying this statement to Figure 1 (left) will
produce Figure 1 (right); however now, « and 3 are not arbitrary new values,
but equal the first-order terms f(jeff, 20, dallas) and f(john,40,new york), re-
spectively. If g is another function symbol, applying the functional analogue of
the insertion (1):

PO <= {[id: g(john, 40, new york), name: john, age: 40, address: new york]}

to Figure 1 (right) will produce Figure 1 (middle) with 7 equal to
g(john, 40, new york).

Note that if we would have used the same f, then no new object would have
been created. This technical difference between the determinate approach and
the functional approach is not really important, as we will see momentarily. In
fact, there are no fundamental differences at all between the two approaches:
we will next sketch how the one can simulate the other.3

We start with simulating the determinate approach by the functional one.
For each relation name R that is used in the program, we have a different
function symbol fr. Then the statement:

R <& new|[AlE

3 A similar observation was made in [H'Y90], without proof.

is simulated by:

R <= {JA: fr(z1,...,zn), A1 121, .. Ap txp] | E(Ay sy, .o, Ay s)

As just mentioned, this naive simulation fails in case object fr(z1,...,2n)
already exists in the database (because it was created by a previous new state-
ment). This problem can be circumvented by storing in an auxiliary table
Createdp for each tuple x1, ..., z, the last object o created in function of that
tuple. The above statement is then modified to test first if there was already an
object creation in function of x1,...,z,; if yes, then fr(o,x2,...,%,) is used
instead of fgr(z1,...,7,).t

To simulate the functional approach by the determinate one, it suffices to
store for each function symbol f used in the program, an auxiliary table Ry

storing the current extension of f. If fgr(xi,...,x,) is created, then, using
the new operation, a tuple (o, 21,...,2,) is stored in Ry with o an arbitrary
new domain element playing the role of fr(x1,...,z,). Further references to

fr(z1,...,zy) can then be handled by lookup in the auxiliary table.

The object-creation functions considered above are “syntactical” functions;
they form first-order terms from their arguments. This is the standard Logic
Programming approach. An alternative formalism for the functional ap-
proach to object creation, based on “semantical” functions, was presented in
[GSVG92], where the so-called tagging functions are defined. There, all object
creation happens through a single tagging function. The syntactical functional
approach is a special case of the tagging functional approach, where this tag-
ging function is simply the identity, mapping its arguments xy,...,z, to the
tuple (x1,...,2y,). (See also [VG85].) That there is one single tagging func-
tion is not a real restriction; if multiple function symbols are needed, one takes
for each such symbol f a different constant ¢y and simulates f(z1,...,2,) by
(cfaxla"'amn)'

So, object creation through the new operation, or, equivalently, functional
object creation, amounts to tuple construction. Note that this tuple construc-
tion is necessarily untyped, since the nested structure of the various tuples
is not fixed. Generalizing this observation to include the abstr operation,
which creates objects representing sets, not tuples, means moving from tu-
ples to sets. Indeed, tuples are a special case of sets by the well-known ax-
ioms: (z,y) = {{z},{z,y}} and (z1,...,2,) = (z1,(z2,...,2,)). Including
set-object creation in the functional approach could be done by introducing
set-valued functions (as in [AG91]) or set-terms (as in [Kup90]). We have thus
arrived at the important insight that object creation in IQL* can be interpreted
as untyped-set construction.

The use of untyped sets in database query languages has been studied in
the literature [DM87, HS89]. It is known that the relational calculus or alge-
bra, extended with untyped sets and recursion or iteration, is computationally
complete for all computable generic untyped-sets queries. It thus follows that
IQL* can express exactly those determinate queries that correspond to a generic
untyped-sets query. This has been made precise in [VABVGAG92], where the
constructive queries were defined as a natural subclass of the determinate ones.
Informally, a query is constructive if symmetries of the input database can
be naturally extended to symmetries of the query result. It thus follows that

4This is only one trick to circumvent the problem; others can be used as well.

P C P C

sam toto sam zaza
mary zaza mary zaza
fred nini fred nini

Figure 4: Witness.

IQL* can express exactly the constructive queries. This clarifies the incom-
pleteness of IQL* w.r.t. the determinate queries; indeed, IQL* is known to be
only determinate-complete up to copies.” One possible philosophical interpre-
tation of all this is that, a posteriori, the notion of determinacy is not quite
restrictive enough. At any rate, there does not appear to be a natural example
of a determinate, non-constructive query.

The foregoing discussion (and the presentation in [VABVGAG92]) went on
for the special case of queries. However, it can be shown that everything goes
through in general. In particular, one can consider general constructive data-
base transformations, and prove that IQL* expresses exactly all constructive
database transformations.

To conclude this section, we point out that in the functional approach,
once the object-creating function(s) have been fixed, object-creation becomes
a deterministic operation. In other words, the non-deterministic characteristic
of object creation is entirely captured in the particular choice of the function.
As a consequence, there is no problem in using the classical composition of
database transformations, as in the determinate case. Also, it is interesting to
observe that the function-terms semantics was adopted in [AB91] to study the
view-update problem in the context of object-oriented database systems.

3 Semi-determinism

IQL* is a determinate, hence nearly deterministic language. In order to express
arbitrarily non-deterministic transformations one can add the witness operation
to the language. (See [Abi88] for motivations for non-determinism, and [AV91b]
for a survey.)

Witness is a non-deterministic choice operation. Let r be a relation, and let
X be a subset of its attributes. Then Wx (r) evaluates to a sub-instance of r,
obtained by choosing exactly one representative from each class of X-equivalent
tuples of r. Here, two tuples are X-equivalent if they agree outside X.

For example, if r is the PC relation of Figure 3, then two possible results
of We(r) are shown in Figure 4. For every parent, an arbitrary child is chosen
(as a “witness” for his/her parenthood.)

Witness can be incorporated in IQL* by allowing statements of the form:

P g Wx E. The resulting language will be called NIQL* (for non-determin-
istic IQL*). It is easy to see that NIQL* is equivalent to the languages TL
[AV90] and DL* [AV91a], which are known to express exactly all computable
database transformations. So, NIQL* is well-understood, and also very power-
ful.

5In [AKS89], it was conjectured that that IQL* is fully determinate-complete, but this was
later shown to be false [Abi90, AP92].

It is interesting to consider restrictions on the unlimited non-determinism
that NIQL* programs allow. (For motivations we refer to [VABVG92].) To find
sensible such restrictions, one can get inspiration from the definition of deter-
minate transformation. That definition required that two possible outcomes of
the transformations be isomorphic, but via an isomorphism that keeps the ex-
isting objects fixed. In [VABVG92], the present authors considered a weakened
version of this qualification, for the special case of queries. The adopted quali-
fication was to require that two possible outcomes of the query be isomorphic,
but via an isomorphism that is an automorphism (also called symmetry) of the
input database. Such queries were called semi-deterministic.

Denote by SNIQLY, the sublanguage of NIQL* consisting of the programs
that express semi-deterministic queries. The class of semi-deterministic queries
exhibits a number of good properties [VABVG92]. It is therefore not surprising
that membership in SNIQL? is undecidable. Fortunately, we can replace the
witness operation by a weaker choice construct, called swap-choice, which is
guaranteed to be semi-deterministic (and still efficient to implement.) Swap-
choice was already implicit in [VABVG92]; we next define it explicitly.

Let I be a database instance and R a relation name in the scheme of I.
The swap-choice swap[C](R, I) evaluates to a unary relation with attribute C,
obtained by choosing from each equivalence class of swap-equivalent elements
of the domain of R! exactly one representative. Here, two domain elements
01,09 are called swap-equivalent if the transposition (01 02) is a symmetry of
1.

We can incorporate swap-choice in IQL* by allowing statements of the form:

P QQ swapE. We will call the resulting language SIQL*, and its restriction

to queries SIQLY. It can be shown that queries expressed in SIQL? are semi-
deterministic.

While swap-choice may seem ad-hoc at first, the following theorem gives
evidence for its naturalness. It says that in a semi-deterministic context, swap-
choice, and the set-based object creation operation abstraction, are equivalent
in expressive power. Since abstraction is naturally related to duplicate elimi-
nation in object creating languages, this result gives an intuitive technique to
remove duplicates, i.e., retain only one version of otherwise indistinguishable
objects. The theorem should also be contrasted with the result in [VdBP91]
that abstraction is primitive in IQL*.

Theorem: Swap-choice is expressible in SNIQL?, using abstraction. Con-
versely, abstraction is not primitive in SIQLY.

Proof sketch: First, observe that swap-equivalence is definable in the rela-
tional calculus. Using abstraction, equivalence classes of swap-equivalent do-
main elements are grouped together and given a unique object identifier. These
new identifiers are swap-equivalent, and using witness, representatives can be
chosen in a semi-deterministic manner.

For the converse, observe that abstraction can be simulated using new
with duplicates. These duplicates are swap-equivalent, yielding a simulation of
abstraction using new and swap. O

The above theorem suggests that swap-choice, in combination with object
creation through new, allows the specification of important data manipulation
operations. This was also suggested in [VABVG92], where it was shown how
a subclass of the counting queries (i.e., queries that involve the cardinality

of certain sets) can be expressed in SIQL? in PTIME. We have since then
substantially extended the relevant techniques, and can prove that all counting
queries can be expressed in this way. (We do not present this proof here.)
The importance of this result stems from the observation that, unlike [ASV90],
we rely only on the very weak form of non-determinism allowed by the swap-
choice operation. It is indeed well-known that unrestricted non-determinism
offers efficient expressibility of all PTIME transformations. In other words,
as far as counting applications are concerned, the usage of non-determinism
can be heavily constrained, as to appear almost deterministic, however without
sacrificing efficiency. It would be interesting to find other applications where
this is possible.

As argued in [VABVG92] and further illustrate here, object-creation is vital
in order to make semi-determinism feasible. This is especially true for queries,
on which we have focused in our discussion up to now. We next turn to the
question of how semi-determinism can be adapted to the general case of ar-
bitrary database transformations. We will not give many answers, but rather
indicate directions for further research.

We start with an example which, although trivial, demonstrates how
the use of updates admits certain counting queries to be expressed semi-
deterministically without a need for object creation. Let I be a database and
consider a query based on the number of domain elements in a number of rela-
tions of I. This query can be solved semi-deterministically by first computing
the active domain of these relations using a standard relational algebra expres-
sion. Subsequently every relation in I is dropped. We are now left with a unary
relation containing the wanted active domain. We can now order this unary
relation by repeatedly choosing elements from this unary relation. The choices
are semi-deterministic, since we choose from an unstructed set of elements.
Once the set is ordered, it is straightforward to test any PTIME-computable
property of its cardinality.

Recall that for queries, which are modeled as type-increasing transforma-
tions, semi-determinism requires that two possible outcomes of the query to the
same database I must be isomorphic, by an isomorphism that is a symmetry
of I. But note that the latter condition on the isomorphism is actually voidly
satisfied, since queries are type-increasing. When applying the same definition
to arbitrary transformations, the condition becomes a real additional require-
ment. Formally, the requirement becomes: the isomorphism from J; to Jo
must map I N.J; to I'N.Jy, where J; and .J5 are the two possible outcomes. For
this definition to be workable, it needs to satisfy a reasonable compositionality
criterion. At the end of Section 2 we gave such a criterion for determinate
transformations. Since the semi-determinate transformations ought to include
the determinate transformations, the searched for criterion needs to be at least
as restrictive.

The following example puts a damper on the above proposal for semi-deter-
ministic transformation. Let T; be the determinate transformation which adds
to a unary relation S as many new elements as it originally contained:®

Ty = S <= pssmanew[A](S).

Furthermore, let T> be the transformation which deletes an arbitrary element

6pass denotes a renaming.

from a unary relation S:

T, = S < swap(9).

Obviously, 77 and T» are semi-deterministic according to the above proposal.
However, when T} ; T, (defined as in the determinate case) is applied to a single-
ton relation S = {(a)}, a possible result of T1(S) is {(a), (b)}, and therefore two
possible results of T1; T5(S) are {(a)} itself and {(b)}, which obviously violates
the proposed requirement (since the intersection of S with the second result is
empty, while the intersection with the first one is not).

Another possible natural generalization of the notion of semi-determinism
from queries to updates is to simply require that two possible results are plainly
isomorphic. In this case, compositionality is not a problem. In fact, even the
classical composition can be used then.

Many other candidate definitions for semi-deterministic database transfor-
mation can be considered. For any of them, apart from the compositionality
problem, there is another issue that must be taken into account: completeness.

Indeed, for the special case of queries, it can be shown that there exists
a decidable sublanguage of SNIQL? that is semi-deterministic-complete. This
can be shown using the strategy to prove that IQL* is determinate-complete up
to copies [AK89]. In contrast to the determinate situation, these copies do not
pose a problem in a semi-deterministic setting, since they are isomorphic and
can be eliminated in a semi-deterministic manner.” One can furthermore prove
that the determinate strategy produces “sufficiently many” possible results;
this is in turn not an issue in the determinate setting.?

Clearly, it is desirable to achieve semi-deterministic completeness also in the
general database transformation case. This is a challenging open problem.

We conclude with the remark that in principle, semi-determinism can also
be considered in the functional approach to object creation. However, in con-
trast to the determinate case, where the functional approach was not essentially
different from the determinate approach, it is our belief that with respect to
semi-determinism, there is is a fundamental difference between the two ap-
proaches. In particular, none of the main theorems presented here and in
[VABVGI2] seem to hold for the functional approach.

Acknowledgment

We are indebted to Marc Gyssens for inspiring discussions on the issues of
compositionality of determinate database transformations and the completeness
of SNIQLY.

References

[AB91] S. Abiteboul and A. Bonner. Objects and views. In J. Clifford
and R. King, editors, Proceedings of the 1991 ACM SIGMOD

"This description is a gross simplification.
8We have indeed been able to settle the open problem mentioned in [VABVG92, page 198]
affirmatively, contrary to the intuition expressed there.

[Abigg]

[Abi90]
[AGO1]

[AK89)

[AP92]

[ASV90]

[AUT9]

[AVSS]

[AV90)]

[AVO91a]

[AVO1b]

[BNR*87]

International Conference on Management of Data, volume 20:2
of SIGMOD Record, pages 238-247. ACM Press, 1991.

S. Abiteboul. Updates, a new frontier. In M. Gyssens,
J. Paredaens, and D. Van Gucht, editors, ICDT’88, volume 326
of Lecture Notes in Computer Science, pages 1-18. Springer-
Verlag, 1988.

S. Abiteboul. Personal communication, 1990.

S. Abiteboul and S. Grumbach. A rule-based langauge with
functions and sets. ACM Transactions on Database Systems,
16(1):1-30, 1991.

S. Abiteboul and P. Kanellakis. Object identity as a query
language primitive. In J. Clifford, B. Lindsay, and D. Maier,
editors, Proceedings of the 1989 ACM SIGMOD International
Conference on the Management of Data, volume 18:2 of SIG-
MOD Record, pages 159-173. ACM Press, 1989.

M. Andries and J. Paredaens. A language for generic graph-
transformations. In Graph-Theoretic Concepts in Computer
Science, volume 570 of Lecture Notes in Computer Science,
pages 63-74. Springer-Verlag, 1992.

S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic lan-
guages to express deterministic transformations. In PODS
[PODI0], pages 218-229.

A.V. Aho and J.D. Ullman. Universality of data retrieval lan-
guages. In Proceedings of the ACM Symposium on Principles
of Programming Languages, pages 110-120, 1979.

S. Abiteboul and V. Vianu. Equivalence and optimization of
relational transactions. Journal of the ACM, 35:70-120, 1988.

S. Abiteboul and V. Vianu. Procedural languages for data-
base queries and updates. Journal of Computer and System
Sciences, 41(2):181-229, 1990.

S. Abiteboul and V. Vianu. Datalog extensions for database
queries and updates. Journal of Computer and System Sci-
ences, 43(1), 1991.

S. Abiteboul and V. Vianu. Non-determinism in logic-based
languages. Annals of Mathematics and Artificial Intelligence,
3:151-186, 1991.

C. Beeri, S. Nagvi, R. Ramakrishnan, O. Shmueli, and S. Tsur.
Sets and negation in a logic database language. In Proceedings
of the Sizth ACM Symposium on Principles of Database Sys-
tems, pages 21-37. ACM Press, 1987.

[DM87]

[GPVG0]

[GSVG92)

[HS89)]

[HS91a]

[HSO1b]

[Hul86]

[HWWY91]

[HY90]

[HY91]

[Kup90]

[KW89)]

[PODS9)

E. Dahlhaus and J.A. Makowsky. Computable directory
queries. In Logic and Computer Science: New Trends and Ap-
plications, Rend. Sem. Mat. Univ. Pol. Torino, pages 165-197.
1987. An extended abstract appears in LNCS 214.

M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented
object database model. In PODS [POD90], pages 417-424.

M. Gyssens, L.V. Saxton, and D. Van Gucht. Tagging as an
alternative to object creation. In D. Maier and G. Vossen,
editors, Query Processing in Object-Oriented, Complex-Object
and Nested Relation Databases. Morgan Kaufmann, 1992. To
appear.

R. Hull and Y. Su. Untyped sets, invention, and computable
queries. In PODS [POD89], pages 347-359.

A. Heuer and P. Sander. Classifying object-oriented query re-
sults in a class/type lattice. In B. Thalheim, J. Demetrovics,
and H.-D. Gerhardt, editors, MFDBS 91, volume 495 of Lec-
ture Notes in Computer Science, pages 14-28. Springer-Verlag,
1991.

A. Heuer and P. Sander. Preserving and generating objects in
the Living In A Lattice rule language. In Proceedings Seventh
International Conference on Data Engineering, pages 562—-569.
IEEE Computer Society Press, 1991.

R. Hull. Relative information capacity of simple relational
schemata. SIAM Journal on Computing, 15(3):856-886, 1986.

R. Hull, S. Widjojo, D. Wile, and M. Yoshikawa. On data
restructuring and merging with object identity. IEEE Data
Engineering, 14(2):18-22, June 1991.

R. Hull and M. Yoshikawa. ILOG: Declarative creation and
manipulation of object identifiers. In D. McLeod, R. Sacks-
Davis, and H. Schek, editors, Proceedings of the 16th Interna-
tional Conference on Very Large Data Bases. Morgan Kauf-
mann, 1990.

R. Hull and M. Yoshikawa. On the equivalence of database
restructurings involving object identifiers. In PODS [POD91],
pages 328-340.

G. Kuper. Logic programming with sets. Journal of Computer
and System Sciences, 41(1):44-64, 1990.

M. Kifer and J. Wu. A logic for object-oriented logic program-
ming (Maier’s O-logic revisited). In PODS [POD89], pages
379-393.

Proceedings of the Eighth ACM Symposium on Principles of
Database Systems. ACM Press, 1989.

[PODY0)]
[POD91]

[TF86]

[VdBP91]

[VABVG92]

[VABVGAG92]

VG835

[Zan89]

Proceedings of the Ninth ACM Symposium on Principles of
Database Systems. ACM Press, 1990.

Proceedings of the Tenth ACM Symposium on Principles of
Database Systems. ACM Press, 1991.

S. Thomas and P. Fischer. Nested relational structures. In
P. Kanellakis, editor, The Theory of Databases, pages 269-307.
JAT Press, 1986.

J. Van den Bussche and J. Paredaens. The expressive power of
structured values in pure OODB’s. In PODS [POD91], pages
291-299.

J. Van den Bussche and D. Van Gucht. Semi-determinism. In
Proceedings 11th ACM Symposium on Principles of Database
Systems, pages 191-201. ACM Press, 1992.

J. Van den Bussche, D. Van Gucht, M. Andries, and
M. Gyssens. On the completeness of object-creating query
languages. In Proceedings 33rd Symposium on Foundations
of Computer Science, pages 372-379. IEEE Computer Society
Press, 1992.

D. Van Gucht. Theory of unnormalized relational structures.
PhD thesis, Vanderbilt University, 1985.

C. Zaniolo. Object identity and inheritance in deductive
databases—an evolutionary approach. In W. Kim, J.-M. Nico-
las, and S. Nishio, editors, Proceedings 1st International Con-
ference on Deductive and Object-Oriented Databases, pages 2—
19. Elsevier Science Publishers, 1989.

