
Methods and Views

�extended abstract�

Jan Van den Bussche

Limburgs Universitair Centrum
Department WNI
B����� Diepenbeek

Belgium
vdbuss�luc�ac�be

Emmanuel Waller

Universit	e de Paris�Sud
LRI

F��
��� Orsay Cedex
France

waller�lri�fr

Abstract

Many papers have been written on the structural aspect of view mecha�
nisms for object�oriented databases� A clean model that focuses speci�cally
on the interplay between methods and views� however� is still lacking� This
paper addresses this problem� First� an abstract model of behavioral views
is introduced� from which it becomes clear that the main issue is to allow
transfer of control of a computation between the root database and the view�
Hence� good primitives for specifying such transfers are needed� A speci�ca�
tion formalism for this purpose is presented in the paper and implemented on
top of the formalism of method schemas� Correctness issues that arise in this
context are explored� and a general result on the possibility of automated
veri�cation of behavioral views is proven�



� Introduction

The importance of views in database applications is generally recognized� As Abite�
boul and Bonner argued most eloquently �AB���� this applies no less to object�oriented
database systems� The literature on OO views is considerable� for a survey� see �KK�	��

The motivation for the present paper stems from the observation that most of the
work on OO views has focused primarily on the structural aspects� The purpose of
this paper is to contribute towards a formalization of the behavioral aspect� Put very
roughly� we want to capture and formalize the mechanisms for deriving new methods
from old methods that are useful in view speci�cation� Designers and developers of OO
view systems currently lack a guiding model in this important direction�

To make clear exactly what we have in mind with behavioral views� we �rst introduce
an abstract model� in which a view is de�ned in general as a mapping� The possible
inputs and possible outputs of a view mapping are carefully calibrated so as to model
as faithfully as possible what happens in practice�

Towards a concrete realization of our abstract model� we propose two basic prim�
itives
 import of values� used to call a method in the root database and import the
resulting object to the view� and import of code� used to import the code of a method
de�ned in the root database and execute it in the view� Using these two primitives� com�
bined with writing new methods in the view that can call imported methods� one can
model arbitrarily complicated computations in which control can be transferred back
and forth between the root database and the view� Our conviction that the primitives
of value import and code import are �necessary and su�cient
 is supported by exten�
sive programming experience with one of the few industrial�strength OO view systems
currently available� namely O�Views �SdS�	���

From the outset� our view speci�cation mechanism is independent of any particular
programming model� Yet� in order to be able to concretely assess the rami�cations of our
mechanism� we have implemented it on top of the formalism of method schemas� Method
schemas ��AKW��� AKRW�	�� see also �AH�	� HKR��� Wal���� provide a formalization
of object�oriented database programming using methods� in much the same way that
the classical formalism of program schemes �Cou��� does for classical programming�

In this concrete context� we then explore the various correctness issues that arise in
connection with behavioral views�

The import of code is a very powerful mechanism which can unavoidably lead to
run�time errors during execution of view methods� However� we show that when the
code of the methods de�ned in the root database is known� consistency checking of a
view over a method schema �i�e�� checking whether view code never leads to a run�time
error� is no more di�cult than consistency checking of an ordinary method schema� The
latter problem was studied in depth by Abiteboul et al�� in general it is undecidable� but
useful special cases �the monadic case� and the recursion�free case� have been identi�ed
where it becomes decidable� By our result� decidability for these decidable cases �and
others that would be discovered� carries over to the context of views�

As already indicated� our approach is characterized by an almost exclusive focus on
the behavioral aspect of OO views� Consequently� our core model is independent of the
particular query language used to de�ne the population of the classes in the view� All
our formalism assumes about populations is that some class correspondence is given�
which speci�es for each view class from which root classes it can be populated�

�Another such system is MultiView �KR����

�



We �nally mention here that our model is independent also of the particular way the
class hierarchy in the view is determined� Various approaches to automated inference
of the view class hierarchy have been described in the literature �e�g�� �AB��� Run���
SLT�����

The further organization of this paper is as follows� Section � recalls the basic
notions concerning method schemas� Section � presents an abstract model of behavioral
views� Section � de�nes our extension to method schemas to realize this abstract model�
Section 	 deals with consistency checking� Section � concludes by discussing possible
extensions to our core formalism�

� Preliminaries on method schemas

In this section we informally recall the vocabulary and basic notions concerning method
schemas�� While this extended abstract is largely self�contained� we provide the formal
de�nitions concerning method schemas in Appendix A�

Syntax� We distinguish between two kinds of methods
 base methods and coded meth�

ods�
Base methods are extensionally stored functions which can be thought of as built�

in� or as stored attributes with arguments� Base methods are declared with an output
type� which is a union of class names� For example� transport�Person�Destination 
 Car
� Plane is the declaration of a base method transport which when applied to a Person
and a Destination� yields either a Car or a Plane as result �which could also be an object
belonging to a subclass of Car or Plane��

The most basic part of an OODB schema� namely� the class hierarchy �modeled here
as a partial order on class names� and the base method method declarations� is called
a pre�schema� In a pre�schema� a base method name may appear in several di�erent
declarations� So� using OO terminology� we can have overriding of base methods� An
example of a pre�schema is the following
 �this example does not use overriding of base
methods�

Class names
 Int � Base part � Part � and Part list �
Hierarchy
 Base part � Part

Base method declarations
 sum�Int � Int 
 Int �
head�Part list 
 Part �
tail�Part list 
 Part � Part list �
price�Base part 
 Int �
subparts�Part 
 Part list �
assembly cost�Part 
 Int �

We next turn to coded methods� We use a simple functional programming paradigm�
where all we can do in a method body is to call other methods� So a method body
is nothing but a term built up from variables using method calls� A coded method
de�nition thus consists of a declaration m�c�� � � � � cn with method name and input
classes� and a body �x�� � � � � xn�t� A collection of coded method de�nitions over some

�Our presentation di�ers slightly from the original one �AKRW���� We also make an inessential
extension to the original formalism� namely union types in base method declarations� which will turn
out to be useful in Section ��

�



pre�schema is naturally called a behavior for that pre�schema� An example of a behavior
for our example pre�schema is the following


cost�Part � �x�sum�assembly cost�x�� cost �subparts�x����
cost�Base part � �x�price�x��
cost�Part list � �x�sum�cost�head �x��� cost �tail�x����

Note the use of overriding and recursion� Of course in general a behavior will contain
de�nitions for many di�erent method names� not just one as in this example�

A method schema now consists of a pre�schema together with some behavior� We
require that the set of names of base methods is disjoint from the set of names of coded
methods�

Semantics� Intuitively� each class is a set of objects� Each object belongs to a unique
class� and has no visible structure� all information about the object has to be obtained
via its methods� As already mentioned� base methods are stored functions� If a class d
is speci�ed in the output type of a base method declaration� this means that the result
of the method can be an object of class d or one of its subclasses� The mapping of
class names to sets of objects� and of method names to functions is naturally called an
instance�

The inheritance mechanism� which applies to base methods as well as to coded
methods� is the standard one based on late binding� If there is no� or no unique�
resolution� the method call fails�

The semantics of coded methods is de�ned in a simple operational manner� using
rewriting of instantiated terms� For example� continuing our earlier example� if o is a
Part that is not a Base part� with assembly cost ��� and the �rst subpart of o is o��
which is a Base part� with price �	� then the computation sequence of cost�o� starts
with the following rewritings
 �� is the list of subparts of o�

cost�o� � sum�assembly cost�o�� cost �subparts�o��� � sum���� cost �subparts�o���
� sum���� cost ���� � sum���� sum�cost�head ����� cost �tail ������

� sum���� sum�cost�o��� cost�tail������ � sum���� sum�price�o��� cost �tail������
� sum���� sum��	� cost �tail������ � � � �

Note that in every rewriting step we always replace the leftmost occurrence of what is
called the �rst redex� A redex is an instantiated term of the simple form m�o�� � � � � on��
with o�� � � � � on objects� the �rst redex is the leftmost occurring redex� Should at some
point a method call fail� the whole instantiated term is replaced by the error symbol �
and the rewriting stops�

� An abstract model of behavioral views

In general one might call a view behavioral if it contains not only classes and attributes
�base methods�� but also behavior �coded methods�� However� just as ordinary views
are only interesting if the view classes and attributes depend in some way on the classes
and attributes from the root database over which the view is de�ned� behavioral views
are only interesting if the behavior in the view depends in some way on the behavior in
the root database�

�



Example ��� Consider a database of an insurance company with a class Client � Each
Client has attributes city � risk � and age �and possibly others�� There is a coded method
fee which computes the insurance fee of a Client by some complicated formula depending
on the age and risk of the Client�

Now suppose the company considers doubling the risk of every Client living in Paris�
This can be easily simulated using a behavioral view� The view has a class Parisien
containing all Clients living in Paris� We de�ne a view attribute old risk of Parisiens
which equals simply the value of the attribute risk in the root database� We then de�ne
a new coded method in the view


risk�Parisien � �x�double�old risk�x���

Finally we import the code of the method fee from the root database into the view�
This view has several advantages� It has all the advantages of ordinary views
 for

example� if a Client moves to Paris he will automatically show up in the view with
the right value for old risk � But it has also the additional advantage that the formula
used to compute fees is exactly the same in the view as in the root database� If this
formula is changed� the view will adapt automatically� Hence this view can truly be
called �behavioral
�

In the method schema model as de�ned in the previous section� an instance of a
method schema actually depends only on the underlying pre�schema of that method
schema� In other words� the contents of the classes and the interpretations of the base
methods can change� but the behavior is �xed� However� we have just argued that �xed
behavior is too restrictive for modeling behavioral views�

This motivates the following new de�nitions


De�nition ��� A root schema R is like a method schema� except that the bodies of
coded methods have been omitted� So� from each coded method de�nition m�c�� � � � � cn
� �x�� � � � � xn�t we simply retain the declaration m�c�� � � � � cn�

De�nition ��� Let R be a root schema� A root instance of R consists of an instance
of the underlying pre�schema S� together with a behavior over S supplying a body to
each coded method declaration in R� So� each coded method declaration m�c�� � � � � cn
in R is completed into a de�nition of the form m�c�� � � � � cn � �x�� � � � � xn�t�

Now that we have de�ned the input to a view �root schema and instance�� what is
the output of a view� We take the position that the output of a view should appear to
the user of the view simply as an ordinary instance� Moreover� every method de�ned
by the view output should appear to him as a base method� although internally its
behavior may be arbitrarily complicated� The user can then use the view by adding his
own coded methods on top of these �base methods
� So� on the most abstract level� we
de�ne


De�nition ��� Let R be a root schema� and let V be a pre�schema� called the view

schema� A view from R to V is a mapping from the root instances of R to the instances
of V �

Observe that the view schema is entirely independent of the root schema� or� put di�er�
ently� there are no restrictions on how the view schema can look like� This is actually

�



quite normal� yet� another approach� which is often encountered in the literature� is
to try to force the view schema within the root schema� We believe such an approach
is mistaken in that it mixes up syntax and semantics� As shown in Example B�� in
Appendix B� there are natural situations where the view hierarchy is even the exact
opposite of the root hierarchy�

Note that a view mapping can be split into two independent parts
 one determin�
ing the interpretations of the methods in the view� called the view behavior� and one
determining the contents of the classes in the view� called the view population�

A view population is nothing but a family of queries� for each class name c in V

we specify a query qc such that for each root instance I� qc�I� is the content of class
c in the view applied to I� These queries may depend on the behavior part of I in a
limited manner
 for example� in a standard OO query language such as OQL� one can
call methods in queries�

As already motivated by Example ���� the view behavior will need more dependence
on the root behavior than simply calling methods and getting results back� How these
dependencies can be speci�ed is the subject of the next section�

� Specifying view behavior

In this section we show how by adding two new primitives we can turn method schemas
into a view behavior speci�cation language� The two new primitives also make sense for
programming formalisms di�erent from method schemas�

Value import� Our �rst primitive is called value import� Recall Example ���� where
we de�ned a property old risk of Parisiens as being equal to the value of their property
risk in the root database� This is an example of view method de�nition by value import�
We will denote it syntactically as follows


old risk�Parisien � import value risk �

In this example� risk is a base method in the root database� but value import can
equally well be applied to coded methods in the root database� In that case the result of
the coded method applied to the view objects is computed entirely in the root database�
before it is imported into the view�

Code import� Our second primitive is called code import� Consider again Exam�
ple ���� where we import the code of root method fee into the view� with the intention
of executing it in the view� Since risk is rede�ned in the view� this execution will yield
a di�erent result than when we would have simply performed an import value on fee�

Syntactically� we can specify this example as follows
�

new fee�Parisien � import code fee with �age 
 import value��

What is the purpose of the with�clause� It is what we call a code import speci�cation�
The names of the root methods called in an imported code might also be names of
view methods �indeed� otherwise import code would make no sense�� Hence� we must
specify for these method calls how they are to be interpreted
 simply in the view� or as

�We could also have reused the name fee in the view instead of inventing a new name new fee�

	



an import value� or in turn as an import code� In this example� the root methods
in question are age and risk 
 the code import speci�cation speci�es that the call to
age in the code of fee is to be interpreted as an import value� The name risk is not
mentioned in the speci�cation� meaning that it is to be interpreted in the view �this is
the default��

General syntax of view behaviors� Of course in general� we do not know exactly
which root methods are called in an imported code� �Indeed� if we knew what was in
the root code� we would not have to import it� we could just copy it verbatim into the
view�� So in general we de�ne a code import speci�cation on all method names in the
root schema� Moreover� if some code import speci�cation speci�es some root method
call as import code as well� we need a speci�cation for that code import in turn�
However� since methods can be recursive� this speci�cation process can go on in�nitely�
To solve this problem� we de�ne one global collection of code import speci�cations� with
cross�references between them� as follows


De�nition ��� Let R be a root schema� and let M be the set of method names in R�
A global code import speci�cation over R is a mapping � on an initial segment f�� � � � � ng
of the natural numbers� such that for each i � f�� � � � � ng� �i is a partial function from
M to fivg � �ficg � f�� � � � � ng��

Here� �iv� stands for import value� and �ic� stands for import code� Observe how each
i � f�� � � � � ng serves as an �identi�er
 for a concrete code import speci�cation within the
global speci�cation� to which others can refer� It will be convenient to use the notation
i � � to denote that i is an identi�er in the global code import speci�cation ��

We are now ready to de�ne view behaviors formally


De�nition ��� Let R be a root schema� and let V be a view schema� A view behavior

for V over R consists of a global code import speci�cation � over R� and a set � of view
method de�nitions which can have one of the following three forms


�� m�c�� � � � � cn � import value m�� where m is a method name in V � c�� � � � � cn are
class names in V � and m� is a method name in R�

�� m�c�� � � � � cn � import code m� with i� where i � ��

�� m�c�� � � � � cn � �x�� � � � � xn�t� where t is a term built up from the variables
x�� � � � � xn using method names in V �this is a coded method de�nition as in
ordinary method schemes��

Corresponding to each view method declaration in V � there must be precisely one view
method de�nition in the view behavior�

Let us �x a view behavior ��� �� in the following de�nitions�

Formal semantics of view behaviors� The semantics of view behaviors is de�ned
operationally using rewriting� as in ordinary method schemas� However now� the rewrite
system is a bit more complicated due to the transfers of control between the root
database and the view that can take place during the execution of a view method�

�



Assume given a root instance I � �I�� ��� of the root schema R� where I� is the
underlying instance and �� the underlying behavior�

Instantiated terms can now be built up from objects in I� using method names of R
or the view schema V � Additionally� each internal node of an instantiated term �viewed
as a tree in the obvious way� may�but does not have to�carry a label 
 this label can
be either iv or of the form �ic� i� with i � ��

Assume further given a view population � from R to V � We now de�ne the reductions
�steps� of the rewrite system


De�nition ��� Let t be an instantiated term that is not an object� The reduction of

t� denoted by ��t�� is de�ned as follows�� Let r � m�o�� � � � � on� be the �rst redex of t�
Let l be the label� if existing� of the leftmost occurrence of r in t�

If l is not there� this means reduction must be carried out in the view itself� Let ci
be the class to which oi belongs in ��I�� for i � �� � � � � n�

� If for some i� ci does not exist� because oi is actually outside ��I�� then ��t� is
unde�ned� We denote this by ��t� � ��

� If every ci exists� but m is not well�de�ned at c�� � � � � cn in V � then ��t� is also
unde�ned� We denote this by ��t� � ��

� Ifm is well de�ned at c�� � � � � cn in V � with resolutionm�c��� � � � � c
�
n� letm�c��� � � � � c

�
n

� s be the associated de�nition in �� We distinguish the following cases� corre�
sponding to those in De�nition ���


� s is of the form import value m�� Then ��t� is obtained from t by replacing
the leftmost occurrence of r in t by m��o�� � � � � on�� and labeling it iv�

� s is of the form import code m� with i� Then ��t� is obtained from t by
replacing the leftmost occurrence of r in t by m��o�� � � � � on�� and labeling it
�ic� i��

� s is of the form �x�� � � � � xn�t
�� Then ��t� is obtained from t by replacing

the leftmost occurrence of r in t by t��o�� � � � � on�� No additional labeling is
performed�

If l is iv� ��t� is obtained from t by replacing the leftmost occurrence of r in t by its
reduction in I �which could be an object� if m is a base method in I� or a new term�
if m is a coded method�� in which all internal nodes are again labeled iv� this yields a
computation in the root database�

If l is �ic� i�� ��t� is also obtained from t by replacing the leftmost occurrence of r in
t by its reduction in I� in which we now label each internal node as speci�ed by �i�

In the last two cases� the reduction in I may not be de�ned� in this case ��t� is also
unde�ned which we denote again by ��t� � ��

If ��t�� � t� we will denote this by t� � t�� The transitive closure of � is denoted by
���

Example ��� In the view described in Example ���� suppose o is a Client living in
Paris� aged �� and having a risk factor of ��� Suppose the de�nition of fee in the root

�Actually� ��t	 depends on I� �� �� and �� so formally we should write �I�������t	�

�



behavior is fee�Client � �x �sum�age�x �� risk �x ��� In this simple example� the global
code import speci�cation � consists of only one identi�er with �� � fage �� ivg� �We
naturally assume the class Int with all its methods such as sum and double to be part
of the view�� Then in the view we have the following rewriting sequence


new fee�o� � fee�ic����o� � sum�age iv�o�� risk �o�� � sum���� risk �o��
� sum���� double�old risk�o��� � sum���� double�risk iv�o��� � sum���� double�����

� sum���� ��� � ���

Some expressiveness considerations� The power of the code import mechanism is
unleashed only in combination with the writing of new code in the view� Otherwise�
code import degenerates to value import� as shown next


Proposition ��� A view behavior in which the global code import speci�cation speci�es

everything either as iv or ic� is equivalent to the same view behavior in which every

code import has been replaced by a value import�

The proof is based on two observations
 �i� root coded methods eventually call root
base methods� and �ii� code import of a root base method is equivalent to value import
of that method�

Observation �ii� actually implies also that value import can be simulated using code
import


Proposition ��� Every view behavior is equivalent to one that does not use value im�

port�

Indeed� we can add to � the �constant
 code import speci�cation i� with �i��m� � �ic� i��
for each root method m� We can then replace every import value by an import code

with i�� and every iv by �ic� i���

The above proposition indicates that we could have omitted value import altogether
from our formalism� Of course� we have not done this because we feel that value im�
port and code import must be highlighted as two distinct ways of depending on a root
behavior� That the former can be simulated using the latter is then merely an added
bonus�

� Verifying view speci�cations

A speci�cation of a view from a root schema R to a view schema V consists of a view
population and a view behavior� Various properties have to be satis�ed in order for
this to correctly de�ne a view in the abstract sense of De�nition ���� In this section we
discuss these properties and their possible automated veri�cation�

Here is the correctness criterion for behavioral views	 For every view method

m� for any view classes c�� � � � � cn at which m is well de�ned in V � for every root instance

I� and for any objects o�� � � � � on such that oi � ��I��ci� for i � �� � � � � n� we want the

existence of an object o such that m�o�� � � � � on� �
� o and o � ��I��d�� for some view

class d appearing in the output type of the resolution of m�c�� � � � � cn in V �

This correctness criterion has many di�erent aspects


�



Closure	 View methods must always return objects themselves in the view� More
precisely� for any m and o�� � � � � on as above� we never want m�o�� � � � � on� �

� �
�cf� De�nition ����� and neither m�o�� � � � � on� �

� o for an object o not in ��I��

Consistency	 We never want m�o�� � � � � on� �
� ��

Termination	 We never want the rewriting sequence starting from m�o�� � � � � on� to be
in�nite�

Typing	 Even if m�o�� � � � � on� rewrites to an object in the view in a �nite number of
steps� that object should belong to one of the output classes given in the appro�
priate declaration of m�

That closure may be violated is a consequence of our approach in which view
population and view behavior can be speci�ed independently� Other approaches found
in the literature couple these two� using some kind of default semantics which guarantees
closure� Unlimited �exibility is what we get for the price �possible closure violation� we
pay� In fact� this price is not so high� After all the builder of the view should know
exactly what he wants to be seen in the view� so that ensuring closure should not pose
a problem in practice� Example B�� in Appendix B gives an illustration of the closure
�problem
�

Similar remarks apply to the typing aspect of view correctness�
The aspects of consistency and termination� however� are of a di�erent nature�

Inconsistencies or non�terminations are essentially bugs which must be captured� They
can show up in the root instance as well as in the view behavior� Although a bug�free
view on a buggy root instance is in principle possible �if the bugs in the root are not
reachable from the view�� in general it is helpful and not unreasonable to assume the
following


Assumption � We only consider root instances which� considered in isolation� are free

of inconsistencies and non�terminations�

Automated veri�cation of ordinary method schemas was investigated in some depth
by Abiteboul et al� �AKRW�	�� The general problems are undecidable� but for spe�
ci�c cases� namely monadic schemas� or recursion�free schemas� useful techniques were
developed which can be directly applied to help support the above assumption�

In what follows we will focus on the consistency problem� but techniques for consis�
tency checking can typically be applied as well to termination analysis�

View consistency is not quite similar to ordinary method schema consistency� In
ordinary method schemas one quanti�es over all possible instances� If however we do
the analogous for views� we never get consistency �except in trivial cases such as views
having only one class or always�empty populations�


Proposition ��� Every non�trivial view speci�cation will be inconsistent on some root

instances�

A sketch of the proof� with a working de�nition of �non�trivial
� is given in Appendix B�
So� consistency in general is hopeless for behavioral views� As a consequence� for the

purpose of consistency checking only� we must turn to the following situation


Assumption � The root behavior is �xed and known�

�



Having set up the necessary assumptions� our goal is to substantiate the following


Theorem ��� Consistency checking of behavioral views can be reduced to consistency

checking of ordinary method schemas�

We �rst have to agree in what form the view speci�cation is presented to the con�
sistency checker� For the view behavior this is clear from De�nition ���� For the view
population� this is less clear
 all we know about a view population is that it is a family
of queries� The approach we take here is not to tie ourselves to one particular query
language� but rather to depart from a more abstract description of the view population�
which merely indicates how the view classes relate to the root classes� Thereto we de�ne


De�nition ��� A class correspondence between root schema R and a view schema V

is a binary relation from the set CR of class names in R to the set CV of class names in
V �i�e�� a subset of CR � CV ��

A population � satis�es a class correspondence 	 if for each root instance I with
underlying instance I�� and for each c � CV � we have ��I��c� 	

S
fI��c

�� j �c�� c� � 	g�

In other words� a population satis�es 	 if each object belonging to a view class c belongs
to some root class c� such that �c�� c� � 	�

Note that� if the population queries are expressed in recursion�free Datalog� it is
e�ectively decidable whether a given population satis�es a given class correspondence�
using query containment tests �Ull��� AHV�	�� Alternatively� one may express popula�
tion queries using a many�sorted logic �with the root class names as the sorts�� in which
the required containments can be syntactically enforced�

We can now present


Algorithm Consistency checking�

Input	 A class correspondence 	 and a view behavior ��� ���

Output	 An ordinary method schema that is consistent if and only if the view behavior
is consistent for all populations satisfying 	�

Description	 We begin by ��attening
 V and �� This means that we explicitly add
the resolutions of all view method de�nitions at all classes where they are well
de�ned� The class hierarchy in V is now no longer needed� We similarly �atten R

and the root behavior�

We now de�ne the desired method schema S� The set of class names equals 	�
The intuition behind a class �c�� c� � 	 is that it stands for the objects in view
class c coming from root class c��

Every coded view method de�nition of � at some class� c� is incorporated in S at
all classes of the form �c�� c� � 	�

For every method name m� in R� every class �c�� c� � 	 such that m� is well de�ned
at c�� and every i � �� we do the following


�� Determine the set P � of possible output classes in the root behavior of a
method callm�x� with x in class c�� Let P 
� fd � CV j 
c� � P � 
 �c�� d� � 	g�
Then add the base method declaration m�

iv
��c�� c� 


S
d�P d to S�

�For the sake of notational simplicity� we consider only methods having only one argument�

��



�� �We do this only if m� is coded�� Let the de�nition of m��c� be �x�t�� and let
t��i� be t� in which every occurring method name � on which �i is de�ned� is
replaced by ��i���� Then we add the coded method de�nition m�

�ic�i���c�� c� �

�x�t��i� to S�

Now every view method de�nition in � of the form m�c � import value m�

is incorporated in S by adding the calls m��c�� c� � �x�m�
iv
�x� at each class

�c�� c� � 	� So in e�ect we have changed a value import into a call to a virtual base
method�

Similarly� every view method de�nition in � of the form m�c � import code m�

with i is incorporated in S by adding the calls m��c�� c� � �x�m�
�ic�i��x� at each

class �c�� c� � 	�

A detailed proof of correctness of this algorithm has been omitted from this extended
abstract� however� we make the following remarks


�� The only non�constructive step in the algorithm is the determination of the out�
put type P � of a given method call in the root behavior� The root behavior forms�
together with the root schema� an ordinary method schema� The crucial obser�
vation now is that the known techniques for method schema consistency checking
�AKRW�	� can be adapted for output type inference� �Actually� conversely� one
can even prove in general that consistency checking and termination analysis of
method schemas can be reduced to output type inference��

�� A second crucial observation is that the algorithm does not change the �nature

of the codes used in the view or root behavior� More speci�cally� if the methods in
the input to the algorithm are monadic� or recursion�free �the two concrete cases
where consistency checking is decidable �AKRW�	��� then so are the methods in
the output�

We can thus conclude that we indeed have established a reduction from view consistency
to ordinary consistency� at least for those cases where the latter problem is known to be
decidable�	 Hence� Theorem 	��� under this interpretation� is proven�

� Concluding remarks

We hope the formalization we have presented will be useful to designers and developers
of OO view systems� who were lacking a guiding model of especially the behavioral
aspects of such systems�

One can easily imagine useful variations of our two core primitives import value

and import code� One such variation is what could be called overloaded value import 

try �rst to resolve a given method call in the view� and if this fails� try second to import
its value from the root�

One can also imagine extensions to the basic programming model provided by
method schemas that are useful in view programming� One such extension is a case

statement� by which we can discriminate the actions to be performed on some view
object on the basis of the root class it comes from� Note that extensions like this one do

�Technically speaking� the reduction is a Turing reduction rather than a many
one reduction�

��



not necessarily increase the expressive power of the formalism� for example� such case

statements can alternatively be implemented using auxiliary methods that are added to
the root database before construction of the actual view�

Our core model can be also extended to capture OO view features suggested by
Abiteboul and Bonner �AB���� which space limitations prevented us from discussing in
this extended abstract� For example


Hiding	 It is straightforward to allow for certain parts of the view schema to be hidden
to the user of the view� This is desirable� e�g�� for auxiliary methods used in the
construction of the view� �A good example is the method old risk in Example �����

Object creation	 This is well understood from the theory of OO query languages
�e�g�� �AK��� VdBVGAG����� one creates a new object as a function of a tuple
of existing objects� For example� consider Family objects created as a function
of �father�mother� pairs� We can easily model such an example by augmenting
the root database� before actual view construction� with an intermediate layer
holding the class Family and base method declarations father�Family 
 Person
and mother�Family 
 Person� Now view construction proceeds as usual� The
system of course has to keep track of what is in the real root database and what is
in the intermediate layer of newly created objects �tabulation techniques for this
purpose were described by Abiteboul and Bonner� who referred to newly created
objects as �imaginary
��

Acknowledgments

We are indebted to Cassio Souza dos Santos for his contributions to the early stages of
this research� We also thank Claude Delobel for a number of inspiring discussions�

References

�AB��� S� Abiteboul and A� Bonner� Objects and views� In J� Cli�ord and
R� King� editors� Proceedings of the ���� ACM SIGMOD International

Conference on Management of Data� volume ��
� of SIGMOD Record�
pages ��� ���� ACM Press� �����

�AH�	� S� Abiteboul and G� Hillebrand� Space usage in functional query lan�
guages� In G� Gottlob and M�Y� Vardi� editors� Database Theory�

ICDT	�
� volume ��� of Lecture Notes in Computer Science� pages
��� �	�� Springer�Verlag� ���	�

�AHV�	� S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases�
Addison�Wesley� ���	�

�AK��� S� Abiteboul and P� Kanellakis� Object identity as a query language
primitive� In J� Cli�ord� B� Lindsay� and D� Maier� editors� Proceedings
of the ���� ACM SIGMOD International Conference on the Manage�

ment of Data� volume ��
� of SIGMOD Record� pages �	� ���� ACM
Press� �����

��



�AKRW�	� S� Abiteboul� P�C� Kanellakis� S� Ramaswamy� and E� Waller� Method
schemas� Journal of Computer and System Sciences� 	����
��� �		�
December ���	�

�AKW��� S� Abiteboul� P�C� Kanellakis� and E� Waller� Method schemas� In
Proceedings �th ACM Symposium on Principles of Database Systems�
pages �� ��� ACM Press� �����

�Cas��� G� Castagna� Object�Oriented Programming� A Uni�ed Foundation�
Birk!auser� �����

�Cou��� B� Courcelle� Recursive applicative program schemes� In J� van
Leeuwen� editor� Handbook of Theoretical Computer Science� volume B�
chapter �� Elsevier� �����

�DKM��� C� Delobel� M� Kifer� and Y� Masunaga� editors� Deductive and Object�

Oriented Databases� volume 	�� of Lecture Notes in Computer Science�
Springer�Verlag� �����

�HKR��� G�G� Hillebrand� P�C� Kanellakis� and S� Ramaswamy� Functional pro�
gramming formalisms for OODBMS methods� In A� Dogac et al�� ed�
itors� Advances in Object�Oriented Database Systems� volume ��� of
NATO ASI Series F� Computing and Systems Sciences� pages �� ���
Springer� �����

�KK�	� W� Kim and W� Kelley� On view support in object�oriented database
systems� In W� Kim� editor� Modern Database Systems� The Object

Model� Interoperability� and Beyond� pages ��� ���� ACM Press� ���	�

�KR��� H�A� Kuno and E�A� Rundensteiner� The MultiView OODB view sys�
tem
 Design and implementation� Theory and Practice of Object Sys�

tems� ����
��� ��	� �����

�Run��� E�A� Rundensteiner� A classi�cation algorithm for supporting object�
oriented views� In Proceedings 
rd International Conference on Infor�

mation and Knowledge Management� pages �� �	� ACM Press� �����

�SdS�	� C� Souza dos Santos� Design and implementation of object�oriented
views� In N� Revell and A� Min Tjoa� editors� Database and Expert
Systems Applications� Lecture Notes in Computer Science� pages �� 
���� Springer� ���	�

�SLT��� M�H� Scholl� C� Laasch� and M� Tresch� Updatable views in object�
oriented databases� In Delobel et al� �DKM���� pages ��� ����

�Ull��� J� Ullman� Principles of Database and Knowledge�Base Systems� vol�
ume II� Computer Science Press� �����

�VdBVGAG��� J� Van den Bussche� D� Van Gucht� M� Andries� and M� Gyssens� On
the completeness of object�creating database transformation languages�
Journal of the ACM� �����
��� ���� �����

�Wal��� E� Waller� Schema updates and consistency� In Delobel et al� �DKM����
pages ��� ����

��



A Formal de�nitions concerning method schemas

Syntax� We use the following kinds of syntactical symbols
 class names� method

names� and variables� Each method name has an associated arity� a natural number�
A declaration is an expression of the form

m�c�� � � � � cn

where m is a method name of arity n� and c�� � � � � cn are class names�
A base method declaration is an expression of the form

m�c�� � � � � cn 
 d� � � � � � d�

where m�c�� � � � � cn is a method declaration and d�� � � � � d� are class names�
A pre�schema is a triple �C���"��� where C is a set of class names� � is a partial

order on C� and "� is a set of base method declarations with class names from C�
such that there are no two di�erent base method declarations for the same method
declaration�

Terms are inductively de�ned as follows


�� Each variable is a term�

�� If t�� � � � � tn are terms� and m is a method name of arity n� then m�t�� � � � � tn� is a
term�

A coded method de�nition is an expression of the form

m�c�� � � � � cn � �x�� � � � � xn�t

where m�c�� � � � � cn is a method declaration� x�� � � � � xn are distinct variables� and t is
a term in which only these variables occur�

Let S� � �C���"�� be a pre�schema� A behavior for S� is a set "� of coded method
de�nitions with classes from C such that

�� the set M� of method names occurring in "� is disjoint from the set

M� � fm j there is a method declaration m� � � � occurring in "�g�

�� all method names occurring in "� are in M� �M��

�� there are no two di�erent coded method de�nitions for the same method declara�
tion�

The elements of the set M� are called base method names� and those of M� coded method

names�
A method schema S consists of some pre�schema S� together with some behavior "�

for S�� Let us �x a method schema S in what follows�
Let c�� � � � � cn be class names in S� and letm be a method name� Thenm is said to be

well de�ned at c�� � � � � cn in S if there exists a unique method declaration m�c��� � � � � c
�
n

occurring in S such that ci � c�i for i � �� � � � � n� If this is the case� m�c��� � � � � c
�
n is

called the resolution of m at c�� � � � � cn in S�


�The resolution of m at c�� � � � � cn is part of either a base method declaration or a coded method
de�nition� It will be convenient to refer to this base declaration or coded de�nition also as the resolution
of m at c�� � � � � cn�

��



Note that� instead of using only the class of the �rst argument �the �receiver
� for
determining method resolution� we use all arguments simultaneously �this mechanism
is known as �multi�methods
 �Cas������

Semantics� Formally� we assume given a universe O of objects�
An instance I of S is a mapping on the class and base method names of S� such

that


�� For each class name c� I�c� is a �nite subset of O� such that c �� c� implies
I�c�
 I�c�� � �� The union

S
c��c I�c

�� is denoted by I��c�� If o � I�c� then we say
that o belongs to class c�

�� For each base method name m of arity n� I�m� 
 On � O is a partial function� Let
o�� � � � � on � O and let ci be the class name to which oi belongs� for i � �� � � � � n�
Then I�m��o�� � � � � on� is de�ned if and only if m is well de�ned at c�� � � � � cn� In
this case� if the resolution of m at c�� � � � � cn is

m�c��� � � � � c
�
n 
 d� � � � � � d�

then I�m��o�� � � � � on� must be an element of I��d�� � � � � � I��d���

In what follows we �x an instance I�
Instantiated terms over I are de�ned inductively just like terms� except that we start

from objects in I instead of from variables�
A redex is an instantiated term of the form m�o�� � � � � on�� where m is a method

name and o�� � � � � on are objects�
Let t be an instantiated term that is not an object� The �rst redex of t is inductively

de�ned as follows


�� If t is a redex� it is its own �rst redex�

�� If t is not a redex� and of the form m�t�� � � � � tn�� then the �rst redex of t is the
�rst redex of ti� where i � f�� � � � � ng is the smallest such that ti is not an object�

Let t be an instantiated term over I that is not an object� The reduction of t� denoted
by ��t�� is de�ned as follows� Let r � m�o�� � � � � on� be the �rst redex of t� and let ci be
the class name to which oi belongs� for i � �� � � � � n�

� If m is not well�de�ned at c�� � � � � cn� then ��t� is unde�ned� We denote this by
��t� � ��

� If m is a base method well�de�ned at c�� � � � � cn� then ��t� is obtained from t by
replacing the leftmost occurrence of r in t by the object I�m��o�� � � � � on��

� If m is a coded method well�de�ned at c�� � � � � cn� let

m�c��� � � � � c
�
n � �x�� � � � � xn�t

�

be the corresponding resolution� Let t��o�� � � � � on� be the ground term obtained
from t� by replacing each occurrence of xi by oi� for i � �� � � � � n� Then ��t� is
obtained from t by replacing the leftmost occurrence of r in t by t��o�� � � � � on��

�Note that ��t� depends on the method schema S and the instance I� so formally we
should have written �S�I�t���

�The use of multi
methods instead of the more common receiver
based methods is more a design
choice than a crucial aspect of method schemas�

�	



Employee student

Student

Subsidized person

Person

�
�
�
�
�
�
�
�
�
�
���H

H
H
H
H
H
H
H
H
H
HHj

Figure �
 Illustration to Example B���

B Further details

Example B�� Consider a root database with a class Student and a subclass Employee
student � Employee students are people who have an income and study in their spare
time� proper Students are full�time students without income� In the view of the social
security administration� there is a class Subsidized person that is a subclass of Person�
All Employee students become proper Persons in the view� and all Students become
Subsidized persons in the view� The situation can be depicted in Figure �� The arrows
denote the view population� The �gure clearly shows that the view hierarchy in fact
turns the root hierarchy upside down�

Example B�� Consider a root schema with classes Person and Car and base methods
age�Person 
 Int � drives�Person 
 Car � and age�Car 
 Int � Consider a view schema
with classes Young person and Old car � which we populate with all Persons younger
than �� and all Cars older than ��� respectively� The view schema also has a method
declaration drives�Young person 
 Old car � We de�ne this method in the view simply
as import value drives� Since a root instance may well contain Persons younger than
�� driving Cars younger than ��� closure may be violated�

We do not expect a responsible view designer to design such views� this would
correspond to an attitude of �let�s import some methods more or less by chance� and
see whether it works
� A moment�s re�ection reveals that there are in fact two di�erent
possible interpretations of this example� which both almost automatically satisfy closure


�� We really want in the view only young persons driving old cars� So we correct the
population of Young person accordingly and we are done�

�� We want all young persons in the view� as well as the cars they drive� In this
case we add a superclass Car of Old car in the view� and declare the method
drives more properly as drives�Young person 
 Car � We populate Car in the
view with all Cars younger than ��� We can now safely do an import value of
drives without violating closure�

Proof of Proposition ���� �Sketch� A view speci�cation with an always�empty popu�
lation� or with only one class in the view� is trivially always consistent� To rule out the

��



trivial cases� one needs a good de�nition of �non�trivial
� A rather unsophisticated one
is given next� undoubtedly more re�ned de�nitions are possible�

Suppose


� The root schema has a class c� and a coded method m��c��

� The view schema has a class c� and a method name m� not well de�ned at c��

� The root schema has a class c� �not necessarily distinct from c��� reachable from
c� by a path of base method declarations� such that �c�� c�� � 	�

� There is a root instance I and an object o� � I�c�� that is reachable from an object
o� � I�c�� in the above sense� such that o� � ��I��c���

� Some view computation yields a �rst redex m��m
iv
� �o����

Clearly� any view speci�cation matching the above pattern will be inconsistent on the
root instance I�

��


