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Relational databases

Fix some infinite universe U of atomic data
elements

Database schema: Finite set S of relation names

Relational database D with schema S: Assigns
to each R € S a finite relation RP C U»



Examples of queries

Assume § = {R} with R binary: database is
finite binary relation on U

1. Is there an identical pair in R?

2. What are the elements occurring in the left
column of R, but not in the right?

3. What are the 5-tuples (x1, x5, x3,T4,25) Such

that (z1,z2), (x2,23), (23,74), and (x4, xs5)
are all in R?

4. What is the transitive closure of R?



5. Which pairs of elements (x1,z5) are such
that the sets

{y | (z1,9) € R} and  {y|(z2,y) € R}

are nonempty and have the same
cardinality?

6. Is the cardinality of R a prime number?



A formal definition of query
Answer of query is again a relation

= A query on S is a function q:

e from databases D with schema S

e to finite relations ¢(D) C U"

This definition is much too liberal



A query that is “illogical”

There is no reason to favor b above ¢

None of the example queries has this illogical
nature

A query must be answerable purely on the basis
of the information present in the database

How to formalize this?



Tarski’s logical notions

Cumulative hierarchy:
Upg =0, U,yq:= UuUuP(U,), U*:= UUn

n

Many mathematical objects constructed on top
of U live in U*

In particular databases and queries

Tarski: P ¢ U* is logical if f(P) = P for every
permutation of U

e No individual element of U is logical
e U and g are logical
e identity and diversity relations are logical

The higher up we go, the more complex logical
notions we find



Generic queries
All six example queries are logical
Our “illogical”™ query is indeed not logical

Genericity: Consistency criterion for queries
from early days of database theory, based on
practical considerations

[Aho&Ullman, Chandra&Harel]

Query q is generic if for all permutations f of
U:

f(D1) =D> = f(qg(D1)) =q(D3)

A query is generic iff it is logical in Tarski's
sense!



Codd’s relational algebra

Operations on data files expressed as
combinations of five basic operators
on relations

1. union rUs
2. difference r — s
3. cartesian product r X s

4. projection

Tiyin() = (@i, ..., 2) | (1,...,20) €7}
p p

5. selection
O-i:j(r) — {(ZU]_, s 75677/) cr | Ly — ZU]}
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Example expressions

(2) What are the elements occurring in the left
column of R, but not in the right?

m1(R) — m2(R)

(3) What are the 5-tuples (z1,xo,x3, T4, x5) SUCh

that (5131,$2), ($2,$3), (5133,5134), and ($47$5)
are all in R?

T1,2,4,6,802=304=506=7(R X R X R X R)



First-order queries

Query g on & is called first-order if there is
a first-order formula ¢(z1,...,zn) Over S such
that

q(D) ={(a1,...,an) € [D[" | D = ¢laq, ..., an]}

|D|: active domain of D

Codd’s Theorem: g expressible in Codd’s
relational algebra < ¢ first-order

Tarskian definition of

First-order queries are generic: anything
definable in higher-order logic is logical
[Lindenbaum& Tarski 1934]
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Relational completeness

Codd: completeness result for relational
algebra

“Relational completeness” of database query
languages

However, many interesting queries are not
first-order:

(4) What is the transitive closure of R?

(5) Which pairs of elements (x1,x>) are such
that the sets

{y | (z1,9) € R} and  {y|(z2,y) € R}

are nonempty and have the same
cardinality?

(6) Is the cardinality of R a prime number?
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BP-completeness

So, Codd’'s relational algebra (FO) is hardly
complete

Still: completeness on the input level
[Bancilhon, Paredaens]

For any generic query g and database
D there exists a first-order query gp
such that ¢p(D) = q(D)

Tarski: Finite structures that are elementary
equivalent are isomorphic

Together with Beth's Theorem, this readily
implies BP-completeness of FO

CSPs: Even without U and — (but with ;)
relational algebra is already BP-complete
[Cohen, Gyssens, Jeavons]
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Cylindric set algebra

Take first-order formula ¢ with all variables

(free or bound) among z1, ..., Tn

For database D, to determine D = ¢, we

inductively apply operations on
n-ary relations over |D|:

1. union (for V)
2. complementation w.r.t. |D|™ (for —)

3. cylindrification along dimension i (for dx;)

vi(r) = {(a1,...,an) € |D|" | 3a € |D|:
(a1,...,a;—1,0,0;41,...,an) €T}

Together with constant relations

6;; = {(a1,...,an) € D" | a; = a;}

constitute full n-dimensional cylindric set
algebra with base |D|
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Codd’s Theorem avant la lettre

Build up n-CSA expressions from relation names
in S using operators and constants of n-CSA

Interpret k-ary relation R in D as RP x |D|»—
to make everything n-ary

Must assume k£ < n for every R

Theorem: g in n-CSA < ¢g in FO"
(first-order formulas with at most n variables)

Cylindric algebra as relational algebra avant la
lettre

Proof is trick also invented by Tarski to give
substitution-free axiomatization of first-order
logic with equality
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Relation algebras

Proper relation algebra with base A consists of
operations on binary relations on A:

1. union
2. complementation w.r.t. A2

3. composition

r®s:={(x,y)|3z: (x,2) €r and (z,y) € s}
4. conversion: 7 .= {(x,y) | (y,z) € r}

Schema § with all relation names binary

Build RA-expressions from relation names in S

using these operators and constant Id (identity
relation)

To evaluate expression on D, use base |D|

15



From FO3 to FO
Tarski&Givant: ¢ in RA < ¢q in FO3

But also: In structures with pairing,
RA becomes equally powerful as full FO

Add pairing operators to RA [Van Gucht et al]
e left tagging: r*= {(z,(z,v)) | (x,y) € r}
e right tagging: r* = {((z,y),y) | (z,y) € r}

These operations work over Ut rather than U:

Ug =0, U, :=UluwhH? vr:=Jut
n

Resulting query language RAT equivalent to
FO
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Computational completeness
Make RAT into programming language:
e variables (hold binary relations on UT)
e assignment statements: X :=e
e composition, while-loops
X = R;
while (X ®©R) — X # @ do

X =XUX0OR

Every computable query is expressible
[Chandra&Harel, Abiteboul&Vianu]

Computable queries with answers over Ut

Answers over U*:
= {(z.{yl @y) er}) |y (@) €7
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Spatial databases
Up to now, U was unstructured

Generic bulk-processing nature of
database operations

However, in reality U does have structure
Some applications want to use this structure
E.g. spatial databases: U is R

Set of points in R2 = binary relation S
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First-order queries over R
Make predicates and operations on R available

Do all pointsin S lie on a common circle around
the origin?

Irva, y(S(z,y) = «* 4+ y° =r°)

Incorrect under active-domain semantics of FO

Jx0, yoV, y(S(z,y) = 2° + y° = x5 + y3)

= Active-domain semantics / Natural semantics
for FO

Over uninterpreted U easily equivalent, but over
R?

Benedikt&Libkin: For any ¢ there exists o
such that

D =npatural € D Factive ¥

= From now on use natural semantics
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Evaluating FO queries over R

Natural semantics can vield infinite answers to
queries

What is the convex closure of S§7

{($7y) | 3%1,y1,$2,’y2,)\ :
S(z1,y1) A S(x2,y2) ANOK AL

Az, y) = Mz, y1) + (1 = A)(22,92)}

= Plug-in evaluation

E.g. D with SP = {(0,0),(1,1)}:

{(z,y) | Fz1,y1, 22,92, A :
((z1,91) = (0,0) V (z1,y1) = (1,1))
A ((z2,y2) = (0,0) V (z2,y2) = (1,1))
AODO<K ALK
A(z,y) = Mz1,y1) + (1 = X)(z2,y2)}

= Symbolic representation of query answer by

formula over R
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Semi-algebraic sets

Sets in R"™ definable by formulas over R

Quite nice properties

Tarski: The first-order theory of R is
decidable: it effectively admits
quantifier elimination

Symbolic representation of semi-algebraic sets
using formulas is workable

e Better and better algorithms

e Number of quantifiers is database-independent

21



Constraint databases

Allow semi-algebraic sets not only as outputs,
but also as inputs

Relations in database need no longer be finite;
only semi-algebraic

Constraint database: store for each relation a
quantifier-free formula over R

Works for any interpreted universe U
with effective g.e.

Tarski: Every semi-algebraic subset of R is a
finite union of intervals

O-minimality, tame topology
Natural/active equivalence for FO holds over

any o-minimal U with g.e.
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Geometric queries
What is genericity for spatial database queries?
—~ Query invariant under all permutations of R?

Atomic data elements in a spatial database:

— real numbers

+ points in space (R%)

— Query invariant under all permutations of R4

Smaller groups of permutations correspond to
geometrical (< purely logical) queries
[Felix Klein's Erlanger Programm]

Tarski: Logic as an extreme kind of geometry
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Affine-generic queries

Query is affine-generic if invariant under all
affinities

+ Is S nonempty?

+ Is S convex?

— Is S a circle?

Is there a logic for the affine-generic queries?

Tarski: Elementary affine geometry in R% as
first-order logic over (R4, )

B(p,q,r) < p lies on close line segment between
q and r
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Geometric databases

Spatial database:

Implementation level: constraint database over
(R7 <7 +7 ) 07 1)

Geometrical level: constraint database over

(R4, B)

First-order formula:

FO[R]: over (<,4+,-,0,1,S)

FOI[B]: over (8,8
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FO|[S] vs affine-generic FO[R]

Is S nonempty?

Jdz,y : S(z,y)
dp S(p)

Is S convex?

Vzy1,y1,22,¥2, A 1 (S(x1,y1)AS(22,y2)A0 < A < 1)
— S(A(x1,y1) + (1 — A)(z2,¥2))

Vp,q,r : (S(p) A S(q) AN B(r,p,q)) — S(r)

Is S a circle? Not affine-generic, not in FO[S]

Theorem: ¢ affine-generic and in FO[R] <
g in FO[S]

Tarski: Geometric constructions of 4+ and x
can be expressed in FO over 3
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Conclusion

Database theory relies heavily on logic

Not surprising that many of Tarki’'s ideas find
application

Tarski’'s 100th anniversary good excuse to talk
about database theory at CSL

Thanks: Janos Makowski, Dirk Van Gucht
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