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When a relational database is queried, the result is normally a relation. Some queries, 
however, only require a yes/no answer; such queries are often called boolean queries. It 
is customary in database theory to express boolean queries by testing nonemptiness of 
query expressions. Another interesting way for expressing boolean queries are containment 
statements of the form Q 1 ⊆ Q 2 where Q 1 and Q 2 are query expressions. Here, for any 
input instance I , the boolean query result is true if Q 1(I) is a subset of Q 2(I) and false
otherwise.
In the present paper we will focus on nonemptiness and containment statements about 
conjunctive queries. The main goal is to investigate the monotone fragment of the 
containments of conjunctive queries. In particular, we show a preservation like result 
for this monotone fragment. That is, we show that, in expressive power, the monotone 
containments of conjunctive queries are exactly equal to conjunctive queries under 
nonemptiness.

© 2019 Published by Elsevier B.V.
1. Introduction

In this paper, we compare boolean queries (or integrity 
constraints) expressed using conjunctive queries (CQs [1]) 
in two different ways:

Nonemptiness: As an expression of the form Q �= ∅, with 
Q a CQ;

Containment: As an expression of the form Q 1 ⊆ Q 2, 
with Q 1 and Q 2 two CQs.

An example of a nonemptiness query is “there exists a 
customer who bought a luxury product”. An example of a 
containment query is “every customer who bought a lux-
ury product also bought a sports product”. A qualitative 
difference between nonemptiness and containment queries 
is that nonemptiness queries are always monotone: when 
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the result is true on some input instance, it is also true 
on any larger instance. In contrasts, containment queries 
need not be monotone, as shown by the example above. 
The nonemptiness of a CQ is always expressible as the con-
tainment of two CQs. For example, the nonemptiness of

(x) ← Customer(x),Bought(x,y), Luxury(y)

is expressed as

() ← true ⊆ () ← Customer(x),Bought(x,y), Luxury(y).

Conversely, one may suspect that, as far as monotone
queries are concerned, nothing more is expressible by a 
containment of two CQs. Indeed, we show in this paper 
that every monotone query expressed as the containment 
of two CQs is already expressible as the nonemptiness of a 
CQ. Such a result fits the profile of a preservation theorem 
since it gives a syntactical language for a semantical sub-
language. Preservation theorems have been studied inten-
sively in model theory, finite model theory and database 
theory [2–7].
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From our proof it also follows that monotonicity testing 
of a containment of two CQs is decidable; specifically, the 
problem is NP-complete.

2. Preliminaries

A database schema � is a finite nonempty set of re-
lation names. Every relation name R is assigned an arity, 
which is a natural number greater than zero. Let V be 
some fixed infinite universe of data elements and let R be 
a relation name of arity n. An R-fact is an expression of 
the form R(a1, . . . , an) where ai ∈ V for i = 1, . . . , n. Gen-
erally, a fact is an R-fact for some R . An R-instance I is 
a finite set of R-facts. More generally, an instance I of a 
database schema � is defined to be a nonempty union ⋃

R∈� I(R), where I(R) is an R-instance.1 The active do-
main of an instance I , denoted by adom(I), is the set of 
all data elements from V that occur in I . An instance 
I is called connected when for every two data elements 
a, b ∈ adom(I) there is a sequence of facts f1, . . . , fn in 
I such that: a is in adom({ f1}), b is in adom({ fn}), and 
adom({ f i}) ∩ adom({ f i+1}) �= ∅ for any i = 1, . . . , n − 1. An 
instance J is a called a connected component of I if J is 
connected, J ⊆ I and J is maximal in I with respect to 
inclusion.

We have defined database and instances under the so 
called “logic programming perspective” [1]. We will define 
the results of conjunctive queries, however, under the so-
called “named” perspective [1]. This will allow a lighter 
notation in our proof of Lemma 6 where we are taking 
subtuples of heads of conjunctive queries. In the named 
perspective, tuples are defined over a finite set of attributes, 
which we refer to as a relation schema. Formally, tuples, 
say t = (ui)i∈S on a relation schema S , are considered as 
mappings, so t is a mapping on S and t(i) = ui . Then, sub-
tuples, say t|K for K ⊆ S are treated as restrictions of the 
mapping H to K . On the empty relation schema, there is 
only one tuple, namely the empty mapping, also called the 
empty tuple. We denote the empty tuple by ().

We formalize the notion of conjunctive queries as fol-
lows. From the outset we assume an infinite universe of 
variables. A conjunctive query is an expression of the form 
Q : H ← B where the head H is a tuple of variables (tu-
ple in the sense as just defined), and the body B is a set 
of atoms over �. An atom is an expression of the form 
R(v1, . . . , vn) where R ∈ � and v1, . . . , vn are variables. 
We will denote the set of conjunctive queries over � as 
CQ� . For a conjunctive query Q we will write H Q for the 
head and B Q for the body of Q . The result schema of a con-
junctive query Q is the relation schema of the head H Q . 
Note that we allow unsafe queries, i.e., queries with head 
variables that do not appear in the body. Semantically, for 
any instance I over �, Q (I) is defined as:

{ f ◦ H Q | f is a homomorphism from Q into I}.
Here, a homomorphism f from Q into I is a func-

tion on the variables in H Q and B Q to adom(I) such that 

1 The reason for considering only nonempty instances will be explained 
in Remark 4.
f (B Q ) ⊆ I . When the variables in H Q are all present in 
B Q , we will also write that f is a homomorphism from 
B Q into I . Interchangeably, we will write that B Q maps 
into I .

Example 1. Consider the database schema with the relation 
name Flights of arity two. The following conjunctive query 
returns all the city pairs that are connected by flight with 
one stopover: (A : x, B : y) ← Flight(x, z), Flights(z, y).

This query returns {(A : Vienna, B : Brussels), (A : Paris,
B : Rome)} on the instance

{Flights(Paris,Brussels), Flights(Brussels,Rome),

Flights(Vienna,Paris)}.

Remark 2. It is convenient to assume that variables are 
data elements in V . Then, we can use a nonempty body 
of a conjunctive query as a database instance. As a conse-
quence, an R-atom can then be thought of as an R-fact.

For any two CQs Q 1 and Q 2, we write Q 1 
 Q 2 if 
Q 1(I) ⊆ Q 2(I) for any database instance I over �. We re-
call:

Theorem 3 ([8]). Let Q 1 and Q 2 be conjunctive queries with 
the same result schema where B Q 1 �= ∅. Then, Q 1 
 Q 2 iff 
H Q 1 ∈ Q 2(B Q 1 ).

Two CQs Q 1 and Q 2 are equivalent if Q 1 
 Q 2 and 
Q 2 
 Q 1. An atom in B Q is called redundant if the query 
obtained from Q by removing that atom is equivalent 
to Q .

A boolean query over a database schema � is a mapping 
from instances of � to {true, false}. We can associate to any 
conjunctive query Q , a boolean query Q �= ∅, that is true

on I if Q (I) �= ∅ and false if Q (I) = ∅. We will write CQ �=∅
�

for the family of boolean queries of the form Q �= ∅ where 
Q is in CQ� .

As argued in the introduction, this is not the only nat-
ural way to express boolean queries. Containment state-
ments of the form Q 1 ⊆ Q 2, where Q 1 and Q 2 have 
the same result schema, provide a clean way to express 
interesting nonmonotone boolean queries. Formally, the 
boolean query Q 1 ⊆ Q 2 is true on I if Q 1(I) is a subset 
of Q 2(I), and false on I otherwise. It is understood that 
we can only take containment boolean queries of two con-
junctive queries Q 1 and Q 2 if they have the same result 
schema. We write CQ⊆

� for the family of boolean queries 
expressible by containment statements Q 1 ⊆ Q 2 where Q 1
and Q 2 are in CQ� with the same result schema.

Recall that every conjunctive query Q is monotone, in 
the sense that for any two instances I, J over �, such that 
I ⊆ J , we have Q (I) ⊆ Q ( J ). Furthermore, we say that 
a boolean query Q is monotone if for any two instances 
I, J over �, such that I ⊆ J , we have Q (I) = true im-
plies Q ( J ) = true. We denote the set of monotone boolean 
queries with MON.

Remark 4. In this paper we have defined instances to be 
nonempty. Indeed, the notion of monotonicity of a boolean 
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query, over all instances including the empty set ∅, is not 
very interesting. Specifically, consider a boolean query Q . 
Either Q (∅) is true, in which case Q can only be mono-
tone, with the empty instance, if Q is true everywhere. On 
the other hand, if Q (∅) is false, then there is no difference 
in the definition we use.

We will frequently use the following property of con-
junctive queries with connected bodies. If Q is a con-
junctive query with a connected body, then Q (I ∪ J ) =
Q (I) ∪ Q ( J ) for any domain-disjoint instances I and J . 
We will refer to this property as the additivity property. 
Furthermore, we say that a query Q is additive if it has 
the additivity property.

3. Main result

In this section we will prove the main theorem of the 
present paper. This preservation theorem can be summa-
rized as follows:

Theorem 5. For any database schema �, CQ⊆
� ∩ MON = CQ�=∅

� . 
Specifically, every monotone query Q 1 ⊆ Q 2 , where Q 1 and Q 2
are CQs, is equivalent to a query of the form (() ← B) �= ∅, 
where B is empty or B is the union of some of the connected 
components of B Q 2 .

Note that CQ �=∅
� ⊆ CQ⊆

� ∩ MON already follows from the 
fact that Q �= ∅ is equivalent to () ← ∅ ⊆ () ← B Q . To 
prove the remaining inclusion we first establish a few tech-
nical results. First, we show that any monotone contain-
ment of conjunctive queries is equivalent to a containment 
of conjunctive queries with empty heads. For the remain-
der of this section, we write Za to be the instance where 
there is exactly one fact R(a, a, . . . , a) for every R ∈ �. Note 
that for every CQ Q , we have Q (Za) = {(a, a, . . . , a)}.

Lemma 6. Let Q 1 and Q 2 be conjunctive queries. If Q 1 ⊆ Q 2
is monotone, then it is equivalent to the conjunctive query () ←
B Q 1 ⊆ () ← B Q 2 .

Proof. Let S be the result schema of Q 1 and Q 2. Write 
B Q 2 as B1, . . . , Bk, B where the B j are the connected com-
ponents of B Q 2 each of which contain at least one variable 
in H Q 2 , and B is the collection of the remaining connected 
components. Define A j = {i ∈ S | H Q 2(i) ∈ adom(B j)} for 
j = 1, . . . , k and let A0 contain the remaining attributes in 
S . Furthermore, define A = ⋃

1≤ j≤k A j .
We first show that there is a function f such that 

f ◦ H Q 2 |A0 = H Q 1 |A0 . Let a be a fresh data element. Define 
I = Za ∪ B Q 1 ∪ ⋃

i∈C Z H Q 1 (i) where C = {i ∈ S | H Q 1 (i) /∈
adom (B Q 1 )}. Since, Q 1(Za) = Q 2(Za) and Q 1 ⊆ Q 2 is 
monotone, we have Q 1(I) ⊆ Q 2(I). Therefore, H Q 1 ∈ Q 2(I)
since H Q 1 ∈ Q 1(I). Hence, there is a homomorphism f
from Q 2 into I such that f ◦ H Q 2 = H Q 1 . In particular, 
f ◦ H Q 2 |A0 = H Q 1 |A0 as desired.

Next, we show for each j = 1, . . . , k that

(H Q 1 |A ← B Q 1) 
 (H Q 2 |A ← B j). (�)
j j
Let I be an instance over � and let a be a fresh data el-
ement. Suppose t ∈ (H Q 1 |A j ← B Q 1)(I). Since (H Q 1 |A j ←
B Q 1 ) and Q 1 have the same body, and H Q 1 |A j is a sub-
tuple of H Q 1 , we can extend t to t′ such that t′ ∈ Q 1(I). 
Furthermore, since Q 1 ⊆ Q 2 is monotone and Q 1(Za) =
Q 2(Za), we have Q 1(I ∪ Za) ⊆ Q 2(I ∪ Za). Thus, t′ ∈ Q 2(I ∪
Za), whence we also have t ∈ (H Q 2 |A j ← B j)(I ∪ Za). 
Since H Q 2 |A j ← B j is additive, t ∈ (H Q 2 |A j ← B j)(I) ∪
(H Q 2 |A j ← B j)(Za). This implies that t ∈ (H Q 2 |A j ← B j)(I)
since t is a tuple of data elements in I .

We now show that Q 1 ⊆ Q 2 is equivalent to Q ′
1 ⊆ Q ′

2
where Q ′

1 = () ← B Q 1 and Q ′
2 = () ← B Q 2 , which proves 

our lemma. Clearly, Q 1(I) ⊆ Q 2(I) implies that Q ′
1(I) ⊆

Q ′
2(I). For the other direction, suppose that Q ′

1(I) ⊆ Q ′
2(I)

and let t ∈ Q 1(I). Then, we have the following:

• There is a homomorphism f1 from B Q 1 to I such that 
f1 ◦ H Q 1 = t .

• There is a homomorphism f2 from B Q 2 to I since ∅ �=
Q ′

1(I) ⊆ Q ′
2(I).

• There is a function h such that h ◦ H Q 2 |A0 = H Q 1 |A0 .
• For every j = 1, . . . , k, t|A j ∈ (H Q 2 |A j ← B j)(I) by (�). 

Hence, there is a homomorphism h j from B j into I
such that h j ◦ H Q 2 |A j = t|A j .

We now define a homomorphism f from Q 2 into I
such that f ◦ H Q 2 = t:

f : x �→

⎧⎪⎨
⎪⎩

f2(x), if x ∈ B;
h j(x), if x ∈ adom (B j) with j ∈ {1, . . . ,k};
f1 ◦ h(x), otherwise.

We first show that f ◦ H Q 2 = t .

f ◦ H Q 2 = f ◦ (H Q 2 |A0 ∪
⋃

1≤ j≤k

H Q 2 |A j )

= f ◦ H Q 2 |A0 ∪
⋃

1≤ j≤k

f ◦ H Q 2 |A j

= f1 ◦ h ◦ H Q 2 |A0 ∪
⋃

1≤ j≤k

h j ◦ H Q 2 |A j

= f1 ◦ H Q 1 |A0 ∪
⋃

1≤ j≤k

t|A j = t|A0 ∪
⋃

1≤ j≤k

t|A j = t

Finally, we show that f (B Q 2 ) ⊆ I .

f (B Q 2) = f (B ∪
⋃

1≤ j≤k

B j) = f (B) ∪
⋃

1≤ j≤k

f (B j)

= f2(B) ∪
⋃

1≤ j≤k

h j(B j) ⊆ I �

To prove Theorem 5 we may thus limit ourselves to 
conjunctive queries with empty heads.

First, we have a look at containments of the form Q 1 ⊆
Q 2 where B Q 1 contains at least two non-redundant atoms. 
In what follows, when we write that a conjunctive query 
Q is minimal, we mean that B Q does not contain redun-
dant atoms.
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Lemma 7. Let Q 1 and Q 2 be CQs where Q 1 is minimal and 
H Q 1 = H Q 2 = (). If B Q 1 contains at least two atoms, then Q 1 ⊆
Q 2 is equivalent to true or is not monotone.

Proof. If Q 1 ⊆ Q 2 is not equivalent to true, then Q 1 �

Q 2. Thus, Q 2(B Q 1 ) = ∅ by Theorem 3, whence we have 
Q 1(B Q 1 ) � Q 2(B Q 1 ). Since |B Q 1 | ≥ 2, there exists a non-
empty B � B Q 1 . We have Q 1(B) = ∅ for otherwise Q 1
would not be minimal.

Clearly, Q 1(B) = ∅ implies that Q 1(B) ⊆ Q 2(B). Hence, 
Q 1 ⊆ Q 2 is not monotone. �

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let Q 1 ⊆ Q 2 be in CQ⊆
� ∩ MON. We 

want to show that Q 1 ⊆ Q 2 is equivalent to (() ← B) �= ∅
where B is empty or B consists of some of the connected 
components of B Q 2 .

By Lemma 6 we may assume that H Q 1 = H Q 2 = (). We 
may furthermore assume that Q 1 is minimal. The constant 
true query is expressed by () ← ∅ �= ∅. If B Q 1 = ∅, then 
Q 1 ⊆ Q 2 is equivalent to Q 2 �= ∅ which is in CQ �=∅

� . Hence 
we may assume that Q 1 �
 Q 2. Thus, Q 2(B Q 1 ) = ∅ by The-
orem 3.

If B Q 1 contains at least two atoms, then Q 1 ⊆ Q 2 is 
equivalent to true by Lemma 7.

Finally, suppose that B Q 1 contains exactly one atom. 
First, let us consider B Q 1 = {R(x1, . . . , xn)} where there is 
a repetition among x1, . . . , xn . Define I1 = {R(y1, . . . , yn)}
where y1, . . . , yn are all different and not equal to any of 
x1, . . . , xn . Clearly, Q 1(I1) = ∅. Since Q 2(B Q 1 ) = ∅, there is 
a connected component C of B Q 2 that does not map in 
B Q 1 . Furthermore, C does not map into I1 either, whence 
we also have Q 2(I1) = ∅. Indeed, if C would map into 
I1, then C would also map into B Q 1 since I1 maps into 
B Q 1 . It follows that C does not map into I1 ∪ B Q 1 ei-
ther, since C is connected and adom(I1) is disjoint from 
adom(B Q 1 ). Therefore, Q 2(I1 ∪ B Q 1) = ∅. Hence, Q 1(I1 ∪
B Q 1) � Q 2(I1 ∪ B Q 1 ) since the head of Q 1 is in Q 1(I1 ∪
B Q 1). This contradicts that Q 1 ⊆ Q 2 is monotone, since 
Q 1(I1) = ∅ ⊆ Q 2(I1).

So, the only body left to consider is B Q 1 = {R(x1, . . . ,
xn)} where x1, . . . , xn are all different and R ∈ �. Our proof 
now depends on the size of �.

1. Suppose that � only contains the relation name R . 
Then Q 1(I) �= ∅ for any instance I over � since B Q 1 =
{R(x1, . . . , xn)} where x1, . . . , xn are all different. Since 
Q 1 and Q 2 have empty heads, we may thus conclude 
that Q 1 ⊆ Q 2 is equivalent to Q 2 �= ∅ in CQ�=∅

� .
2. Suppose that � only contains R and exactly one other 

relation name T . Define I1 = {T (y1, . . . , ym)} where 
y1, . . . , ym are different from each other and from 
x1, . . . , xn . Since the body of Q 1 is an R-atom and I1
only contains a T -atom, we have Q 1(I1) = ∅. Hence, 
Q 1(I1) ⊆ Q 2(I1). By the monotonicity of Q 1 ⊆ Q 2, we 
also have Q 1(I1 ∪ B Q 1) ⊆ Q 2(I1 ∪ B Q 1 ). Therefore, ev-
ery connected component of B Q 2 maps in I1 or B Q 1 . 
Indeed, Q 2(I1 ∪ B Q 1) �= ∅ since the head of Q 1 is 
in Q 1(I1 ∪ B Q 1 ). This observation partitions the con-
nected components of B Q 2 into two sets B ′ and B ′′ , 
where B ′ contains the components that map into I1, 
and B ′′ contains the components that map into B Q 1 .
We now show that Q 1 ⊆ Q 2 is equivalent to Q ′ =
() ← B ′ �= ∅. To this end, suppose that Q ′(I) �= ∅ and 
Q 1(I) �= ∅ for some instance I over �. Thus B ′ and 
B Q 1 map into I . Since B ′′ maps into B Q 1 by con-
struction, we also have that B ′′ maps into I . Hence, 
Q 2(I) �= ∅ as desired. For the other direction, sup-
pose that Q 1(I) ⊆ Q 2(I) for some instance I over �. 
If Q 1(I) �= ∅, then Q 2(I) �= ∅ by assumption. Clearly, 
Q ′(I) �= ∅ since B Q ′ is a subset of B Q 2 . On the other 
hand, if Q 1(I) = ∅, then I has no R-facts. Since in-
stances cannot be empty, it must contain at least one 
T -fact, so I1 maps into I . Thus B ′ also maps into I , 
whence Q ′(I) �= ∅ as desired.

3. Finally, suppose that � contains at least three rela-
tion names. Since Q 2(B Q 1 ) = ∅, there is a connected 
component C of B Q 2 that does not map into B Q 1 . 
In particular, we know that C is not empty, whence 
it contains at least one atom, say a T -atom. (Note 
that T might be equal R .) Since there are three re-
lation names in � there is at least one other rela-
tion name S in � that is not equal to T or R . De-
fine I2 = {S(z1, . . . , zl)} where z1, . . . , zl are all differ-
ent from each other and from x1, . . . , xn . By construc-
tion, C do not map into I2 either, since C contains 
an atom different from S . Thus, Q 2(I2 ∪ B Q 1 ) = ∅, 
whence we have Q 1(I2 ∪ B Q 1 ) � Q 2(I2 ∪ B Q 1) since 
Q 1(I2 ∪ B Q 1 ) �= ∅. However, Q 1(I2) = ∅ since R and S
are different, which implies that Q 1(I2) ⊆ Q 2(I2). This 
contradicts the assumption that Q 1 ⊆ Q 2 is mono-
tone. �

The proof of Theorem 5 gives us a procedure for decid-
ing monotonicity for containments of CQs.

Corollary 8. Deciding whether a containment in CQ⊆
� is mono-

tone is NP-complete.

Proof. Let Q 1 ⊆ Q 2 be in CQ⊆
� . By Lemma 6 we may re-

move the head variables of Q 1 and Q 2. The NP-hardness 
of our problem is taken care of by Lemma 7. Indeed, when 
B Q 1 contains at least two non-redundant body atoms, 
the problem is equivalent to deciding Q 1 
 Q 2, which is 
known to be NP-hard [8].

Let us now show that the problem is in NP. By the proof 
of Theorem 5 we have the following cases when Q 1 is 
minimal:

• If B Q 1 = ∅, then Q 1 ⊆ Q 2 is always monotone.
• If |B Q 1 | ≥ 2, then Q 1 ⊆ Q 2 is monotone if and only if 

Q 1 
 Q 2 (Lemma 7).
• If Q 1 = {R(x1, . . . , xn)} where there is a repetition 

among x1, . . . , xn , then Q 1 ⊆ Q 2 is monotone if and 
only if Q 1 
 Q 2.

• If B Q 1 = {R(x1, . . . , xn)} where x1, . . . , xn are all differ-
ent, then:
(a) If |�| = 1, then Q 1 ⊆ Q 2 is always monotone;
(b) If |�| = 2, then Q 1 ⊆ Q 2 is always monotone;
(c) If |�| ≥ 3, then Q 1 ⊆ Q 2 is monotone if and only 

if Q 1 
 Q 2.
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These properties suggest the following algorithm:

1. Check if B Q 1 = ∅; if so, accept;
2. Check if Q 1 
 Q 2; if so, accept;
3. Non-deterministically pick an atom R(x1, . . . , xn) in 

B Q 1 ;
4. Check the following:

• () ← R(x1, . . . , xn) 
 Q 1;
• x1, . . . , xn are all different.

5. Accept if |�| ≤ 2 and the two checks above succeed; 
otherwise reject.

The containment checks (
) are well known to be in 
NP [8], so this algorithm is an NP algorithm.

If the algorithm accepts in step 1, then Q 1 ⊆ Q 2 is 
equivalent to Q 2 �= ∅, which is monotone. If the algorithm 
accepts in step 2, then the query Q 1 ⊆ Q 2 is the constant 
true query, whence is trivially monotone. If the algorithm 
accepts in step 5, then the query () ← R(x1, . . . , xn) is 
equivalent to Q 1, which is clearly minimal. Hence, by cases 
(a) and (b) in the above properties, Q 1 ⊆ Q 2 is monotone.

Conversely, suppose that Q 1 ⊆ Q 2 is monotone. If 
B Q 1 = ∅ or Q 1 
 Q 2, then the algorithm accepts in step 
1 or 2 respectively. Otherwise, consider a CQ Q ′

1 obtained 
from Q 1 by omitting all redundant atoms. Certainly, Q ′

1 is 
minimal. Since Q ′

1 ⊆ Q 2 is monotone and Q ′
1 �
 Q 2, the 

above properties imply that B Q ′
1

consists of a single atom 
R(x1, . . . , xn) where x1, . . . , xn are all different, and more-
over that |�| ≤ 2. Hence, by picking this atom in step 3, 
the algorithm will accept. �
4. Future work

There are several directions for future work. In this pa-
per, conjunctive queries are not allowed to have constants 
in the head and/or body. Our proof method does not work 
in the presence of constants. Whether our characterization 
still holds in this case is still open.

Now that we have a syntactical characterization for 
monotone CQ⊆ we can look at other query languages. 
The first languages that come to mind are conjunctive 
queries with nonequalities, or negation, or unions. An-
other interesting language to consider is the more expres-
sive first-order logic. When we allow infinite instances, the 
monotone first-order boolean queries are characterized by 
the positive first-order sentences with nonequalities [7]. 
Whether this characterization still holds in restriction to 
finite instances remains open.

Another interesting line of work is to consider preser-
vation theorems for other semantical properties, e.g., ad-
ditivity. It can readily be verified that the additive queries 
in CQ�=∅ are exactly those with connected bodies. Another 
example of a preservation theorem for additivity is: con-
nected Datalog¬ captures the additive Datalog¬ queries 
under stratified semantics [9].
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