
Information Processing Letters 150 (2019) 1–5
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A monotone preservation result for Boolean queries expressed

as a containment of conjunctive queries

Dimitri Surinx ∗, Jan Van den Bussche

Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 September 2018
Received in revised form 24 May 2019
Accepted 3 June 2019
Available online 6 June 2019
Communicated by Jef Wijsen

Keywords:
Databases
Query languages
Expressive power

When a relational database is queried, the result is normally a relation. Some queries,
however, only require a yes/no answer; such queries are often called boolean queries. It
is customary in database theory to express boolean queries by testing nonemptiness of
query expressions. Another interesting way for expressing boolean queries are containment
statements of the form Q 1 ⊆ Q 2 where Q 1 and Q 2 are query expressions. Here, for any
input instance I , the boolean query result is true if Q 1(I) is a subset of Q 2(I) and false
otherwise.
In the present paper we will focus on nonemptiness and containment statements about
conjunctive queries. The main goal is to investigate the monotone fragment of the
containments of conjunctive queries. In particular, we show a preservation like result
for this monotone fragment. That is, we show that, in expressive power, the monotone
containments of conjunctive queries are exactly equal to conjunctive queries under
nonemptiness.

© 2019 Published by Elsevier B.V.
1. Introduction

In this paper, we compare boolean queries (or integrity
constraints) expressed using conjunctive queries (CQs [1])
in two different ways:

Nonemptiness: As an expression of the form Q �= ∅, with
Q a CQ;

Containment: As an expression of the form Q 1 ⊆ Q 2,
with Q 1 and Q 2 two CQs.

An example of a nonemptiness query is “there exists a
customer who bought a luxury product”. An example of a
containment query is “every customer who bought a lux-
ury product also bought a sports product”. A qualitative
difference between nonemptiness and containment queries
is that nonemptiness queries are always monotone: when

* Corresponding author.
E-mail address: dimitri.surinx@uhasselt.be (D. Surinx).
https://doi.org/10.1016/j.ipl.2019.06.001
0020-0190/© 2019 Published by Elsevier B.V.
the result is true on some input instance, it is also true
on any larger instance. In contrasts, containment queries
need not be monotone, as shown by the example above.
The nonemptiness of a CQ is always expressible as the con-
tainment of two CQs. For example, the nonemptiness of

(x) ← Customer(x),Bought(x,y), Luxury(y)

is expressed as

() ← true ⊆ () ← Customer(x),Bought(x,y), Luxury(y).

Conversely, one may suspect that, as far as monotone
queries are concerned, nothing more is expressible by a
containment of two CQs. Indeed, we show in this paper
that every monotone query expressed as the containment
of two CQs is already expressible as the nonemptiness of a
CQ. Such a result fits the profile of a preservation theorem
since it gives a syntactical language for a semantical sub-
language. Preservation theorems have been studied inten-
sively in model theory, finite model theory and database
theory [2–7].

https://doi.org/10.1016/j.ipl.2019.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dimitri.surinx@uhasselt.be
https://doi.org/10.1016/j.ipl.2019.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2019.06.001&domain=pdf

2 D. Surinx, J. Van den Bussche / Information Processing Letters 150 (2019) 1–5
From our proof it also follows that monotonicity testing
of a containment of two CQs is decidable; specifically, the
problem is NP-complete.

2. Preliminaries

A database schema � is a finite nonempty set of re-
lation names. Every relation name R is assigned an arity,
which is a natural number greater than zero. Let V be
some fixed infinite universe of data elements and let R be
a relation name of arity n. An R-fact is an expression of
the form R(a1, . . . , an) where ai ∈ V for i = 1, . . . , n. Gen-
erally, a fact is an R-fact for some R . An R-instance I is
a finite set of R-facts. More generally, an instance I of a
database schema � is defined to be a nonempty union ⋃

R∈� I(R), where I(R) is an R-instance.1 The active do-
main of an instance I , denoted by adom(I), is the set of
all data elements from V that occur in I . An instance
I is called connected when for every two data elements
a, b ∈ adom(I) there is a sequence of facts f1, . . . , fn in
I such that: a is in adom({ f1}), b is in adom({ fn}), and
adom({ f i}) ∩ adom({ f i+1}) �= ∅ for any i = 1, . . . , n − 1. An
instance J is a called a connected component of I if J is
connected, J ⊆ I and J is maximal in I with respect to
inclusion.

We have defined database and instances under the so
called “logic programming perspective” [1]. We will define
the results of conjunctive queries, however, under the so-
called “named” perspective [1]. This will allow a lighter
notation in our proof of Lemma 6 where we are taking
subtuples of heads of conjunctive queries. In the named
perspective, tuples are defined over a finite set of attributes,
which we refer to as a relation schema. Formally, tuples,
say t = (ui)i∈S on a relation schema S , are considered as
mappings, so t is a mapping on S and t(i) = ui . Then, sub-
tuples, say t|K for K ⊆ S are treated as restrictions of the
mapping H to K . On the empty relation schema, there is
only one tuple, namely the empty mapping, also called the
empty tuple. We denote the empty tuple by ().

We formalize the notion of conjunctive queries as fol-
lows. From the outset we assume an infinite universe of
variables. A conjunctive query is an expression of the form
Q : H ← B where the head H is a tuple of variables (tu-
ple in the sense as just defined), and the body B is a set
of atoms over �. An atom is an expression of the form
R(v1, . . . , vn) where R ∈ � and v1, . . . , vn are variables.
We will denote the set of conjunctive queries over � as
CQ� . For a conjunctive query Q we will write H Q for the
head and B Q for the body of Q . The result schema of a con-
junctive query Q is the relation schema of the head H Q .
Note that we allow unsafe queries, i.e., queries with head
variables that do not appear in the body. Semantically, for
any instance I over �, Q (I) is defined as:

{ f ◦ H Q | f is a homomorphism from Q into I}.
Here, a homomorphism f from Q into I is a func-

tion on the variables in H Q and B Q to adom(I) such that

1 The reason for considering only nonempty instances will be explained
in Remark 4.
f (B Q) ⊆ I . When the variables in H Q are all present in
B Q , we will also write that f is a homomorphism from
B Q into I . Interchangeably, we will write that B Q maps
into I .

Example 1. Consider the database schema with the relation
name Flights of arity two. The following conjunctive query
returns all the city pairs that are connected by flight with
one stopover: (A : x, B : y) ← Flight(x, z), Flights(z, y).

This query returns {(A : Vienna, B : Brussels), (A : Paris,
B : Rome)} on the instance

{Flights(Paris,Brussels), Flights(Brussels,Rome),

Flights(Vienna,Paris)}.

Remark 2. It is convenient to assume that variables are
data elements in V . Then, we can use a nonempty body
of a conjunctive query as a database instance. As a conse-
quence, an R-atom can then be thought of as an R-fact.

For any two CQs Q 1 and Q 2, we write Q 1
 Q 2 if
Q 1(I) ⊆ Q 2(I) for any database instance I over �. We re-
call:

Theorem 3 ([8]). Let Q 1 and Q 2 be conjunctive queries with
the same result schema where B Q 1 �= ∅. Then, Q 1
 Q 2 iff
H Q 1 ∈ Q 2(B Q 1).

Two CQs Q 1 and Q 2 are equivalent if Q 1
 Q 2 and
Q 2
 Q 1. An atom in B Q is called redundant if the query
obtained from Q by removing that atom is equivalent
to Q .

A boolean query over a database schema � is a mapping
from instances of � to {true, false}. We can associate to any
conjunctive query Q , a boolean query Q �= ∅, that is true

on I if Q (I) �= ∅ and false if Q (I) = ∅. We will write CQ �=∅
�

for the family of boolean queries of the form Q �= ∅ where
Q is in CQ� .

As argued in the introduction, this is not the only nat-
ural way to express boolean queries. Containment state-
ments of the form Q 1 ⊆ Q 2, where Q 1 and Q 2 have
the same result schema, provide a clean way to express
interesting nonmonotone boolean queries. Formally, the
boolean query Q 1 ⊆ Q 2 is true on I if Q 1(I) is a subset
of Q 2(I), and false on I otherwise. It is understood that
we can only take containment boolean queries of two con-
junctive queries Q 1 and Q 2 if they have the same result
schema. We write CQ⊆

� for the family of boolean queries
expressible by containment statements Q 1 ⊆ Q 2 where Q 1
and Q 2 are in CQ� with the same result schema.

Recall that every conjunctive query Q is monotone, in
the sense that for any two instances I, J over �, such that
I ⊆ J , we have Q (I) ⊆ Q (J). Furthermore, we say that
a boolean query Q is monotone if for any two instances
I, J over �, such that I ⊆ J , we have Q (I) = true im-
plies Q (J) = true. We denote the set of monotone boolean
queries with MON.

Remark 4. In this paper we have defined instances to be
nonempty. Indeed, the notion of monotonicity of a boolean

D. Surinx, J. Van den Bussche / Information Processing Letters 150 (2019) 1–5 3
query, over all instances including the empty set ∅, is not
very interesting. Specifically, consider a boolean query Q .
Either Q (∅) is true, in which case Q can only be mono-
tone, with the empty instance, if Q is true everywhere. On
the other hand, if Q (∅) is false, then there is no difference
in the definition we use.

We will frequently use the following property of con-
junctive queries with connected bodies. If Q is a con-
junctive query with a connected body, then Q (I ∪ J) =
Q (I) ∪ Q (J) for any domain-disjoint instances I and J .
We will refer to this property as the additivity property.
Furthermore, we say that a query Q is additive if it has
the additivity property.

3. Main result

In this section we will prove the main theorem of the
present paper. This preservation theorem can be summa-
rized as follows:

Theorem 5. For any database schema �, CQ⊆
� ∩ MON = CQ�=∅

� .
Specifically, every monotone query Q 1 ⊆ Q 2 , where Q 1 and Q 2
are CQs, is equivalent to a query of the form (() ← B) �= ∅,
where B is empty or B is the union of some of the connected
components of B Q 2 .

Note that CQ �=∅
� ⊆ CQ⊆

� ∩ MON already follows from the
fact that Q �= ∅ is equivalent to () ← ∅ ⊆ () ← B Q . To
prove the remaining inclusion we first establish a few tech-
nical results. First, we show that any monotone contain-
ment of conjunctive queries is equivalent to a containment
of conjunctive queries with empty heads. For the remain-
der of this section, we write Za to be the instance where
there is exactly one fact R(a, a, . . . , a) for every R ∈ �. Note
that for every CQ Q , we have Q (Za) = {(a, a, . . . , a)}.

Lemma 6. Let Q 1 and Q 2 be conjunctive queries. If Q 1 ⊆ Q 2
is monotone, then it is equivalent to the conjunctive query () ←
B Q 1 ⊆ () ← B Q 2 .

Proof. Let S be the result schema of Q 1 and Q 2. Write
B Q 2 as B1, . . . , Bk, B where the B j are the connected com-
ponents of B Q 2 each of which contain at least one variable
in H Q 2 , and B is the collection of the remaining connected
components. Define A j = {i ∈ S | H Q 2(i) ∈ adom(B j)} for
j = 1, . . . , k and let A0 contain the remaining attributes in
S . Furthermore, define A = ⋃

1≤ j≤k A j .
We first show that there is a function f such that

f ◦ H Q 2 |A0 = H Q 1 |A0 . Let a be a fresh data element. Define
I = Za ∪ B Q 1 ∪ ⋃

i∈C Z H Q 1 (i) where C = {i ∈ S | H Q 1 (i) /∈
adom (B Q 1)}. Since, Q 1(Za) = Q 2(Za) and Q 1 ⊆ Q 2 is
monotone, we have Q 1(I) ⊆ Q 2(I). Therefore, H Q 1 ∈ Q 2(I)
since H Q 1 ∈ Q 1(I). Hence, there is a homomorphism f
from Q 2 into I such that f ◦ H Q 2 = H Q 1 . In particular,
f ◦ H Q 2 |A0 = H Q 1 |A0 as desired.

Next, we show for each j = 1, . . . , k that

(H Q 1 |A ← B Q 1)
 (H Q 2 |A ← B j). (�)
j j
Let I be an instance over � and let a be a fresh data el-
ement. Suppose t ∈ (H Q 1 |A j ← B Q 1)(I). Since (H Q 1 |A j ←
B Q 1) and Q 1 have the same body, and H Q 1 |A j is a sub-
tuple of H Q 1 , we can extend t to t′ such that t′ ∈ Q 1(I).
Furthermore, since Q 1 ⊆ Q 2 is monotone and Q 1(Za) =
Q 2(Za), we have Q 1(I ∪ Za) ⊆ Q 2(I ∪ Za). Thus, t′ ∈ Q 2(I ∪
Za), whence we also have t ∈ (H Q 2 |A j ← B j)(I ∪ Za).
Since H Q 2 |A j ← B j is additive, t ∈ (H Q 2 |A j ← B j)(I) ∪
(H Q 2 |A j ← B j)(Za). This implies that t ∈ (H Q 2 |A j ← B j)(I)
since t is a tuple of data elements in I .

We now show that Q 1 ⊆ Q 2 is equivalent to Q ′
1 ⊆ Q ′

2
where Q ′

1 = () ← B Q 1 and Q ′
2 = () ← B Q 2 , which proves

our lemma. Clearly, Q 1(I) ⊆ Q 2(I) implies that Q ′
1(I) ⊆

Q ′
2(I). For the other direction, suppose that Q ′

1(I) ⊆ Q ′
2(I)

and let t ∈ Q 1(I). Then, we have the following:

• There is a homomorphism f1 from B Q 1 to I such that
f1 ◦ H Q 1 = t .

• There is a homomorphism f2 from B Q 2 to I since ∅ �=
Q ′

1(I) ⊆ Q ′
2(I).

• There is a function h such that h ◦ H Q 2 |A0 = H Q 1 |A0 .
• For every j = 1, . . . , k, t|A j ∈ (H Q 2 |A j ← B j)(I) by (�).

Hence, there is a homomorphism h j from B j into I
such that h j ◦ H Q 2 |A j = t|A j .

We now define a homomorphism f from Q 2 into I
such that f ◦ H Q 2 = t:

f : x �→

⎧⎪⎨
⎪⎩

f2(x), if x ∈ B;
h j(x), if x ∈ adom (B j) with j ∈ {1, . . . ,k};
f1 ◦ h(x), otherwise.

We first show that f ◦ H Q 2 = t .

f ◦ H Q 2 = f ◦ (H Q 2 |A0 ∪
⋃

1≤ j≤k

H Q 2 |A j)

= f ◦ H Q 2 |A0 ∪
⋃

1≤ j≤k

f ◦ H Q 2 |A j

= f1 ◦ h ◦ H Q 2 |A0 ∪
⋃

1≤ j≤k

h j ◦ H Q 2 |A j

= f1 ◦ H Q 1 |A0 ∪
⋃

1≤ j≤k

t|A j = t|A0 ∪
⋃

1≤ j≤k

t|A j = t

Finally, we show that f (B Q 2) ⊆ I .

f (B Q 2) = f (B ∪
⋃

1≤ j≤k

B j) = f (B) ∪
⋃

1≤ j≤k

f (B j)

= f2(B) ∪
⋃

1≤ j≤k

h j(B j) ⊆ I �

To prove Theorem 5 we may thus limit ourselves to
conjunctive queries with empty heads.

First, we have a look at containments of the form Q 1 ⊆
Q 2 where B Q 1 contains at least two non-redundant atoms.
In what follows, when we write that a conjunctive query
Q is minimal, we mean that B Q does not contain redun-
dant atoms.

4 D. Surinx, J. Van den Bussche / Information Processing Letters 150 (2019) 1–5
Lemma 7. Let Q 1 and Q 2 be CQs where Q 1 is minimal and
H Q 1 = H Q 2 = (). If B Q 1 contains at least two atoms, then Q 1 ⊆
Q 2 is equivalent to true or is not monotone.

Proof. If Q 1 ⊆ Q 2 is not equivalent to true, then Q 1 �

Q 2. Thus, Q 2(B Q 1) = ∅ by Theorem 3, whence we have
Q 1(B Q 1) � Q 2(B Q 1). Since |B Q 1 | ≥ 2, there exists a non-
empty B � B Q 1 . We have Q 1(B) = ∅ for otherwise Q 1
would not be minimal.

Clearly, Q 1(B) = ∅ implies that Q 1(B) ⊆ Q 2(B). Hence,
Q 1 ⊆ Q 2 is not monotone. �

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let Q 1 ⊆ Q 2 be in CQ⊆
� ∩ MON. We

want to show that Q 1 ⊆ Q 2 is equivalent to (() ← B) �= ∅
where B is empty or B consists of some of the connected
components of B Q 2 .

By Lemma 6 we may assume that H Q 1 = H Q 2 = (). We
may furthermore assume that Q 1 is minimal. The constant
true query is expressed by () ← ∅ �= ∅. If B Q 1 = ∅, then
Q 1 ⊆ Q 2 is equivalent to Q 2 �= ∅ which is in CQ �=∅

� . Hence
we may assume that Q 1 �
 Q 2. Thus, Q 2(B Q 1) = ∅ by The-
orem 3.

If B Q 1 contains at least two atoms, then Q 1 ⊆ Q 2 is
equivalent to true by Lemma 7.

Finally, suppose that B Q 1 contains exactly one atom.
First, let us consider B Q 1 = {R(x1, . . . , xn)} where there is
a repetition among x1, . . . , xn . Define I1 = {R(y1, . . . , yn)}
where y1, . . . , yn are all different and not equal to any of
x1, . . . , xn . Clearly, Q 1(I1) = ∅. Since Q 2(B Q 1) = ∅, there is
a connected component C of B Q 2 that does not map in
B Q 1 . Furthermore, C does not map into I1 either, whence
we also have Q 2(I1) = ∅. Indeed, if C would map into
I1, then C would also map into B Q 1 since I1 maps into
B Q 1 . It follows that C does not map into I1 ∪ B Q 1 ei-
ther, since C is connected and adom(I1) is disjoint from
adom(B Q 1). Therefore, Q 2(I1 ∪ B Q 1) = ∅. Hence, Q 1(I1 ∪
B Q 1) � Q 2(I1 ∪ B Q 1) since the head of Q 1 is in Q 1(I1 ∪
B Q 1). This contradicts that Q 1 ⊆ Q 2 is monotone, since
Q 1(I1) = ∅ ⊆ Q 2(I1).

So, the only body left to consider is B Q 1 = {R(x1, . . . ,
xn)} where x1, . . . , xn are all different and R ∈ �. Our proof
now depends on the size of �.

1. Suppose that � only contains the relation name R .
Then Q 1(I) �= ∅ for any instance I over � since B Q 1 =
{R(x1, . . . , xn)} where x1, . . . , xn are all different. Since
Q 1 and Q 2 have empty heads, we may thus conclude
that Q 1 ⊆ Q 2 is equivalent to Q 2 �= ∅ in CQ�=∅

� .
2. Suppose that � only contains R and exactly one other

relation name T . Define I1 = {T (y1, . . . , ym)} where
y1, . . . , ym are different from each other and from
x1, . . . , xn . Since the body of Q 1 is an R-atom and I1
only contains a T -atom, we have Q 1(I1) = ∅. Hence,
Q 1(I1) ⊆ Q 2(I1). By the monotonicity of Q 1 ⊆ Q 2, we
also have Q 1(I1 ∪ B Q 1) ⊆ Q 2(I1 ∪ B Q 1). Therefore, ev-
ery connected component of B Q 2 maps in I1 or B Q 1 .
Indeed, Q 2(I1 ∪ B Q 1) �= ∅ since the head of Q 1 is
in Q 1(I1 ∪ B Q 1). This observation partitions the con-
nected components of B Q 2 into two sets B ′ and B ′′ ,
where B ′ contains the components that map into I1,
and B ′′ contains the components that map into B Q 1 .
We now show that Q 1 ⊆ Q 2 is equivalent to Q ′ =
() ← B ′ �= ∅. To this end, suppose that Q ′(I) �= ∅ and
Q 1(I) �= ∅ for some instance I over �. Thus B ′ and
B Q 1 map into I . Since B ′′ maps into B Q 1 by con-
struction, we also have that B ′′ maps into I . Hence,
Q 2(I) �= ∅ as desired. For the other direction, sup-
pose that Q 1(I) ⊆ Q 2(I) for some instance I over �.
If Q 1(I) �= ∅, then Q 2(I) �= ∅ by assumption. Clearly,
Q ′(I) �= ∅ since B Q ′ is a subset of B Q 2 . On the other
hand, if Q 1(I) = ∅, then I has no R-facts. Since in-
stances cannot be empty, it must contain at least one
T -fact, so I1 maps into I . Thus B ′ also maps into I ,
whence Q ′(I) �= ∅ as desired.

3. Finally, suppose that � contains at least three rela-
tion names. Since Q 2(B Q 1) = ∅, there is a connected
component C of B Q 2 that does not map into B Q 1 .
In particular, we know that C is not empty, whence
it contains at least one atom, say a T -atom. (Note
that T might be equal R .) Since there are three re-
lation names in � there is at least one other rela-
tion name S in � that is not equal to T or R . De-
fine I2 = {S(z1, . . . , zl)} where z1, . . . , zl are all differ-
ent from each other and from x1, . . . , xn . By construc-
tion, C do not map into I2 either, since C contains
an atom different from S . Thus, Q 2(I2 ∪ B Q 1) = ∅,
whence we have Q 1(I2 ∪ B Q 1) � Q 2(I2 ∪ B Q 1) since
Q 1(I2 ∪ B Q 1) �= ∅. However, Q 1(I2) = ∅ since R and S
are different, which implies that Q 1(I2) ⊆ Q 2(I2). This
contradicts the assumption that Q 1 ⊆ Q 2 is mono-
tone. �

The proof of Theorem 5 gives us a procedure for decid-
ing monotonicity for containments of CQs.

Corollary 8. Deciding whether a containment in CQ⊆
� is mono-

tone is NP-complete.

Proof. Let Q 1 ⊆ Q 2 be in CQ⊆
� . By Lemma 6 we may re-

move the head variables of Q 1 and Q 2. The NP-hardness
of our problem is taken care of by Lemma 7. Indeed, when
B Q 1 contains at least two non-redundant body atoms,
the problem is equivalent to deciding Q 1
 Q 2, which is
known to be NP-hard [8].

Let us now show that the problem is in NP. By the proof
of Theorem 5 we have the following cases when Q 1 is
minimal:

• If B Q 1 = ∅, then Q 1 ⊆ Q 2 is always monotone.
• If |B Q 1 | ≥ 2, then Q 1 ⊆ Q 2 is monotone if and only if

Q 1
 Q 2 (Lemma 7).
• If Q 1 = {R(x1, . . . , xn)} where there is a repetition

among x1, . . . , xn , then Q 1 ⊆ Q 2 is monotone if and
only if Q 1
 Q 2.

• If B Q 1 = {R(x1, . . . , xn)} where x1, . . . , xn are all differ-
ent, then:
(a) If |�| = 1, then Q 1 ⊆ Q 2 is always monotone;
(b) If |�| = 2, then Q 1 ⊆ Q 2 is always monotone;
(c) If |�| ≥ 3, then Q 1 ⊆ Q 2 is monotone if and only

if Q 1
 Q 2.

D. Surinx, J. Van den Bussche / Information Processing Letters 150 (2019) 1–5 5
These properties suggest the following algorithm:

1. Check if B Q 1 = ∅; if so, accept;
2. Check if Q 1
 Q 2; if so, accept;
3. Non-deterministically pick an atom R(x1, . . . , xn) in

B Q 1 ;
4. Check the following:

• () ← R(x1, . . . , xn)
 Q 1;
• x1, . . . , xn are all different.

5. Accept if |�| ≤ 2 and the two checks above succeed;
otherwise reject.

The containment checks (
) are well known to be in
NP [8], so this algorithm is an NP algorithm.

If the algorithm accepts in step 1, then Q 1 ⊆ Q 2 is
equivalent to Q 2 �= ∅, which is monotone. If the algorithm
accepts in step 2, then the query Q 1 ⊆ Q 2 is the constant
true query, whence is trivially monotone. If the algorithm
accepts in step 5, then the query () ← R(x1, . . . , xn) is
equivalent to Q 1, which is clearly minimal. Hence, by cases
(a) and (b) in the above properties, Q 1 ⊆ Q 2 is monotone.

Conversely, suppose that Q 1 ⊆ Q 2 is monotone. If
B Q 1 = ∅ or Q 1
 Q 2, then the algorithm accepts in step
1 or 2 respectively. Otherwise, consider a CQ Q ′

1 obtained
from Q 1 by omitting all redundant atoms. Certainly, Q ′

1 is
minimal. Since Q ′

1 ⊆ Q 2 is monotone and Q ′
1 �
 Q 2, the

above properties imply that B Q ′
1

consists of a single atom
R(x1, . . . , xn) where x1, . . . , xn are all different, and more-
over that |�| ≤ 2. Hence, by picking this atom in step 3,
the algorithm will accept. �
4. Future work

There are several directions for future work. In this pa-
per, conjunctive queries are not allowed to have constants
in the head and/or body. Our proof method does not work
in the presence of constants. Whether our characterization
still holds in this case is still open.

Now that we have a syntactical characterization for
monotone CQ⊆ we can look at other query languages.
The first languages that come to mind are conjunctive
queries with nonequalities, or negation, or unions. An-
other interesting language to consider is the more expres-
sive first-order logic. When we allow infinite instances, the
monotone first-order boolean queries are characterized by
the positive first-order sentences with nonequalities [7].
Whether this characterization still holds in restriction to
finite instances remains open.

Another interesting line of work is to consider preser-
vation theorems for other semantical properties, e.g., ad-
ditivity. It can readily be verified that the additive queries
in CQ�=∅ are exactly those with connected bodies. Another
example of a preservation theorem for additivity is: con-
nected Datalog¬ captures the additive Datalog¬ queries
under stratified semantics [9].

Declaration of Competing Interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[2] Y. Gurevich, Toward logic tailored for computational complexity, in: M.
Richter, et al. (Eds.), Computation and Proof Theory, in: Lecture Notes
in Mathematics, vol. 1104, Springer-Verlag, 1984, pp. 175–216.

[3] M. Ajtai, Y. Gurevich, Monotone versus positive, J. ACM 34 (4) (1987)
1004–1015.

[4] C. Chang, H. Keisler, Model Theory, 3rd edition, North-Holland, 1990.
[5] A.P. Stolboushkin, Finitely monotone properties, in: Proceedings of the

10th Annual IEEE Symposium on Logic in Computer Science, LICS ’95,
IEEE Computer Society, Washington, DC, USA, 1995, pp. 324–330.

[6] B. Rossman, Homomorphism preservation theorems, J. ACM 55 (3)
(2008) 15.

[7] M. Benedikt, J. Leblay, B. ten Cate, E. Tsamoura, Generating Plans
from Proofs: The Interpolation-Based Approach to Query Reformula-
tion, Morgan&Claypool, 2016.

[8] A. Chandra, P. Merlin, Optimal implementation of conjunctive queries
in relational data bases, in: Proceedings 9th ACM Symposium on the
Theory of Computing, ACM, 1977, pp. 77–90.

[9] T.J. Ameloot, B. Ketsman, F. Neven, D. Zinn, Datalog queries distribut-
ing over components, ACM Trans. Comput. Log. 18 (1) (2017) 5.

http://refhub.elsevier.com/S0020-0190(19)30093-6/bib6168765F626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib6168765F626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib67757265766963685F636F6D706C6578697479s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib67757265766963685F636F6D706C6578697479s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib67757265766963685F636F6D706C6578697479s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib67757265766963685F6D6F6E706F73s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib67757265766963685F6D6F6E706F73s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib6368616E676B6569736C6572s1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib73746F6C626F7573686B696E5F66696E6D6F6Es1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib73746F6C626F7573686B696E5F66696E6D6F6Es1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib73746F6C626F7573686B696E5F66696E6D6F6Es1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib726F73736D616E5F686F6Ds1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib726F73736D616E5F686F6Ds1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib62656E6564696B745F626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib62656E6564696B745F626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib62656E6564696B745F626F6F6Bs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib636Ds1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib636Ds1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib636Ds1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib6672616E6B5F646174616C6F67636F6D706F6E656E74735F6A6F75726E616Cs1
http://refhub.elsevier.com/S0020-0190(19)30093-6/bib6672616E6B5F646174616C6F67636F6D706F6E656E74735F6A6F75726E616Cs1

	A monotone preservation result for Boolean queries expressed as a containment of conjunctive queries
	1 Introduction
	2 Preliminaries
	3 Main result
	4 Future work
	References

