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Abstract. We present a data structure used to represent planar spatial
databases in the topological data model. Conceptually, such databases
consist of points, lines between these points, and areas formed by these
lines. The data structure has the distinctive feature that it is geared to-
ward supporting queries involving topological properties of the database
only: two databases that are topologically equivalent have the same rep-
resentation. Moreover, no information is lost in this way: two databases
that are not topologically equivalent never have the same representation.

1 Introduction

Spatial database applications [7] can be classified according to the particular
geometrical concepts that are involved in the interpretation of the spatial in-
formation. This interpretation is apparent from the type of queries that are
important for the application. For example, in queries involving directions such
as “Give all cities on the west bank of the St. Lawrence river north of Québec,”
only differences in longitude and latitude are important. Other, metric, queries
deal only with distances, such as “Is there a highway within ten miles of my
house?”

A major class of queries i1s formed by those involving only properties of the
database that are topological in nature. In this class, concepts such as adjacency,
connectivity, and containment are in the focus. Queries like “Is there a highway
connecting Boston to Portland?” or “Give all states of the US adjacent to the
Atlantic” are typical in this respect. Characteristic of topological properties is
that they do not distinguish between two databases that can be obtained from
each other by a topological deformation. We will call such databases topologically
equivalent (this notion will be made precise later).

In the present paper, we elaborate on the idea of topological property in
the context of databases consisting of points, lines between these points, and
areas formed by these lines [13]. A survey of application domains that can be
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modeled in this manner was given by Laurini and Thompson [10]. In particular,
applications that are topological in nature are common in this context. As an
illustration of topologically equivalent databases, we refer to subway or railroad
maps such as the one depicted in Fig. 1. Such maps are topological deformations
of reality: the length of the lines has no correspondence to the actual length of
the trajectory, and the physical track is not as straight as its drawing in the
map. We say that such a map is topologically equivalent with a classical map
that obeys the reality more closely.

Fig. 1. A railroad map

A common representation of point-line-area spatial databases is by a data
structure listing for each point its incident lines and its adjacent areas, arranged
in the order in which they appear as one proceeds clockwise around the point. We
call this data structure an observation-structure. Essentially this structure un-

derlies the TIGRIS system [8], as well as the topological layer of the ARC/INFO



system [12], and the original design of the cartography system of the Census Bu-
reau of the United States [1]. Tt is also a common data structure for planar graph
embeddings [15].

Of course, not just any structure consisting of a number of point names
together with arbitrary circular listings of line and area names is the description
of a database. We will show that those structures that are “sound” | in this sense,
can be effectively recognized by an efficient algorithm. This can be viewed as a
necessary and sufficient integrity test for the topological data model (also known
as “error identification” [10, Chapter 5.3]).

If only topological properties are under consideration, it may be desirable to
be able to work with a representation of the database which is topologically in-
variant, meaning that two topologically equivalent databases will be represented
identically. Ideally, a representation should also be lossless, in the sense that two
databases that are not topologically equivalent will be represented differently. It
is clear that the representation of a database by means of observation-structures,
as mentioned above, is topologically invariant. The issue of its losslessness has
been somewhat neglected, however. In fact, we will show that it is not lossless.

Although, as we will see, the same observation-structure can represent spatial
databases of quite drastically different appearances, we will also show that this
phenomenon has one single cause. Indeed, we will show that by explicitly marking
one of the areas to be the unbounded one (i.e., the infinitude of space on the
“outside” of the database), losslessness is achieved. The formal proof of this claim
proceeds by reasoning on the nesting structure of the connected components of
the database, and involves the careful composition of local isotopies.

It might seem probable to the reader that the issue of losslessness has already
been addressed in the mathematical theory of planar graph embeddings or in
the field of planar graph drawing. Indeed, this was also the sentiment of the au-
thors at the initial stages of this investigation. However, this is not the case. In
mathematics, the primary interest lies in embeddings on the sphere rather than
in the plane. Topological equivalence on the sphere is not equal to topological
equivalence in the plane. In graph drawing, one is interested in drawing one par-
ticular planar embedding of a given planar graph, according to certain criteria,
rather than characterizing a unique such embedding in terms of a certain data
structure. Moreover, both approaches do not consider the areas as first-class
objects.

Our work is driven by the same motivations as those concerning the large
body of work done on “spatial relationships” in spatial databases. In particular
the various topological relationships that can exist between two specified spatial
objects have been extensively investigated by Egenhofer and his collaborators [2,
3, 4, 5]. One way to think of our results is that we generalize these ideas to
global topological properties of the entire spatial database [14]. The issues are
also relevant from a user interface point of view: a topologically invariant, lossless
representation of the database corresponds to an interface which allows the user
to concentrate only on the topological aspects of the spatial data, and on all of
them, if he so desires.



2 Spatial Databases and Observations

In this section, we define what a spatial database is in the present discussion.
We will also introduce the notion of an observation.
In the following, we work in the real Euclidean plane.

Definition. A spatial database consists of a finite set of named points, a finite
set of named lines and a finite set of named areas. Each point name is assigned
to a distinct point in the plane. Each line name is assigned to a distinct non-
selfintersecting continuous curve® in the plane that starts and ends in a named
point and does not contain any other named points except these. Each area name
is assigned to a distinct area formed by the named lines.

We remark that this definition allows lines to start and end in the same
point, i.e., the database may contain loops. It also may contain more than one
line between the same two points. Fig. 2 gives an example of a spatial database.
This database has eight points, ten lines and five areas.

We apply the following notational convention throughout the remainder

of the paper: Roman characters p,q,... denote point names, Roman capitals
A, B, ... denote line names and Greek characters «,3,... are used for area
names.

Fig. 2. An example of a spatial database

As a first step in achieving an effective, finite representation of a spatial
database, we introduce the notion of an observation of a spatial database from
one of its points.

For each named point in a spatial database, we make a circular alternating list
of area names and line names corresponding respectively to the areas and lines

! Formally speaking, a simple Jordan Curve [11].



that an observer, placed in the named point, sees when he makes one clockwise
full turn and scans the environment of the point. This is illustrated in Fig. 3.
There, the alternating list for the point with name pis (o« B a A 8 C' 3 A).

Fig. 3. An observation of a figure from one of its points

We make this more formal. A point p i1s the endpoint of a finite number of
lines (and loops) of the spatial database. We choose a circle with center the point
p and a radius such that the circle has at least two intersection points with each
loop in p and at least one intersection point in each line ending in p. Such a circle
always exists. In Fig. 3, two lines start from the point p and there is one loop.
The circle in Fig. 3 has an appropriate radius for it cuts the loop in at least two
points and the lines in at least one.

We next mark on the chosen circle the intersection points where the lines and
loops “first” intersect with the circle as we follow the lines and loops starting
from the point. For a line there is one such point, for a loop there are two such
points (one on the right and one on the left). Knowing these markings, we make
a circular alternating list of line names and area names, as is illustrated in Fig. 3.

A point which is 1solated from the remainder of the database gives rise to an
observation consisting of one single area name. For example, the observation of
the spatial database of Fig. 2 from the point w is (). The concept of observation
is well-defined. Indeed:

The definition of observation is independent of the chosen radius. Any radius
that is sufficiently small produces the same circular list. We can therefore, inde-
pendently of a radius, write Op(p) for an observation of the spatial database D
from one of its points named p.

We refer to the list of observations of a spatial database from each of its
named points as the observation of the spatial database.



3 A Lossless Representation

In this section, we use the notion of observation, as a building block of a data
structure that is a topologically invariant and lossless representation of a spatial
database.

In order to formally specify the notions of topological invariance and lossless-
ness we first need to define “topological equivalence” among spatial databases.
Fig. 4 depicts two topologically equivalent databases. Intuitively, two spatial da-
tabases are topologically equivalent if one can be obtained from the other by a
continuous deformation. In other words, there is a “continuous motion picture”
in the plane by which one is transformed into the other.

The mathematical formalization of such “motion pictures” is given by the
notion of isotopy [11]. An isotopy h is a continuous series (hy | 0 <t < 1) of
homeomorphisms of the plane. We thus define:

Definition. Two spatial databases D1 and D5 are called topologically equivalent
if there exists an isotopy h such that ho(D1) = D1 and hy (D) = Ds, with the
understanding that h respects the names of points, lines and areas.

Fig. 4. Two topologically equivalent databases

Definition. A representation of a spatial database is called topologically invari-
ant if any two topologically equivalent spatial databases are represented in the
same way. A representation of a spatial database is called lossless if any two
spatial databases that are not topologically equivalent are distinguished by the
representation.

As motivated in the Introduction, it may be desirable to represent spatial
databases by means of data structures that are topologically invariant and loss-
less. The data structures of Sect. 2 are topologically invariant representation of
a spatial database. More precisely:



Property. Two topologically equivalent databases have the same observation.

The proof of this fact is quite straightforward. A circle with center the point
p, that is located inside a topological deformation of a (possibly other) circle that
was used to obtain an observation from p, gives rise to an identical observation
as the original circle.

Is this representation, on the other hand, lossless? The answer is no. Fig. 5
contains two spatial databases that are represented by identical lists of obser-
vations. These databases are however clearly not continuously deformable into
each other.

Fig. 5. Two spatial databases that are not topologically equivalent but that have
the same observation list

A key observation that can be made in Fig. 5 is that ¢ is the unbounded
region in the first database, but not in the second. Indeed, a necessary condition
for two spatial databases to be topologically equivalent is that for both the
unbounded area has the same label. We note that a spatial database has only
one unbounded area. It 1s therefore justified to reserve a special label for the
unbounded area: a®.

In Fig. 6, we have a simpler example that captures the essence of the problem.
These two databases have the same list of observations. If embedded in the
sphere, these two databases could be deformed into each other (by pulling the
loop over the sphere). In the plane, however, this is not possible. Here however
it is obvious that giving the unbounded area a special status is also sufficient to
distinguish between the two databases.

Is giving, in addition to the list of the observations of a spatial database from
all its named points, the information that the unbounded area has the name a®
not only necessary but also sufficient to obtain losslessness? We answer this
question affirmative in the following theorem.

Theorem. Suppose we have two databases that give the unbounded area the



Fig. 6. Is a®™ enough?

same name a™. If they are not topologically equivalent they have different ob-
servations.

We have to prove that any two databases with the same list of observations
are isotopic. The proof of this statement is rather technical. It can be proved by
induction on the connected components of the figure. In the case of one connected
component the proof is by induction on the number of lines of the figure and
involves the construction of an “local” isotopy. The basis of the latter induction
1s trivial. For connected spatial databases, we can always drop out one of the
lines so that the resulting databases are still connected. The resulting databases
also have the same observations. So, by assumption, they are isotopic. With the
information of the observations, there is isotopically only one way to put the line
back. What remains is gluing the local isotopies together in the proper way into
one global isotopy.

We now have a data structure that is invariant and lossless. We therefore
give 1t a name.

Definition. For a given spatial database D, we call the data structure (P, L, A,
a® Obs()) the PLA-structure of D if P is the set of point names of D, L is the
set of line names of D, A is the set of area names of D, o is the name of the
unbounded area of D, and Obs() is a function that associates with each element
p of P, Op(p), the observation of D from p.

4 An Efficient Algorithm to Recognize PLA-structures

In this section, we deal with error identification problems in PLA-structures. We
will give an algorithm that can be used as an integrity test for representations
of spatial databases. More precisely, not every structure consisting of a number
of point names, line names, area names together with arbitrary circular listings
of line and area names for each point name describes a spatial database.

For example, it is easily verified that the structure S = ({p}, {4}, {a*, 5},
a® Obs()), with Obs(p) = («®A) is not the PLA-structure of any spatial da-
tabase. On the other hand for Obs(p) = (a® ABA), Fig. 7 depicts a database



for which it is the PLA-structure. So, there are structures that “look” like PLA-
structures, but make no real sense. This broader class of structures can be char-
acterized as follows.

Fig. 7. A loop

Definition. We call any tuple
(P, L, A, a%,Obs())

a structure if P, £, respectively A are finite sets, a® is an element of A4, and
Obs() is a function that associates to each element of P or a circular list of
alternatingly elements of £ and A or just one element of A.

Clearly, PLA-structures are exactly those structures that represent a spatial
database.
In this section we give a positive answer to the following question.

Is it syntactically decidable whether a given structure is a PLA-structure?

We will describe an efficient decision procedure to solve this problem. Suppose
we are given an arbitrary structure & = (P, £, A, a®, Obs()). To decide whether
or not 1t is a PLA-structure of a spatial database, we start by constructing what
we will refer to as the dual graph Gs of §. Fig. 8 illustrates this construction for
a loop and a line. Gg 1s an undirected graph and consists of a set of vertices V'
and a set of edges F.

V' contains a vertex for each point name, for each line name and each area
namein §. In addition to these, V' contains a different vertex for each occurrence
of a line name in an observation (called an observation vertex of the line) and
a different vertex for each occurrence of an area in an observation (called an
observation vertex of the area). £ contains an edge between the vertex of a line
name A and and each observation vertex of A, an edge between the vertex of an
area name « and and each observation vertex of a. If Obs(p) = (a), F contains
an edge between the vertex of p and the corresponding observation vertex of «,
and an edge from the corresponding observation vertex of «a to itself. If, on the



Fig. 8. The dual graph of a loop and a line

other hand, Obs(p) = (A1 ... Apay), E contains an edge between the vertex
of p and the 2n corresponding observation vertices, and an edge between two
successive observation vertices and between the observation vertices of «,, and
of A;. We refer to the latter series of 2n edges as the cycle of p.

We now give our decision procedure in terms of decidable properties of the
dual graph and of the structure §.

Decision procedure. The following are necessary and sufficient conditions for
a structure § to be a PLA-structure:

o If A3 occurs in the observation from p, then there is a point ¢ (possibly equal
to p) such that SAa occurs in the observation from ¢. Both occurrences of A are
different and are the only occurrences of A in an observation.

e (s is a connected graph.

e (s is a planar graph.

We will briefly outline the (rather technical) proof of the correctness of this
procedure. The conditions are clearly necessary. Indeed, if § is a PLA-structure
then there is a spatial database D of which § is the PLA-structure. We can very
easily transform the database in the dual graph Gs. Gs 1s planar and connected.
Furthermore, each line A has to endpoints, say p and ¢. This results in two
occurrences of A in the way as specified the first condition.



To prove sufficiency, we start with a planar embedding of Gs in the plane.
This embedding exists because of the third condition. For each point that is
located outside the interior of its cycle, we switch the interior and the exterior of
the cycle with the result that it is inside. With a similar inversion, we can make
sure that the vertex of @™ isin the unbounded area of the embedding. For some
of the points the cycles may have the wrong, i.e., counterclockwise orientation. It
can be proved that the points with a wrong orientation are “clustered” together
and can all be turned without affecting the points with a clockwise cycle. It is
easy to derive the wanted spatial database from an embedding of the dual graph
in which a® 1s located in the unbounded area and each point is located inside
its correctly oriented cycle.

We end this section with the comment that this decision algorithm is efficient.
The construction of the dual graph is linear in the size of the structure. Also the
first condition can be checked in linear time. For both the second and the third
condition efficient algorithms are known [6].

5 Further Remarks

In Sect. 3 we have defined two spatial databases to be topologically equivalent if
they are isotopic. Intuitively this means that one database can be continuously
deformed into the other. In classical topology, however, two figures are usually
called topologically equivalent if they are homeomorphic. Homeomorphisms form
a broader class of continuous transformations than the one that we have consid-
ered. The reflection p of the plane along the y-axis is a homeomorphism of the
the plane but not an 1sotopy. p transforms a left hand continuously a right hand,
as 1s illustrated in Fig. 9. This continuous transformation can not be achieved
by a continuous deformation in the plane. To deform a left hand continuously
into a right hand it is necessary to leave the plane and to use a third dimension.

The following well-known result classifies homeomorphisms of the real plane
as either being continuous deformations or composed of a reflection followed by
a continuous deformation (see e.g. [16]).

Property. A homeomorphism of the plane is either isotopic to the identity or
to p.

This property allows us to define an invariant and lossless representation for
spatial databases if toplogically equivalent corresponds to homeomorphic. The
reflection p reverses the orientation and as a consequence also each observation
of a spatial database from one of its points. For the databases in Fig. 9 this
1s best visible for the point p. Two isotopic spatial databases have the same
clockwise, respectively counterclockwise observations. For two homeomorphic
but non-isotopic spatial databases the clockwise observations of the first corre-
spond to the counterclockwise observations of the other and vice versa.



Fig. 9. Two spatial databases: a left and a right hand
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