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Spatial data
Q: what is a spatial dataset?
A:aset SCR"
equivalently, an n-ary relation S over R (Cartesian coordinates)
R=(R,0,1,4,-,<)
Use first-order logic to express properties of spatial datasets
E.g. Ja3IbVaVy(S(x,y) - y=a-x + b)

(R,S) = ¢ is abbreviated S = ¢




Geometric properties
Let G be a group of transformations of R"
e similarities (Euclidean geometry)
e affinities (affine geometry)

e continuous transformations (topology)

Property ¢ is called G-geometric if it is invariant under G-
VSVgeG:SE¢<g(S) =o

e 'S lies on a circle” is Euclidean, not affine

e 'S lies on a straight line"” is affine, not topological

e 'S has dimension two’ is topological



Capturing the G-geometric first-order properties
Easy when G is first-order parameterisable:
e injection p: G — Rf
e {(p(g9),z,y)| g€ G and y=g(x)} is first-order definable in R
E.g. affinities in R? are tuples (a,b,c,d, e, f) such that
tireme ()= (0 () +0)
A first-order property is G-geometric

)

expressible by a sentence of the form

¢ NVD(g) € p(G)[¢(S) « ¢(g9(5))]

with ¢ arbitrary sentence over (R, S).




Topological properties
Invariant under continuous transformations (isotopies)
Not first-order parameterisable
We can capture them on the class of datasets in R2 that are

e semi-algebraic: definable in R

e closed in the topological sense

12 /25 +y°/16 =1
Val +4r+y° -2y < —4Vz® —dx+y° -2y < —4
V(z®+y*—2y=8Ay<—1)

We call such sets “plain”



Which topological properties of plain sets are FO?
FO-expressible:
e “The dimension is 0 (1, 2)"
e ‘Thereis a point where three lines intersect”
e ‘“There is a point where two 2-dim regions touch”
Not FO-expressible:
e '‘There is a point where an even number of lines intersect”
e '"The number of points where two 2-dim regions touch is even”

e “The set is topologically connected”



Cones

R

Around each point on the boundary we see a circular list of L's and
R’s, called the cone

e points with cone (LL) or (R), or interior points: regular
e others: singular (finitely many)

W.l.0.g. we can focus on the singular points



Cone Logic

Atomic formulas: |e| > n
with e a star-free regular expression over > = {L, R}

Meaning: there are at least n points whose cone satisfies e
A CL-sentence is a boolean combination of atomic formulas.
E.g. “The dimension is 0"

IL¥*| =0 A |RZ*| =0

E.g. “There is a point where three lines intersect”:

ILLLLLL| > 1

E.g. “There is a point where two regions touch’:

IRR| > 1

The first-order topological properties of plain sets are precisely
those expressible in CL

[Benedikt, Kuijpers, Loding, VdB, Wilke]



Proof

. Topological elementary equivalence

. Flower datasets

. Finite structures over the reals, collapse theorems

. Coding flower datasets by finite structures

. Translating sentences about datasets into sentences about codes

. Invariance arguments over codes



Topological elementary equivalence

For plain sets A and B, write A = B if indistinguishable by topological
first-order sentences

A =B < A and B have precisely the same cones,
with the same multiplicities
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[Kuijpers, Paredaens, VdB]



TEE proof: transformation into flower normal form
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Transformation rules

E.g. ‘cut and paste’:

Show that this is indistinguishable by topological first-order sentences,
using a reduction from queries on finite structures over the reals

These are structures of the form (R, Rq,..., Ry) with R; finite
E.g. Majority: given finite unary relations R1 and R», is ##R1 > #R>7

Write an FO-formula ¢ (xz,y) such that for each finite structure D =
(R, Ry, Rp):

B if 4R, > #Ro;
B ONif #R < #Ro.

(D)
Y(D)

Y
Y



Reduction [Grumbach & Sul]

R1 ={a1,a2,a3,a4}, Ro = {b1,b2,b3,b4}:

bl b2 b3 b4

Ry = {a’laa27a’3aa’4}v Ry = {blab27b37b4ab5}:

bl b2 b3 b4 b5



Collapse theorems
Natural—active collapse:

Every first-order query on finite structures over the reals is already
expressible by a sentence in which all quantifiers are relativised to the
finite relations.

Generic collapse:

Every first-order query on finite structures over the reals (in the lan-
guage (0,1,4,-,<,Rq,...,Ry)) that is order-generic (invariant under
all monotone permutations of R) is already expressible by a sentence
in the language (<, R1,..., Ry).

So, order-generic first-order sentences view finite structures over the
reals just as abstract, ordered, finite structures.

[Benedikt, Libkin, et al.]



Flower datasets
A normal form for datasets (as far as topological FO is concerned)

Disjoint union of single or paired flowers

Represent by abstract finite structure called code:
disjoint union of single or paired cycles

T~~~ /N /N /N

////\\\\ L<L<R<L<L<L<L<R<L<L R<L<L<L<L

L<L<R<L<L<L<L<R<L<L

These are (possible paired) word structures equipped with a planar
matching on the L's



Translation argument

Drawing Lemma: We can write an FO-formula é(x,y) such that for
any code C embedded in the reals, §(C) is a flower dataset that is a
drawing of C.

= Translate a topological sentence ¢ about flower datasets into a
sentence ¢ ;= ¢ o 0 about codes, called implementation of ¢

Using collapse theorems, we may assume i sees only an ordered ver-
sion of the abstract code. But this ordering < is not the < of the

word structures!

W.l.0.g. assume that < agrees with <, so all < does is shuffle the
separate cycles in some order

Y is invariant under the way this shuffling is done

= Show that <-invariant FO on ordered codes collapses to FO on
codes



Planar-matching-invariant FO on word structures

Word structures over finite alphabet >, additionally equipped with a
planar matching G

Main Invariance Lemma: G-invariant FO collapses to FO on the
class of word structures with a planar matching

Cf. logical characterisation of context-free languages
[Lautemann, Schwentick, Thérien]

Main Invariance Lemma can be adapted to cycles and cycle pairs
Implementations of topological FO-sentences are indeed G-invariant

e 'Push down” invariance to individual cycles and cycle pairs
e Get rid of pairings by rearrangement argument (TEE)
e Use equivalence of FO and star-free regular expressions

= Cone-Logic Theorem is proved.



Proof of Invariance Lemma

A chain matching can be simulated using alternating markers:

SN /N /SN N

a b ¢ a b ¢ a a a b ¢ a b ¢ a a

Can translate FO over chain matchings to FO over marked words

A parenthetical matching can be simulated using folding:

Can translate FO over parenthetical to FO over folded words

Both translations imply that set W of words is surely regular, and can
have only very limited kind of counters

Final argument shows that W = W/ n (ZX)* with W' counter-free
regular = first-order



Corollary: topological collapse
CL can already be expressed in FO over (R, S) using only < and S

= Every topological first-order property of plain sets is already ex-
pressible by a sentence using only < and S



Open problems
What about non-closed sets?

We can always decompose a set in R" in n + 1 closed sets:

= What about ensembles of closed sets?

[Grohe & Segoufin]

No problem for FO-parameterisable geometric queries



More open problems
What about R3 and higher?
And, what about non-semialgebraic sets?
E.g. “Every point in the set has cone (LL)":
e FO

e topological over semialgebraic sets
e not topological over all sets

Example of a topological property that is FO over semialgebraic sets
but not over all sets?



Point-based logics
FO over R is a coordinate-based logic
Cone Logic is a point-based logic
Can we find point-based logics for other kinds of geometric queries?

[Tarski:] Geometric constructions of addition and multiplication are
FO-expressible using a single ternary predicate 8 (“between’)




Affine queries
View S C R? as a unary relation over the structure (RZ2, 3)
Denote FO(R, 0,1, 4+, -, <, S(2)) by FO(R)
Denote FO(RZ2, 3,5(1)) by FO(B)
Call a triple (o,eq1,e5) of non-collinear points a basis

For each FO(RR)-sentence ¢ there exists an FO(B)-formula ¢ (o, eq1,€e5)
such that for every dataset S and

for every basis (o,e1,e2) : S = 9(o,e1,e2) & a(S) = ¢

where

a is the unique affinity : (o,e1,e5) — ((0,0),(1,0),(0,1))

For each affine FO(R)-sentence ¢ there exists an equivalent FO(3)-
sentence 9 (and vice versa).




Plane graphs

The topology of a semialgebraic set in the plane can be represented
by a finite structure

- e

Every topological first-order sentence about semialgebraic sets in
the plane, using only < and S, can be translated to a first-order
sentence about the corresponding plane graphs.

[Segoufin & Vianu]

By topological collapse, we know that (for a single plain set) the
restriction to only < is harmless
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