Logical Aspects of Spatial Databases

Part I: First-order geometric and topological queries

Jan Van den Bussche Hasselt University

Spatial data

Q: what is a spatial dataset?

A: a set $S \subset \mathbb{R}^n$

equivalently, an n-ary relation S over $\mathbb R$ (Cartesian coordinates)

$$\mathbb{R} = (\mathbb{R}, 0, 1, +, \cdot, <)$$

Use first-order logic to express properties of spatial datasets

E.g.
$$\exists a \exists b \forall x \forall y (S(x,y) \rightarrow y = a \cdot x + b)$$

 $(\mathbb{R},S)\models\phi$ is abbreviated $S\models\phi$

Geometric properties

Let G be a group of transformations of \mathbb{R}^n

- similarities (Euclidean geometry)
- affinities (affine geometry)
- continuous transformations (topology)

• . . .

Property ϕ is called G-geometric if it is invariant under G:

$$\forall S \, \forall g \in G : S \models \phi \Leftrightarrow g(S) \models \phi$$

- \bullet "S lies on a circle" is Euclidean, not affine
- "S lies on a straight line" is affine, not topological
- ullet "S has dimension two" is topological

Capturing the G-geometric first-order properties

Easy when G is first-order parameterisable:

- injection $p:G \to \mathbb{R}^{\ell}$
- $\{(p(g), \bar{x}, \bar{y}) \mid g \in G \text{ and } \bar{y} = g(\bar{x})\}$ is first-order definable in $\mathbb R$

E.g. affinities in \mathbb{R}^2 are tuples (a,b,c,d,e,f) such that

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0 \text{ and } \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

A first-order property is *G*-geometric

expressible by a sentence of the form

$$\phi \land \forall p(g) \in p(G)[\phi(S) \leftrightarrow \phi(g(S))]$$

 $\phi \wedge \forall p(g) \in p(G)[\phi(S) \leftrightarrow \phi(g(S))]$ with ϕ arbitrary sentence over (\mathbb{R}, S) .

Topological properties

Invariant under continuous transformations (isotopies)

Not first-order parameterisable

We can capture them on the class of datasets in \mathbb{R}^2 that are

- *semi-algebraic:* definable in $\mathbb R$
- closed in the topological sense

$$x^{2}/25 + y^{2}/16 = 1$$

$$\forall x^{2} + 4x + y^{2} - 2y \le -4 \lor x^{2} - 4x + y^{2} - 2y \le -4$$

$$\forall (x^{2} + y^{2} - 2y = 8 \land y \le -1)$$

We call such sets "plain"

Which topological properties of plain sets are FO?

FO-expressible:

- "The dimension is 0 (1, 2)"
- "There is a point where three lines intersect"
- "There is a point where two 2-dim regions touch"

Not FO-expressible:

- "There is a point where an even number of lines intersect"
- "The number of points where two 2-dim regions touch is even"
- "The set is topologically connected"

Cones

Around each point on the boundary we see a circular list of L's and R's, called the cone

- points with cone (LL) or (R), or interior points: regular
- others: singular (finitely many)

W.I.o.g. we can focus on the singular points

Cone Logic

Atomic formulas: $|e| \geqslant n$ with e a star-free regular expression over $\Sigma = \{L, R\}$

Meaning: there are at least n points whose cone satisfies e

A CL-sentence is a boolean combination of atomic formulas.

E.g. "The dimension is 0":

$$|L\Sigma^*| = 0 \land |R\Sigma^*| = 0$$

E.g. "There is a point where three lines intersect":

$$|LLLLLL| \geqslant 1$$

E.g. "There is a point where two regions touch":

$$|RR| \geqslant 1$$

The first-order topological properties of plain sets are precisely those expressible in CL

[Benedikt, Kuijpers, Löding, VdB, Wilke]

Proof

- 1. Topological elementary equivalence
- 2. Flower datasets
- 3. Finite structures over the reals, collapse theorems
- 4. Coding flower datasets by finite structures
- 5. Translating sentences about datasets into sentences about codes
- 6. Invariance arguments over codes

Topological elementary equivalence

For plain sets A and B, write $A \equiv B$ if indistinguishable by topological first-order sentences

 $A\equiv B\Leftrightarrow A$ and B have precisely the same cones, with the same multiplicities

[Kuijpers, Paredaens, VdB]

TEE proof: transformation into flower normal form

Transformation rules

E.g. "cut and paste":

Show that this is indistinguishable by topological first-order sentences, using a reduction from queries on *finite structures over the reals*

These are structures of the form $(\mathbb{R}, R_1, \dots, R_k)$ with R_i finite

E.g. Majority: given finite unary relations R_1 and R_2 , is $\#R_1 \geqslant \#R_2$?

Write an FO-formula $\psi(x,y)$ such that for each finite structure $D=(\mathbb{R},R_1,R_2)$:

Reduction

[Grumbach & Su]

 $R_1 = \{a_1, a_2, a_3, a_4\}, R_2 = \{b_1, b_2, b_3, b_4\}$:

$$R_1 = \{a_1, a_2, a_3, a_4\}, R_2 = \{b_1, b_2, b_3, b_4, b_5\}$$
:

Collapse theorems

Natural—active collapse:

Every first-order query on finite structures over the reals is already expressible by a sentence in which all quantifiers are relativised to the finite relations.

Generic collapse:

Every first-order query on finite structures over the reals (in the language $(0, 1, +, \cdot, <, R_1, ..., R_k)$) that is *order-generic* (invariant under all monotone permutations of \mathbb{R}) is already expressible by a sentence in the language $(<, R_1, ..., R_k)$.

So, order-generic first-order sentences view finite structures over the reals just as abstract, ordered, finite structures.

[Benedikt, Libkin, et al.]

Flower datasets

A normal form for datasets (as far as topological FO is concerned)

Disjoint union of single or paired *flowers*

Represent by abstract finite structure called *code:* disjoint union of single or paired *cycles*

These are (possible paired) word structures equipped with a planar matching on the L's

Translation argument

Drawing Lemma: We can write an FO-formula $\delta(x,y)$ such that for any code C embedded in the reals, $\delta(C)$ is a flower dataset that is a drawing of C.

 \Rightarrow Translate a topological sentence ϕ about flower datasets into a sentence $\psi := \phi \circ \delta$ about codes, called *implementation* of ϕ

Using collapse theorems, we may assume ψ sees only an ordered version of the abstract code. But this ordering < is not the \prec of the word structures!

W.l.o.g. assume that < agrees with \prec , so all < does is shuffle the separate cycles in some order

 ψ is *invariant* under the way this shuffling is done

⇒ Show that <-invariant FO on ordered codes collapses to FO on codes

Planar-matching-invariant FO on word structures

Word structures over finite alphabet Σ , additionally equipped with a planar matching G

Main Invariance Lemma: G-invariant FO collapses to FO on the class of word structures with a planar matching

Cf. logical characterisation of context-free languages [Lautemann, Schwentick, Thérien]

Main Invariance Lemma can be adapted to cycles and cycle pairs

Implementations of topological FO-sentences are indeed G-invariant

- "Push down" invariance to individual cycles and cycle pairs
- Get rid of pairings by rearrangement argument (TEE)
- Use equivalence of FO and star-free regular expressions

⇒ Cone-Logic Theorem is proved.

Proof of Invariance Lemma

A chain matching can be simulated using alternating markers:

Can translate FO over chain matchings to FO over marked words

A parenthetical matching can be simulated using folding:

Can translate FO over parenthetical to FO over folded words

Both translations imply that set W of words is surely regular, and can have only very limited kind of counters

Final argument shows that $W=W'\cap (\Sigma\Sigma)^*$ with W' counter-free regular \Rightarrow first-order

Corollary: topological collapse

CL can already be expressed in FO over (\mathbb{R},S) using only < and S

 \Rightarrow Every topological first-order property of plain sets is already expressible by a sentence using only < and S

Open problems

What about non-closed sets?

We can always decompose a set in \mathbb{R}^n in n+1 closed sets:

⇒ What about ensembles of closed sets?

[Grohe & Segoufin]

No problem for FO-parameterisable geometric queries

More open problems

What about \mathbb{R}^3 and higher?

And, what about non-semialgebraic sets?

E.g. "Every point in the set has cone (LL)":

- FO
- topological over semialgebraic sets
- not topological over all sets

Example of a topological property that is FO over semialgebraic sets but not over all sets?

Point-based logics

FO over $\mathbb R$ is a coordinate-based logic

Cone Logic is a point-based logic

Can we find point-based logics for other kinds of geometric queries?

[Tarski:] Geometric constructions of addition and multiplication are FO-expressible using a single ternary predicate β ("between")

Affine queries

View $S \subset \mathbb{R}^2$ as a *unary* relation over the structure (\mathbb{R}^2, β)

Denote $FO(\mathbb{R}, 0, 1, +, \cdot, <, S^{(2)})$ by $FO(\mathbb{R})$

Denote $FO(\mathbb{R}^2, \beta, S^{(1)})$ by $FO(\beta)$

Call a triple (o, e_1, e_2) of non-collinear points a basis

For each FO($\mathbb R$)-sentence ϕ there exists an FO(β)-formula $\psi(o,e_1,e_2)$ such that for every dataset S and

for every basis (o, e_1, e_2) : $S \models \psi(o, e_1, e_2) \Leftrightarrow \alpha(S) \models \phi$

where

 α is the unique affinity: $(o, e_1, e_2) \mapsto ((0, 0), (1, 0), (0, 1))$

For each affine FO(\mathbb{R})-sentence ϕ there exists an equivalent FO(β)-sentence ψ (and vice versa).

Plane graphs

The topology of a semialgebraic set in the plane can be represented by a finite structure

Every topological first-order sentence about semialgebraic sets in the plane, using only < and S, can be translated to a first-order sentence about the corresponding plane graphs.

[Segoufin & Vianu]

By topological collapse, we know that (for a single plain set) the restriction to only < is harmless

References (http://alpha.uhasselt.be/~vdbuss)

- M. Gyssens, J. Van den Bussche, D. Van Gucht. Complete geometric query languages. *JCSS* 58(1):54–68, 1999.
- M. Benedikt, B. Kuijpers, C. Löding, J. Van den Bussche, T. Wilke. A characterization of first-order topological properties of planar spatial data. *JACM*, to appear.
- B. Kuijpers, J. Paredaens, J. Van den Bussche. On topological elementary equivalence of closes semi-algebraic sets in the real plane. *JSL* 65(4):1530–1555, 2000.
- S. Grumbach, J. Su. Queries with arithmetical constraints. *TCS* 173(1):151–181, 1997.
- L. Libkin. *Elements of Finite Model Theory*. Springer, 2004.
- M. Grohe, L. Segoufin. On first-order topological queries. *TOCL* 3(3):336–358, 2002.
- L. Segoufin, V. Vianu. Querying spatial databases via topological invariants. *JCSS* 61(2):270–301, 2000.