Foreword

Jan Paredaens is turning 60 on the first of October, 2007. On the occasion of
this birthday, we held a symposium at the University of Antwerp, on Friday 21
September 2007.

The present book contains some of the scientific papers that were presented
at the symposium, but contains also additional papers, written by scientific
friends of Jan, written especially to congratulate Jan, and to honor him for his
contributions to the database theory research community. Also included is an
interview with Jan.

Jan Van den Bussche
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An interview with Jan Paredaens

Jan Van den Bussche Dirk Van Gucht

Jan Paredaens, one of the most influential members of the database theory
community, has reached the age of sixty. On this occasion, we have interviewed
him about his research career, the services he has done to the research com-
munity, what drives him, and his view of the future. The interview happened
in July 2007 and took place at Indiana University, Bloomington, a place which
Jan has visited on numerous occasions to work with Dirk Van Gucht, getting
inspiration, finding topics to work on.

In your research career, what have been the most interesting moments for
2
you?

It all started when I was in my first year as a master’s student in mathe-
matics at the Free University of Brussels (VUB). It was around Eastern and
I was looking for a topic for my master’s thesis. I was mainly thinking about
traditional math topics, until I ran into professor Bingen, who suggested me to
check out the new topic of “computer science”. We are talking here about the
year 1968-69, and I hardly knew what computer science was, except of course
that it had to do something with computers! Bingen sent me to talk to professor
Louchard at the French-speaking University of Brussels (ULB). Louchard was
a numerical analist by education, but very much interested in the then-current
developments in computing. When I told Louchard that I was curious about
computer science, but that I was mainly interested in formal mathematics, he
connected me to his assistant, Claude Cherton. Claude gave me the lecture
notes, by someone named Seymour Ginsburg, of a NATO summer school on
formal languages he had attended. I still have my copy of those lecture notes,
and they were my first introduction to theoretical computer science. I was very
much interested, and did my master’s thesis on different but equivalent varia-
tions of Turing machines, based on a JACM paper by Pat Fischer. I also did my
PhD on a theoretical computer science topic, namely, stochastic automata. By
adjusting the probability mechanism of a stochastic automaton, you can recog-
nise different classes of languages in the Chomsky hierarchy and even beyond.

At the end of my PhD I was very much interested in a research career in
computer science, and got a job as research scientist at the MBLE-Philips lab
in Brussels (Michel Sintzoff, who already worked there at the time, was a jury
member of my PhD defense). My first assignment was to work on PHOLAS,
a hierarchical database system developed by Philips. I had to work on such
things as fine-tuning of links and other optimisations. To be honest I did not



find that work extremely fascinating, but fortunately at EMBL we had enough
freedom to pursue our own research interests on the side. In the library I
stumbled upon an article, I don’t remember the author, I think it appeared
in IPL, that dealt with the problem of how many different keys can exist in a
relation, given a set of functional dependencies. This was my first encounter
with the relational database model. We were in the early 1970s, and that article
must have been one of the first works that followed up on Codd’s seminal papers.
Given my experience with the PHOLAS system I mentioned earlier, which was
complicated and messy, I was struck by the mathematical beauty and elegance
of the relational database model. That encounter marked the beginning of my
database theory research career. I started to work on a unifying model for
various kinds of integrity constraints [10]. In the same period I also wrote my
paper on the expressive power of the relational algebra [9], which later would
become known as establishing the BP-completeness of the relational algebra.

After five years at MBLE, I started in 1979 as a professor at the University
of Antwerp. My first two PhD students were Paul De Bra and Marc Gyssens,
and I worked with them on two different kinds of decomposition of relations:
Paul studied horizontal decompositions based on violations of given functional
dependencies, and Marc studied vertical decompositions based on acyclic join
dependencies.

I then moved on to the nested relational model, under the influence of Dirk
Van Gucht. My most important result there, together with Dirk, was the “flat—
flat theorem”, stating that any expression in the nested relational algebra that
expresses a query from flat relations to flat relations, can also be expressed
in the flat relational algebra [13]. We are now speaking about the 1980s, and
computer science had not stood still in the meantime. An important evolution
was object orientation, under the impulse of Smalltalk, historically the most
important object-oriented programming language. Also the influence of Algol
68 was very important. The confluence of all those ideas lead to the present-
day prominent languages such as Java and C++. Although I never was a real
programming language researcher, I was interested in the semantics of program-
ming languages, on which topic I wrote a book together with Johan Lewi [8].
I also wrote two pedagogical books on Pascal and on C, and of course there is
my book, with Paul De Bra, Marc Gyssens, and Dirk Van Gucht, on database
theory [11].

So, we thought the glorious period of the relational model was over; at that
time I was convinced that in 2007, relational databases would be a thing of
the past and all database systems would be object-oriented. So at the end of
the 1980s, beginning of the 1990s, the database research community spent a
lot of energy in research on object-oriented databases, with large projects such
as Oy, and companies were started up who thought they could do big business
by transforming the database systems industry into object-oriented databases.
History has judged otherwise, and we now see that current database systems,
such as Oracle, are fundamentally still relational, although a lot of features have
been added to store objects of all types, also XML documents, in relations.

My own research on object-oriented databases dealt mainly with GOOD: a



graph-oriented object database model [2], which I started with Marc Gyssens
and Dirk Van Gucht. Later, no less than four PhD students joined the GOOD
project: Jan Van den Bussche, Marc Andries, Marc Gemis, and Peter Peel-
man. With GOOD, we succeeded in modeling a number of important OO
features such as generalisation and object identity. GOOD also had an entirely
graphical syntax and semantics, and in retrospect I think these graphical as-
pects perhaps hindered, rather than helped, the communication of the model to
other researchers. Looking at the present semi-structured data models, which
are tree-based rather than graph-based, perhaps GOOD came before its proper
time.

The next step in my research career was spatial databases, together with my
then-student Bart Kuijpers. In the 1990s, people started to understand that not
only general-purpose, but also special-purpose database systems were needed,
such as systems that deal with text data, or sequence data, or geographical
data. We studied mainly theoretical aspects of spatial databases, such as data
structures [5] or topological queries [6]. This work on spatial databases also lead
to constraint databases [12], because spatial data and queries can be expressed
in terms of constraints over the reals. Together with Gabi Kuper and Leonid
Libkin I edited a book on constraint databases [7].

After that I have been in a data mining period, mostly working on association
rules, with my then-student Toon Calders [1]. Association rules are a really
important concept in data mining. At around the same time, another very
important concept came up in the database world, namely XML, not just as a
format, but as a data structure that you want to store, query, and transform in
the database. A whole bunch of languages were proposed, which in the end all
culminated in the present languages XPath and XQuery. We are currently still
working on these languages, with my post-doc Jan Hidders and current students
Philippe Michiels and Roel Vercammen. We study expressiveness issues, and
with LiXQuery [4] we made an attempt to strip XQuery of all the details that
are unimportant from a theoretical perspective.

To conclude this long answer I want to say that I am indebted to all my
students, who have contributed a lot to my research, and of course I have also
collaborated with various people from the international database community.

You have not mentioned your work on the grammatical data model [3].

Together with Marc Gyssens and Dirk Van Gucht, I developed that model
as a model for text databases, where the structure of the text plays a central
role. This structure is a tree of course, and later, in our work on GOOD, we
relaxed this structure to general graphs. But yes, it was a nice contribution,
and if you look at that paper carefully, you already see some fundamentals of
the XML data model and query languages there, “avant la lettre”.

In the 1980s, you were involved in the European Association for Theoretical
Computer Science (EATCS).

Yes, I became involved in EATCS through my predecessor at the University
of Antwerp, Grzegorz Rozenberg, then president of the EATCS. At that time,



EATCS was legally an association according to Belgian law, and the law required
a Belgian treasurer. When I succeeded him when he moved from Antwerp
to Leiden, Grzegorz asked me to serve as treasurer. I remained involved in
EATCS for a number of years, and served as chair of the 1984 edition of ICALP.
Unfortunately, database theory never became an important topic in the EATCS
community.

That might be one of the reasons why ICDT (the International Conference
on Database Theory) was created?

The idea for ICDT originates at one of the workshops on Logic and Databases,
organised in Toulouse by Gallaire and Minker in the mid 1980s. Together with
Giorgio Ausiello and Serge Abiteboul, we started a biennial series of database
theory conferences, held in historical European locations. The first was in 1986
in Rome (organised by Ausiello), the second in 1988 in Bruges (organised by
myself), and the third in 1990 in Paris (organised by Abiteboul). I have served
as chair of the ICDT Council for quite some time; meanwhile, that job has been
taken over by Jan Van den Bussche.

Is there any advice you have to the current European database theory com-
munity? Anything you would have liked to see happen there?

The European Union funds large research projects. I would like to see more
large projects focused specifically on database theory, created by collaboration
among the different database theory groups in Europe, and funded by the EU.

In your office, on the wall, one can read the following quote: “Details are
the jungle where the Dewvil hides.”

Yes, this is a quote from Niklaus Wirth. He meant this in the context of
programming. Every programmer knows that when programming, but even
more when designing the program, there are so many details to take care of. A
typical example are borderline cases: does my program work correctly for all
positive integers, including the special cases 0 and 17 And so on. It is very
dangerous to reason like, “well there is this one special case where my program
does not work, but that case will never occur.” But also when writing down
formal definitions or proofs, details are extremely important. It is often easy to
understand the overall argument of a formal proof, but it is often very difficult
to work out all details of that proof correctly.

Are you inspired by other quotes as well?

One quote that I point out to all my student is Einstein’s “A good theory
should be as simple as possible, but no simpler.” Well-meaning researchers
often have the tendency to make their definitions and proofs more and more
complicated while they understand more about the problem they are working
on. (Here I am not even talking about what the lesser gods sometimes do,
making their formulas too complicated just to make their research look difficult!)



It is much better, once you know you have a complete proof, to start afresh and
write it down in the simplest possible form. This is extremely difficult to do
well, and that is what Einstein meant. “But no simpler!” Because then you risk
being simply wrong. . .

I have two other quotes related to mathematics. Although we use rather el-
ementary mathematical concepts, certainly compared to what present-day pure
mathematicians are working with, it must be recognised that computer science
is very mathematical. Not only theoretical computer science is mathematical,
also software construction is a mathematical activity. Now Grzegorz Rozenberg
has said: “The mathematics of Life is computer science.” Traditional sciences
such as physics have been mathematical from the outset, but only in recent
years also life sciences such as biology, or even psychology, are becoming more
and more mathematical, and computer science has an enormous influence on
these developments.

The last quote is probably the most fundamental; Richard Feynman once
wrote “Why Nature is mathematical is a mystery.” Yet I wonder whether per-
haps there is another formalism that will eventually replace mathematics as we
know it. To me, current mathematics seems insufficient to describe something
as easy (to humans) as driving a car in everyday traffic. Will we ever be able to
understand this process formally? Still, it is indeed wonderful how our mathe-
matics, which we have developed since more than 2000 years, is so successful in
describing Nature.

How do you think database theory will evolve in this Google era, specifically
in the context of internet search?

There are two different questions here. As for the classical database theory
problems, I think we may be near the end of it. Of course there will be new data
models, certainly we will need to develop data models for higher dimensional
data such as pictures, videos, and so on, but I think we understand well enough
in general how querying a database works. I am referring here to the standard
“employee-department-salary” kind of queries. This will not be much different
for the newer data models. I see many more future problems left to solve in data
mining: which patterns exist in the data? Which are the exceptional or other-
wise “interesting” pieces of information in a large database? Security (in the
sense of anti-terrorism, for example), is an increasingly important application
of data mining.

Now concerning the Internet, of course that will become the largest database
in the world, perhaps even a “complete” database of everything we know. In
such an enormous and heterogeneous database, even supporting the classical
“employee-department-salary” queries remains a difficult challenge. If you will,
turning Google into a real database, yes, there we still have a lot of work to do,
just like in data mining.
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Orderings on Annotated Collections

Christopher Re Dan Suciu Val Tannen
September 7, 2007

We dedicate this contribution to Jan Paredaens on the occasion of his
60th birthday. For many years Jan has been a wonderful scientific
mentor and collaborator, an exceptional host and a valuable friend to
both of us. Jan, many thanks and we wish you many happy returns!

Dan Suciu and Val Tannen

We study order relations on collections annotated with elements from a
commutative semiring. The basic question we address is: given two collections
X and Y, whose elements have been annotated with values from a semiring,
when is Y “more informative” than X, written X < Y? Such (pre-)orders
have been studied separately for sets and for bags, but here we define them for
collections annotated from an arbitrary semiring. We define a lower-, upper-,
and convex- preorder, similar in spirit to the definitions on sets. The orders on
sets and bags become particular instances of our general notions, by suitable
choosing the semiring to be the booleans B (for sets) and the natural numbers
N (for bags). Thus our definition unifies the previously separate definitions for
sets and bags.

We explore deeper the connection between these order relations and prop-
erties of the semiring. To give some focus to our investigation, we address two
concrete, non-trivial questions: when is the convex preorder equivalent to the
conjunction of the lower and upper preorder? And when are these preorders
antisymmetric? To answer the first question we introduce a new notion of
homomorphism between collections annotated from a semiring and prove that
under certain conditions the existence of a (lower-, or upper-, or convex-) ho-
momorphism between two collections X and Y is equivalent to the (lower-, or
upper-, or convex-) pre-order between X and Y. To answer the second question
we introduce another characterization of the existence of homomorphisms, in
terms of comparing the total annotations on filters, or on ideals respectively.
In order to prove that these new definitions are equivalent to the existence of
homomorphisms we show an interesting connection between homomorphisms
and flows in networks, then use the min-cut max-flow theorem.

None of our results are definitive: we answer the two questions only partially,
by placing certain restrictions on the semirings. We hope that future work will
fully characterize the semirings for which these results continue to hold.



1 Background

1.1 Powerdomains

Denote (A, <) an ordered set. Denote {A} the set of finite subsets of A and
{A} the set of finite bags over A. The following pre-order relations are defined
on {A}:

Lower powerdomain (Hoare) X <’ Y iff Va € X.3b € Y.a < b.
Upper powerdomain (Smyth) X <! Y iff Vb € Y.3a € X.a <b.
Convex powerdomain (Plotkin) X <! Y iff both X <"Y and X <!V,

All are pre-orders, except when (A, <) is totally unordered. For example, if
a < bthen {a,b} <" {b} <° {a,b} and {a,b} <! {a} <! {a,b}.

1.2 The CWA and OWA Orderings

Libkin and Wong [8] define the following closed world and open world pre-order
relations on {A} and {A}:

Set ordering For X,Y € {A}, X <¢WA Y if X can be transformed into Y by

—set
a sequence of operations of the following kind:

e Replace an element a with a non-empty set B s.t. Vb€ B, a < b.

Furthermore, X <9W4 Y is X can be transformed into Y by a sequence

of operations of the following kind:

e Replace an element a with a non-empty set B s.t. Vb € B, a < b.
e Insert some new elements.

Bag ordering For X|Y € {A}, X S&‘;VA Y if X can be transformed into Y
by a sequence of operations of the following kind:

e Replace an element a with an element b s.t. a <b

Furthermore, X S%WA Y is X can be transformed into Y by a sequence
of operations of the following kind:
e Replace an element a with an element b s.t. a <b

e Insert some new elements.
They proved the following two propositions:

Proposition 1.1 Forall X,Y € {A}:
e X <OWAY X <Y

—set

o X <CWAY X <iY.

—set

Proposition 1.2 If < is an order relation on A (i.e. < is antisymmetric) then
both S%I;VA and gg}q“ are order relations.



1.3 K-Collections

Green, Karvounarakis, and Tannen [6] define an algebra on relations whose
tuples are annotated with elements from a commutative semiring. Foster, Green
and Tannen [4] generalized this to complex objects using K-collections. In their
work K was a commutative semiring K = (K, +,-,0, 1): both operations + and
- were relevant for query semantics. For most of our discussion here we only
need the operation +, and therefore it is more general to consider K to be a
commutative monoid (K,+,0). Thus, K will denote a commutative monoid
unless we specify explicitly that it is a semiring.

Some examples of semirings are (B, V, A, false, true), (N, +,-,0,1), (RT, +, -,
0,1), (P(E),U,Nn, 0, E), and their corresponding additive monoids are (B, V, false),
etc. We abbreviate these semirings (monoids) with B, N, R, P(E).

Definition 1.3 Let A be a set. The support of a function X : A — K is the
set {a | X(a) # 0}. A K-collection over A is a function X : A — K with finite
support. Denote by Collx (A) the set of K-collections over A.

Define 0 to be the collection 0(k) = 0,Vk € K, for any two collections X,Y,
define the collection X +Y by (X +Y)(k) = X(k) +Y(k), Vk € K.

B-collections over A are finite sets of elements from A, while the N-collections
to the finite bags: thus, Collg(A) = {A} and Collny(A) = {A}.

For another example of interest, fix a set V' of boolean variables, and denote
BoolExp(V') the set of boolean expressions over V up to logical equivalence.
Then (BoolExp(V),V, A, false, true) is a semiring. Bool Exp(V)-collections are
a particular case of the c-tables of [7], used under the name boolean c-tables
in [5]. Yet another example is provided by the events of a probability space
(P(E),u,n, 0, E); we assume here that P(F) is a finite sample space and that
allits subsets are measurable events. The last two examples are, in fact, boolean
algebras. Any boolean algebra, and more generally, any bounded distributive
lattice is also a commutative semiring.

Definition 1.4 Let X € Collg(A). Its weight is w(X) = >, .4 X(a).(Since
X has finite support, this sum is well-defined even when A is infinite.)

To illustrate, the weight of a bag is the number of its elements, the weight of
an RT-collection is the sum of the annotations of all elements, and the weight of
an ordinary finite set is a boolean value indicating whether the set is non-empty.

Example 1.5 A finite probability space is a pair (€, i) where €2 is a finite set
and p : Q — [0,1] such that ) u(w) = 1. A finite probability space can be
viewed as an annotated collection with weight 1: X € Collg+ () s.t. w(X) = 1.

We denote a K-annotated collection X as a set X = {(a1,k1),..., (an,kn)},
where {ai,...,a,} is the support of X, and k; = X(a;), for k=1,...,n.

10



2 Ordered Monoids

Let (K,4+,0) be a monoid. Define k1 < ko if 3k.k; + k = ka. One can check
that <) is a pre-order, that 0 < k for any k¥ € K; when K is a semiring then - is
monotone in each argument. Call the monoid naturally ordered if (K, <) is an
order, i.e. if k1 < ko and ko < ky implies k1 = ko (antisymmetry).

B,N,R*, BoolExp(V), and P(F) are all naturally ordered. For B, and
Bool Exp(V) the order corresponds to logical implication. For P(F) it’s simply
set inclusion. For N and R the order corresponds to the usual numerical order.
Z is not naturally ordered, because x < y forall x,y € Z.

Recall that when the monoid is idempotent (i.e. = + x = z) then < is an
order relation, and that (K, <) forms a semi-lattice with k1 V ko = k1 + ko: thus,
every idempotent monoid is naturally ordered.

We will assume throughout the paper that the monoid K is naturally or-
dered, unless otherwise stated.

3 Pre-Orders on K-collections

3.1 A Pointwise Order

We start by examining how we can order the set Collx(A) assuming no prior
order on the domain A. “When is a collection Y more informative than X, in
notation X <Y ?” A natural answer is “when each element in Y has a more
informative annotation than in X”, which leads us to the pointwise order:

X<Y & VaeA X(a)<Y(a)

It is easy to check that this is an order relation.

Another obvious idea for defining a pre-order on Collk(A) is to observe
that (Collx(A),+,0) is a monoid, for which we have defined a pre-order in the
previous section. This order, however, coincides with the one defined pointwise:

Proposition 3.1 X <Y ff 3Z € Colix(4). X+ Z =Y.

For finite sets (which are Collg(A)) the pointwise order is set inclusion; for
finite bags (which are Colly) it is bag inclusion. As we shall see, the situation
is more interesting with the other monoids we have considered.

We end this section with a simple, alternative characterization of the point-
wise order on K-collections:

Proposition 3.2 The pointwise order on Collyk(A) is the smallest pre-order
satisfying the following two properties:

e f X <Y and X' <Y’ then X +Y < X' +Y’

o 0 < X.

11



3.2 Application: c-Tables

A c-table T is a set where each element is annotated with a boolean expres-
sion [7], thus T € Collgooigzpv)(A). What does the point-wise order on c-
tables mean 7 A c-table represents an incomplete database, i.e. a set of finite
subsets of A denoted Mod(T') and formally defined as follows. Recall that T' is
a function T : A — BoolExp(V); then, given a truth assignment v : V — B
and denoting 7 : BoolExzp(V) — B its extension to boolean expressions, we
have 7oT : A — B, thus 7o T € Colig(A). Then:

Mod(T) = {voT|v:V — B} C Collg(A)
Proposition 3.3 Let 11,15 be two Bool Exp(V')-collections. Then
T,<Ty, = Mod(Ty) <" Mod(T)
(convex powerdomain ordering)

Proof: Since the order on BoolExzp(V') corresponds to logical implication, for
each truth assignment v and each a € A we have that 7 o T} (a) = true implies
v oTy(a) = true hence v o Ty C voTy. The Plotkin (convex powerdomain)
ordering follows. |

Thus, the order relation on c-tables implies that the incomplete databases
they represent are ordered by the convex powerdomain order. Note that the
converse doesn’t hold!. For example, let X,Y € V be two distinct boolean
variables, a € A an element in the domain, and consider the following two
c-tables: Ty = {(a,X)} and T = {(a,Y)}. Both have support {a}, but one
annotates a with X the other with Y. Then T} £ T5, yet Mod(Ty) = Mod(Ty) =

{0 {a}}.

3.3 Lower, Upper, and Convex Pre-Orders

The more interesting case that we study is when the domain is already ordered.
Thus, we consider an ordered set (A4, <), and examine how to order the K-
collections over A. Clearly we want the pre-order on collections to be closed
under addition (like in Proposition 3.2), but now we also want to allow to
“replace” an element a € A with some element b € A s.t. a < b. More precisely,
call a binary relation < on Collg (A) closed if it satisfies:

o Ifa,be A ,a <b, then forall k € K, {(a,k)} = {(b,k)}
e f X <Y and X' XY then X +Y <X'+Y".

Definition 3.4 Given an ordered set (A,<), define the following three pre-
orders on Collg (A):

IThis was pointed to us by T.J. Green.
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Convex pre-order ShK 18 the smallest closed pre-order.

Lower pre-order Sz(, 1s the smallest closed pre-order satisfying 0O S‘}( X.
Upper pre-order SﬁK, is the smallest closed pre-order satisfying X SﬁK 0.

A direct consequence of this definition is the following characterization ex-
tending Proposition 1.1:

Proposition 3.5 The following hold:
e X <OWAY iff X <°Y (Hoare) iff X <3 Y.

Sset
o X <CWAY iff X <UY (Plotkin) iff X <3 Y.
o« X <PWAY iff X Y
o X <EWAY iff X Y and w(X) = w(Y).
Thus, our definitions extend naturally the familiar pre-orders on sets and
bags. Furthermore, the following property is easy to check:

Proposition 3.6 The three pre-order relations affect the weight as follows:

o X ShK Y implies w(X)

I
=4
>

o X <Y implies w(X)

IA
g

().
o X g”K Y implies w(X) > w(Y).

Thus, on sets <! preserves the empty/non-empty property, while on bags it
preservers the total number of elements in the bags.

4 Two Questions
To give some focus to our investigation, we address two non-trivial questions:

o Is X §§( Y equivalent to X g'}( Y and X ng Y 7 On sets the two
were equivalent by definition. On bags <? hadn’t been defined before,
but one can check that with our definition the convex pre-order is indeed
equivalent to the lower- and upper-order?. But in general, the answer to
this question is non-obvious: one needs to show that if one can derive
X <Y by using the rule 0 < U, and one can also derive X <Y by using
the rule V' < 0, then one can derived X < Y without using any of these
two rules.

2We prove this below.
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e When is §§< an order, i.e. antisymmetric 7 We have seen that it is
always an order on bags, and that it is also an order on sets when then
underlying domain is totally unordered. We would like to understand
under which restrictions on K, on (A, <), and/or on the K-collections is
g*}( antisymmetric.

Ideally we would like to give necessary and sufficient conditions on the
mononid K under which these two questions have positive answers. Instead,
we answer both questions only partially, and leave a full characterization open.
Perhaps more interesting than the actual questions are the tools and notions
that we develop along the way.

5 Is Convex = Upper- AND Lower ?

Clearly §§< implies both Sz{ and SuK. In general the converse fails, as the
following example shows.

Example 5.1 We show an example where X S&}Q Y and X g“Kl Y but X giﬁ
Y. Define the monoid (K7, U, ) where K is the following subset of P(F) where
E =1{1,2,3,4}: K; = P(E) —{k | |k| =1}. Thus, K; contains all sets except
the singleton sets: it is closed under union, but not under intersection. Let
A ={a,b,c,d} ordered by: a < ¢,a < d,b < ¢,b < d. Consider the annotated
collections X = {(a,12),(b,34)} and Y = {(c¢,14),(d,23)}. Here 12 denotes
{1,2}, etc. Note that {(a,12)} <%, {(a,1234)} because of {(a,12)} + 0 <%,
{(a,12)} + {(a,34)}. Using this, we perform the two dual derivations:

X <% {(a,1234),(b,1234)} = {(a, 14), (b,23)} + {(a,23), (b, 14)}
<Y +Y =Y

X=X+X < {(¢,12),(d,34)} + {(c,34), (d,12)}
= {(c,1234), (d,1234)} <%, V

This shows that X §‘}(1 Y and X ngl Y. On the other hand one can
prove by induction on the derivation of U giﬁ V that, if U(a) = 12 then either
V(a) =12 or V(¢) C 12 or V(d) C 12, thus, X ﬁ,{l Y. This is because 12
cannot be split into 1+ 2 in K, thus we can only keep it as annotation on a or
move it up to ¢ or d.

Thus, the convex pre-order and the conjunction of the lower- and upper-
pre-order do not coincide in general. We show, however, that they do coincide
on two interesting classes of monoids: strict monoids, and distributive lattices.

Definition 5.2 A naturally ordered monoid (K, +,0) is strict if forall z,y, =+
y =y implies x = 0.

14



Strictness is a weaker condition than cancellation [1], which requires z +y =
2’4y to imply z = 2’. Examples of strict monoids (in fact cancellative monoids)
are N and R™; all lattices on the other hand are non-strict, e.g. B, P(E) and
BoolExpr(V).

Theorem 5.3 If either (1) (K,+,0) is a strict monoid, or (2) (K,+,-,0,1) is
a distributive lattice, then the following holds:
X< Y iff X <Y and X <4 Y.

The case when K is strict follows from the following stronger property:

Proposition 5.4 If (K,+,0) is a naturally ordered, strict monoid and w(X) =
w(Y) then X <L Y iff X < YV iff X <L Y.

This holds because even a single application of the rule 0 §§( XorX g”K 0
strictly increases/decreases the weight.

In the remainder of this section we prove Theorem 5.3 for the case when K
is a distributive lattice. To do that we introduce an alternative characterization
of the three pre-orders, in terms of “homomorphisms”, which is of interest in
itself.

5.1 Homomorphisms between K-Collections

We give here an alternative characterization of the three pre-order relations on
K-collections in terms of the existence of certain homomorphisms between the
collections.

Fix a naturally ordered monoid (K, +,0), and an ordered domain (A4, <).
We identify a K-collection X : A — K with an array X = (24)sca with finite
support. A matriv H = (hpa)apea is a function H : A x A — K with finite
support. The matrix is order compatible if hy, # 0 = a < b.

Definition 5.5 Let X,Y € Collx(A), and H be an order-compatible matriz.

Convex homomorphism H is a convex homomorphism, H : X —8Y if:

Va.(d hpa =z4) and V0D hya =)

beA a€EA

Lower homomorphism H is a lower homomorphism, H : X —° Y if:

Va.(z hpa > xo) and Vb.(z Nba = Up)

beA a€cA

Upper homomorphism H is an upper homomorphism, H : X —!Y if:

Va.(Y hea =x4) and  b.()_ hua > )

beA acA

15



We will show that the existence of a convex (lower, upper) homomorphism
is equivalent to the convex (lower, upper) pre-order. One direction is simple. If
there exists a convex homomorphism H : X —? Y then X §i( Y. Indeed, for
every pair a, b s.t. hp, # 0 denote the singleton K-collections X* = {(a, hpa)}
and Y%* = {(b,hy,)}. We have X P §§( Y%" because a < b. Also, X =
dab Xl y = Dab Y? hence X gi( Y. The same holds for the other two
pre-orders: for example if H : X —” Y then there exists Zs.t. H: X+Z —1Y
and thus X S‘}( X+7Z §E( Y.

The other direction holds if and only if the monoid is a refinement monoid [1].

Definition 5.6 K is a refinement monoid if forall x1,x2,y1,y2 s.t. 1 + x2 =
Y1 + Y2 there exists (hij)1<ij<2 (called refinements of x1,x2,y1,y2) s.t.

1 = hi1 + ha o = hia + hao
y1 = hi1 + hi Y2 = ha1 + haa

We now give examples of refinement monoids.

Proposition 5.7 Let (K,+,-,0,1) be a lattice then (K,+,0) is a refinement
monoid if and only if K is a distributive lattice.

Proof: First, for any distributive lattice (K, +,0) is a refinement monoid: sim-
ply take h;; = y; - ;. If K is not distributive then by Birkhoff’s theorem,
there is a sublattice of K isomorphic to M3 = {1, T,u,v, w} partially ordered
by 1< {u,v,w} < T or N5 = {L,u,vy,v9, T} ordered as 1< u < T and
1< v <wy < T. For M3 consider the sum above with x1 = u, xo = v, y1 = w
and yo = v, i.e. u+v =w+v = T. Since h1; < u A w =1, we have that
ho1 = w. This in turn implies that there must be [ to satisfy v = u + [, but no
such [ can exist. For N5 we inspect the sum u+v; = u+wvs, it is immediate that
ho1 = h1o =1 which implies that v; = hos but also vy = hsa, a contradiction. O

There are other examples of refinement monoids as well.
Proposition 5.8 The monoids N and RT are refinement monoids.

Proof: The solutions h;; are given by:

hiit=vy1 —x2+p hio =29 —p
h21=y2—p h22=p

for any parameter p s.t. zo —y1 < p < min(za,y2). |

[0 \V]
S ot
~

For a trivial illustration we can refine 10+5 = 7+ 8 into the matrix (

obtained by choosing p = 0.
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Example 5.9 We give two examples of non-refinement monoids. One is the
monoid K3 in Example 5.1: 12 4+ 34 = 14 + 23 yet we cannot refine them
because we miss all singleton sets. For another example, define (N, +,0) to be
the monoid over the set N' = N — {1}: we have 3 + 3 = 2 + 4 yet we cannot
refine them because we miss 1.

We now show that being a refinement monoid is both a necessary and suffi-
cient condition for the other direction to hold. We start with necessity.

Proposition 5.10 If the implication X gf,( Y = 3H : X =Y holds then K
s a refinement monoid.

Proof: Let (4, <) consists of five elements a, b, ¢, d, e ordered as follows: {a, b} <
c<{d,e} (le. a<cb<eec<dc<e) Forany x1+x2 = y1 + y2 = z de-
fine X = {(a,21),(b,z2)}, Y = {(d,11),(e;y2)}. Then X <% {(c,2)} <%
{(d, 1), (e,y2)}. Thus, there exists a homomorphism G : X —! Y. Define
h11 = Gad, P12 = Gae, P21 = Gbd, h22 = gpe. One can check that all other entries
in G are 03, and therefore one can show that H = (h;;); is a refinement, which
proves that K is a refinement monoid. O

We prove now sufficiency, and for that we fix a refinement monoid K.
Lemma 5.11 The following statement S(m,n) holds forall m,n > 1:

Sm,n): (z1+...+Tp =1+ .-+ Ym) =
there exists H = (hij)izl,m,jzl,n s.t. T; = Zh” and Yi = Zh”
i J

Proof: S(1,n) holds trivially: take hi; = z;; similarly S(m,1). S(2,2) holds
because K is a refinement monoid. To show S(m,n + 1), denote X’ the vector
Ty, = Tn + Tny1, ) = x; for j # n. By induction S(m,n) holds, so let H' be
the refinement of X’ and Y. Its last column satisfies ) . hl, =z, + Zp41: by
induction S(m, 2) holds, hence we can find hin, hiny1) 8-t Ry = hin + Rigni1y,
Tp =) hin, and T, 11 = Y hj(ny1). Denote H the matrix is obtained from H’
by replacing the last column with two columns, (A ); and (h;(n+1))i- Obviously

H is a refinement of X and Y. O

Lemma 5.12 Let K be a refinement monoid and H = (hpg)apea, G = (geb)b,cea
two order-compatible matrices s.t. Yb € A, Za hpe = EC geb- Then there
exists a (not necessarily unique) order compatible matrizc L = (lcq)a,cca S-t.
Va€ AY lea = phoa and Ve € A)Y " leca =Y geb- We call L a refinement
of H and G.

Proof: For each b € A construct two vectors H® = (hpa)aca = (h2)aca and
G’ = (geb)cea = (2)cea. Since Y, h =" _ gb we apply Lemma 5.11 to obtain

3For example gac 4+ goe = ye = 0, which implies hge = hpe = 0 because K is naturally
ordered.

17



a refinement L® = (1%,)4.cca of H® and G®. LY is order compatible, because
ht # 0 implies a < b and g% # 0 implies b < ¢, hence the only non-zero entries
15, are for a < b < c. Define L =3, L’. We show that L is a refinement of H
and G. For every a € A we have > leq = D . > 1% = >, > 18, =3, bl =

> hba. Similarly, for every c € A, >° lea = D} Geb-
Oa

Theorem 5.13 Let K be a refinement monoid. Then:
o X §hK Y iff there exists H : X —0Y.
o X f}( Y iff there exists H: X =" Y.

o X <% Y iff there ewists H: X —!Y.

Proof: We have already shown the “if” part. We show here “only if”, for the
convex pre-order only: the others are similar. We wll construct a homomorphism
H : X —8Y by induction on the length of the derivation X 32( Y. For the base
case {(a, k)} §i< {(b,k)} define H = {((a,b), k)}: it is order-compatible because
a<b For X+Y §i( X’ +Y’ construct inductively the homomorphisms H :
X - Yand G: X’ -8 Y’ and define L = H+G: clearly L : X+ X’ =Y +Y".
Finally, we need to show how to construct H for the reflexivity rule X SHK X
(take H to be the identity on the support of X) and for the transitive closure
rule: X gi( Yand Y Si( 7 implies X gi( Z: here take the homomorphism to
be a refinement of the homomorphisms for X gf,{ Y and Y SNK Z. O

Finally, we prove case (2) of Theorem 5.3. Suppose X gbK Y and X SHK Y.
Then we have two homomorphisms: H : X —” Y and G : X —! Y. Define L
to be lpe = hpa - Ta + Gba - yp. We verify that L : X —8Y by direct calculation.

hoa - Ta < hpa Ta+Gba Yo < Ta + Gba

xa:(zhba)'xa Szblbag $G+Zgba:$a
b b
This shows ), lpa = 4. Similarly >, lpa = ys.

5.2 Application: Ordered Probabilistic Spaces

Recall that a finite probability space is a pair (€2, ) where 2 is a finite space
and p is a probability measure on ). Equivalently, the set of all measures on
Q is a collection X € Collg+(£2) s.t. w(X) = 1. Suppose that we are also
given an order < on 2 that intuitively tells us when one element of §2 is “more
informative” than another. The question is then: When is a probability measure
X “more informative” than a probability measure ¥ 7

We have three pre-orders SE@M Sgw, and gﬂﬁw. Since RT is strict (z+y =1y
implies = 0) by Proposition 5.4 these three orders coincide. How can we check
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if X <g+ Y ? Since R is also a refinement monoid, we can apply Theorem 5.13
and check for the existence of a homomorphism H. If we further normalize the
matrix H to H, by setting hij = hij/z; if ©; # 0, and h;; = &;; otherwise?,
then H is a stohastic matrix (i.e. Vj, Do flij =1), and, furthermore, Y = HX.

To illustrate, let A = {a,b} and Q@ = {A}, hence there are four elements
of Q: 0,{a},{b},{a,b}. Assuming that larger sets are more informative, the
order on () is given by set inclusion. A measure X assigns a probability to
each of the four sets, e.g. X = (1/4,1/4,1/4,1/4) corresponds to independently
choosing the elements a and b with probability 1/2. Then X §E{+ Y means
that Y can be obtained from X by “moving probability mass up”. For example,
let Y = (0,1/3,1/3,1/3): this corresponds to independently choosing a and b
each with probability 1/2 and conditioning on the set being non-empty. Then
X §E§+ Y because Y = HX, for the following stohastic matrix:

0 00 0
- |l 1/3 10 0
A=11301 0
1/3 0 0 1

Thus, we have an interesting pre-order relation on probabilistic sets given
by the existence of an order-compatible stohastic matrix mapping one set into
the other. Even more interesting, this pre-order is actually an order relation:
this non-obvious fact is a consequence of our result in the next section.

6 When is gi( an Order Relation ?

We have seen that for sets < is an order when the underlying domain is a totally
unordered set, while for bags, Slh\] is always an order relation (Proposition 1.2).

We study when §i( is an order relation.

Fix an ordered set (A, <). An ideal over (A, <) is asubset S C As.t. Va € 5,
if b < athenbe S. A filter is an ideal in the dual order (A,>). For a set S
we denote (S] = {b| Ja € S.b<a} ([S) ={b| Ja € S.a <b}) the ideal (filter)
generated by S. We denote [a) = [{a}) ((a] = ({a}]) and call it principal filter
(principal ideal). We denote:

e F(A) = the filters of A.
e f(A) = the principal filters of A.
o I(A) = the ideals of A.
e i(A) = the principal ideals of A.

Fix now a naturally ordered monoid K and let X € Collgx(A). For any
S C A, denote X (S) = g X(a).

46;; =1, ;5 = 0 for i # j.
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Definition 6.1 We define four pre-order relations on Colly (A):

Weak F-pre-order X Sf{ Y if forall F € f(A),

~—

X(F) < Y(F).

F-pre-order X <Y if forall F € F(A), X(F) <Y (F).

~

Weak I-pre-order X <% Y if forall I € i(A), X(I) > Y (I).

» X(
I-pre-order X <. Y if forall I € I(A), X(I) > Y (I)

The F-pre-order implies the weak F-pre-order, X < V = X ng Y, and
similarly for the I-pre-orders. The converse does not hold in general, as the
following example shows, but holds for all idempotent monoids:

Example 6.2 Consider the monoid R*, let A = {a,b,c,d} be the diamond
order: ¢ < b < dand a < ¢ < d, and let X = (0,2,2,0) (ie. X =
{(6,2),(¢,2)}) Y = (1,1,1,1). Then X <J. Y because the principal filters
are {a,b,c,d}, {b,d},{c,d},{d} and their image under X,Y are (4,2,2,0) and
respectively (4,2,2,1). However X £% YV because on the (non-principal) filter
F ={b,c,d} we have X (F) = 4 while Y(F) = 3.

Proposition 6.3 If (K,+,0) is idempotent then X S%; Y implies X <Y
and X SiK Y implies X gﬁ( Y.

Proof: Let I’ € F(A). Then F = |J,cpla), which implies that X(F) =
Y wcr X([a)), because + is idempotent. Both statements follow from here. O

6.1 Relating F- and I-pre-orders to Homomorphisms

We examine now the relationship between the filter/ideal pre-orders and the
homomorphisms defined in Sec. 5.1: recall that the latter are equivalent (under
certain conditions) to the lower and upper pre-orders. First we show:

Proposition 6.4 (1) Let H : X —"Y be a lower homomorphism; then X <k
Y. (2) Let H : X —*Y be an upper homomorphism; then X <k Y.

Proof: Fix a lower homomorphism H and a filter F' C A:

X(F) = Y 2a<) > Hy

acF a€F beA:b>a

= > 2 Hw
beF aeF,a<b

S Y Y H=Yu-v
beF acA:a<b beF

The converse is more difficult, and we have shown it only for two cases:
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Theorem 6.5 Suppose K satisfies one of the following two conditions: (1) K is
a distributive lattice or (2) K = R*. If X <E Y then there exists H: X —" Y.
Dually, if X <L Y then there exists H : X —ty.

This allows us to answer our question “when is g@o or §uK an order relation
?” by answering it for §f< or §§( instead. Given a collection X € Collk (A)
we can construct a collection X € Collx(F(A)) by defining X(F) = X(F) for
any filter F. Then X gf( Y iff X <Y the latter is a pointwise order, hence
it is an order on Colly (F(A)), i.e. antisymmetric. When the mapping X ~ X
is injective, then this implies that <Z is also antisymmetric. We give next a
sufficient condition for X ~» X to be injective.

Let 2,y € K where K is a naturally ordered monoid, and x < y. If the set
{z |z + 2z =y} hasaglb zp and x+ 29 = y then we call zy the difference of z and
y, denoted x —y. In particular, the difference z — 0 exists forall z, and x—0 = z.
Call X € Collk(A) non-redundant if forall a € A, X (a) = X([a))— X ([a) —{a}).

Theorem 6.6 Suppose X,Y are non-redundant. Then X <Y and Y <L X
mmplies X =Y.

Proof: We have X < Y and Y < X, hence X = Y, i.e. the two collections
agree on all filters F: X (F) =Y (F). For any element a € A, both sets F = [a)
and Fy = [a) — {a} are filters, hence X (a) = X(F) — X (Fo) =Y (F) =Y (Fp) =
Y(a). |

We illustrate now several cases when §f( (and, hence, S‘}( under the con-
ditions of Theorem 6.5) is an order relation. (1) when A is totally unordered:
in this case every collection is non-redundant: X([a)) — X ([a) — {a}) = X(a) —
X(0) = X(a)—0 = X(a). (2) when K is a cancellative monoid, i.e. x+2z = z+2’
implies z = z’. Here too every collection is non-redundant. This includes the
case when K is N, or RT; in particular, <p+ is an order relation on probabilistic
sets. (3) when K is a distributive lattice (K,V,A,0,1) and forall a € A, and
X(a) A (Vo X () = 0.

We end this section by giving a very simple proof of Theorem 6.5 case (1).

Proof: (of Theorem. 6.5, Case (1): K is a distributive lattice] Let Hp, = yp
if a < b. We verify that this is a lower flow given that X (F) < Y (F) for
any filter . We observe that X([a)) < Y([a)) = X(a) < Y([a)). We
verify the first condition: ), Hya = > 45, U = Y([a)) > z,. The second
condition Y Hy, = >, Y» = Yp, Where the last equality follows because + is
idempotent. O

6.2 Network Flows

We show case (2) of Theorem 6.5 by using an interesting connection to the
min-cut max-flow theorem network flows [2]. The classical min-cut max-flow
theorem is over R™, which we use for case (2). There have also been extensions
to other semirings, under several restrictions, but to the best of our knowledge
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there is no definitive characterization of the semirings on which the min-cut
max-flow theorem holds.

Definition 6.7 (Network Flows) A flow network N = (V, E, s,t,¢) consists
of a directed graph (V, E), two distinguished vertices s, the source, and a t, the
sink, and a function ¢ : E — R called the capacity function. A network flow
is a function f : E — RT that satisfies the Capacity Constraints, Ve € E f(e) <
c(e), and Conservation, Yo € V' >3 ep f(@,0) = X, pyep [(v,2). The
value of a network flow f is denoted v(f) and is defined by v(f) = Z(s,x)eE f(s,x).
A cut is a partition of the vertices (S,T) such thats € S andt € T. The capacity
of a cut (S,T) is denoted c(S,T) and is defined by

(ST)= Y )
z€S,yeT:(z,y)EE

The min-cut max-flow theorem is:
Theorem 6.8 ([2]) Consider any flow network N, then
o(f) = min c(S,T)

max
f is a network flow in N (8,T) is a cut in N

We show now how case (2) of Theorem 6.5 follows from the min-cut max-
flow theorem. In the proof below we make use of the element oo, thus we need
to extend R* by adding oo. This is just a convenience: oo can be replaced with
any number “big enough”®.

Proof: (of Theorem 6.5 (2)) Let A’ be a disjoint copy of A. For an element
a € A we denote a’ € A’ its copy, and similarly S” C A’ denotes the copy of a
set S C A. Let X,Y bes.t. X <F'Y. We construct the following flow network
N = (V,E,s,t,c).

e V=AUA U/{s,t} for two fresh elements s, t.
e F={(s,a)|ae A} U{(a,b) | a,be A,a<b},U{(t\,t) | b € A}
e c¢(s,a) = X(a), c(V/,t) =Y (b), ¢(a,b') = oo for a,b € A.

While V is infinite, only a finite number of edges have non-zero capacity.
Recall that w(X) is the weight of X, hence w(X) = X(A4) <Y (A) = w(Y),
because A is a filter. Our proof consists of three steps:

1. If X <f, Y then every cut S, T has capacity ¢(S,T") > w(X); hence there
exists a flow f with value v(f) > w(X).

2. Let f be a flow with value w(X), and define gy, = f(a,b). This defines
an order-compatible matrix G = (gpq)q,p satisfying:

Va,» goa=za and Vb, gua < (1)
b a

5e.g. max(w(X),w(Y)) + 1.
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3. If G satisfies Eq.(1), define H = (hpa)a,pea by hoy = gop+ (Yo —>_, gba) and
hba = gve when a # b. Then H is a lower homomorphism H : X —" Y.

To prove 1., consider a cut S, T, and assume w.l.o.g. that ¢(S,T) < oo. Then,
if a € 9, its copy @’ is also in S, otherwise the edge (a, a’) gives the cut an infinite
capacity. Similarly, if a € S and a < b, then b’ € S, because ¢(a,b’) = co. Thus,
S and T partition A into a filter F' and an ideal I s.t. S = {s} UF UF’ and
T =TUI'U{t}. Thus, ¢(S,T)=XD)+Y(F) =w(X)-X(F)+Y(F) > w(X).

To prove 2. we note that for any flow f, v(f) = >, f(s,a) < >, c(s,a) =
Yo X(a) = w(X). Hence if v(f) = w(X) we must have f(s,a) = z, forall a.
The left equality in Eq.(1) follows then from the conservation of flow at a node
a. Similarly, f(V/,t) < ¢(V/,t) = Y'(b) forall b € A, and the right inequality in
Eq.(1) follows from the conservation of flow at the node ¥'.

Finally, 3. follows from direct calculation.

7 Conclusions

We have introduced pre-order relations on collections annotated from a naturally
ordered monoid. We studied several properties of these pre-orders: we have
shown that under certain conditions they are characterized by the existence
of some homomorphisms between the annotated collections, which in turn are
characterized by a point-wise order on the annotations on the filters (or ideals)
of the collection. We have discussed applications to incomplete databases and
to probabilistic databases.
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The role of graphs in computer science

Jos Baeten Kees van Hee

Abstract

In this tribute to Jan Paredaens sixties birthday we evaluate the role
of graphs in computer science. It turns out that graphs are the essential
models for theoretical computer science as well as for software engineering.
Special attention is payed to the generations of graphs and the analysis
of graphs generated by a probability mechanism. The later topic opens
doors for interesting new research.

1 Introduction

Graphs play an important role in many disciplines, as illustrated by some ex-
amples: electronic circuits in electrical engineering, bond graphs in mechanical
engineering, social networks in social psychology and distribution networks in
logistics. Graphs seem to be a natural way to model phenomena, probably be-
cause they offer a method to express models by pictures. The foundations of
graph formalisms were established by the branch of mathematics called graph
theory. However the graph as a modelling concept is so powerful that ”scien-
tific users” of graphs did not wait for the graph theorists to extend the graph
formalism. So within mathematics there are several other branches, such as
combinatorial optimization and the theory of Markov processes, that have con-
tributed to the theory of graphs. Computer science is a young discipline with
mathematics and electrical engineering as founding fathers. No wonder that
graphs play an essential role in computer science and that computer science has
strongly contributed to the extension of graph theory. In computer science the
language of mathematics is more used than the millions of mathematical theo-
rems. The mathematical language is used by mathematicians to define generic
structures and to prove universally valid properties of these structures. In fact,
in mathematics the language is used to communicate mathematical results be-
tween mathematicians. The main concern of computer science is the design
and construction of computer systems, networks of machines that can process
information. Models are used in software engineering as a design for a system
and to guide the construction of a system. The language of mathematics is
used here to model specific computer systems and to prove properties of these
systems. One can say that the language of mathematics is what geometry is for
architects. Computer systems may be extremely complex and it is very difficult
to model all the details in such a way that one can keep an overview of the
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system as a whole. May be this is the reason that computer science has put so
much effort in the development of mathematically based frameworks to model
computer systems. A framework consists of a language, defined by a syntax
and semantics, defined by a mapping of the language constructs into a mathe-
matical model. Often a framework has a third component, which is an inference
mechanism to derive properties of a modelled system. One universally accepted
model of a computer system is called an automaton or transition system. A
transition system consists of a state space and a relation that determines the
possible transitions from one state to next state. This discrete-event nature is
characteristic for computer science. In fact a transition system, expressed with
elementary set theory, can be used directly as modelling language for computer
systems but this is only a feasible solution for very small systems. So in general
we need more sophisticated frameworks having more expressive comfort (i.e.
ease to express) than the crude transition system itself. Although transition
systems are not suitable modelling complex systems, the frameworks in which
we model these systems generate often a (very large) transition system. If such
a generated transition system is finite we can apply (computerized) model check-
ing techniques to derive properties of the system. There are also techniques to
visualize very large transition systems in such a way that human inspection is
possible [14]. Transition systems are not always suitable as a semantical model
of computer systems since transition systems describe the behavior of a system
as a sequence of events leading the system from one state to another. So for
transition systems the concept of a next state is essential. There are situations
in which we can not distinguish a next state and in those cases it is more natural
to model a computer system by a partially ordered set of events. However in
most practical cases the transition system is an adequate semantical model of a
system and therefore we adopt it here.

In this paper, which is a tribute to Jan Paredaens, we will discuss the role
of graphs as a language for modelling systems. Jan has strongly contributed in
the nineties to this development by the the GOOD-system, based on the Graph
Oriented Object Database model [7] and [6]. In this framework graphs are used
to express the type level as well as the instance level of a database in terms of
graphs and queries can be expressed in a graphical way as well. Recently Jan
has contributed to the modelling of Jackson nets, a special class of Petri nets
that can be generated by a simple graph grammar [5]. In section 2 we highlight
some aspects of the use of graphs to model and analyze computer systems. In
section 3 we introduce the Jackson nets because they are a good illustration of
graph grammars and we will need them in the last section.

In section 4 we consider random graphs and we illustrate this with random
Jackson nets. There are at least two reasons to consider random graphs in
computer science. The first reason is that there exist many graph models of
real computer systems. So we can speak of ”"populations” of graph models.
However it is unclear how to characterize these sets of graph models. Of course
one could say that all these models are probably unique. But on the other hand
it is unlikely that all these models are purely random. It is comparable with the
length of human beings: the probability that two individuals have exactly the
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same length is zero, nevertheless the length of persons is normally distributed
with a mean of about 180 cm and a spread of about 10 cm. It would be
interesting to have a similar notion for a population of graphs. Then it would be
possible to identify the probability distribution of graph models in a particular
application domain. A second reason for having a probability distribution over
a set of graphs is that it allows us to benchmark graph algorithms for average
performance. The analysis of algorithms for graphs is mainly concerned with
worst case behavior. It is hard to say something for the ”average” case because
it is not clear what the "average” graph is. In practice one uses a (finite) set
of representative models that can be considered as a benchmark. If we have a
probability distribution for a class of graphs we are able to estimate the average
performance of algorithms in a systematic way without using a benchmark set.

2 Graph models for computer systems

Graphs play a very important role in computer science. They are used to model
systems as a whole or some aspects of systems. Before we study some of the
most used graph frameworks in computer science, we will define the notion of
graph. There are several ways to define graphs. We follow here the approach of
[5].

Definition 1 (Graph) A graph is defined by a five tuple:
(Node, Edge, o, T, \)

where Node is a set of nodes or vertices, Edge a set of edges connecting the
nodes and o : Edge — Node is called the source function, 7 : Edge — Node is
called the target function and A is a labeling function with Edge as domain.

Note that [5] does not consider a labeling function for edges. A graph G =
(N1, By, 01,71, A1) is a subgraph of a graph Go = (Na, E2, 09, T2, A2) if Ny C N,
E, C E5 and 01,71, A1 are the appropriate restrictions of (o2, 72, A2) respec-
tively.

A path in a graph is a alternating sequence of nodes and edges (starting and
ending with a node) such that for each e € Edge in the sequence o(e) is the
predecessor of e and 7(e) the successor of e in the sequence. We say that node
ey is reachable from node ny if there is a path starting in n; and ending in na.

Definition 2 (Typed graph) A type graph is a graph that is used to define
a class of graphs. Formally we define such a class by a triple (G, type, é) where
G = (N,E,5,7,\) is a type graph, G = (N, E,0,7,)\) is the graph, called the
typed graph and type is a graph morphism such that type = (fn, fr) where
fn:N — N and fr: E — E satisfying:

Ve € E:6(fe(e)) = fn(s(e)) AT(fe(e)) = fn(t(e))

A typed graph G that belongs in this way to a type graph G is also called an
instance of G.

27



Now we will apply these concepts to define some of the most used modelling
frameworks for computer systems.

Definition 3 (Transitionsystem) A transition system is a graph
(State, Event, o, T, \)

So the nodes are called states and the edges are called events. The labeling
function may used to classify the events. The transition relation is defined by

{(s,4,5")|s,s" € State A Je € Event : M(e) =L No(e) =sAT(e) =5}

In case the labeling function is injective we may identify events and labels and
"forget” A. Note that a Turing machine can be modelled as a transition system
with an infinite state space. Transition systems are a good formalism to reason
about systems, but they are not suitable for direct modelling complex computer
systems. Therefore many dedicated languages have been designed to model
complete computer systems or aspects of these systems.

One very important class of graphical modelling frameworks is concerned
with modelling of states of complex systems. These states are often recorded
in a database and therefore these models are called data models. For expressing
data models there are many graphical frameworks. The most classical one is
the Entity-Relationship model (ER-model)[3]. Another classical one is the func-
tional datamodel [4]. The first graphical framework that uses graphs not only
for the modeling of instances but also for the modeling of queries and updates
is the GOOD-model [6].

Definition 4 (Entity-relationship model) An ER-model is in fact a type
graph defined by:

G = (Entity U Relationship U Attribute, RU A, &, 7, [7)

where all sets are pairwise disjoint and o : R — Relationship, o : A — Entity,
T : R — Entity and 7 : A — Attribute and X is not specified, but it can be used
for instance to characterize the cardinality of relationships. Normally the the
Entity nodes are rendered as rectangles, the Relationships as diamonds and the
Attributes as ovals.

Definition 5 (Instance of an ER-model) Let graph G be defined by: G =
(EntityU RelationshipU Attribute, RUA, o,7,¢) and let the mappings (fr, FN)
form a graph morphism from G to G such that fg : Entity — Entity, fg :
Relationship — Relationship and fn : R — R and fx : A — A. Then G is an
instance of G.

G represents a state of the system and can be stored in the database of the
computer system while G in fact defines the state space of the system. We may
say that the semantics of an ER-model G is the set of all instance graphs G.
If we consider a database as a (complex) variable then the type graph G is its

type.
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An even more important class of graphical modelling languages is concerned
with the behavior of a computer system. The models in this class are called
process models. One of the oldest modelling frameworks is the language of
flow charts. Many graphical modelling languages are developed and used by
industry, for example the EPC-language (event-process chains)[10] and BPMN
(business process modelling notation). These languages usually suffer from an
lack of well-defined semantics. There are two classes of formal frameworks for
processes which have good formal semantics in terms of transition systems: the
process algebras, like CCS, CSP, ACP and Pi-calculus (cf [1]), and Petri nets,
like the classical P/T-nets and the more expressive colored Petri nets [9]. Unlike
process algebras, Petri nets have a graphical notation. We give a definition of a
classical Petri net here.

Definition 6 (Petri net) A Petri net N is defined as a graph with two kinds
of nodes, called places and transitions:

N = (Place U Transition, Flow, o, T, \)

such that o : Flow — Place, 7 : Flow — Transition and X\ : Flow —
{Input, Output}, which indicates if the flow is an input or an output for a
transition. Normally, the Places are displayed as circles and the transitions as
rectangles or bars.

In order to see how the graph of a Petri net defines a transition system we have
to add the notion of a state, called marking. A marking of a Petri net is a
mapping s : P — N. Before we are able to define the transition system we
introduce some notation. For t € T' we denote by et the set of all input places
of t, i.e. ot = {p € P|3f € Flow : o(f) = pA7(f) =t AX(f) = Input} and
similarly te = {p € P|3f € Flow : o(f) = p AT(f) = t A X(f) = Output}.
It is a good practice to abuse the notation a bit: et is also used as a function
over P with et(p) = 1if p € et and et(p) = 0 otherwise. Similarly we use te
as a function and we apply the usual operators +, — and > to functions in the
point-wise way .

Definition 7 (Transition system of a Petri net) The transition system of
the Petri net is denoted by (State, Event,&,7,\) and it is defined by:

State = P — NAFEvent = {(s,t,5')|s, s’ € StateAt € TAs' = s—eot-+teAs > ot}
and for e € Event denoted by e = (s,t,s') we have:
Gle) =s,7(e) =5, Ae) =t

So a state is a marking. The set of events is constructed in such a way that
a transition ¢ can ”fire” only if all its input places have enough tokens. The
effect of the firing of a transition ¢ is that from all input places of ¢ one token
is subtracted and for all output places a token is added. Given one initial state
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(marking) the subgraph of the transition system that contains all reachable
states is called the reachability graph of the Petri net.

Now we have seen that graph languages offer a powerful tool for expressing

models in computer science. However we have not seen how they can be used
in the modelling process. How do we develop graphical models?. There are two
famous approaches in computer science: top down design, also called stepwise
refinement and bottom up design. If we apply this to graphs as our modelling
objects, then in the top down approach we will start with a simple graph and we
will refine it. In the bottom up approach we start with many graphs and we will
glue them together. In both cases we have to deal with graph transformations.
Graph transformations can be defined by production rules. Here we follow the
approach of [5] in a simplified form. A production rule is a triple (L, K, R) where
L, K and R are all graphs and K is common subgraph of L and R. The first
step in the application of a production rule is that in a graph G the graph L
is detected, i.e. there is found a subgraph of G that is isomorphic with L. The
second step is that the graph G is transformed into G = G\(L\K) + (R\K).
The graph K is the interface between G and L and R, i.e. G\L and R\K are
only connected via K. (Here we use \ for graph subtraction and + for graph
addition.) There are some ”sanity” requirements for these operations such that
all intermediate results are proper graphs. A graph transformation system is
a set of production rules and a graph transformation system together with an
initial graph is called a graph grammar. Instead of the graphs L, K and R
in production rules we often use patterns, which are specifications for a set of
graphs. So we do not have to have a perfect match of a L with a subgraph of G
but we have to find a subgraph of G that fits into the pattern of L. We could
think of patterns as type graphs, however we will not elaborate the notion of
pattern here.
With a graph grammar we may define a class of graphs: all graphs that can be
derived by applying the production rules in a finite number of steps. It is possible
to generate only graphs that belong to a specific type. This is, as we have seen,
important for data models. In the graphical data modelling framework GOOD
the queries and updates of an instance are specified by production rules.

3 A graph grammar for a class of Petri nets

In this section we introduce a class of Petri nets called Jackson nets. For a
detailed description and analysis of Jackson nets see [13]. First we introduce
workflow nets, a special class of Petri nets, because Jackson nets are a subclass
of workflow nets.

Definition 8 (Workflow net) A workflow net is a Petri net with one source
place i and one sink place o, i.e. i has no input transitions and o has no output
transitions. Further any node x (which is either a place or a transition) is on a
directed path from the source place i to the sink place o.
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Workflow nets (cf [12]), as the name suggest, are used to model business pro-
cedures as we encounter in organizations and in their supporting information
systems.

Figure 1: Examples of workflow nets

A 7sanity check” for business procedures is the possibility of proper termi-
nation. This property is for workflow nets is called soundness.

Definition 9 (Soundness) A workflow net is called k-sound, for k € N if for
each marking m that is reachable from an initial marking with only k tokens in
the source place i, the final marking with only k tokens in the sink place o can
be reached. A workflow net is called w -sound if it is k-sound for all k > 1.

Note that ”1-sound” is usually called "sound”. In Figure 1 only net (a) is w-
sound, the others are not k-sound for any k.

Next, we give five rules R1,..., R5, displayed Figure 2 to generate nets starting
with a net with only one place. Rule R1 replaces a place p; by two places ps
and p3 with a transition ¢; in between. All input transitions of p; become input
transition for po and all output transitions of p; become the output transitions
of p3. So ep; = eps; and p;e = pze. In terms of graph grammars R1 is set
of production rules (L1, K7, R;) where L is a sub-net with only one place p;
and ep; U pje as transitions. The interface K is the sub-net with no places
and ep; U pre as transitions and R; is the net with two places {p2,p3} and
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as transitions ep; U {t1} U pje. Rule R2 is similar to R1 but now the role of
places and transitions are exchanged. Rule R3 is adding a transition ¢; to a an
arbitrary place p;. Rules R4 and R5 duplicate a place p; and a transition ¢4
respectively. Duplication means for R4 that place p; is replaced by two places
p2 and ps such that p;e = p,e = ps;e and ep; = ep, = ep3. Rule RS is similar.

R1: Sequential place split: R3: Loop addition:
(] ® ® [ ®
R2: Sequential transition split: R4: AND split:
[ [l
R5: OR split:
D

Figure 2: The generation rules for Jackson nets

These rules were first studied by Berthelot in [2] and Murata in [11] as
reduction rules that preserve liveness and boundedness properties of Petri nets.
The rules are often called the “Murata rules”. In fact Murata considers one rule
more, a loop addition with a (marked) place, similar to R3. We do not use this
rule since it would destroy the soundness property: since the place added to the
transition should contain always one token.

Definition 10 (Jackson Net) A Jackson net N is a net that can be generated,
from one place, by applying the rules R1,.., R5 recursively, however rule R3
should not be applied in the first step and never to the source and sink place of
a net.

Remark that the net of Figure 1 (a) is a Jackson net. Its generation is given in
Figure 3.
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o O— 0
R1

R5

R4v

Figure 3: Generation of a net

It is well-known that the Murata rules preserve liveness and boundedness
of Petri nets (see [11]) with respect to a given marking. In [12] it is shown
that 1-soundness is equivalent with liveness and boundedness of the closure of
a workflow net, i.e. the Petri net obtained from a workflow net by adding one
transition t* that connects the sink place o to the source place 4, in the initial
marking with only one token in i.

In [[13] it is proven that all Jackson nets are w-sound. There it is also shown
that Jackson nets can be generated by process algebraic expressions with four
operators: sequence, choice, parallel and iteration.

The class of Jackson nets contains interesting sub-classes. One of them is
the class of flow charts, which are in fact sequential processes or state machines.
This class is obtained by starting with one place and using only the rules R1,
R2, R3 and R4, so rule R5 is left out. Another class, called structured Jackson
nets is defined by the rules R6, ..., R9 displayed in Fig. 4. These rules only refine
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transitions. It is easy to verify that these new rules can be constructed from
the old rules: R6 = R2, R7 = R2+ R1+ R5, R8 = R2+ R4+ 2 x R1 and
R9 = R2+ R3+ R1+ R2.

We did not address the problem of parsing a given graph, but we remark that
bottom up parsing by applying the rules in opposite direction is the obvious
approach. Only if we succeed in reducing the graph to one place, the graph did
belong to the grammar.

4 N/ N

O——0——0

R6 R7

- NS J
4 N/ N

\_ RS AN RO -

Figure 4: Rules for structured Jackson nets

4 Random graphs

As motivated in the introduction it is interesting to have probability distri-
butions over graphs. If a class of graphs is finite then it is easy to define
a probability distribution, for instance the uniform distribution that gives all
graphs the same probability will do. If the class is infinite it is less obvious to
define a probability distribution because the total probability mass should be
one. We propose here several methods to define probability distributions for
infinite classes of graphs generated by a graph grammar. First we recall some
facts from probability theory.

We need some discrete probability distributions on N (0 € N). Here N is a
random variable and as usual P is the probability density, E is the expectation
and o2 is the variance.
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1. Bernoulli distribution PN = 1) = p AP[N =0] =1 —p with E[N] =p
and o%[N] = p(1 — p)

2. Binomial distribution n € {0,...k} : P[N = n| = (i)p”(l — p)"~F with
E[N] = kp and 0?[N] = kp(1 — p)

3. Geometric distribution ¥n € N : P4[N = n] = p"(1 — p) with E[N] =
p/(1=p) and 0*[N] = p/(1 - p)?

4. Negative binomial distribution
Vn € N: PN =n] = (" *7")p"(1 — p)* with E[N] = kp/(1 — p) and
o?[N] = kp/(1 - p)?

5. Poisson distribution with for ¥n € N: P[N = n] = 27e™* and E[N] = A
and o2[N] = \

Note that these distributions are closely related. So has the sum of k identically
and independent distributed (iid) Bernoulli random variables has a binomial
distribution. The first 0 in a sequence of iid Bernoulli random variables has
a geometric distribution. The sum of k iid geometrical distributed random
variables has a negative binomial distribution and finally the binomial and the
negative binomial distribution converge to a Poisson distribution if £ — co and
p — 0 such that kp — .

Let a graph grammar I' be given with a finite set of production rules .
Define an arbitrary probability distribution P, over the set of rules ¥:

VreR:P(r) 20N D Pp(r) =1

refR

For some of the algorithms we need a stopping time N | i.e. a random variable
with a probability distribution P, for the total number of times we apply some
production rule.

We present the methods in terms of algorithms to generate graphs. In the
first two algorithms we assume that we are able to detect all patterns in a give
graph where the left-hand side of a rule is applicable and then we select one
at random, i.e. with the same probability. We denote by F' the function that
transforms a graph: F(G,r,¢) is the graph obtained from G where rule r is
applied at subgraph ¢, so the left-hand side of » matched with subgraph ¢ of G.

Algorithm 1: Geometric stopping rule
start with an initial graph Gj;
set 1 :=1;
while =1 do
generate a rule r (from P,.);
generate a random subgraph ¢ of G where r is applicable;
set G := F(G,r,Y);
generate a new value for ¢ (either 0 or 1) from a Bernoulli distribution;
end
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In the first method the number of steps is geometric distributed while in the
next method there is an arbitrary stopping distribution.

Algorithm 2: General stopping rule

start with an initial graph Gj;

generate the stopping time n (from Py);

set 1 := 0;

while i < n do
generate a rule r (from P,.);
generate a random subgraph ¢ of G where r is applicable;
set G := F(G,r/0);
set 1 := 1+ 1;

end

Note that both algorithms can be applied to the generation of Jackson nets,
as discussed in the preceding section. For the next method we assume more
structure and therefore we will assume now that we are dealing with a graph
grammar where only one type of node can be refined. The structured Jackson
nets are an example of this. In this method we will label the nodes (places
and transitions) during the generation process. No rule will be applied to a
labeled node. Each unlabeled node will be selected at some point in time, not
necessarily at random. If a node is selected a Bernoulli trial is performed and if
the outcome is 0 the node will be marked (and not further refined), otherwise a
random selected rule will be applied. We start with a Jackson net J with only
one transition ¢ connected to source and a sink place. Node t is unlabelled.

Algorithm 3: For structured Jackson nets
set G := J;
while there are unmarked nodes do
select an arbitrary unlabelled node /;
generate a Bernoulli variable 7;
if i =0 then
| mark the node;
else
generate according to P,. a rule for /;
G :=F(G,r,0);
end
end

In order to identify a population of graphs generated in this way we will
compute some characteristic values. Typical examples are the expected number
of nodes (of a certain type), or more general the expected number of subgraphs of
a special structure, the expected length of the shortest path from a source node
to a sink node (if they are defined for the population). Other characteristics may
be the expected fan out and fan in of a node. Often these values are difficult
to compute in an analytical way, then Monte Carlo simulation offers a solution.
For the class of Jackson nets we will compute some of these characteristics. Let
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the probabilities of the rules R1, ..., R5 be p1, ..., p5 respectively. In each step ¢ of
the algorithms let X; be the random rule, so for j € {1,...,5} : P[X; = Rj] = p;
with Z?Zl p; = 1. Similarly we have for the rules RG6,..., R9 the probabilities
Pg, -+, Pg With Z?:s p; = 1. Note that X; and N are independent.

e Consider algorithm 1 for a Jackson net nets with that start with J. The
expected number of nodes is derived using Wald’s formula:

]E[Z Xi] = E[N]E[X;] = E[N](2(p1 + p2) + (3 + Pa + p5))

since the first two rules generate two extra nodes and the others only one.
So in case we have a negative binomial distribution for N and all rules
have the same distribution the expected number is 2kp/(1 — p).

e In case of algorithm 2 we have the same formula but with k =1

e Same situation but now we are computing the expected number of places
and transitions separately. Note that rules R1, R2 and R4 produce one
extra pace and the others none. Hence for the places we have E[X;] = (p1+
p2+p4) and for the transitions we obtain similarly E[X;] = (p1+p2+ps+ps)

e For algorithm 3, applied to structured Jackson nets the expected number
of transitions V is expressed by the recursive equation V = p(E[X;] + V)
which results in V = E[X;]/(1 — p), where E[X;] = ps + 3(p7 + ps + p9).
This exactly the same result as if we apply algorithm 2 to these nets.

An interesting subclass of the random Jackson nets is called series-parallel
graphs as studied in [8].This subclass is generated from J by an algorithm similar
to algorithm 3, using only rules R2 and R5 (only transition refinement), where
we set po = q and ps; = 1 — q. They consider the situation that the process
continues for ever, so the Bernoulli parameter p = 1. (In [8] it is assumed that
a rule is applied to all transitions in one step.) Of course the expected number
of nodes is infinite, but there are some interesting results. They show that the
value ¢ = 1/2 is critical in the sense that the random variable that represents
the distance from the source to the sink becomes infinite with probability one
if ¢ > 1/2 and that it tends to proper distribution for ¢ < 1/2. We show here
two other properties. Note that there is always one source place and one sink
place for the whole net. We need the notions of a separating node and a cluster.
A separating node (place or transition) separates the whole net in two disjoint
sub-nets such that each path from a node in one part to a node in the other
part should pass by the separating node. A cluster is a sub-net with one source
place and one sink place that are separating nodes. See Fig. 5

Remark that as soon as R5 is applied to a transition that is a separating
node, a cluster has been formed. In the first step we either apply R5, which
means that all generated nets form only one cluster, or we have two nets of the
form J that behave independently an identically to the starting net J.We may
use this property to compute the estimated number of clusters.
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Figure 5: Three clusters

e The expected number of clusters V for series-parallel graphs satisfies the
equation V = (1 — q) + 2¢V so V becomes:

Hence for ¢ < 1/2 we have a finite number of clusters although the graph
continues splitting for ever!

e The expected number of source-sink transitionsthat connect the source
of the whole net with the sink of it, is determined as follows. Assume
Y,, is the random variable that indicates the number of these source-sink
connecting transitions in step n. Note that in one step all these transitions
either produce another source-sink transition or they loose this property.
Then

E[Yi1|Yn =m] =Y 2 (2”) (1= )ig™ = 2m(1 — q)
=0

So E[Y,+1|Yn] = 2(1 — q)Y,, hence E[Y,,11] = 2(1 — ¢)E[Y,,] and therefore
E[Y,] = (2(1 — ¢))"E[Yo] = (2(1 — q))™. Hence if ¢ > 1/2 we have that
E[Y,,] tends to 0 if n — co. So in that case there are almost surely no
source-sink transitions. In case ¢ < 1/2 then E[Y},] tends to oo if n — oo,
which implies that there is for each n a positive probability that there are
at least n source-sink transitions.

5 Future work

At least two topics are interesting to explore further. One is concerned with
the use of graphs in modelling computers systems. Although there are good
graphical frameworks for modelling state spaces of systems (data models) and
there are good frameworks for modelling system behavior (process models) there
is to our knowledge still no integrated graphical framework that is good for
modelling both aspects of a system.

The other topic is concerned with the random graphs. There are many open
questions: For instance what is the expected length of a random Jackson net if
all production rules are applied? The identification of graph distributions given
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a population is an open problem. The use of these distributions for analysis of
algorithms is still open. Although we illustrated the use of random graphs for
Petri nets, it might be interesting as well for databases. There it could be used
to determine the performance of updates and queries. GOOD would be a good
candidate for such an analysis.
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A Complete Axiomatization for Core XPath 1.0

Balder ten Cate, Tadeusz Litak, Maarten Marx

Abstract

This paper provides a complete algebraic axiomatization of node and
path equivalences in Core XPath 1.0. Our completeness proof builds on a
completeness result of Blackburn et al. [3] for a modal logic of finite trees.

This paper is dedicated to Jan Paredaens on the occasion of his 60th
birthday. We are grateful to Paredaens for raising several generations
of excellent researchers fond of foundational issues!

The authors of this paper were all trained as modal logicians. Com-
pleteness proofs and models which look like trees are at the core of
modal logic. So we took an existing result and looked at it as we think
Jan Paredaens would have done: “What can this teach me about XML
and XPath?” We hope that Jan will like the outcome, which consists
of a small gem, a surprise and an open problem.

1 Introduction

In this paper, we consider the problem of finding complete axiomatizations for
fragments of XPath. By an axiomatization we mean a set of (valid) equiva-
lences between XPath expressions plus a number of inference rules extending
those of equational logic. Completeness means that any two equivalent expres-
sions can be rewritten to each other using just the given equivalences and rules.
Completeness tells us, in a mathematically precise way, that the given equiva-
lences capture everything there is to say about semantic equivalence of XPath
expressions.

We are aware of only two such results. The first one is the axiomatization
of the downward, positive and filter-free fragment of XPath [1]. The other
result [16] axiomatizes Core XPath 2.0 which is a very large fragment, with
non-elementary complexity for query containment.

In this paper, we axiomatize Core XPath 1.0, which was introduced in [4, 5].
We will be concerned with several notions of equivalence over XML models:

1. root-equivalence of path expressions,
2. strong equivalence of path expressions,

3. (strong) equivalence of node expressions.
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We will reduce the problem of axiomatizing these equivalences to a similar
problem for a subclass of the Core XPath 1.0 node equivalences introduced by
Blackburn et al. [3], which we call simple node expressions. The framework of
Blackburn et al. [3] at first sight may seem different than ours. It is logically,
not algebraically oriented—and so is their notation. However, the translations
between their LOFT formulas and our simple node expressions turn out to be
fairly straightforward. A minor difference is that in their framework there is
no assumption that every node has exactly one label. This assumption, natural
as it is in the XML setting, is not so common for other application of finite
trees in, e.g., linguistics (which was the original motivation for Blackburn et al.
[3]) or even in computer science itself. Nevertheless, we show it is possible to
completely axiomatize both uni-label and multi-label trees in an unified way.

2 Preliminaries

2.1 Syntax, Semantics, Consequence Relations

Let ¥ be an infinite set of node-labels. The syntax of Core XPath 1.0 is defined
as follows:

Axis = | L[ [T]=]1T <"1 -7
PathExpr := Axis | PathExpr[NodeExpr| | PathExpr/PathExpr |
PathExpr U PathExpr
NodeExpr := v | (PathExpr) | “NodeExpr | NodeExpr V NodeExpr (v € X)

We use the following syntactic conventions: v,v’ range over elements of the set
3 of labels, Greek letters ¢, 1) . . . over elements of NodeExpr, and Roman capitals
A, B, C over elements of PathExpr.

Note that we include the non-transitive sibling axes — and « in the lan-
guage. Also, we use angled brackets to distinguish path expressions from node
expressions that test for the existence of a path.

Our models are Y-labeled finite sibling-ordered trees. If every node has
exactly one label, we say the model is an XML model. However we do not
require that all models are XML models. Therefore, models in general are
called multi-label models. The semantics of Core XPath 1.0 is defined in Table 1
by the functions [-]pexpr and [-[nexpr Which take a model and a (path or node)
expression as argument. The model is kept implicit in our notation.

Definition 1 (Equivalence Relations). Let ¢,1 € NodeExpr, A, B € PathExpr.
We say that

e ¢ is semantically equivalent to v (notation Fym ¢ = ¥) if for arbitrary
XML model [¢]nexpr = []NExpr-

e A is semantically (strongly) equivalent to B (notation Exm A = B) if for
arbitrary XML model [A]pexpr = [B]pexpr-
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Table 1: Semantics of Core XPath 1.0.

[AXxis] pExpr := {(z,y) | zAxisy holds in the tree}
[[A/B]]PExpr = HA]]PEXPF/IIB]]PEXPF

[[A ) B]] PExpr = [[A]]PExpr U [[B]]PExpr

[[A[¢]]]PExpr = {(»’UJJ) | (Ivy) € [[AHPExpr and Y€ [[¢]]NExpr}
[v]NExpr := {z |z is labelled with v}

[(PathExpr)|nexpr = {2 | 3y.(z,y) € [PathExpr]pe«pr}

[~ éInExpr = {z| 2 & [Slnexpr}

[#1 V d2]NExpr = [¢1]nExpr U [D2]NExpr

e A is semantically root-equivalent to B (notation Eym A =" B) if for
arbitrary XML model with root r and arbitrary element of the universe x,

('I", l‘) S [[A]]PExpr ’Lﬂ (T, CL') S [[B]]PExpr-

Equivalences over multi-label models are defined analogously. We prefix
them with F,, instead of F .

These three notions can be reduced to each other, and we will use these
reductions in our completeness proofs. To state them elegantly, we develop
some extra syntactic machinery.

The converse of an axis is defined in the obvious way. The definition is
extended inductively to all path expressions as follows:

(Alg)~h=[g]/A7"
(A/B)"t:=B7'/A7!
(AuB) h:=A"'uB™!
Lemma 2. For any model, (z,y) € [Alpexpr iff (y,7) € [A™ pExpr-
Proof. Direct verification. O

We use the following abbreviations:
ACB for AUB=RB o<y for oVY=1

true for (. false for —true
1 for .[false] dNY  for  —(=gV )
leaf for —(]) root for —(1)
first for (<) last for —(—)
a* for .Uat (a*[p]) for ¢V (aT[d])
Egp for (T7[(L"[@))]) Ap  for  —E=¢

Lemma 3. For arbitrary model
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[rootinexer = {2 | ¥y.(2,y) & [T]Pexpr }
[leaf[nexpr = {z | Vy.(z,y) & [|]pexpr}

[firstnexer = {2 [ Vy.(2,9) & [« ]Pexpr}
[lastnexpr = {7 | Vy.(2,y) & [—]Pexpr}
[a
[E¢

]]PExpr - [H]PExpr U [[ ]]PExpr
o [EdInexpr = 0 iff [@]nexpr = 0. Otherwise, [E¢|nexpr is the set of all nodes.
Proof. Direct verification. O

Now we can exactly characterize the relationships between different notions
of consequence. We need an auxiliary notion for this purpose.

Definition 4. For arbitrary list of path or node expressions P, let 2(P) be the
set of all elements of XX which appear in P. Let

v,v' €X(P)

labp:= /\ A(-wVv-)
v#£v!

Lemma 5. For arbitrary model and arbitrary list of path or node expressions
P, [labp]nexpr = O iff there is at least one pair of distinct labels v,v' € X(P)
with non-disjoint interpretation, i.e., [V]nexpr N [V INExpr 7# 0. Otherwise, i.e., if
interpretations of all labels are disjoint, [labp]nexpr s equal to the whole set of
nodes.

Proof. Follows from Lemma 3. U

Corollary 6. For arbitrary XML model and arbitrary list of path or node ex-
pressions P, [labp]nexpr s equal to the whole set of nodes. Hence for arbitrary

A € PathExpr and ¢ € NodeExpr, Fxmi Allabgs] = A and Fxmi ¢ Alabp = ¢

Proof. Follows from Lemma 5: in XML models, denotations of all labels are
disjoint. O

Lemma 7. For every A, B € PathExpr, ¢, € NodeExpr.
1. BFxmi A =" B iff BExmi (A7 1[root]) = (B~ 1[root]).

Fml A=" B iff Em (A7 1[root]) = (B~ 1[root])

Exml A =" B iff Exmi -[root]/A = .[root]/B

Em A =" B iff Fy .[root]/A = .[root]/B

Eml A = B implies Fym (A) = (B)

S & o e

Exml A = B implies Exm (A) = (B).
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10.
11.
12.
13.

1.

Em A = B iff Emi (Av]) = (A[v]) for arbitrarily chosen v & (A, B).
Fml A= B iff Fi ["[v]/A =" |"[0]/A.

Em A= B implies Exy A= B

Em A=" B implies Exm A =" B

Fmi ¢ = ¥ implies Exm ¢ = ¢

Fuml A= B iff Fmi Allaba ] = Bllaba s],

Fxml A =" B iff Fm Allaba g] =" B[laby 5],

Fxml @ = Z_[f Fml @A |ab¢7w =Y A |ab¢7¢.

Proof. Most clauses follow directly from Lemma 3, clauses 1, 2, 3 and 4 use in
addition Lemma 2. We prove only the most nontrivial ones.

e The ”if” direction of 7. We reason by contraposition. Assume for some

model [A]lpexpr # [Blpexpr- W.l.0.g., it means there is (z,y) € [A]pexpr —
[Blpexpr- As multi-label models do not impose any restrictions on labeling,
we can set [v]nexpr:={y} . It will not change [A]pgxpr and [B]pexpr by
assumption on v. Clearly, € [(A[v])]nexpr — [(B[v])]NExpr, hence these
two node expressions are not equivalent.

Clause 12. The ”if” direction: by Lemma 9 and Corollary 6. The con-
verse direction: assume for some multilabel model [A[laba gllpexer €
[Bllaba,g]]pexpr- It means there is a pair (z,y) € [Allaba,g]]PExpr —
[Bllaba, B]]pexpr and thus [laba g]nexpr # 0. By Lemma 5, this implies
that [A[laba, B]]pexpr = [A]pexpr and denotations of all labels occurring in
A and B are disjoint. As changing denotations of labels outside of (A, B)
does not affect [A]pexpr and [B]pexpr, We can use one choose one of them
to label all nodes which are not label by labels in X(A4, B), send all the
remaining ones to () and thus obtain a XML countermodel for F,, A = B.

O

Remark 8. Observe that clause 7 would not work for XML models because of
restrictions on labeling. Take for example A:=.[v], B:=.[v']. Even for multi-
label models we can run into problems if ¥ is assumed finite and all labels from
Y occur somewhere in A, B. This is why we assume in this paper X is infinite,
i.e., we never Tun out of fresh labels.

Having clarified the relationship between all the semantic notions of equiv-
alence, we can set out to axiomatize them. Before we propose specific axioms,
let us explain the general notion of axiomatization we use.
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2.2 Proof Systems

We will propose proof systems for node expressions and path expressions. All
equivalences will be prefixed with either -, or Fyy, determining whether the
equivalence in question is supposed to be a multi-label model equivalence or a
XML-model equivalence, respectively.

Proof systems consist of axioms, axiom schemes and rules. An axiom is an
identity between two path or node expressions. Examples are b, at/aUa =a™
and by (.[v]) = v. An axiom scheme is an axiom which may contain vari-
ables ranging over path and node expressions. Thus they are patterns repre-
senting infinitely many axioms. Examples are Fn A/(B/C) = (A/B)/C and
Fmi AlpVy] = A[p]UA[)]. We usually make no distinctions between axioms and
axiom schemes, and call both just axioms. An inference rule is an implication
between a conjunction of identities and another identity, typically containing
again variables ranging over path and node expressions. An example is the
transitivity rule from equational logic defined below. Sometimes such a rule has
side-conditions restricting its application. We call such rules unorthodor. An
example is

from by (A[v]) = (B[v]) infer b, A = B, provided that v € (A, B).

A proof based on a given proof system I is a finite sequence of equivalences
such that each equivalence is either an axiom of I', or the universal tautology
ko, P = P or is obtained from preceding equivalences using the rules of I" or the
inference rules from equational logic:

e from b, P=Q infer -, Q = P, (symmetry)
e fromb, P=Qand b, Q = R infer -, P =R, (transitivity)

where P,(Q, R can be arbitrary node or path expressions and -, is an arbitrary
prefix. Finally we have the replacement rule. Because our syntax makes a
difference between path and node expressions, the replacement rule has to be
typed and we get two rules:.

from b ¢ = ¢ and by A(9)

B(¢) infer bn A(Y) = B(v)
from oy A = B and by ¢(A4) =

Y(A) infer b ¢(B)

3 The axioms

This section discusses the axioms and the extra rules of our axiomatization. The
axioms are presented in Table 2 and divided into four parts. As stated above, we
are using prefixes F,,; and F,m to denote, respectively, provable equivalences on
multi-label and uni-label trees. Now we can formulate these notions precisely:

e Fn P=@Q: P = (@ can be proved from the equations in Table 2 and the
axioms and rules of equational logic.

e i P = Q: if in addition to those, also the rules in Table 3 may be used.
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In the following subsections, we describe the axioms and the rules in more detail,
and we will discuss some derivable equivalences. In Section 4, we will prove the
completeness of our axiomatization.

3.1 Idempotent Semirings

These axiom schemes govern the behavior of the two binary path operators /,
U, the path constant “” and their interplay. Idempotent semirings is the name
traditionally used in algebra. Idempotency is the axiom ISAx3. Distributive
lattices are natural examples of idempotent semirings if N is denoted as / and
the identuty constant . as the boolean T. Natural numbers with addition and
multiplication form a semiring, but not an idempotent one, as 2+2 is not equal to
2. From our point of view, the most important example of idempotent semirings
(with some additional operations) are Tarski’s relation algebras [14, 15]. Of
course, it is not surprising that our operations / and U satisfy the laws of
relation algebras: the interpretation of these operations is simply the same.
For the same reason, Kleene algebras [8, 9] are also idempotent semirings (with
additional operation ).

Some authors demand that semirings have an additional constant 1 satis-
fying Der6 and Der7. For us, | is a defined abbreviation, this is why those
equivalences are derived.

3.2 Predicate Axioms

In the one-sorted signature of Tarski’s relation algebras [14, 15], predicates can
be treated as defined operations. This fact was used in [16] for the axioma-
tization of Core XPath 2.0. In Core XPath 1.0, there are less operations on
relations available and predicates cannot be term-defined.PrAx1 establishes the
connection between predicates, negation on node formulas and test operators
(-): whenever you reach a node where (B) does not succeed, you cannot proceed
with B. PrAx2, PrAx4 and PrAx3 establish the interaction between predicates
and remaining node and path operations: /, U, V and the constant “.”.

As a side-remark we note that instead of using predicate expressions and
two-sorted signature with node and path formulas, we could use the dynamic
negation ~ introduced by Groenendijk et al. [6] and studied in [17, 7]. The
axioms for dynamic relation algebras (DRA’s) [7] with operations U, / and ~ are
almost equivalent to the axioms in the two groups discussed so far (idempotent
semirings and predicates); the only axiom we have not introduced yet is the
one saying that expressions preceded by ~ are boolean. In our setting, this is
ensured by axiom NdAx1 discussed below. The theoretical importance of DRA
operations U, / and ~ is that the operations on programs defined by means of
these operations are exactly the first order definable operations that are safe for
bisimulations (see [17] and also [2, Theorem 2.83]).
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Table 2: Axioms and Axiom Schemes for F,-Equivalences

Path Axiom Schemes for Idempotent Semirings

ISAx1 (AuB)UC =
ISAx2 AUB =
ISAx3 AUA =
ISAx4 A/(B/C) =
JA =
ISAX5{ AJ. =
A/(BUC) =
ISAx6 (AUB)/C =
Path Axiom Schemes for P
PrAx1 A[~(B)]/B =
PrAx2 (A/B)[¢] =
PrAx3 J00] =
PrAx4 Alo V] =
Axiom Schemes for Trees
at/aUa =
TreeAXl{ a/at Ua =
TreeAx?2 al¢]/a™t =
TreeAx3 1]/ =
TreeAx4d  («U—)[root] =
Node Axiom Schemes
NdAx1 10) =
NdAx2 (.[o]) =
NdAx3 (AU B) =
NdAx4 (A/B) =
NdAx5 (a™[¢]) =

AU(BUCQ)
BUA

A

(A/B)/C
A

A
A/BUA/C
A/CUB/C

redicates

L
A/Bl¢]

Al¢]U A[Y)

a+ }fOI‘ ac {Tal?Hvﬂ}

for a € {—,—, |}

for a € {Tal7(_7—>}

Table 3: Rules for Inferring F,mn-equivalences from F,-Node Equivalences

from

Fmi @ Alabg g =1 Alabg g

infer

}_xml qudJ

Fmi (A7 root]) Alabs g = (B~ root]) Alaba g Fuym A="B

Fmi (Alv Alaba, g]) = (Blv Alaba g])

Fxml A= B for av ¢ (A, B)
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Table 4: Derivable Equivalences for
Boolean Law Schemes

Derl oV Y = YVo

Der2 ¢V (¥ Vx) = (V) Vx

Path Equivalence Schemes

Der3  Altrue] = A

Derd  Alfalse] = 1

Ders  (AUB)[g] = Al¢]U Blg]
AU L = A

Derﬁ{ LUA = A
A/l = 1

Der?{ J-é A = |

Der8  Al¢][] = Aoy

Some Other Derived Node Equivalence Schemes

Der9 (Alfalse]) = false
Der10 (Al V¢]) = (Ag]) v (A[Y])
Derll (A[p A]) A= (Aly]) = false
Derl2  (A[g]) A —(A[¢]) < (Alp A=yl
Derl3  (a[¢]) = (aT[pA~(a[g])]) forae {1, |, —,—}
Derld (A/B) < (4)
Table 5: Equivalences of Blackburn, Meyer-Viol, de Rijke [3]

BMRO (boolean axioms)

(an instance of Der9 for A € Axis)
BMRl{ (an instance of Derl0 for A € {1, ], «,—})
BMR2  (a[~(a=![¢])]) < ¢ forae{],],—,—}
BMR3 (a[—¢]) A (a[¢]) = false fora e {f,«—,—}
BMRY  (ald]) v (al@*g)) = (a*[o]) forac {1, —)
BMRS  —(aléh A atlo) < (at[o A Galg)]) forae {11 — —)
BMR6 a[true]) < (at[~(aftrue])]) forae{l,|,—,—}
BMR7 (NdAx5 for | and —)
BMRS  (IffistA~(—"[o}]) < ~(l[])
BMRY  (l[a) < (Uffrst]) A (1last])
BMR10 root < first A last
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3.3 Tree Axioms

TreeAx1 is a well-known Kleene algebra axiom [8, 9]. It has little to do with
the fact that we are working with trees: it simply forces a™ to be a fixed-point
containing a. However, this axiom alone would not be enough to derive that a™
is a smallest fixed-point containing a. Observe that this axiom is not a scheme
of infinitely many ones, as Core XPath 1.0 does not allow for transitive closure
of arbitrary path expressions. TreeAx2, TreeAx3 and TreeAx4 force that —
is the converse of <, 1 is the converse of | and that T, «+ and — are partial
functions. TreeAx3 together with TreeAx4 in addition ensure proper interplay
between horizontal and vertical axes.

3.4 Node Axioms

The reader may feel suspicious about the fact that the only axiom we add to
ensure that node expressions are boolean is NdAx1. This is explained in the
proof of Corollary 10 below. The axioms NdAx4, NdAx2 and NdAx3 are coun-
terparts of PrAx2, PrAx3 and PrAx4, respectively. This slight redundancy is
the price we have to pay for working in a two-sorted signature. PrAx3 together
with NdAx2, in addition, allow to derive node equivalences from path equiva-
lences. NdAxb5 is a very important equivalence. It is related to the fact that
a™ is not only transitive and irreflexive, but also well-founded: there are no
infinite ascending a™-chains. The validity of this axiom, known by logicians as
The Lob Aziom means that at allows for reasoning by induction. NdAx5 is
valid for | because every path in the trees we consider is of finite length and for
horizontal axes because every node has finitely many children. In other words,
in infinite trees NdAx5 would only be valid for T (and perhaps <, depending
on the convention on sibling order). For more on this axiom, see [2, 18]. The
latter reference explains also how to derive BMR5 from this axiom, a fact we
used in our axiomatization.

3.5 Rules

The rules in Table 3 may seem counterintuitive at first sight. Their justification
is provided by Lemma 7, but we admit they do feel somewhat ad hoc. A rule
based on the clause 7 of Lemma 7 is closely related to separability rule in dynamic
algebras corresponding to logic of programs (PDL), see [12]. In the field of XML
query languages, a rule inspired by a reasoning analogous to the one behind 8
and 7 appeared in Miklau et al. [11, Proposition 1] An alternative way of
using Fn-node equivalences would be to do in two steps: derive first by -path
equivalences and then derive b,y -path equivalences from F,-path equivalences.
Table 6 displays the alternative rules we could pose.

3.6 Derived Equivalences

Lemma 9. All the equivalences in Tables 4 and 5 are derivable from the axioms
in Table 2 and the axiom and rules of equational logic.

50



We give two example derivations. We use the axiom and the rules of equa-
tional logic and the many-sorted replacement rule without explicit mention.
First we derive Derb:

(AUB)Y] = (AUB)/Y by ISAXS
= (AU B)/.[¢] by PrAx2
= A/.[¢] U B/.[¢] by PrAx4
= (4/)(6]U (B/.)l9) by PrAx?
— A[¢] U B[] by ISAX5

Now we can derive BMR4:

(a*[¢]) = ((aua/a™)[g]) by TreeAxl
= (a[g] U (a/a™)¢]) by Der5
= (a[p] Ua/a™[¢]) by PrAx2
= (al¢]) V (a/a™[¢]) by NdAx3
= (a[o]) V (al(a™[s])]) by NdAx4

An important consequence of Lemma 9 is:

Corollary 10. All substitutions of classical propositional logic (boolean algebra)
validities are derivable node equivalences.

Proof. This follows from a recent solution to the so-called Robbins problem con-
cerning the axiomatization of Boolean algebras [10]: any algebra where NdAx1,
Derl and Der2 hold satisfies all the boolean axioms. O

However, let us add that the task of deriving all boolean validities from
NdAx1, Derl and Der2 is highly nontrivial. It was an open problem in universal
algebra for almost seventy years. The positive solution was finally obtained in
the 1990’s by the EQP theorem prover (Argonne National Laboratory, USA) and
even today is considered one of the peak achievements in automated reasoning.
It is much easier, though, to derive all the boolean axioms if NdAx1 is replaced
by a very similar Huntington equation (see [10] and the references therein):

¢ =(20 V)V (g V).

We finish this section with one more example. We will show b, vAv' = false
for arbitrary pair of distinct v,v’ € X. Of course, this is not a valid Fpy-
equivalence. In fact, this is the main equivalence which allows us to tell apart
Fmi and Fyym and we considered for some time posing it as an Fym-axiom. This
is why we want to show it is derivable. First, observe that

’
Iabv/\vl,fabe = A(‘ﬂ] V v )
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So, to infer the equivalence in question using Table 3, we need to show that

Fml v AV AA(-v V —0") = false A A(—v V ).

v AV AA(-v V) = o A0 A ST o AV by definition of A
=v AV A=(vAv) A=(TT[(|*[vAv])]) by definition of 1*
= false by boolean laws
= false A A(—v V ') by boolean laws.

4 Completeness Results

Our driving result is the next completeness theorem for node-expressions whose
derivation system only uses the axioms in Table 2 and the axiom and rules of
equational logic. As a corrolary we obtain completeness for root and arbitrary
equivalence of path expressions with respect to the derivation systems having
the extra rules.

Theorem 11 (Completeness). For every valid equivalence Fp ¢ = 1 between
node expressions, Fm ¢ = ¥ can be derived from the azioms in Table 2 and the
axiom and rules of equational logic. In fact, Em ¢ = ¢ iff by ¢ = .

Corollary 12. The azioms presented in Tables 2 together with rules presented
in Table 8 are complete for node equivalence, root equivalence and strong path
equivalence over XML models. That is:

L4 hxm|¢5¢ ’iﬁkxm|¢£d)

L] 'me| A="B Zﬁ '_xml A="B

L] 'me| A=B iﬁl_xm| A=B
Proof. Follows from Theorem 11 and Lemma 7. O

The proof of Theorem 11 consists of two steps. First we show that each node
expression is provably equivalent to a simple node expression, to be defined
shortly. These expressions are isomorphic variants of the modal logical tree
formulas used in [3]. For instance, our (|[p]) is just the modal formula (|)p,
saying “I have a p—child”. [3] contains a complete derivation system for these
simple node expressions. The second step of our completeness proof shows that

all these derivations can also be done in our system.
The simple node expressions (abbreviated as siNode) are defined as:

sifxis := | [ [T =17 [ <"1 [ -7
siPath := siAxis[siNode]
siNode := true | false | v | (siPath) | —siNode | siNode V siNode

where v € Y.
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Lemma 13. FEvery node expression ¢ is provably equivalent to a simple node
expression @°.

Proof. We provide a translation (-)° : NodeExpr — siNode which is constant for
elements of siNode. This mapping uses an auxiliary mapping (-)° : PathExpr
(NodeExpr +— NodeExpr) assigning to every path expression a unary function
defined on node expressions s.t. for every A € PathExpr and every ¢ € siNode,
A%(¢) € siNode. As domains of both mappings are disjoint, we use the same
symbol with no risk of confusion.

v*i=v forveX

2(¢):=¢
a*(¢):=(al4]) for a € siAxis
(AU B)*(¢):=A%(d) V B*()
(A[])*(¢):=A(¢* A @)
(A/B)*(¢):=A%(B*(¢))

Hence, the Lemma can be reformulated as follows:

For every A € PathExpr, by (4) = AS(true) and for every ¢ €
NodeExpr, Fm ¢ = ¢°.

By Der3, this in turn is implied by the following

For every A € PathExpr and every ¢ € NodeExpr, ki (A[¢]) = A%(¢)
and by ¢ = &5,

Inductive steps for node expressions are obvious, hence we focus only on
inductive steps for path expressions.

e A= . by NdAx2.

e A = a € siAxis: by definition of (-)°.

e A=BUC:

(BUC[¢]) = (B[¢] U Clg]) by Der5
= (B[¢]) v (Cl¢]) by NdAx3
= B*(¢) V C*(o) by IH
= (BUC)(¢) by definition of (-)°
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(B/C)[¢l) = (B/C[9]) by PrAx2
= (B{C[s))]) by NdAx4
= B(C(0)) by TH
= (B/C)*(9) by definition of (-)°

e A= B[

(Blll¢l) = (B[¥°][9]) by IH on NodeExpr
= (B[Y® A ¢)]) by Der8
=B (Y° A @) by IH on PathExpr
= (B[¥))*(¢) by definition of (-)°

O

To make our notation more compact, we will cheat a little. As by Der3,
a = altrue] for every a € {1, |,—,—}, we will use both equivalently in simple
node expressions. This allows us to treat first, last, root and leaf as elements of
siNode. Thus, BMR1-BMR10 can be treated as statements about simple node
expressions.

Lemma 14. The aziomatization in Table 2 is complete for simple node expres-
sions over generalized tree models. That is, for every ¢, ¢ € siNode, Fm ¢ = ¢

W Fmi ¢ = 1.

Proof. This follows from Lemma 9 and the result of Blackburn et al. [3]. Modulo
the difference between an equational derivation system and a modal Hilbert style
axiomatization of valid formulas, they prove that the axiomatization consisting
of BMR1-BMR10 is complete for simple node expressions over generalized tree
models. See Theorems 5.25 and 5.27 in [2] for the relation between algebraic
and modal logical proof systems. O

Lemmas 13 and 14 together immediately yield Theorem 11. Observe it
was enough to prove the first claim, as by ¢ = 9 implies Fyy ¢ = ¥ can be
established by a straightforward verification.

Remark 15. The rules in Table 3 could have been replaced by Table 6.
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Table 6: Alternative Rules for Other Notions of Equivalence

from infer

Fml @ A Iab¢ v = oA |ab¢,w Fxml @ =
}—m| (A= Yroot]) = (B~ !root]) Fm A="B
o Al(laba )] =" B{laba )] Fami A =" B

}_ml (Av]) = (B[v]) Fmi A=B  forv¢ X(A,B)
Fmi A[IabA B] = [IabA B] Fanl A= B

}_ml(b5¢ I_><ml¢Ew

Fml A="B Faml A=" B

leAEB Fxm|AEB

5 Conclusions

We promised a small gem, a surpise, and an open problem. The gem is of course
the simple set of axioms which are complete for node expressions. The surprise
is that it seems so hard to do something similar for path expressions without
using a non-orthodox rule, which we leave as an open problem. Non-orthodox
rules are shunned by algebraists (see e.g., Section 3 in [13] for a discussion).
Our proof in its crucial part is not concerned with path expressions—we are
working with node expressions instead and then use non-orthodox rules to derive
path equivalences. It would be more satisfying to replace the “node equivalence
engine” at the heart of our proof by genuinely path-oriented relational reasoning.
Unfortunately, this proved more difficult than we expected.

Still, we have a complete axiomatization. A completeness result like this can
be considered a meta-result: if a prover or query optimization algorithm can
handle all the axioms and recognizes the validity of all inference rules in our
axiomatization, it can handle all valid XPath equivalences.
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Teaching SQL at USQ

Stijn Dekeyser

University of Southern Queensland, Australia

Abstract
In a Liber Amicorum for Jan Paredaens, a contribution about teaching
an introductory course in database systems seems almost indispensable.
We briefly describe some differences between teaching in Belgium and Aus-
tralia, and present a tool developed in-house to help teach SQL, dubbed

SQLify.

Introduction

Teaching programming and query languages is one of Jan’s enduring passions.
His approach to teaching SQL starts by introducing relational algebra and cal-
culus and then focusses on a series of ever-more intricate query examples. Just
as Date introduced the now-famous Supplier—Parts database to teach the various
SQL constructs [2], Jan is fond of the equally ubiquitous Bars—Drinkers—Beers
schema (attributed to J.D. Ullman). Consisting of three binary relations each
representing a many-to-many relationship between three entities, Jan’s example
schema lends itself to some very complicated (and exceptionally entertaining!)
query problems. It is unclear to me whether students fully appreciate the in-
tricacies Jan confronts them with when they first take the course, but I can
personally attest to learning from them much later in life.

Teaching at USQ

One of the differences between Anglosaxon and some Northwestern European
academic education systems is that the latter lack the notion of assignments.
This is a sort of paradisiacal situation for faculty in those countries as they
are not faced with endless hours of marking, or (if they are lucky enough to
have assistants to do the marking) constructing assignment questions, marking
criteria and feedback forms. The downside is that students typically don’t get
tested on their SQL skills until the day of the final exam, for which most started
studying only a few days earlier. The quality of answers you usually get in such
a situation is rather low, a problem exacerbated by the fact that students don’t
really know what to expect both in terms of questions and in terms of marking
criteria.

At Anglosaxon institutions such as the University of Southern Queensland the
application of sound education theories and techniques is seen as a major selling
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point to attract students. In addition, a significant portion of its students
are studying in external modus, often on other continents. For these reasons,
assignments are an important ingredient in students’ and faculty’s lives, and
also receive a lot of attention from the academic leadership. There are training
sessions on creating objectives and marking criteria, establishing good marking
procedures, and minimizing marking time while maximizing student outcomes
(which are clearly competing goals). Any fundamental research and practical
software that helps achieve any of these goals is welcomed.

Introducing SQLify

Inspired by my experiences at the universities of Antwerp and Southern Queens-
land, I set out with a colleague to devise a web-based application that helps teach
SQL and also helps assessment of SQL queries in assignments. The goals that
drove development of SQLify are:

1. Provide rich feedback on SQL statements to students in both an auto-
mated and a semi-automated fashion;

2. Use database theory effectively to partially automate assessment of queries;

3. Facilitate and manage peer-review to enhance learning outcomes for stu-
dents in two ways: receiving feedback from multiple sources, and conduct-
ing reviews of other students’ work;

4. Combine peer-review and automated assessment to yield a wider range of
final marks (beyond binary marking);

5. Automatically judge the accuracy of reviews performed by students for
other students;

6. Reduce the number of necessary interventions from instructors, freeing
them for other forms of teaching.

While our software is not the first to address the teaching of SQL, it is probably
the most advanced in combining ideas from the scientific fields of Computing
Education and Databases. Figure 1 compares SQLify to other systems.

SQLify was implemented by a graduate student and is being trialled for
use in our Database Systems course. We have written a few conference papers
focussing on various aspects of the system, and also published a comprehen-
sive journal article at Informatics in Education [3]. Future development of the
system will focuss on supporting Relational Algebra and simple Datalog expres-
sions.
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Feature eSQL SQL-Tutor SQLator AsseSQL SQLify

Modelling of student to individual- X v X X X
ize instructional sessions

Visualization of database schema X v X X 4
Visualization of query processing v X X X v
Feedback on query semantics X v X X /e
Automatic  assessment  (using X X v vt ve
heuristics)

Automatic assessment (using CQ X X X X v
query equivalence)

Use of peer review for assessment X X X X v
Relational Algebra expressions X X X X v
support

Special treatment of DISTINCT and X X X X v
ORDER BY

SQL-injection attack countermea- X X X X 4
sures

Figure 1: Comparison of existing tools and SQLify. (a) in practice mode only.
(b) on two instances (proposal only). (c) for queries not in CQ. (d) planned for
next version.
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Completeness of Database Query Languages

George H.L. Fletcher
School of Engineering and Computer Science
Washington State University
Vancouver, WA, USA
gfletcher@acm.org

Jan Paredaens’ seminal 1978 results in Information Processing Letters on
the expressive power of the relational algebra were among the first significant
bridges between the model theory and database research communities. To-
gether with those of Bancilhon in that same year for the relational calculus,
Paredaens’ results provided the database community with a deep new perspec-
tive on investigating the completeness, and, in general, the semantics of database
query languages. This talk will give a brief historical overview of fundamental
completeness results in the three decades since the IPL paper, spanning query
languages for the relational, nested relational, and XML data models. Ongo-
ing research on leveraging these results in data integration and XPath query
processing will also be briefly highlighted.
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Tree-structured object creation in database
transformations

Jan Van den Bussche

Abstract

Within the class of “determinate” object-creating database transfor-
mations, identified by Abiteboul and Kanellakis, a natural proper subclass
consists of the so-called “constructive” transformations. A determinate
transformation is constructive if its input-output pairs satisfy a condition
discovered by Jan Paredaens. In this note we point out that when object
creation is “tree-structured,” as is the case in tree-structured data models
such as XML, determinate transformations are always constructive.

DEDICATED TO JAN PAREDAENS
FOR HIS 60TH BIRTHDAY

1 Introduction

In tree-structured data models, such as in the XML data model [15, 17], it is
desirable that transformations can be expressed that are object-creating, mean-
ing that the result of a transformation can contain objects (in this case, tree
nodes) that do not appear in the input database. Indeed, the standard XML
query language XQuery [16] allows the expression of object-creating queries by
means of the element construction operation.

Well before the rise of the XML data model, however, general database
transformations (possibly object-creating, and possibly non-deterministic) were
already studied by Abiteboul and Vianu [3, 4], and Abiteboul and Kanellakis
[2] introduced the class of “determinate” transformations as those that are non-
deterministic only in the choice of the id’s of the new objects. Abiteboul and
Kanellakis also introduced a very natural query language, called IQL, for ex-
pressing general determinate transformations. IQL is equivalent to the relational
algebra extended with three programming constructs: object creation; assign-
ment to relation variables; and while-loops. At around the same time, another
equivalent language, called GOOD, was introduced by Jan Paredaens and his
collaborators [10].

Not all determinate transformations are expressible by an IQL program,
however. There even exist single input-output pairs of database instances that
cannot be realized by any IQL program. This situation motivated Jan Paredaens
to formulate a condition on pairs (I, .J) of database instances that is necessary
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and sufficient for J to be an output of some GOOD (or IQL) program applied
to I [6]. This condition states the existence of an extension homomorphism
from the group of automorphisms of I to the group of automorphisms of J,
and generalizes to object creation Jan Paredaens’s earlier result on the BP-
completeness (Bancilhon-Paredaens) of the relational algebra [13, 7, 9]. Later,
the naturalness of the extension homomorphism condition was confirmed when
it was shown that the IQL-expressible transformations are precisely those de-
terminate transformations all of whose input-output pairs admit an extension
homomorphism [14].

The developments just described happened largely before the rise of the XML
data model. In this note, we ask ourselves what happens when object creation
is tree structured, i.e., the newly created objects in the output form a tree, the
leafs of which are labeled by objects from the input (a precise definition will be
given later). XML is clearly tree-structured. We will show that in that case,
the gap between determinate and IQL-expressible vanishes, i.e., the extension
homomorphism condition is always satisfied for tree-structured object creation.

2 Database transformations

We recall some essential definitions in this section, largely taken from our earlier
paper [14]. For background and motivation for these definitions, see Abiteboul,
Hull and Vianu [1].

It is assumed that an infinite collection of relation names is given. To each
relation name R a natural number «(R) is associated, called the arity of R,
such that each number is the arity of infinitely many relation names. A database
schema is a finite set of relation names.

It is furthermore assumed that a countably infinite universe U of abstract
data elements, called objects, is given.

An instance I of a database schema S is a finite relational structure of type
S, consisting of a finite subset |I| of U, called the domain, and a mapping on S,
assigning to each relation name R of S a relation R! on |I| of rank a(R) (i.e., a
subset of |I|*(), called the content of R. The set of all database instances of
the schema S is denoted by inst(S).

Let Sin and Syt be two database schemas. A determinate transformation
from Sy to Sout is an input-output relationship @ C inst(Siy) X inst(Sout)
satisfying the following three properties:

1. If Q(I, ) then |I| C | J|;

2. If Q(I,J) and f is a permutation of U, then also Q(f(I), f(J)), where
by f(I) we mean the database instance obtained from I by applying f
pointwise to all objects occurring in I;

3. If Q(I,J1) and Q(I, Jo), then Jo = f(J;) for some permutation f of U
that is the identity on |I].
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Figure 1: Instance I consists just of the two a’s. Instance J adds the four b’s
together with the arrows (stored in a binary relation). There does not exist an
extension homomorphism from Aut(I) to Aut(J).

The first requirement above is technical but harmless. The second one is a
classical consistency criterion [9, 5] known as genericity [12]. The third, finally,
expresses the determinacy property [2].

For a database instance I, we denote by Aut(/) the set of all permutations
f of |I] for which f(I) = I; such permutations are called automorphisms of I.
The set Aut(I), with the operation of composition, forms a group structure.

A crucial concept, introduced by Jan Paredaens [6], now is the following. Let
I and J be database instances such that |I| C |J|. An extension homomorphism
from Aut(I) to Aut(J) is a group homomorphism A : Aut(l) — Aut(J) such
that for each f € Aut(I), the permutation h(f) is an extension of f, i.e., h(f)
agrees with f on |I].

We now call a determinate transformation @ constructive [14] if for every
input-output pair (I,J) of @, there exists an extension homomorphism from
Aut(I) to Aut(J). An example (due to Serge Abiteboul [2]) of a pair of instances
(I, J) that does not admit an extension homomorphism is shown in Figure 1.
As a consequence, no transformation that contains (I s ) as an input-output
pair can be constructive.

3 Tree-structured transformations

Note that the output of the non-constructive example from Figure 1 has an in-
trinsic cyclicity to it. That observation, and the recent interest in tree-structured
data models such as XML, motivates us to study tree-structured transforma-
tions as a special class of determinate transformations. We first define this class
formally and then prove that tree-structured determinate transformations are
always constructive.



Definition 1 Let J be an instance of some database schema S, and let T € S
be a binary relation name. We call J tree-structured by T if J has the following
two properties:

1. Let V equal the set of objects occurring in T7, and consider this binary
relation T as a directed graph on vertex set V. Then T7 must look like a
set of rooted trees; more specifically, every verter must have at most one
incoming edge, and there must be no cycles.

2. For every relation name R € S different from T, every tuple in the relation
R’ must contain at most one occurrence of a vertex, i.e., an object from
V.

The first property in the above definition is, we hope, intuitive. The intuition
behind the second property is that the tuples in the relations other than 7" serve
as “annotations” or “labels” for the various tree vertices. We can formalize labels
as follows:

Definition 2 Let J be a database instance, tree-structured by T. Let x be a
vertex of J. A label of x is any triple of the form (R, i,t), where

e R is a relation name of J’s database schema, with R # T;
o tis a tuple in R’ in which = appears;

e i is the position in T where x appears; and

e i is the subtuple of t obtained by omitting x.

When two T-vertices have precisely the same set of labels, we call them
duplicates. We call J duplicate-free if there are no duplicate leafs in J, where
a leaf is a vertex without outgoing edges in T

Our central notion is now the following:

Definition 3 Let Q be a determinate transformation from Siy to Sous, and let
T be a binary relation name in Sout. We call @ tree-structured by T if for
every input-output pair (I,J) of Q, the output J is tree-structured by T, with
vertex set equal to |J| — |I| (i.e., the set of newly created objects), and J is also
duplicate-free.

The requirement that J be duplicate-free is mainly for technical reasons. A
transformation that is not duplicate-free can be easily made so by adding addi-
tional auxiliary nodes and labels.

The purpose of this note is to point out the following:

Theorem 1 FEvery tree-structured determinate transformation is constructive.
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4 HF-transformations

To prove the theorem, we recall some further definitions [14].

Let D be a subset of U. The set HF (D) of hereditarily finite sets (HF-sets)
with ur-elements in D [8] is the smallest set with the property that each finite
subset of D UHF(D) is itself an element of HF (D).

An HF-instance I is defined as an ordinary instance, the only difference
being that the domain |I| is a subset of U U HF(U) instead of U. The set of
all HF-instances of some database schema S is denoted by HFinst(S). If f is
a permutation of U and I is a HF-instance, then f(I) denotes the HF-instance
obtained from I by applying f pointwise to all objects appearing in I, even if
they appear within HF-sets.

For database schemas S, and Sout, an HF-transformation from Si, to Sout
is a partial function @ : inst(Sin) — HFinst(Sout) such that for each I for which
Q(I) is defined, we have

L [Q(I)| € [I| UHF(|I]); and
2. for any permutation f of U, also Q(f(I)) is defined, and equals f(Q(I)).

An ordinary instance I is said to be isomorphic to an HF-instance I’ if there
is a bijection f from |I| to |I’| such that f(I) = I’. Then a determinate trans-
formation ) from S;, to Sous is said to be isomorphic to an HF-transformation
Q' from Sy, to Seut, if Q' is defined precisely on all instances I for which there is
an output instance J such that Q(I, J), and all such J are isomorphic to Q'(I).

We now recall the following connection between constructive transformations
and HF-transformations:

Proposition 1 ([14]) A determinate transformation is constructive if and only
if it is isomorphic to some HF-transformation.

Hence, in order to prove our theorem, it suffices to show that every tree-
structured transformation is isomorphic to some HF-transformation. Thereto,
let @ be a tree-structured transformation and let Q(I, J). Note that J is tree-
structured; we are going to define, for each vertex = of J, the stamp of x by
bottom-up induction as follows. Let L be the set of labels of x. Now if = is a
leaf, then the stamp of z is the ordered pair (L,(). If z is not a leaf, we may
assume by induction that the stamps for its children have already been defined;
let C be the set of all those children’s stamps. Then the stamp of = is the
ordered pair (L, C).

We now observe that we can consider a stamp to be a HF-set with ur-
elements in |I|. Indeed, ordered pairs, triples, and tuples, can be unambigu-
ously represented by HF sets [11]. The same is true of natural numbers, so
the numbers ¢ that occur in labels can also be represented. Finally, by num-
bering the relation names of Sy, we can represent the relation names that
occur in labels also by numbers. Now denote by J’, the HF-instance obtained
from J by replacing each vertex by its stamp, and define the HF-transformation
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Q' by Q'(I) := J'. Since Q is determinate, Q' is well-defined, i.e., the def-
inition of @’(I) does not depend on the chosen J. Moreover, @' is a valid
HF-transformation, by the genericity of Q. Furthermore, by definition, it is
clear that @ is isomorphic to Q'. We thus have our desired HF-transformation
and the theorem is proved.

5 Epilogue

This note was written mainly as an excuse to recall some of the research from the
good old times when I was Jan Paredaens’s PhD student and we were together
interested in the foundations of object identity in query languages. I remain
forever grateful to Jan for the chances he gave me, for the freedom he allowed
me, for the confidence he put in me, and the patience he had with an often too
self-absorbed, too ambitious, sometimes even too aggressive youngster!
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Towards an Axiomatization of the Relational
Lattice

Jan Hidders

Abstract

There have been several attempts to replace the relational algebra
with another set of operations that allow for a more effective set of al-
gebraic identities for proving equivalence and optimizing expressions. In
this paper we study a proposal that is based on the observation that the
natural join and the inner union satisfy the laws for lattices. Extended
with special constants for empty relations and equality relations they al-
low us to express the SPJRU-queries, i.e., queries that can be expressed
in the relational algebra with the the selection, projection, join, renaming
and union operators. We present a set of algebraic semi-equations that
are conjectured to axiomatize equivalence of such expressions.

For Jan Paredaens, a teacher and
a mentor who enabled me to do in
life what I like doing best. — JH

1 Introduction

With the introduction of the relational model [Codd, 1970] a corresponding al-
gebra, the Relational Algebra, was introduced for manipulating relations. This
algebra, however, was not defined algebraically, i.e., in terms of algebraic iden-
tities, but rather as a set of operations over relations that happened to exhibit
certain algebraic properties. These properties are important for query opti-
mization because they allow the investigation of alternative formulations of a
query that might allow a more efficient evaluation. In addition these properties
can also be used to reason over data dependencies if these are formulated as
equations between algebra expressions, as for example was investigated for alge-
braic dependencies [Yannakakis and Papadimitriou, 1982]. For a comprehensive
overview of research on axiomatizing data dependencies the reader is referred
to [Abiteboul et al., 1995].

An earlier approach that started from an algebraic perspective were the
Cylindric Algebras [Henkin et al., 1971, Henkin et al., 1985] as introduced by
Tarski. Fortunately, as was shown in [Imielinski and Lipski, 1982], there ex-
ist close relationships between the two types of algebra. However, this also
means that some negative results about non-axiomatizability in Cylindric Al-
gebras also transfer to the Relational Algebra, even for subsets of the algebra
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[Diintsch and Mikulds, 2007]. As a consequence, and also to simplify in general
reasoning over the algebra, there have been alternative proposals that are based
different operators. For example [Date and Darwen, 2000] propose to base the
algebra on an AND operator, representing the natural join, and an OR operator
that represents the union that before taking the union extends its operands with
extra columns so they have the same header and fill these columns with all val-
ues from the domain associated with those columns. A similar proposal for the
generalization of the union is made in [Imielinski and Lipski, 1982]. In this pa-
per we investigate an alternative [Tropashko, 2005, Spight and Tropashko, 2006]
where the union is generalized by an inner union that projects the operands
on the columns they have in common. As will be discussed in the next session
this pair of operators has the interesting properties that it satisfies the laws of
a lattice as defined in Lattice Theory.

2 The Relational Lattice

We begin with the definition of some basic terminology. We postulate an infinite
countable set of attribute names A and an infinite countable set of domain values
D. When giving examples we will usually assume that D is the set of natural
numbers. A header is a finite subset of A. The set of all headers is denoted
as H. A tuple over header H is a function z : H — D. The set of all tuples
over a header H is denoted as 7Ty. The restriction of a tuple x on a header
H is denoted as z[H| and defined such that z[H] = {(a,v) € z | a € H}.
We generalize this to the projection of a set of tuples B on a header H which
is B[H] = {z[H] | = € B}. Both for restriction and projection we will write
[{a,b,c}] simply as [a,b,c]. A relation is a pair r = (H,B) where H C H is
the header of the relation and B C 7y the body of the relation. The set of
all relations is denoted as R. Note that the header is part of the relation so
the empty relation with header {a,b}, i.e., ({a,b},0) is not equal to the empty
relation with header {b,c}, i.e., ({b,c},0).

In examples we will often present relations as tables. For example, the
relations 71 = ({a,b},{{(a,1),(b,2)},{(a,3),(b,4)}}), r2 = ({a,b},0), r3 =
(0,{0}), r4 = (0,0) are represented as follows:

n=[T 2] n=[®] n=g n=0

3 4 N

We are now ready to define the two fundamental operations of the Relational
Lattice. For the relations r = (H,, B,) and s = (Hj, B,) we define the natural
join, denoted as r ® s, and inner union, denoted as r @ s, such that:

r®s = (H.UH; {x€ Ty un,|z[H:] € By Nz|Hs) € Bs})
r®s = (H.NHg{z € Ty,nn, | v € By[Hs]V x € Bs[H,]})

As an illustration we offer the following two examples:
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Alternatively we can also define these operations on the basis of a partial
order C over R which is defined such that (H,,B,) C (H, By) iff H, C H,
and B.[Hs] € Bs. It is not hard to see that this indeed defines a partial
order and that @& and ® define the supremum, i.e., the least common upper
bound, and infimum, i.e., the greatest common lower bound, with respect to this
partial order!. As a consequence these operations satisfy the algebraic identities
for a lattice which are those that define semi-lattices, i.e., the operations are

idempotent, commutative and associative:

rer = r (1) rér = r (4)
res = s@r (2) rdos = ser (5)
re(set) = (ros)et (3) ro(sdt) = (rdos)dt (6)

and the operations satisfy the absorption laws:
re(rés) = r (7) re(res) = r (8)

It also follows that rC siff r@s=r iff r@ s =s.

As is well known from Lattice Theory rules 1 and 4 are in fact redundant
sincer@r="2ra(res)aro(res) =23 res)ra(rd(res))="
(réos)@r=2r®(r®s)="rand a similar argument shows that » ®r = r can
be derived using rules 5, 6, 7 and 8.

Also well known from Lattice Theory is that if they exist then the top ele-
ment, i.e., a relation T such that for all relations r it holds that T ®r = T, and
the unit element for ®, i.e., the relation 1% such that r ® 1€ = r for all relations
r, and the zero element for @, i.e., the relation 0% such that r ® 0% = 09 for all
relations r, are identical. In the Relational Lattice it exists in the form of the
relation (0, {0}) which we will denote in our algebra by the constant 1. Hence
the following identities hold:

rol = r 9) rél = 1 (10)

Note that one of the two preceding rules is redundant because one can be derived
using the other by r@ 1 = r@ (r@ 1) ="rand r®1=°" (r@1) @1 =258 1.

A similar relationship holds between dual of the aforementioned concepts,
i.e., the bottom element L, the unit element 19 for ® and the zero element
0% for ® are identical if they exist. There is however no such element in the
Relational Lattice as we defined it since it would have to be a relation with an

1The infimum and supremum are usually called the meet and the join but these terms can
be somewhat confusing here since in the Relational Lattice the natural join is in fact the meet
and not the join.
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infinitely large header. If we would have allowed such headers then (A, #) would
be the relation in question, however, in this paper we consider only relations
with finite headers.

3 Distributivity

The Relational Lattice is unfortunately not a distributive lattice, i.e., it is not
true in general that r @ (s ®t) = (r @ s) ® (r @ t), as is shown by the following
example

and it it also not in general true that r ® (s®t) = (r®s) @ (r ®t), as is shown
by the following example

(la L )y (8 Y l):@®@: 2 L
O )\ )z = ;o
However it can be shown that under certain restrictions on the headers of the
involved relations distributivity holds. Consider the relations r = (H,, B,), s =
(Hs, Bs) and t = (Hy, B;). We can then show show that under the assumption
that H, N Hs = H, N H; it follows that r @ (s ®t) = (r®@s) @ (r®t). It is
clear, even without the assumption, that the headers left and right are the same
because H,g(sqt) = H U(HsNHy) = (H,UH, )N (H, UH;) = H(g)e(ret) and
we will call this header H'. If we now assume that H, N H, = H, N H; then it
can be shown that B,.gsat) = Bres)e(rer as follows. To simplify the proof we
pick a single attribute for each nonempty subset of {r,s,t} that represents the
attributes that appear only in the headers of the relations in the subset. For
{r} we pick a, for {s} we pick b, for {t} we pick ¢, for {s,¢} we pick d and for
{r, s,t} we pick e. Note that because of the assumption there are no variables for
{r,s} and {r,t}. Summarizing we have the headers H, = {a, e}, H, = {b,d, e},
H; = {c,d,e} and H' = {a,d,e}. Then, for every tuple x € Ty, 4.} it holds
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that

T € Brg(sot)

zla,e] € B, ANz[d,e] € By

zla,e] € By A (z]d, €] € By[d, e] V x[d, e] € B[d,e])

xla,e] € B, Azld,e] € By[d,e]) V (z]a, €] € B, A z[d,e] € Bi[d, €])
zla,e] € By A (32" € Tiap.aey : @'[b,d €] € Bs Aa'[a,d,e] = x)) V
zla,e] € By A (32’ € Ty cae) : @'c,dye] € By ANa'la,d, €] = x))
32’ € Tiapde) : @'a,e] € Bp ANa'[b,d,e] € By Na'| x)V
32’ € Tiarcae} : 2'a, €] € B. ANa'[c,d,e] € By Na'|a, x)
& (32" € Bygs : 2'[a,d,e] = x) V (32’ € Bgy : 2']a, d, €]
< 1z € Bygsla,d,e] V x € Brgila,d, €]

to e

(3

a” )

(
(
(
( d,e]
( d,e]

)

& T € B(T@S)@(T@t)'

It is not hard to see how this proof can be generalized for arbitrary headers H,,
H, and H; that satisfy the assumption.

In a similar fashion it can be shown that r®(s®t) = (rds)®(rét) holds if we
assume that H.NH, = H.NH, = H,;NH,;. Again it is clear that the headers are
the same since H,g (5ot = H N(H;UH;) = (H.NH,)U(H,NH;) = Hgsoror)
and we call this header H’. Also here we pick variables as follows: for {r} we
pick a, for {s} we pick b, for {¢} we pick ¢ and for {r, s, ¢} we pick e. Note that
because of the assumption there are no variables for {r, s}, {s,t} and {r,t}.
Summarizing we have the headers H, = {a,e}, H; = {b,e}, H; = {c,e} and
H'" = {e}. Then, for every tuple x € 7¢, . it holds that

z € Brg(set)

x € Byle] V x € Bsgile]

x € B.[e] V (x € Bsle] Ax € Bsle])

(x € Ble] Vx € Bsle]) A (z € B[e] V& € Byle])
T € Brgs AT € Brgy

S R

T € B(r@s)@(r@t) .

Again is it not hard to see how this proof can be generalized for arbitrary headers
H,, H; and H; that satisfy the assumption.

The conditions on the headers of the relations can also be shown to be
necessary in the sense that for arbitrary H,., Hs and H; that does not satisfy
it there are instances 7, s and ¢ with these headers for which distribution does
not hold.

Consider the condition H, N H, = H,. N H; for the distribution of ® over @.
A simple counterexample for an arbitrary attribute a and H, = {a}, Hs = {a}
and H; = () is:

E]®(E]@D>:E]®D:E]
- 0
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BR-E) o=

It is not hard to see how this counterexample can be extended by adding arbi-
trary attributes other than a to H,., Hs; and H; and extending the tuples where
necessary with a specific value for each new attribute. By symmetry there is
a similar counterexample for the headers H, = {a}, H; = 0 and H; = {a},
and also this can be extended in the same way. This way we can construct
counterexamples for all H,., H; and H; such that H,. N Hs # H,. N H;.

We can make a similar argument for the condition H, N Hy; = H, N H; =
H, N H, for the distribution of & over ®. We do this by showing first that there
are simple counterexamples for each of the cases: (1) H, = {a}, Hs; = {a} and
Hy =0, (2) H, = {a}, H; = 0 and H; = {a} and (3) H, = 0, H, = {a} and
H; = {a}. For case (1) H, N Hs # H, N H; we have the counterexample:

51 (5. -\ (5. — 3]
@<®5>‘@@‘

<§§>( )D

For case (2) H, = {a}, H; = 0 and H; = {a} we have the same counterexample
but s and t swapped. Finally for case (3) H, =0, Hy; = {a} and H; = {a} we
have the counterexample:

@59~ (@5 -B-8-5

As before it is not hard to see how these counterexample can be extended by
adding arbitrary attributes other than a to H,., Hs and H;, and this way we can
construct counterexamples for all H,., Hs, and H; such that H. N Hg # H, N Hy,
H.NH; #H;NHyor H.NH; # Hy N Hy.

4 Empty Relations

As discussed in the previous section the laws of distribution apply only under
certain conditions. Such behavior can be axiomatized by introducing semi-
equations that consist of a premise containing a set of equations and a conclusion
containing an equation. This requires that the discussed conditions over headers
of relations can be expressed in equations in our algebra. For this purpose we
introduce the header function, whose application to a relation r is denoted as
7, which is defined such that 7= (H,, () if r = (H,, B,.). This operation lets us
express for example that r and s have the same headers by the equation 77 =,
or that the intersection of the headers of r and s is empty by 7@ § = 1.
We can now algebraically formulate the distribution laws:
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S=rot Tet=s5ot
(s@t)=(r®os)®(rot)

o~ A:A Z_\ o~
ros=ro (11) ro (12)
re(sot)=res)o(ret) ro®

The restriction of the Relational Lattice to the empty relations is a distributive
lattice:

FeGEel)=FedeFel) (13) Fo@Eeh)=FoseFal) (14)
Moreover there is another type of distribution that is not covered by the pre-
ceding rules, namely the fact that projections, i.e., inner unions with empty
relations, distribute over a natural join if they select all attributes that the join
operands have in common:

FTOGEet) =50t 15)
TeRt)=TFas)Tat)
Applying the header function is equal to taking the natural join with 1
Tor = 7 (16)

Note that the final identity tells us that it would have been sufficient to only
add the constant 1 to the signature of the algebra, but we will continue to use
the header function for notational compactness.

5 Equality Relations

In order to be able to express queries that compare values in different attributes
we introduce an equality relation function that given a relation produces a rela-
tion with the same header that contains all tuples over that header with the same
domain value for every attribute. The application of this function to a relation
r is denoted as 7 and defined such that ¥ = (H,,{{(a,v) | a € H,} | v € D}) if
r = (H,, B,). For example, if H, = {a,b, c,d} then 7 is an infinite relation:

v
=

N~ Ofl &

N = O
N = O
N el | Ne)

Finally we add as constants domain relations for each attribute name a € A
which are denoted as a and have as their semantics the relation ({a}, {{(a,v)} |
v € D}), i.e., the unary relation with header {a} that contains every value in
the domain D.

The following rules show the interactions between the header function, the
equality relation function and the constants.

= 7 (17) i = a (19)
P (18) i =1 (20)

=0O3N
l

(6]



The following rule states that the equality relation function distributes over
the natural join if there is at least on common attribute in the header of the
join operands.

adr=a ads=a

(21)

If the header of a relation r contains attributes a then we can take the natural
join with the domain relation a without changing the relation:

(22)

The inner union of an equality relation and an empty relation is identical to
an equality relation over the inner union of both relations:

FBS = rds (23)

The inner union of two distinct domain relations is identical to (@, {0}), i.e.,
the relation with the empty header that contains the empty tuple:

a;®a; = 1 foralla; #aqj (24)

The final rule captures the intuition that if we know that in a relation several
attributes, say a and b, have equal values in every tuple, and one of these
attributes is projected away then we can always restore it by taking a natural
join with afé/b. The rule states this by considering an expression of the form
(r®3)®1)®3 where r ®3 is the relation for which we know that the attributes
in the header of s are equal. This relation is projected on the header of ¢t and
after that the attributes in the header of s are all restored by taking the natural
join with 5. The rule says that we can replace ¢ with u that has a smaller header
as long as (1) the headers of s and u share at least one attribute and (2) the
combined headers of s and u are equal to the header of t:

a®s=a adu=a sQu=t
S

N oz = (25)
(res)ot)os=((res)ou) ®s

This concludes the presentation of the Relational Lattice and the associated
set of inference rules. Summarizing we have presented an algebra
(R,®,®,1,7,7,a)qc.a where R is the set of relations, ® : R x R — R the natural
join, ® : R Xx R — R the inner union, 1 the relation with the empty header
containing a single empty tuple, ©~ : R — R the header function that maps
relations to the empty relation with the same header, ~: R — R the equality
relation function that maps relations to the equality relation with the same
header and a for each attribute a € A that represents the domain relation with
one column a that contains all values in the domain.
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6 Expressive Power

In this section we show that the Relational Lattice can express all queries in
SPJRU, i.e., all queries that can be expressed in the relational algebra with the
selection, the projection, the natural join, the rename and the union. We show
that each of these operators can be simulated in the Relational Lattice:

Selection A selection o,—4(r) can be expressed as r®3 where s = a®b assuming
that both a and b are in the header of r.

Projection A projection m, ... 4(r) can be expressed as r @ h where h = a ®
b®...®d assuming that all a,b,...,d are in the header of r.

Join The natural join 7 <1 s can be expressed as r ® s.

Rename The rename p,(r) can be expressed as (r ® 5) ® h where s = a®b
and h = b ® ¢ ® d ® e assuming that the header of r is {a, b, ¢, d}.

Union The union r U s can be expressed as r ¢ s assuming that r and s have
the same headers.

This particular class of queries is also known as UCQ), i.e., Unions of Conjunctive
Queries. Observe that the Relational Lattice can also express empty queries, i.e.,
queries that always return an empty result over a certain header and equality
relations over a certain header. In fact, as will be shown later on, it can express
exactly all unions of conjunctive queries, empty queries and equality relations.

7 Completeness of the Rules

The rules 1 - 21 can be interpreted as inference rules that allow us to derive extra
equations from a given set of equations. These equations are of the form e; = e5
where e; and es are expressions constructed from operators and constants in the
algebra and a postulated countably infinite set of variable names V containing
r, s, t, u, et cetera. In the following we will use the same symbols to represent
the symbols in the equations and the operations they represent, e.g, r ® s can
both represent the expression itself or the result of the expression. The syntax
of the expressions in the equations is then formally defined as follows:

Ey == V|(Eo®E)| (Eo®Eo)|1]Eo|Eo| A

This raises the question whether as such they are complete, i.e., whether
all equations that logically follow from a certain set of equations indeed can be
derived. As given the rules are clearly incomplete and cannot derive for example
that r ® (s ®t) = r ® (t @ s) even though we can derive s @t =t @ s. Therefore
we extend the set of inference rules with the usual set of rules for equational
reasoning that are known as Birkhofl’s rules [Birkhoff, 1935]. In these rules the
e; range over expressions in the algebra, r over variables in the expressions,
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ei[r/e;] denotes the result of replacing all occurrences of the variable 7 in e;
with e, and f ranges over any function in the algebra.

€1 = €2 61:6, en:el
1= e 1 "
e1[r/es] = ea[r/es] p— (27) fler, .. en) = f(el,...,e)
(26) (28)
€1 = €2 €9 = €3
€1 = e3 e=e (30)
(29)

In our proofs we will usually not mention these rules but use them implicitly by
assuming that if we can rewrite an expression e; to e, using inferred equations
then we can infer the equation e; = e and vice versa.

We now define the notion of derivation of an equation from a set of equations
S as follows. We say that e; = ey derives from S, denoted as S - e; = eg, if
the equation e; = ey is in the smallest superset of S that is closed under the
application of the inference rules 1 - 21 and Birkhoff’s rules 26 - 30.

Next to a syntactical notion of entailment we also define a semantical notion
of entailment. For this we define a model as a function M : V — R that maps
each variable to a relation. The result of the evaluation of an expression e given
such a model M is denoted as [e] ps and defined such that

o [rla = M(r) for each variable

rev o [l = [eln
o [e1 ®ea]m = [er]mr ® [ea] s et

o [e[ar = [elm

[[
. g ebv=tabeglebe sl - (@)t ve o)

o [1ar = (0,{0})

We then say that a model M satisfies an equation e; = ey, denoted as
M = e1 = eg, if [er] s = [e2] . We say that a set of equations S entails an
equation e; = eq, denoted as E = e; = eg, if M | e; = ey for all models M
that satisfy all equations in S.

If we assume that the equations over which we reason are queries over a
database then the used variables will represent relations in the database. It is
therefore reasonable to assume that the headers of these relations are known
and there is a function h : V — 24 that gives a header for each variable. We
will model this in our inference mechanism with equations of the form 7 = 1if
h(r) =0 or of the form 7= a1 ® ... ® a, if h(r) = {a1,...,a,}, which we will
call typing equations.

We are now ready to formulate the main conjecture of this paper:

Conjecture 1. Given an equation e; = e and a set of equations S that contains
typing equations, exactly one for each variable in e; = ey, then S F e1 = es iff

S Ee =es.
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In the remainder of this paper we will give a sketch of the proof for this
conjecture. Since the only-if side of the theorem follows from the preceding
discussion of the rules, we will discuss here the if side, i.e., the completeness of
the rules. This proof proceeds in the following steps:

Making headers explicit In this step it is shown that all expressions of the
form € and € can ben rewritten such that e becomes 1 or of the form
a1 ®...R ay.

Making empty and nonempty queries explicit In this step all expressions
that represent empty queries, i.e., queries that always return a relation
with an empty body, are rewritten to the form €. This allows us to detect
if two expressions both represent empty queries, and since e can be rewrit-
ten to an expression explicitly representing the header and we rewrite such
expression to each other if the represent the same header, we are complete
for empty queries. So we assume in the rest of hte proof that we are
dealing with non-empty queries.

The equal header union normal form In this step all expressions are rewrit-
ten such that all inner unions that do not express a projection, i.e., are
not of the form e; @ €5 are between expressions that return relations with
the same header.

The inner union normal form In this step all inner unions that do not ex-
press a projection are lifted to top level such that we get an expression of
the form ey & ... & e, with all clauses e; returning a result with the same
header and all inner unions in the clauses e; representing projections.

The conjunctive query normal form The clauses in the inner union normal
form represent a slightly generalized type of conjunctive queries that also
allow unsafe queries such as {(a = z,b = y,c = y) | p(d = x,e = z) A
q(f = z)}. We define a corresponding normal form that corresponds to
the tableau and splits the query into (e; ® ...e, ® ep) ® €5, where €,
represents the projection on the final header, in this case e, = a ® b ® ¢,
ep gives the binding of the variables in the final header, in this case e, =

(a®2)®(b®y)®(c®y), and finally each e; represents the atoms in the
tail, in this case e; = (pR (AR z)® (e ® )BT and ex = (¢ (f @ 2)) DZ.
The attribute names that are in this normal form not used as headers of
atoms or the final header, such as x, y and z in the example, will be called
auzxiliary attribute names. In this step we show that each clause of the
union normal form can be rewritten to that normal form.

The subsumption-free normal form This step rests on the basic property
of conjunctive queries that one subsumes the other iff there is a homomor-
phism that maps the variables of the tableau of the first to the variables of
the tableau of the second. This property also holds for our slightly gener-
alized class of conjunctive queries. This can be used to show that we can
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rewrite a clause e from the conjunctive query normal form to e @ e’ where
¢’ is the same as e except that some of the auxiliary attribute names have
been renamed to other auxiliary attribute names, possibly renaming two
different attribute names to the same new attribute name. This allows
us to rewrite to a more strict normal form where no two clauses subsume
each other.

Deciding equivalence Another property of conjunctive queries, closely con-
nected to the previous one, is that if a conjunctive query is subsumed by
a finite union of conjunctive queries then it must be subsumed by at least
one of the conjunctive queries in the union. Also this property can be
shown to hold for the class of queries we are considering. It follows that if
a finite union of such conjunctive queries is equal to another finite union of
such queries and there is no subsumption in each of the unions then both
unions contain the same set of conjunctive queries. By the homomorphism
property of conjunctive queries it holds that they can be only equivalent
if there is in isomorphism from the variables in the tableau of one query
to the variables in the tableau of the other. In terms of the conjunctive
query normal form this means that two clauses are equivalent iff one is the
same as the other up to the renaming of the auxiliary attribute names. It
can be show that such renaming can indeed be achieved by rewriting.

8 Conclusion

In this paper we have presented the Relational Lattice along with a set of
algebraic semi-equations that are conjectured to be complete for deciding the
equivalence of two expressions if we can assume certain equations that makes
the headers of the variables in the expression explicit. Apart from actually
proving the conjecture there are many other interesting open problems that can
be studied.

One type of open problem is completeness for subsets of the algebra that
allow perhaps simpler axiomatizations because we are at a higher abstraction
level. For example, for the algebra (R, ®,®,1) we can ask if the lattice laws
presented in Section 2 are complete. And for the algebra (R, ®,®,1,~) we can
ask if these laws extended with the laws in Section 4 are complete. Finally we
can ask if for the algebra (R, ®,®,1,%,~) the rules that do not refer to domain
relations are complete, i.e., can we reason without every referring to concrete
attribute names if the query also doesn’t do so?

Other interesting questions concern stronger notions of completeness of the
inferences rules. As presented here they allow us to derive equations from ar-
bitrary sets of equations. This raises the question if they are complete for
such arbitrary sets, i.e., if every equation that logically follows from that set
can indeed be derived. Completeness in this sense would make the inference
rules interesting for reasoning over data dependencies that can be formulated
as equations over algebra expressions, and reasoning over equivalency of query
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expressions in the context of certain data dependencies.

Note that although the Relational Lattice does not have a complement or
difference operator we can simulate the proposition r = s —t with the following
set of equations

rot = TRt
rot = sht

if we assume r, s and ¢t have the same header. As a consequence an axiomati-
zation of the Relational Lattice that is complete in the stronger sense would in
fact be an axiomatization of all dependencies expressible in first order logic.
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Jan Paredaens, profiel van “de prot”

Paul De Bra

In een ver verleden heb ik wel eens verhalen geschreven. Maar eigenlijk ben
ik een visueel persoon, die mijn vele ervaringen met Jan dan ook beter visueel
kan uitdrukken. Tk gebruik hiervoor veelvuldig mijn “PhD,” ook bekend als
“Push here Dummy” (of digitale camera).

In 1981 heb ik in Jan Paredaens de voor mij ideale promotor gevonden, met
de aanpak die ik zelf ook tracht toe te passen: faciliteren, discussiéren, en eten.
Dit wil ik aan de hand van enkele beelden illustreren.

Hoe creéert ge een groepsgevoel: door de mensen bij elkaar te brengen voor
een activiteit waarbij hun gevoeligste plek gestreeld wordt: de maag. De legen-
darische ADREM activiteiten zijn vooral legendarisch vanwege locatie en eten.
De jaarlijkse lunch is dan ook een onvergetelijk evenement, waarvan ik moet
toegeven dat ik het echt een keer vergeten ben. ..

Discussiéren vergt een ongedwongen sfeer. En Jan is de meester in het
creéren van de ideale omstandigheden hiervoor: een tafel, wat te eten, en vooral
veel tijd. Nederlanders kunnen niet begrijpen dat een lunch drie uur kan duren.
Maar de nieuwe ADREM lunch in “het Forum” mist wel iets: hij duurt een uur
te kort.
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Workshops organiseren in de universiteit was nooit iets voor Jan. Een acti-
viteit op een bijzondere locatie blijft voor altijd in de deelnemers hun geheugen
gegrift. Na een lange periode van stilte heeft Jan de “Database Dag” nieuw

leven ingeblazen. En sindsdien is duidelijk geworden dat een bijzondere locatie
de sleutel is tot het succes.
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De Database Dag in Antwerpen was origineel, maar de echte “plek” van Jan
ligt elders. De jaarlijkse GOOD dag is altijd bijzonder, altijd verrassend, en
bijna altijd op dezelfde locatie. Het is ook bijna niet voor te stellen dat het
anders zou zijn. . .
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En is de workshop in het gebouw? Als het kan dan liever niet. “Bugspray” is
eigenlijk wel een verplicht attribuut bij de GOOD dag, net als de Notelaartaart
natuurlijk. Bij deze beelden moet ik ook terugdenken aan de “oefeningen formele
talen” die ik aan de UIA heb verzorgd, buiten op het gras in plaats van binnen
in een veel te heet leslokaal.

Heel wat mensen vinden dat vaste patronen saai zijn. Vele activiteiten van
Jan volgen een vast patroon. Maar ik heb nog nooit iemand horen klagen dat ze
saal waren. En elk jaar zijn er ook een paar nieuwelingen die moeten leren wat
“paling in het groen” betekent, en waarbij soms wat overtuigingskracht nodig
is om hen deze lekkernij te doen bestellen.
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Wat mij bij Jan van in het begin heeft aangesproken is dat bij hem het
werken altijd een klein beetje feest is. Dus wie van feesten houdt komt vanzelf
aan zijn trekken. Wellicht verklaart dit ook het grote succes dat Jan altijd heeft
gehad met zijn doctoraat-studenten. Wie graag werkt, werkt hard en wie hard
werkt komt er wel. Ik zie collega’s om mij heen die met strakke hand en heel
intensief proberen om hun studenten tot aan het doctoraat te begeleiden. Maar
ik zie Jan als voorbeeld. Het enige wat de studenten echt nodig hebben is plezier
in hun werk en hun omgeving, en daarnaast een luisterend oor dat bereid is tot
discussie en overleg, liefst in een ongedwongen sfeer. Zo hoop ik Jan nog vele
wetenschappelijke kleinkinderen te kunnen bezorgen.
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Due o tre cose che mi ricordo
di un viaggio a Vinci

Bart Kuijpers, Universita di Hasselt

Caro Jan, in occasione del tuo 60esimo compleanno vorrei ricordarti di un
viaggio in Italia che facemmo insieme pitt di 10 anni fa. Mi & tornato in mente
non molto tempo addietro per altri motivi, ma ti dird pit avanti quali.

Era l'estate del 1996 e a San Miniato, in Toscana, era stato organizzato
il primo workshop di Logic in Databases (LID’96). Prendemmo un aereo per
Firenze e poi un treno fino a San Miniato. Il workshop era stato organizzato
in un monastero, un luogo remoto e isolato. Le nostre camere erano anguste e
poco confortevoli: proprio le stanze di monaci! Mi ricordo che le presentazioni si
tenevano nella chiesa del monastero. B stata probabilmente la prima (e ultima)
volta che ho parlato [1]—o piuttosto, predicato, da dietro un altare—a credenti
quali Jack Minker e Jeff Ullman. La conferenza era stata organizzata da Carlo
Zaniolo e Dino Pedreschi. Dino era li con una sua giovane studentessa, Chiara
Renso. Nel frattempo Dino e Chiara sono diventati entrambi amici e colleghi,
con i quali collaboro da qualche anno a un progetto europeo sui datamining e
GIS.

Ma il motivo per cui questo viaggio mi e tornato in mente & stata la visita
che era stata organizzata per quell’occasione. Si trattava di una gita alla vicina
citta di Vinci, luogo di nascita di Leonardo (da Vinci). La gita prevedeva la
visita alla casa natia di Leonardo e a un castello nel quale erano conservate le
riproduzioni in legno delle macchine progettate dallo stesso Leonardo. E stata
una di queste riproduzioni ad essermi tornata in mente non molto tempo fa
(nella figura 1) e 'ho cercata sul sito del museo [2].

Lascia che ti spieghi adesso cosa mi ha fatto tornare in mente il carro armato
di Leonardo. L’anno scorso stavo lavorando al trattamento dell’incertezza per
dati di oggetti in movimento con un mio studente, Walied Othman. FE per
modellizzare I'incertezza della localizzazione di oggetti in movimento abbiamo
usato perline (beads in Inglese). Le perline si verificano quando i dati relativi
agli oggetti in movimento sono noti solo in certi punti campione. Per esempio, se
di un oggetto in movimento si sa che (to, %o, Yo0), (t1,X1,Y1), -5 (tN, X, Y ), dove
tp < t; < --- < ty, sono momenti nel tempo e x;,y; coordinate spaziali, allora
si usa l'interpolazione lineare per ricostruire il tragitto prodotto dall’oggetto in
movimento.

Ma ce di pin! Se sappiamo che tra due punti campione (t;,x;,y;) e (tj+1,
Xi+1,Yi+1) l'oggetto non puod avere una velocitd maggiore di v;, allora possiamo
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Figura 1: Un carro armato disegnato da Leonardo da Vinci
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Figura 2: Una perlina disegnata in Mathematica
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Figura 3: Una perlina e una catena

dedurre che 'oggetto in movimento non puo aver lasciato 'insieme dei punti
(t,z,y) date le equazioni

(z =%)* + (y —yp)* < (t —1,)v]
(2 —xi41)? + (y — vig1)? < (tig1 — )27
t, <t <tipr

Queste equazioni definiscono la forma piu semplice di una perlina. La ca-
tena di perline tra punti campione consecutivi di oggetti in movimento ¢ stata
chiamata catenina (lifeline necklace in Inglese) da Max Egenhofer [4]. Nella
figura 3, sono raffiggurate entrambe (una perlina e una catena).

Visto che agli Italiani piace rivendicare per seé le invenzioni piu disparate
(come il telefono e gli spaghetti), sono certo che anche questa volta saranno
pronti a giurare che le perline non sono state inventate da ricercatori GIS quali
Dieter Pfoser nel 1999 [3] o Max Egenhofer nel 2002 [4], e neppure dal geografo
del tempo T. Hégerstrand nel 1970 [5], ma da Leonardo da Vinci nel XV secolo
come testimoniato da qualche suo oscuro disegno.

Disegnando le perline con Walied in Mathematica (nella figura 2), mi & tor-
nata in mente quella macchina di Leonardo che avevamo visto a Vinci. Sembra
sia un carro armato. Che scherzi puo fare la memoria! Mi ricordo invece bene
che dopo la visita al museo di Leonardo ci siamo seduti a un tavolo con Jeff
Ullman a bere una birra godendoci il caldo sole della Toscana.

Nel frattempo, Walied, che sara tra qualche anno il mio primo figlio e il tuo
nipote ennesimo, si sta specializzando in perline [6, 7].

Dino mi ha confidato recentemente di voler organizzare presto il secondo
workshop in Logic in Databases. Un’altra occasione per incontrarsi in Italia?

Buon compleanno, Jan!

—Bart Alto Lario, Agosto 2007
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Dear Jan, ...

Geert-Jan Houben

... On the occasion of this sixtieth birthday, thinking back on the first en-
counters brings me back to my studies in Eindhoven. In the brand new infor-
mation systems group I became Jan’s first student in Eindhoven. Jan had just
started there as a part-timer and each Tuesday we would meet and discuss our
work on transactions in relational databases. Impressed and inspired by the
manner of coaching and collaboration, after the graduation I gladly accepted
his invitation to become a PhD student. While I was stationed in Eindhoven,
we would meet regularly in Eindhoven and in Antwerp. We would get more stu-
dents interested in the field of databases and I was privileged to quickly move
into the role of coach and learn to coach those students myself following Jan’s
example. From the very beginning I also remember my first trips as a PhD
student. The very first one was to participate in ICDT in Rome. It meant
staying over at Jan’s house the night before, forcing Harry and Tim to give up
one room of theirs, and then leaving from Zaventem early in the morning. It
was also my first trip with some of Jan’s other students, like Dirk, Marc and
Paul, so a good introduction into Jan’s “family” and a good introduction to the
concept of academic conference. Since I was located in Eindhoven, I also started
some local collaborations there and started to work as well with Kees van Hee
in areas that were slightly distant from Jan’s line of research, but a major line
of research continued in the field of databases. One of the next conferences I
went to was in Chile. I remember than after finishing the work and writing a
report on it, Jan picked a conference where we could submit this as a paper and
I could do my first presentation. It resulted in my first trip outside Europe, to a
country that at the time was in a politically non-trivial situation, and a country
that thought that a nice start to a big conference was a day full of activities in
Spanish. With just my “holiday Spanish” this looked to cause a disaster, but
after the Monday introductions in Spanish, the rest of the week was devoted
to science and in English, so both the academic and travel adventure gave me
something nice to look back to. Since we were not daily working together in
person due to our different locations, the joint conference visits were good op-
portunities to see the master at work. I remember a trip to wintery Dresden,
with so much cold that the event actually had to be moved from some resort in
the countryside to the offices of the university, although in those GDR-times the
university wasn’t exactly the most comfortable place either. The trip with all of
us in Jan’s car through lots of snow on West- and East-German roads was again
something that added to the fun. Lots of new things I also saw when together
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with Jan we went to Japan, visiting Tokyo and Kyoto. First at a conference
where I presented my work and then doing a tour of some universities where Jan
gave some talks on our research. Obviously it gave many new and great impres-
sions, and after the Chile adventure I could discover that there were languages
that were even harder to communicate in, so finding directions and things to
eat wasn’t always that easy and a true process of discovery. The general feeling
throughout all these trips was one of being with a senior academic that showed
me best practices in the scientific arena and in addition was a pleasant person
that was well worth of being with. After our work on complex object models led
to my PhD thesis, I got the opportunity to work in Eindhoven as an assistant
professor, and so our contacts would be less frequent. Throughout the evolution
of my own academic career, we always would meet regularly, for example at the
annual GOOD-days or January “lunches” and definitely all the times Jan would
come to Eindhoven to teach. Where my own research evolved into the area of
information systems design and later the Web, my inspiration from applications
and new technological trends would often guarantee interesting and sparkling
discussions on what we could do next. I remember that when I first brought up
things from the Web field like XML, they were not always getting the respect
they later got in Jan’s group, and so our combination of fields proved very often
to be useful and inspiring for both us in determining strategy for our research
lines. I experienced that very strongly when I spent a year at Jan’s group.
Being involved with him and his students gave me the opportunity to develop
many new inspiring ideas and set up the right conditions for my own group in
Eindhoven. As a consequence I feel that I have learned a lot from Jan, in many
aspects of our professional life, and am very grateful to be amongst his friends.
Congratulations to your sixtieth birthday!
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Why Mathematicians
make good Computer Scientists
Reflections from a biased viewpoint

Letizia Tanca

Politecnico di Milano
tanca@elet.polimi.it

Abstract

This short paper takes its moves from a kind request by Jan Van den
Bussche of contributing to Jan Paredaens’s Liber Amicorum, and from
my thoughts on the reasons for affinity between Jan and myself. Among
other, more affective and personal ones, one reason has presented itself to
my mind as being of more general interest, and it concerns our common
origin as mathematicians. Thus, here I will state my point that computer
scientists who start from a mathematician’s background are special :-),
and say why...

1 Introduction

Among the various affective and personal affinity reasons between Jan Paredaens
and myself, I believe that our common origin as mathematicians is an impor-
tant one. In these few pages I try to argue that there is a particular “brand”
of computer scientists, those who start from a mathematician’s background.
Please notice my disclaimer: this is by no means an attempt to systematize
such a difficult subject as the philosophical view of the two disciplines; indeed,
no two mathematicians will ever agree on a definition of mathematics, neither
two computer scientists on a definition of their field. Thus, take it as just a
divertissement, maybe for amusement, just as, when Jan and I have worked
together, we have often found the time to share a good laugh.

2 Requirements for a mathematician

In this section I present some considerations on what makes a typical mathe-
matician; some of these considerations are mine — though far from original —,
and others derive from interesting readings, like [1], [2] and observations recently
done while working within the association “Informatics Europe” [3].
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Let us try to summarize what appeals to mathematicians as “good” math-
ematical thought:

o intellectual rigour: on the average, mathematicians think in a very in-
tuitive way, performing “intellectual leaps” between premises and their
supposed consequences. At those moments, they may seem tolerant and
genial fellows but, as soon as these leaps have to be put on paper, toler-
ance is no longer a value, a kind of inflexibility takes its place, and our
mathematician starts to apply the most implacable rigour. This attitude
is very well understood by his/her fellow mathematicians, but may appear
as improper, sometimes a bit preposterous, to other researchers.

e abstraction: your mathematician does not like subjects which are not
abstract enough. What does s/he care about electric voltage or impedance,
if the subject arises during a domestic discussion about adapting the plug
to the power supply? The subject would only be interesting within some
scientific discussion, in a totally abstract setting...

e generality: again, too specific matters tend to be of no interest to our
average math guy: any problem has no real appeal if it is restricted to
a certain application. Often, when doing research as well in everyday
life, mathematicians kind of look for generalizations. You will often hear
a mathematician say “Let’s see if this fact is true in general”, be it a
mathematical property or just shops’ closing time.

On the other hand, in real life, a mathematician is at a loss when trying to
solve an everyday-life problem, such as a leaking pipe or a silent telephone,
while s/he can give splendid explanations of general questions. This also
has to do with their attitude towards practical abilities: when I was twenty,
I was very good at supplying my boyfriend with articulate directions about
how to park his car, but could not drive a car myself!

o depth, difficulty: a mathematician is always looking for difficulties to be
solved — easy things are simply uninteresting.

e simplicity,economy: the mathematician’s attitute in research is to seek
the simplest solution to a problem, which reminds me of the next typical
trait:

e beauty, elegance: maybe because I am one, like most mathematicians
T’'ve always thought that simplicity is a synonym of elegance: “A mathe-
matician, like a painter or a poet, is a maker of patterns. If his patterns
are more permanent than theirs, it is because they are made with ideas...
The mathematician’s patterns, like the painter’s or the poet’s, must be
beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in
the world for ugly mathematics.” [1]
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e and what about utility? Here we have a fork between pure and applied
mathematicians: for the former, the utility of mathematics lays mainly
into its providing exposure to deep and abstract thought, or in general, to
a kind of thought which has all the above listed qualities. In this sense, the
same would be true for the study of many difficult languages, such as latin,
german or arabic. In the study of languages, though, the requirement of
rigour, which is distinctive of mathematical thought, is not fully satisfied.

As for the utility of the mathematician’s work, instead, since mathematical
models are always approximate copies of the real world, pure mathemati-
cians are not satisfied by the use of those models for practical purposes.
Their impression is that they are imprecise anyway, often cumbersome,
and thus lack beauty... On the other hand, an applied mathematician
finds pleasure in the process of abstraction that takes place when building
models, thus for the applied mathematician “utility” acquires the usual
meaning of concreteness, tangibility, applicability of one’s product.

3 Requirements for a computer scientist

What is computer science about, and thus what does the typical computer sci-
entist pursue? Computer science addresses, for example, the creation of suitable
models for reality: of social and business organizations, of an image, of proteins
and ribonucleic acids, of a building, of a distribution network, etc.; it addresses
the problem of achieving computational efficiency (by studying computational
complexity), it studies computing models and computability principles (Tur-
ing or Von Neumann machines and their extensions, quantum computing...); it
introduces new programming paradigms: imperative or object oriented or func-
tional programming, plus concurrency, coordination, communication problems
and so forth; and in the more engineering oriented meaning of the discipline,
computer science builds information infrastructures: networks and distributed
systems, large computer systems, or faces more modern issues like grid and
self-regulating computation, etc.

Computer science is actually a science that applies to other sciences. Ex-
amples are: bioinformatics, economics and management engineering, the infor-
matics behind multimedia and image representation, etc. As a matter of fact,
computing may even drive innovation in the other sciences: you only have to
consider the human genome project, protein synthesis, environmental monitor-
ing and protection, just to mention a few; so the idea is always to generate,
providing a positive difference in the world.

On the other hand, in analogy with maths, practising computer science feels
like:

e a “mathematical game”, i.e. a challenge for intellectuals, making one feel
“a high IQ person”.

e as above, a way of creating patterns: the patterns computer science deals
with can be numerical, spatial, temporal, and even linguistic. And through
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visual and written forms of expressions, computer science is connected
with mathematics to develop skills for thinking clearly, strategically, crit-
ically, and creatively.

e use of models to represent and produce changes in both real and abstract
contexts, use of symbolic forms to represent and analyze real-world situ-
ations and structures.

e a discipline for problem solving, through the education to abstract knowl-
edge representation and processing.

4 Concluding remarks

This said, very synthetically, what are the differences and analogies, in my view,
between Mathematicians and Computer Scientists? A computer scientist, like
an applied mathematician, takes pleasure in the process of abstraction entailed
by model and algorithm design, thus the similarity here exists — though only
with applied mathematicians, while pure mathematicians could not care less for
the application of their results.

Moreover, as said before, the computer scientist’s main vocation is applica-
tion to other sciences: the one who tries to understand the internals of another
discipline to which computer science is applied surely makes a good computer
scientist. Even computer theoreticians, who exist and are well considered within
the community, have an eye for the real application of their results. This aspect
is also shared by applied mathematicians. However, most of the latter tend to
apply different branches of maths w.r.t. those used by computer scientists. Ap-
plied mathematics mainly concerns calculus and geometry: even probability has
its theoretical foundations in measure theory!! Thus, often, the mathematicians
who switch to computer science are among those who love discrete mathematics,
algebra and logic most.

So, what is the real difference? Actually, a very distinctive aspect is that
computer science is, yes, a scientific discipline, but also a technological one.
Indeed, the methods of computer science are similar to those of all scientific dis-
ciplines, since modeling and verification is the typical scientific research pattern.
On the other hand, the objective of modeling reality in computer science is to
feed its abstract representation to a program, in order for this to act on it and
generate new behaviors and tools. Thus, here we see the use of the knowledge
of scientific laws (in our case of mathematics and logic) for producing new ob-
jects: this is a characteristics of technology, and of engineering in general. As a
result, a computer specialist feels the usual elation of engineers at being able to
create. And this is really what mathematicians learn from becoming computer
scientists: whatever they produce, it will have to run, that is, there is only sense
in something that has the ambition of working, eventually.

But then, once a mathematician has become a computer scientist, what will
distinguish his/her behaviour from that of his/her colleagues?
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A “former mathematician” has a kind of compulsion to systematize, for-
malize, whatever new “computer phenomenon” comes up... For instance, the
advent of object oriented languages, or of XML, triggered a host of researchers
who wouldn’t accept the news without trying to understand it by modeling it
in some kind of logical/formal way...

Moreover, I often like to say that there is a rough partition among computer
scientists: we’ll call them the model lovers and the algorithm lovers. Model
lovers are those guys who, as I said before, tend to systematize whatever they
come into contact with, organizing it in a nice pattern, just as Hardy said.
They love declarative specifications and languages, and tend to use logics to
establish the semantics of their systems. Algorithm lovers, instead, tend to be
“operational” and to solve problems in a constructive rather that in a declarative
way.

My experience is that former mathematicians tend to belong to the first
category, but, as I said, this distinction is quite fuzzy... Don Knuth, just to give
a counterexample, studied as a mathematician, and who is more algorithm lover
than he? But then, in his case I suppose we can make an exception, since he is
one of the inventors of computer science, and actually in [2] he just mentions
the constructive versus the declarative attitude as one main difference between
compouter scientists and mathematicians.

Finally, let us also include some observation on the social view of com-
puter scientists. While most mathematicians are perceived as some kind of lone
wolves, computing is more about being part of a team that requires people with
many different kinds of skills; and it is also required to possess the extensive
culture and open-mindedness that are needed to take part in a creative task
together with other people. This is true at the working place, but also reflects
in the kind of research work we do. And it can also be seen very clearly in the
number of authors of computer science versus mathematics papers: the latter
are mostly one-person works, while ours have more than one author. Thus,
often the former mathematician is also one that was looking for a team-based
conception of the research task.

Now I am at a loss for the conclusions: I have tried to show — certainly not
to prove — that former mathematicians are nice computer scientists because, in
a sense, they have chosen the community and its way of doing research as being
more appropriate to their inner desires, and that this applies to Jan and myself.
I will be contented by Jan’s sharing my opinions, but, of course, also hope that
the other possible readers, maybe recognising themselves or their colleagues in
my description, at least find it an occasion for a smile.
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Dear Jan, ...

Gottfried Vossen
University of Miinster

... Congratulations on your 60th birthday! I am going to briefly reflect on a
few occasions where our paths have crossed.

I first saw you during the ICALP conference in July 1984, which you or-
ganized in Antwerp. Shortly before that I had started working with Volkert
Brosda on universal relation updates, and we stumbled upon an announcement
that Ron Fagin would give an invited talk there on the theory of data depen-
dencies. Since we both lived and worked in Aachen at the time, we drove the
short distance to Antwerp in the morning before the talk, sneaked into the ses-
sion without having registered (yes, I finally admit it!), and quickly disappeared
again after Fagin’s talk. Volkert and I were well aware of your work in database
theory at the time (e.g., horizontal decompositions, BP-completeness of query
languages), since we had received our database education from Joachim Biskup
in an excellent course he had developed in Aachen.

I don’t recall exactly when we really met for the first time, but I recall very
well our meeting in Aigen, Austria, in late September 1989 at the 1st FMLDO
workshop,! which I attended together with a student from Kiel (Roger Schwarz)
who reported on his diploma thesis, and where you introduced a young student of
yours, also named Jan, who shyly asked whether it was allowed to ask questions
and who started making one significant contribution after the other shortly
thereafter. We also got together for a one-day workshop at Aachen around that
time which I had coined the “Euregio Database Days” since it included some
20 people from Belgium, the Netherlands, and Germany.

Then you agreed to become a reviewer for my habilitation procedure at the
Technical University of Aachen in 1990 on database transactions (together with
Walter Oberschelp and Bernd Walter, but you made my committee interna-
tional). Unfortunately, on the day of the oral part of my habilitation you got
stuck in Liege due to a strike of the Belgian railways.

Over the years, we have met at professional occasions numerous times, and I
have always enjoyed your company, your advise, your excellent intuition about
novel developments in the database field and their sustainability, but what I
have always admired most is the large number of scientific children you have
produced over the years and who have mostly stayed in academia as well and
become successful researchers themselves. I had the great pleasure of working
and writing papers with quite a few of them. One of them, Toon Calders, came

Thttp:/ /sunsite.informatik.rwth-aachen.de/dblp/db/conf/fmldo/fmldo89.html
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with you when you visited me in Miinster during October 2001. The pictures
are from that visit; the first shows us in front of the Miinster city hall, the
second was taken at my home in the Gievenbeck suburb of Miinster.

Turning 60 is a significant event in everyone’s life, which is usually the reason
why it is celebrated big. To cite British comedian Billy Connolly, at this age,
you are “too old to die young,” which is good. I am happy to see you alive and
kicking at this event and that I have the pleasure to participate in the scientific
meeting on its occasion. I wish you all the best for many years to come, and
hope you will produce many more scientific children.
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Jan Paredaens — 60

Leonid Libkin
University of Edinburgh

Looking back at my interactions with Jan over the past 18 years, I have realised
that he is largely responsible for two major switches I made in my life: from
math to databases, and back to math again! So now is the time for a couple of
anecdotes.

From algebra to databases

We go back 18 years, to 1989, one of the most interesting years in European
history. Among the most significant events of that year, at least for me, were:

e the opening of the USSR borders by Gorbachev;
e the collapse of the Eastern European communist regimes; and

e the publication of “The Structure of the Relational Database Model” by
Jan Paredaens and co-authors [6].

I am sure there is no need to provide additional information on the first two
items, but I’ll say more about the third, and explain how all three are connected
(at least for me).

In 1989, I was still living in Moscow, and was working on some problems related
to an algebraic (lattice-theoretic, to be more precise) view of the structure of
convex sets. When you deal with convex sets, one of the most common concepts
you use is a convex hull, which is one of the best known examples of a closure
operator. So I was working happily with closure operators until one day I was
told that similar objects had arisen in an obscure (from a mathematician’s point
of view) subject of databases.

I had good Hungarian friends, who were quick to explain to me that databases
are nothing but closure operators, although, if you wanted to be a real database
person, you must view them as sets of implications X — Y, and call elements of
these sets attributes. That suited me just fine, so I decided to do some “database
research”. In fact it was the second time I came across databases: the first time
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I had read a book in Russian, in which databases were defined as sequences of
sets of homomorphism from a certain free algebra into a fixed algebra. The new
definition was much nicer! I kept playing with closure operators (representing
them as sets of implications, of course) and even dared to send a paper to
MFDBS 1989, which was held in Hungary. Then, knowing that the iron curtain
had softened to the strength of, perhaps, plastic, I applied for a permission to
go to Hungary for the conference.

I still recall that the positive answer from the Soviets was a pleasant surprise,
and thus I attended my first database conference, and met many researchers
that T later was privileged to count among my colleagues and friends — Jan
Paredaens, Georg Gottlob, Victor Vianu, Paolo Atzeni, Joachim Biskup. But
perhaps the biggest revelation of MFDBS’89 was that, strangely enough, most
attendees had a very different idea of what databases are!

I mentioned this to Jan during one of coffee breaks, and he promised to send
me his new book, that had just appeared. A few days later, already in Moscow,
I got a call that something strange called “DHL” arrived for me and I need to
pick it up (I guess they had no more than a dozen DHL packages arriving to
Moscow in those days). The package indeed contained Jan’s book.

Having received a DHL package gave me enough courage to apply for a per-
manent exit visa from the USSR, and in the two months it took me to get it,
I was studying Jan’s book. So when I landed in the US a few months later, I
was ready to start my PhD in Computer Science, this time as a real database
person. Thank you, Jan!

From databases to model theory

The story does not end there. I spent the following 5-6 years happily doing
databases, and even getting a few papers into SIGMOD. Then, in the summer of
1995, as I was looking at yet another flavour of the view-maintenance problem,
Limsoon Wong pointed out to me that there seemed to be some interesting
problems related to constraint databases.

My first reaction was negative; I was familiar with a very nice definition of the
Kanellakis-Kuper-Revesz paper [3], and some fascinating open problems in the
area, but had a feeling that those problems were beyond reach. Having listened
to those objections, Limsoon replied that the situation was not as hopeless
as I thought, and gave me a copy of the paper by Jan Paredaens, Jan Van
den Bussche and Dirk Van Gucht [7], which was to appear in LICS 1995 one
month later. If any subject is to attract attention, it must have an appealing
definition; but to develop into a theory, it must have its own methods and
interesting results. The Kanellakis-Kuper-Revesz paper introduced constraint
databases, but it was not until the Paredaens-Van den Bussche-Van Gucht paper
that the subject really took off the ground. The paper developed the technique
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of collapse results, which turned out to be the key for developing the theory of
constraint databases.

I was absolutely convinced by that paper that the problems of constraint databases
can be handled, and jumped into the area (leaving a couple of view-maintenance
papers unfinished). In the next few years I was busy proving collapse results
and studying other properties of constraint databases. The essence of most
questions related to constraint databases is the behaviour of logics over finite
models embedded into an infinite structure, like (R, +,-), or (N, +). Thus, the
actual technical work consists of combining techniques of the classical, infinite,
model theory, with more recently developed tools from finite model theory.

After several years of this work (which included many others — I presume quite
a few of them attending this celebration), we were ready for a comprehensive
survey [4]. So a decade after learning about databases from Jan’s book, I had
an honour of co-authoring a book with him! Furthermore, my two other books
([5] and [2]) both deal with model theory (finite, and the finite/infinite mix).

Conclusion

Largely thanks to Jan, I went from algebra to model theory via databases. As
many of us know, in his Model Theory book [1], Keisler defined logic as what you
get when you remove algebra from model theory (well, he says model theory
= logic + algebra, but we all assume that + means a commutative Abelian
group). So thanks to the transformations influenced so heavily by Jan, I must
have picked up logic along the way, for free. Thanks, Jan, one more time!
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Looking Ahead and Behind

Joachim Biskup

Fachbereich Informatik, Universitdt Dortmund
E-mail: biskup@ls6.informatik.uni-dortmund.de

Abstract

Since centuries, mankind has been challenged by the following prob-
lems: given the current situation, looking ahead, i.e., determining possibil-
ities for the future, and looking behind, i.e., explaining the past. Though
widely believed to be intractible, Jan Paredaens contributed essential in-
sight to a special case identified for relational databases.

1 Problem

At any point of time, an individual or a group might want to have a look
ahead in the future, or behind in the past, or even both. Take a birthday
as a typical example, and still living in a decimal world and facing European
traditions, assume your colleague is going to celebrate his 60th birthday. Clearly,
all relatives and friends wish that the happy colleague will enjoy another 60
years, thereby looking ahead and reasoning about the actual possibilities. So
the first basic problem to be investigated is the following:

Determine what precisely is possible in the future, given the current
situation.

Besides this, maybe after a glass of wine and starting to talk about better
old times, some relatives and friends are wondering how the happy colleague
happens to reach the current situation. Perhaps they know some nice details,
thankfully acknowledged, but nevertheless they might feel attending a great
miracle, being favored to observe the current situation. So the second basic
problem to be investigated is the following:

Determine what precisely could have happened in the past, given the
current situation.

The sketched problems are challenging indeed, investigated over centuries.
successively recognized as intractible in general. So let us try to consider special
cases. As a first trial, we could instantiate the problem for a specific individual,
to be more concrete, for Jan Paredaens. Well, Jan, we can’t do this for you.
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However, switching for a moment to another level of considerations: We would
like to express our best wishes for the future and our deep thanks for what you
did for us in the past.

As a second trial, we can inspect the literature for suitable special cases
providing previous insight into the problems. Thankfully as we are, we start the
inspection with Jan’s work. And indeed, Jan successfully contributed important
solutions to both problems, specialized for relational databases. In this context,
the two basic problems appear in the following forms:

1. Given a relational database instance, determine which query results are
producable by using the relational algebra.

2. Given a query result, determine which relational database instances could
have produced it by using the relational algebra.

2 Solutions

A final solution for the first problem in the relational framework was found by
Jan Paredaens around 30 years ago, as reported in [1]. Independently, Francois
Bancilhon came up with the same insight, as documented in [2]. Later logicians
observed that they had known the basic result before, but apparently they had
not recognized it as an important contribution of database theory. Regard-
ing more details about the pertinent relational database theory, the interested
reader should inspect [1, 2] or any good textbook covering database theory.

Regarding more details about the more general version of the second problem
how it could be happen, that Jan and Francois independently rediscovered such
a nice result, the interested reader better exploit more intuitive methods, e.g.,
taking advantage of Jan’s birthday celebration and drinking a class of wine
together with elder colleagues, and remembering old times ... .

A partial solution for the second problem in the relational framework was
elaborated by Jan Paredaens as well, this time together with some further re-
searchers, as published in [3]. Again, regarding more details about the pertinent
relational database theory, the interested reader should inspect [3].

Regarding more details about the more general version of the second prob-
lem how it could be happen that Jan once again succeeded to contribute, the
interested reader will find very short historical notes in the following. In 1992,
studying information security, the first author of [3] came up with the problem.
He realized that a solution could be elaborated within the theory of nested re-
lations. Appreciating Jan for years as a friendly colleague, and acknowledging
his great expertise in this topic, the first author contacted Jan for cooperation.
Jan kindly responded as expected, and enthousiastically started working on a
solution, sharing the workload with the fourth author of [3]. After some years,
having produced many versions, interfering with many other projects, and fac-
ing a rejected conference submission, all remaining issues were delegated to and
solved by the third author of the final version of [3]. How could all this be
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accomplished? As expected, no general answer is known. But it is a great plea-
sure to postulate that Jan’s experience and skills, his patience and friendness
essentially contributed to the final success: Jan, thank you so much for this
cooperation, and all the other events we could share with you.
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“Beste Jan,”

Reind van de Riet
9 juni, 2007

...Zo begint een bericht dat ik je per email inmiddels heel vaak gestuurd
heb. In dat bericht gaat het dan over een paper dat ik als Editor (voor Europa)
van het door Elsevier uitgegeven wetenschappelijk blad Data and Knowledge
Engineering (DKE), heb toegestuurd gekregen om te laten beoordelen door
referees. Meestal kun jij het dan niet zelf beoordelen, omdat je het te druk
hebt, maar geef je, uit je rijke ervaring en kennissenbestand een paar namen
van (vaak Belgische) experts, soms je eigen leerlingen, die het paper wel kunnen
beoordelen. Dat stel ik zeer op prijs. Zo dadelijk zal ik terug komen op dit
zogenaamde refereeing proces, maar eerst enkele persoonlijke mededelingen.

Het zal zo'n dertig jaar geleden zijn dat we in Nederland de databaseclub op-
richtten. Het was de tijd dat het relationele model in de databasewereld opgang
maakte, en wij vanuit Amsterdam (de VU), Eindhoven, Twente, Utrecht en
later Tilburg en Delft het idee hadden dat databaseonderzoek de moeite waard
was en een eigen platform in Nederland nodig had. Al vrij vroeg kwam jij daar
bij, eerst als deeltijdhoogleraar aan de TH Eindhoven (Nu Tue), maar later ook
als hoogleraar uit Antwerpen. Omdat we de bijeenkomsten bij de verschillende
deelnemers aan huis hielden, kwamen we zo ook in Antwerpen. Van die bij-
eenkomst herinner ik mij het heerlijke diner dat ons bereid was, buiten ergens
op een terrasje. Toen ik in 2000 met pensioen ging was het mogelijk om editor
van DKE te blijven en ik nam de gelegenheid te baat om een aantal van “mijn”
referees (zo’n kleine 400) persoonlijk te bezoeken. Zo kwam ik ook in Antwer-
pen bij jou en je groep. Na mijn voordracht kregen we een tamelijk persoonlijk
gesprek over een calamiteit die je niet lang daarvoor had moeten ondergaan;
dat zal me bij blijven, en natuurlijk ook de voortreffelijke Vlaamse maaltijd die
je me voorschotelde. Van die maaltijden weet ik inmiddels nog veel meer te
vertellen doordat ik het voorrecht had met jou in een accreditatiecommissie to
mogen zitten, die afgelopen jaar langs (bijna) alle Nederlandse Universiteiten is
gegaan om aldaar de Informaticaopleidingen te beoordelen. Gedurende de vele
avonden, die we als commissie na een voortreffelijk diner, doorbrachten werden
kostelijke verhalen verteld; zo ook mijn verhalen over het orgelspelen. Daarover
zal ik het nu niet verder hebben; nu wilde ik het hebben over je rol als referee. Tk
kom hier met twee plaatjes die genomen zijn uit een verhaal/presentatie die ik
over een paar dagen in Parijs zal geven over MokUM en UML. Het eerste plaatje
geeft een deel van een structuur aan, waaraan in UML de namen Structure- en
Object-Diagram zijn verbonden.
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In het tweede plaatje (eigenlijk twee) zie je dat een Researcher, die een aan-
tal Papers tot zijn beschikking heeft, er eentje kiest en naar Elsevier’s website
stuurt (submit). Deze plaatjes zijn geknipt uit een zogenaamd activity diagram
(alle begrippen uit UML, maar alle voorbeelden met ColorX en Mokum ge-
maakt), zie je dat de researcher een keus maakt uit zijn papers en dat opstuurt
naar Elsevier’s website. Aan het eind van het proces gaat hij kijken wat de be-
slissing geworden is: revise, accept of reject. Het bijzondere van het voorbeeld
waaruit deze plaatjes geknipt zijn is dat ze de Mokum manier weergeven om
met Security en Privacy om te gaan. De referee geeft aan de Editor zijn referee
report, en de Editor voegt daar een formeel gedeelte aan toe: in het attribuut
form, waarin o.a. de naam van de referee vermeld staat. De researcher moet in
staat zijn om de referee rapporten te lezen, maar niet de naam van de referee
in het form attribuut. Wel, als de researcher kans zou zien om in het volgende
stukje software, dat een vertaling is van bovenstaande stukjes uit het activity
diagram, de statement ‘print(... form)’ te plaatsen, dan zou de Mokum com-
piler ingrijpen mat de foutmelding: ‘access to form denied’. Dat een en ander
zo is heb ik aangetoond in een artikel [1] over Security en Privacy in Cyberspa-
ce toegepast op het DKE refereeing proces, hetgeen gepubliceerd werd in het
special issue DKE50, ter gelegenheid van het uitkomen van 50 volumes, alweer
een paar jaar geleden en waarvan jij, als lid van de Editorial Board, ook een
copy hebt gekregen. Het zal je niet moeilijk vallen om in volgende plaatjes de
vorm te herkennen van een Finite State Diagram, of in UML termen een State
Machine Diagram. Je ziet dat een researcher in zes verschillende toestanden kan
verkeren, waarin hij komt na het lezen van verschillende boodschappen. Mocht
je geinteresseerd zijn in meer over MokUM en UML, dan moet je me maar weer
eens uitnodigen. Dan kan er ook weer lekker gegeten worden. Ik wens je alle
goeds, en hoop dat je je bij je pensioen (maar dat heb je met 60 nog niet bereikt)
nog even goed mag voelen als ondergetekende. Nog even volhouden dus.

[1] R.P. van de Riet: The Future Refereeing Process in Cyberspace of the
Data&Knowledge Engineering Journal, An Attempt in Guaranteeing Se-
curity&Privacy on three levels, Data and Knowledge Engineering, Vol 50,
Nr.3, North Holland, 2004, pp. 305-339.
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[ was lucky to have Jan around

Grzegorz Rozenberg
Universiteit Leiden, The Netherlands
University of Colorado at Boulder, USA

I was employed at the University of Antwerp (UIA) in Wilrijk from 1974 to
1979. My task was to create the computer science department (more precisely, a
computer science group of the mathematics and computer science department)
- hence to establish both the curriculum and the research profile. The years
at UIA where both pleasant and interesting. The working environment was
very nice: a small scale department, friendly and cooperative colleagues, hard
working students, and well motivated Ph.D. students.

When I decided to move back to The Netherlands accepting a professorship
at Leiden University the most important task was to find my successor who
would continue the task of developing a computer science group with an attrac-
tive education program and worldwide research visibility. It did not take me a
long time to decide that Jan Paredaens would be the most suitable person for
this job. I had known Jan for some time already as both a reliable and pleasant
colleague and a serious researcher with a good research record. An attractive
feature of his research was a good balance of theory and applications. He was
doing research on foundations of programming and theory of databases which
had a genuine motivation in applications.

It was not difficult to convince my colleagues that Jan was the best candidate
for the job. Consequently he was offered the position which he gladly accepted (if
I remember well he was working then at the Philips Research Labs in Brussels).
In retrospect it was a very good decision indeed. Jan has strengthened the
existing group, extended it, and most importantly today the group enjoys a very
good international research reputation which relies very much on the excellent
research by him, his co-workers, and Ph.D. students.

Looking back into my Antwerp years and the years since then, I see the
founding of the computer science department in Antwerp as one of my valuable
contributions to the development of the computer science community. In par-
ticular, I am glad that I have chosen Jan to be my successor. I was very lucky
that I knew Jan at the time when the decision had to be taken.
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Dear Jan, thank you very much for all your efforts through almost 30 years
to build up the computer science department in Antwerp. One’s 60th birthday
is an important reflection point in our lives. I think that you can really look
back with satisfaction and pride both at your own scientific career, and at what
you have done for the community.

I wish you still many years of a fruitful professional and happy personal life.

Grzegorz
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Happy Birthday, Jan!

Victor Vianu
U.C. San Diego
vianu@cs.ucsd.edu

When thinking of various people, I like to perform the following mental ex-
periment: close my eyes, visualize the person, and let words describing him
surge out. In Jan Paredaens’s case, these are words like: creative, brilliant, un-
derstated, insightful, clear-minded, innovative, inspiring, paternal, stimulating,
modest, decent.

Although Jan is only eight years my senior, I have looked up to him ever since
I was a graduate student, when he appeared to me as one of the Database Theory
Gods. Jan has made foundational contributions to almost every classical area
in database theory, including dependency theory and schema design, object-
oriented databases and complex objects, graph data, and spatial databases.
In the age of the Web, he has been instrumental in laying the foundations of
semi-structured data, Web data, and XML query languages. I have been struck
numerous times by Jan’s ability to continuously renew himself as a researcher,
dive into a new area and bring to bear his talent for extracting order and clar-
ity out of chaos. His talks and articles have directly inspired my own research
on several occasions. I recall for example his eye-opening invited talk ”Spa-
tial databases, the final frontier” from ICDT 1995. In characteristic manner,
Jan’s talk revealed the beauty of this new subject, and formulated fascinating
challenges that made one immediately want to go home and do research in the
area.

Jan has made many contributions to the scientific community, but per-
haps the most remarkable has been to grow and nurture Belgium’s outstanding
database theory community, one of the strongest and most vital in the world.

On this milestone in Jan’s career, I can only wish that he will continue to be
a joyful companion and leading researcher in our area for many years to come.
Happy Birthday, Jan!
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My first encounter with Jan was in 1979 when I defended my PhD thesis
and he was a member of the jury. Although logic programming was not close
to his own research interests, he was very supportive of my work. During the
following years, I can remember some occasions where he invited me to Antwerp
for giving a seminar about my work.

Our interactions got more intense and regular in 1995, when we worked
together on a proposal for a Scientific Research Network ("WOG”) that we
submitted to the Research Foundation - Flanders ("FWO-Viaanderen”). The
network, named Declarative Methods in Computer Science focussed on logic
programming and databases, which were the main interests of our respectively
research groups. Although Jan had always a busy schedule, he was very re-
sponsive and he contributed a lot. It was very stimulating to work with him
on the proposal. The proposal was approved and the network started in 1996
for a 5 year term. Currently it is in its third extension and our both groups,
together with the Theoretical Computer Science group of University of Hasselt
—also one of the initial participants— are still the core groups in the network.
The network stimulated the interaction between our groups and we currently
have some genuine collaboration at the level of projects funded by the Research
Foundation - Flanders.

Jan, it has been and still is a pleasure to collaborate with you, and your
example has been a stimulation to strive for excellence in research.

Maurice Bruynooghe

Department Computer Science
Katholieke Universiteit Leuven
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A database full of memories

Andy Zaidman

When thinking of Jan, lots of memories come back to mind. Over the almost
ten years that I've known Jan, I have filled up a complete database of memories.
When ‘mining’ this database, one sees that there are three main associations
that I have made to Jan. ..

The first of these associations, is Jan in his natural habitat as a professor
and a lecturer. My very first recollection of Jan goes back to my second year as
a computer science bachelor (or ‘kandidatuur’ like they called it then) student.
He was the man that taught us about relational algebra, SQL, E/R diagrams
and so many of the other database basics that we now all take for granted. It
was also immediately clear from his classes, that Jan very much liked formal
semantics and formal proofs.

A few years later I gained another perspective of Jan, more precisely when
we were both part of the computer science education commission. There, I had
the opportunity to get to know Jan from a very different side. Now, I wasn’t
seeing the lecturer, but an accomplished politician. Or maybe we should even
consider him more of a diplomat, because Jan, being very much aware of what
Jan wants for himself, is also able to make the right compromise at the right
time in order to get what he wants, but also what the others deem essential.

A third association that I have with Jan is that we are co-authors of two
papers. Even though I have never been a member of his ADReM research
group, I still had the opportunity to have research discussions with him and
Toon Calders, when we were exploring the boundaries of software engineering
and datamining. This resulted in a technique to mine execution traces with the
help of web mining.

Our research collaboration also earned Jan a place in my PhD jury in
September 2006. Since then our paths have somewhat diverged, with Jan spend-
ing lots of time as a dean and me moving to Delft, but I am sure that the
database will be filled with many more memories to come.
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Pearls of Modelling: From Relational Databases
To XML Suites

Bernhard Thalheim

Christian-Albrechts University Kiel

Devoted to the 60" birthday of prof. J. Paredaens

Abstract

The theoretical foundations for modelling database structures have
been extensively developed over the last decades. Structures consider,
however, only one side of the modelling coin. A coin has two sides, i.e. in
addition to the structure integrity constraints and their treatment must
be considered. We develop a unifying approach to specification and treat-
ment of integrity constraints and illustrate this unifying theory for two
structures: object-relational models as the extension of the relational
model and semi-structured models that form the basis of the internet
technology. We survey pearls, nuggets and lessons learned in the school
of J. Paredaens and their collaborators and highlight the approach to be
taken for achieving a consistent understanding of the XML coin.

1 Introduction

Database literature and teaching is divided into at least two branches: ap-
plications [SWO05] and their formal treatment on the basis of database theory
[PBGG89]. The first branch uses database theory mainly on the basis of re-
sults obtained until the mid-80ies. For computer engineers, logics and algebra
becomes more and more a ‘Terra incognita’. There are already statements
that database theory research is ‘dead on its feet’'. However, database theory,
database application formalization and database applications have gained from
logics and discrete mathematics more than it is acknowledged.

1.1 Database Design and Development

The problem of database design can be stated as follows:

Design the logical and physical structure of a database in a given database manage-
ment system (or for a database paradigm), so that it contains all the information
required by the user and required for the efficient behavior of the whole information

IM. Stonebraker, ICDE, Vienna 1993
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system for all users. Furthermore, specify the database application processes and
the user interaction.
The implicit goals of database design are:

e to meet all the information (contextual) requirements of the entire spec-
trum of users in a given application area;

e to provide a “natural” and easy-to-understand structuring of the informa-
tion content;

e to preserve the designers entire semantic information for a later redesign;

e to achieve all the processing requirements and also a high degree of effi-
ciency in processing;

e to achieve logical independence of query and transaction formulation on
this level;

e to provide a simple and easily to comprehend user interface family.

Over the last years database structures have extensively been discussed.
Almost all open questions have been satisfactorily solved. Modelling includes,
however, more tasks which are not solved at the same level. Often, modelling
is considered to have at least “two sides of a coin”: OPM - object-process
modelling. This separation into static and dynamic aspects is correct to a certain
extend. We claim, however, that modelling is far more complex. Modelling of
a database application includes at least three different sides:

Structuring of a database application is concerned with representing the database
structure and the corresponding static integrity constraints.

Functionality of a database application is specified on the basis of processes and
dynamic integrity constraints.

Interactivity is provided by the system on the basis of foreseen stories for a
number of envisioned actors and is based on media objects which are used
to deliver the content of the database to users or to receive new content.

This understanding has led to the codesign approach to modelling by mod-
elling structuring, functionality and interactivity. These three aspects of modelling
have both syntactic and semantic elements. If we differentiate between the syn-
tactic and semantic elements we may compare the elements of modelling with
the six sides of a dice: structure, processes, static and semantic integrity con-
straints, representations and stories.

Integrity constraints are used to separate “good” states or sequences of states
of a database system from those which are not intended. They are used for spec-
ification of semantics of both structures and processes. Therefore, consistency
of database applications can not be treated without constraints. At the same
time, constraints are given by users at various levels of abstraction, with a vari-
ety of vagueness and intensions behind and on the basis of different languages.
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For treatment and practical use, however, constraints must be specified in a
clear and unequivocal form and language. In this case, we may translate these
constraints to internal system procedures which are supporting consistency en-
forcement.

1.2 Storage and Representation Alternatives

The classical approach to objects is to store an object based on strong typing.
Each real life thing is thus represented by a number of objects which are either
coupled by the object identifier or by specific maintenance procedures. This
approach has led to the variety of types. Thus, we might consider two different
approaches:

Class-wise, strongly identification-based storage: Things of reality may be rep-
resented by several objects. Such choice increases maintenance costs.
For this reason, we couple things under consideration and objects in the
database by an injective association. Since we may be not able to iden-
tify things by their value in the database due to the complexity of the
identification mechanism in real life we introduce the notion of the object
identifier (OID) in order to cope with identification without representing
the complex real-life identification. Objects can be elements of several
classes. In the early days of object-orientation it has been assumed that
objects belong to one and only one class. This assumption has led to a
number of migration problems which have not got any satisfying solution.
Their association is maintained by their object identifier.

Object-wise storage: The graph-based models which have been developed in or-
der to simplify the object-oriented approaches [BT99] display objects by
their sub-graphs, i.e. by the set of nodes associated to a certain object
and the corresponding edges. This representation corresponds to the rep-
resentation used in standardization.

Object-wise storage has a high redundancy which must be maintained by
the system thus decreasing performance to a significant extent. Beside
the performance problems such systems also suffer from low scalability
and bad utilization of resources. The operating of such systems leads to
lock avalanches. Any modification of data requires a recursive lock of
related objects.

For these reasons, objects-wise storage is applicable only under a number
of restrictions:

e The application is stable and the data structures and the supporting
basic functions necessary for the application are not changed during
the lifespan of the system.

e The data set is almost free of updates. Updates, insertions and dele-
tions of data are only allowed in well-defined restricted ‘zones’ of the
database.
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A typical application area for object-wise storage are archiving or infor-
mation presentation systems. Both systems have an update system un-
derneath. We call such systems play-out system. The data are stored in
the way in which they are transferred to the user. The data modification
system has a play-out generator that materializes all views necessary for
the play-out system.

Other applications are main-memory databases without update. The SAP
database system uses a huge set of related views. The generation of the
view system consumes hours of the large Oracle database system that is
supporting the main-memory database. The retrieval of the system is,
however, very fast for all situations which are supported by the view set.
All data required in this case by the application must be stored in one
of the views. Any change in the application requires the development
of another view set. The main-memory database increases its size in an
avalanche form.

The two implementation alternatives are already in use although more on an
intuitive basis:

Object-oriented approaches: Objects are decomposed into a set of related ob-
jects. Their association is maintained on the basis of OID’s or other
explicit referencing mechanisms. The decomposed objects are stored in
corresponding classes.

XML-based approaches: The XML description allows to use null values without
notification. If a value for an object does not exist, is not known, is not
applicable or cannot be obtained etc. the XML schema does not use the
tag corresponding to the attribute or the component. Classes are hidden.
They can be extracted by queries of the form:

select object
from site etc.
where component xyz exist

Thus, we have two storage alternatives which might be used at the same time
or might be used separately:

Class-separated snowflake representation: An object is stored in several classes.
Each class has a partial view on the entire object. This view is associated
with the structure of the class.

Full-object representation: All data associated with the object are compiled into
one object. The associations among the components of objects with other
objects are based on pointers or references.

We may use the first representation for our storage engine and the second rep-
resentation for out input engine and our output engine in data warehouse ap-
proaches. The input of an object leads to a generation of a new OID and to a
bulk insert into several classes. The output is based on views.
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The first representation leads to an object-relational storage approach which
is based on the ER schema. Thus, we may apply translation techniques devel-
oped for ER schemata[Tha00].

The second representation is very useful if we want to represent an object
with all its facets. For instance, an Address object may be presented with
all its data, e.g., the geographical information, the contact information, the
acquisition information etc. Another Address object is only instantiated by the
geographical information. A third one has only contact information. We could
represent these three object by XML files on the same DTD or XSchema.

We have two storage options for the second representation in object-relational
databases: either to store all objects which have the same information structure
in one class or to decompose the objects according to the structuring schema.
Since the first option causes migration problems which are difficult to resolve
and which appear whenever an object obtains more information, we prefer the
second option for storing. In this case the XML representations are views on
the objects stored in the database engine. The input of an object leads to a
generation of a new OID and to a bulk insert into several classes. The output
is based on views.

2 Structuring Models For Relational Databases

Structuring of databases is based on three interleaved and dependent parts:

Syntactics: Inductive specification of database structures based on a set of base
types, a collection of constructors and an theory of construction limiting
the application of constructors by rules or by formulas in deontic logics.
In most cases, the theory may be dismissed. Structural recursion is the
main specification vehicle.

Semantics: Specification of admissible databases on the basis of static integrity
constraints describes those database states which are considered to be
legal. If structural recursion is used then a variant of hierarchical first-
order predicate logics may be used for description of integrity constraints.

Pragmatics: Description of context and intension is based either on explicit ref-
erence to the enterprise model, to enterprise tasks, to enterprise policy, and
environments or on intensional logics used for relating the interpretation
and meaning to users depending on time, location, and common sense.

The rich theory developed by Jan Paredaens and his pupils has led to a
deep understanding of various kinds of normalisation (vertical, horizontal and
deductive) [PBGGS89] of various extensions of the relational database model
[GPG8S], of various kinds of constraints [GP83, GP86, Par82], and of the algebra
of the relational database model [HPTS8S].
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2.1 Rigid Inductive Structures

The inductive specification of structuring is based on base types and type con-
structors. A base type is an algebraic structure B = (Dom(B), Op(B), Pred(B))
with a name, a set of values in a domain, a set of operations and a set of pred-
icates. A class B on the base type is a collection of elements form dom(B).
Usually, B¢ is required to be set. It can be list, multi-set, tree etc. Classes may
be changed by applying operations. Elements of a class may be classified by the
predicates.

A type constructor is a function from types to a new type. The constructor
can be supplemented with a selector for retrieval (such as Select) and update
functions (such as Insert, Delete, and Update) for value mapping from the new
type to the component types or to the new type, with correctness criteria and
rules for validation, with default rules, with one or more user representations,
and with a physical representation or properties of the physical representation.

Typical constructors used for database definition are the set, tuple, list and
multiset constructors. For instance, the set type is based on another type and
uses algebra of operations such as union, intersection and complement. The re-
trieval function can be viewed in a straightforward manner as having a predicate
parameter. The update functions such as Insert, Delete are defined as expres-
sions of the set algebra. The user representation is using the braces {, }. The
type constructors define type systems on basic data schemes, i.e. a collection
of constructed data sets. In some database models, the type constructors are
based on pointer semantics.

General operations on type systems can be defined by structural recursion.
Given a types T, T” and a collection type CT on T (e.g. set of values of
type T', bags, lists) and operations such as generalized union Ugr, generalized
intersection Ner, and generalized empty elements @or on CT. Given further
an element hg on 7" and two functions defined on the types

hy : T =T

and
hye : T'xT — T

Then we define the structural recursion by insert presentation for R¢ on T as
follows
S’recho,}lhhz(@CT) = ho
srechy.hy by (KISl)) = hi(s) for singleton collections s}
57€Chy oy ({50 Uer BE) = ha(hy(s), s7echo,n, ny (RO))
IH |{|S|}‘ ﬂcT RC = @CT .

All operations of the relational database model and of other declarative
database models can be defined by structural recursion. Structural recursion
is also limited in expressive power. Nondeterministic while tuple-generating
programs (or object generating programs) cannot be expressed. We observe,
however, that XML together with the co-standards does not have this property.
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Another very useful modelling construct is naming. Each concept type and
each concept class has a name. These names can be used for the definition of
further types.

Static integrity constraints are specified within the universe of structures
defined by the structural recursion.

Observation 1.
Hierarchical structuring of types leads to a generalized first-order predicate
logics.

Observation 2.
In general, cyclic structuring leads to non-first-order logics. Structures with
abstract linking are potentially cyclic.

2.2 Static Integrity Constraints

Each structure is also based on a set of implicit model-inherent integrity con-
straints:

Component-construction constraints are based on existence, cardinality and in-
clusion of components. These constraints must be considered in the trans-
lation and implication process.

Identification constraints are implicitly used for the set constructor. Each object
either does not belong to a set or belongs only once to the set. Sets are
based on simple generic functions. The identification property may be,
however, only representable through automorphism groups [BT99]. We
shall later see that value-representability or weak-value representability
lead to controllable structuring.

Acyclicity and finiteness of structuring supports axiomatization and definition of
the algebra. It must, however, be explicitly specified. Constraints such as
cardinality constraints may be based on potential infinite cycles.

Superficial structuring leads to representation of constraints through structures.
In this case, implication of constraints is difficult to characterize.

Implicit model-inherent constraints belong to the performance and maintenance
traps.

Integrity constraints can be specified based on the B(eeri-)V(ardi)-frame, i.e.
by an implication with a formula for premises and a formula for the implication.
BV-constraints do not lead to rigid limitation of expressibility. If structuring is
hierarchic then BV-constraints can be specified within the first-order predicate
logic. We may introduce a variety of different classes of integrity constraints
defined:

Equality-generating constraints allow to generate for a set of objects from one
class or from several classes equalities among these objects or components
of these objects.

Object-generating constraints require the existence of another object set for a set
of objects satisfying the premises.
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A class C of integrity constraints is called Hilbert-implication-closed if it can be
axiomatized by a finite set of bounded derivation rules and a finite set of axioms.
It is well-known that the set of join dependencies is not Hilbert-implication-
closed for relational structuring. However, an axiomatization exists with an
unbounded rule, i.e. a rule with potentially infinite premises.

Often structures include also optional components. Let us denote the set
of all components of a set O of objects by compon(O) and the set of all op-
tional components of O by compon®Pt(©). Similarly we denote the set of all
components used in a constraint a by compon(«). Validity of constraints is
either based on strong semantics requiring validity for all object sets indepen-
dently on whether compon°P*(O) N compon(O) # () or on weak seman-
tics requiring validity for constraints only for those object sets O for which
compon®?*(O) N compon(O) = (. Classical validity is based on weak seman-
tics which has a severe disadvantage:

Observation 3.
Weak semantics leads to mnon-additivity of constraints for object sets

O with O by compon®P*(O) # 0, i.e., it is not true in general that
O E {a1,.,am} is valid if and only if O | {a;} for each constraint
in {oq,....,am} .

Observation 4.
Strong semantics leads to non-refleriveness or non-transitivity of con-

straints for object sets O with O by compon®?*(O) # 0, i.e., O = a— «
for some constraints «a or the validity of O E a—f and O E §— 7y
does not imply O = a— .

Since constraint sets may be arbitrary we might ask in which cases an ax-
iomatization exists. The derivation operator Fr of a deductive system I' and
the implication operator = may be understood as closure operators @, i.e.

0 &%) =%

() (%) = {aeCnd@i(x)

(1) B*(E) = lim;o®(S)

for any subset ¥ from a class C of constraints.

The closure operator @ is called compact for a class C if the property a €
®*(X) implies the existence of a finite subset ¥’ of ¥ such that oo € ®*(¥'). It is
called closed of @*(®*(X)) = ®*(X) for any ¥ C C. The closure operator is called
monotone if ®*(X) C &*(X U X'). The operator is reflexive if o € ®*(X U {a})
for all formulas and subsets from C.

Observation 5.
The implication operator ®} is reflexive, monotone, closed and com-

pact if and only if there exists a deductive system I' such that Pr
and @ are equivalent. If ®_ additionally has the inference property,
the deduction property and is generalization invariant then ®1.(0) = L (0) .

If the deduction property fails then the axiomatization by a deductive system
may be based on some obscure rules similar to those for the axiomatization of
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PROLOG.

Constructors used for construction of more complex types are often used for
convenience and representing a different structuring. A typical example is the
application of the list constructor with the meaning of representing sets. In this
case we must add an list-to-set axiom
Yt € compon(o)Vi, j(type(o.i) = type(o.j) =t = wvalue(o.i) = value(o.5)) .
This axiom is often overseen and not considered.

Observation 6.
Semantics for structures defined by the list constructor and representing

set must be extended by list-to-set axiom.

Since attributes are also constructed on the basis of constructors from base
types we may ask whether this construction affects the definition of constraints
and the axiomatizability. This question is open for most of the constraints. In
[Lin03] it has, however, shown that keys and functional dependencies have a
similar treatment as in the relational case. Substructures are, however, more
complex and represented by the Brouwerian algebra of subcomponents.

3 Application of the Theory to Database Struc-
turing

3.1 Pearls of Database Research Applied to Semantical
Models

The entity-relationship model has been extended to the higher-order entity-
relationship model (HERM)[Tha00]. HERM is a set-theoretic based, declarative
model which objects are value-oriented. For this reason, object identifiers are
omitted.

The entity-relationship model uses basic (or atomic) data types such as INT,
STRING, DATE, etc. the null type L (value not existing). Using type con-
structors for tuples, finite (multi-)sets and lists and union we construct more
complex types based on standard set semantics:

t=1:t|B|(a1:t1,...,an :to) | {'}]| )| [t]
|(a1:t1)U~-~U(an:tn)

These types will be used to describe the domains of (nested) attributes.
Attributes allow to conceptually abstract from describing values. Associated

data types provide the possible values. We use a set of names N' = Ny UN, for

attributes such as address, street, city, name, first_name, destination, trip_course

etc. Elements from Nj are called atomic attributes.

Each atomic attribute is associated with a atomic type dom(A).

Nested attributes are inductively constructed from simpler or atomic attributes

by the iteration condition:

For already constructed nested attributes X, X1, ..., X;;, and new attributes

Y, Y1, ..., Y,, the sequences
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Y (X1, Xn), YA XLY(X), YIX, V(Y1: X1)U---U (Y, : Xp))
are tuple-valued, set-valued, list-valued, multiset-valued and union-valued nested
attributes.

Associated complex types are defined by the attribute structure. In the logical
calculus below we use only tuple-valued and set-valued attributes. The calculus
can similarly be extended.

For all types we use set semantics based on the basic type assignment.

Entity Types (or level-O-types) E = (attr(FE)) are defined by a set attr(FE)
of nested attributes. A subset X of attributes can be used for identification.
This subset is called key of E. In this case we consider only those classes which
objects can be distinguished by their values on X.

Relationship Types (or level-(i+1)-types) R = (comp(R), attr(R)) are defined
by a tuple comp(R) of component types at levels < i with at least one level-i-
type component and a set attr(R) of nested attributes. We use set semantics
with expanded components under the restriction that comp(R) forms a key of
R. Unary relationship types with |comp(R)| = 1 are subtypes.

Clusters (also level-i-types) C = C1®- - -®C}, are defined by alist (Cy,...,Ck)
of entity or relationship types or clusters (components). The maximal level of
components defines level i. We set semantics (union) or equivalent pointer
semantics.

Corresponding classes of a type T are denoted by T¢. R(T) is the set of
all classes of T. Basic type assignment is equivalent to pointer semantics with
value representability.

The usual graphical representation of the extended ER model is a labeled
directed acyclic graph. Entity types are denoted graphically by rectangles. Re-
lationship types are graphically represented by diamonds with arrows to their
components. Attributes are denoted by strings and attached to the types by
lines. Key components are underlined.

A HERM scheme S is a set {R1,...R;,} of types of level 0,...,k which is
closed, i.e. each set element has either no components (entity type) or only
components from {Ry,...R,, }.

An example of a HERM diagram is displayed in Figure 1.

A person can be customer. People are identified by their names. Customers
have an additional customer identification. A store is characterized by its name
and address. For each purchase a customer can buy several parts. Addresses
and names can be more complex than displayed in the diagram. The diagram is
used for representing types. For instance, in our example the relationship type
Purchase is defined by

Purchase = ( Customer, Store, { TimeOfPurchase, TypeOfPayment } ) .
Since customers are persons purchases are identified by the name of the person
and the name and the address of the store.

Based on the construction principles of the extended ER model we can in-
troduce the HERM algebra [Tha00]. In general, for a HERM scheme S the set
Rec(S) of all expressions definable by structural recursion can be defined.

Since HERM database schemes are acyclic and types are strictly hierarchical
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Name(First,Second,Surname, Title) BarCode
|
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Person
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TimeOfPurchase

Store

I
CustID TypeOfPayment Address

Figure 1: A Customer-Relationship Diagram

we can construct a many-sorted logical language by generalizing the concept of
variables.

Given a HERM scheme S. Let Ny the set of all names used in S including
type names. A sort is defined for each name from Ng. The sort sets are
constructed according to the type construction in which the name has been
used. Entity and relationship types are associated with predicate variables. The
logical language uses type expansion for representation of relationship types.
We can use key-based expansion or full expansion. Full expansion uses all
components of the component type. Key-based expansion uses only (primary)
key components. If all names are different in S then we can use lower-case
strings for variable names. If this is not the case then we use a dot notation
similar to the record notation in programming languages.

For instance, the entity type Person is associated with the unary predicate
variable  person ( name ( first, second, surname, title ) ) .

The relationship type Purchase is associated with the predicate variable
purchase( customer ( person ( name ( first, second, surname, title ) ), ID ),
store ( name,address ), typeOfPurchase, timeOfPurchase ) .

The HERM predicate logic is inductively constructed in the same way as
the predicate logic. Instead of simple variables we use structured variables.
This language enables us to specify restriction on the scheme. For instance, the
formula

part(barCode,color) A part(barCode,color’) — color = color’
expresses that the same part with the same ID cannot have different color, i.e.
parts can be identified by their bar code.

Queries can be expressed in a similar way. The query above is expressed by
the logic program

q(x) < purchase(customer(person(x),-), store(”Safeway”,_),_,_) .

We can also specify behavior of a database over lifetime. A database is
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modified by an action or more general by a transaction. Basic actions are
queries or conditional manipulation operations. Manipulation operations such
as insert, delete, update are defined in the HERM algebra. Database behavior
can be specified on the basis of states. Given a HERM scheme S = {Ry,...R,,}.
A state is the set of classes {R{,...RC} with RS € R(R;), 1 < i < m which
satisfies certain restrictions X.

The structuring of the extended ER model allows to deduct a number of
properties. As an example we consider the axiomatization of constraints gen-
eralizing those discussed in [SP84, Tha91l]. We observe first that implication in
the hierarchical predicate logic is reflexive, monotone, compact and closed. Let
us consider classes of BV-constraints in HERM which form a cylindric algebra
[Tsa89]. The order of constraints by ® possibly can be based on the order of
of premises and conclusions. In this case the constraint set forms a pair algebra.

Observation 7.
Cylindric classes are pair algebras.

Examples of cylindric classes are the class of functional dependencies, the
classes of Hungarian functional dependencies [Tha91], the class of inclusion de-
pendencies and the class of multivalued dependencies. Further, the n-class of
all > n-functional dependencies X — Y which left side contains at least n com-
ponents and the class of rigid < n-inclusion dependencies T7[X] C T»[X] which
component list contain at most n components form a cylindric constraint set.
Usually, union does not preserve cylindric sets.

Observation 8.
Cylindric constraint classes are axiomatized by reflexivity axioms, augmen-

tation and transition rules.

If an axiomatization leads to reflexivity, augmentation and transitivity then
union and decomposition rules can be deducted by the other rules. Transitivity
may have to consider the specific influence of premises, e.g., transitivity for full
multivalued dependencies is based on the root reduction rule [Tha91].

Based on this axiomatization we may introduce a general vertical decompo-
sition form:

Given a schema structuring S = (ER,Xs). A wvertical decomposition of S is
given a a mapping 7 from S to &’ which is defined by projection functions. The
decomposition is lossless if a query q on S’ can be defined such that for each db
on S the equality ¢(7(db)) = db is valid.

Let further ¥’ the set of those constraints from ®_(X) which are entirely de-
fined on the structures in §’. A decomposition based on projection is called
C-constraint preserving if ¥ C ®(¥') .

Classical example of vertical decompositions are decompositions of relations
to relations in the third normal form.

We may now introduce a general class of C-decomposition algorithms:

Construct basic elements which are undecomposable.

Derive maximal elements by backward propagation of augmentation.
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Reduce redundancy in the constraint set by backward propagation of transitivity.

Derive a left-right graph by associating conclusions of a constraint to the premise
of another constraint.

Combine all minimal left sides of constraints which are not bound by another
constraint to a group.

Derive projections based on all groups in the graph.

The first step of the decomposition algorithm is only introduced for convenience.
This algorithm is a generalization of the classical synthesis algorithm.

Observation 9.
The C-decomposition algorithm leads to C-constraint preserving decomposi-

tion if the class C is cylindric.

3.2 Maturity and Capability of Object-Oriented / Rela-
tional Models

Object-oriented database models have been developed in order to overcome the
impedance mismatch between languages for specification of structural aspects
and languages for the specification of behavioral aspects. So far, no standard ap-
proach is known to object-orientation. Objects are handled in databases systems
and specified on the basis of database models. They can own an object identi-
fier, are structurally characterized by values and references to other objects and
can posses their own methods, i.e.

o= (i,{v}, {ref}, {meth})

The value characterization is bound to a structure of the type T' which is already
defined. Characterizing properties of objects are described by attributes which
form the structure of the object. Objects also have a specific semantics and
a general semantics. The properties describe the behavior of objects. Objects
which have the same structure, the same general semantics and the same opera-
tors are collected in classes. The structure, the operations and the semantics of
a class are represented by types T = (5,0, X). In this case, the modelling of ob-
jects includes the association of objects with classes C' and their corresponding
value type T' and reference type R. Therefore, after classification the structure
of objects is represented by

o= (i, {(C,T,v)},{(C, R,ref)},{(T,meth)}) .

The recognized design methodologies vary in the scale of information mod-
eled in the types. If objects in the classes can be distinguished by their values,
then the identifiers can be omitted and we use value-oriented modelling. If this
is not the case, we use an object-oriented approach. In the object-oriented ap-
proach, different approaches can be distinguished. If all objects are identifiable
by their value types or by references to identifiable objects, then the database
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database

value-oriented database object-oriented database

value-representable database jdentifier-based database

value-based database non-value-based database

Figure 2: Classification of Database Models

is called wvalue-representable. In this case, the database can also be modeled
by the wvalue-oriented approach, and a mapping from the value-representable
scheme to a value-oriented scheme can be generated. If the database is not
value-representable, then we have to use object identifiers. In this case either
the identifier handling should be made public or else the databases cannot be
updated and maintained. Therefore, value-representable databases are of spe-
cial interest. Thus, we can distinguish database models as displayed in Figure
2.

It has been shown in [BT99, Sch94] that the concept of the object identi-
fier can only be treated on the basis of higher-order epistemic and intuitionistic
logics. Furthermore, identification by identifiers is different from identification
by queries, equational logics and other identification methods. For this reason,
the concept of the object identifier is far more complex than wanted and can-
not be consistently and equivalently treated in database systems. Furthermore,
methods can be generically derived from types only in the case if all objects
are value-representable. Value-representable cyclic type systems require topos
semantics[ST99] what is usually too complex to be handled in database sys-
tems. It can be shown that value-representable, non-cyclic type systems can be
represented by value-oriented models.

3.3 XML - Couleur De Rose And Pitfalls

XML document specification and playout is based on a number of standards
and co-standards:

XML documents are based on trees of elementary documents which are tagged
by a begin and end delimiter.

Document schema specification is either based on

DTD specification which supports an entity-relationship modelling,

RDF schema reuse which allows to include other specifications, or
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Schema specification which allows object-oriented modelling.

XLink, XPointer, XPath and XNamespace support a flexible parsing and playout
enalbing documents to be extended by foreign sources which might be
accessible.

XSL supports filtering, union and join of documents.
XML query languages add query facilities to XML document suites.

XML applications are supported by a large variety of application standards such
as BizTalk and LOM.

This layering has a number of advantages and a number of disadvantages.
The main advantage of this approach is that almost any object set can be
represented by an XML document suite. XML documents may be well-formed.
In this case they are semi-structured and may be represented by A-trees which
are defined by induction as follows

e cach 0 € Ais a tree, and
e if 0 € ¥and ty,....,t, are trees then o(ty,...,t,) is a tree.

The set Dom(t) € N* of all nodes of a tree t = o(ty, ..., t,) is given by:
Dom(t) = {e} U{uili € {1,...,n},u € Dom(t;)}
where € is the root,  wi is the i* child of u, and

lab!(u) is the label of u in ¢.

The disadvantages of XML steam from the generality of the approach. For
instance, parsing of XML document sets must be supported by machines which
are not less complex than Turing machines, i.e., tree automata
M = (Q,%,8,(Iy)ses, F), FCQ,6:QxY—29,

A run X\ : Dom(t) — Q specifies for each leave node v : € € §(A(ul),labt(u))
and for each node v with p children : A(ul)A(u2)..A(up) € F(A(u),labt(u)).
The run accepts the tree ¢ if A(e) € F.

XML document suites have, however, a number of other properties: they
are partial and based on list semantics. Their implication is neither compact
not monotone nor closed. Therefore, the axiomatization of XML constraints
is more difficult compared with other database models. For instance, already
the definition of keys and functional dependencies becomes a nightmare. The
treatment of cardinality constraints is more difficult than for ER models. For
instance, the definitions of [AFL02, BDFT01] are incomplete since they do not
consider the list-to-set axiom.

XML documents provide a universal structuring mechanism. [Kle07] has
developed a modelling approach that limits the pitfalls of XML specification.

Finite implication of path constraints is co-r.e. complete and implication
is r.e. complete for semi-structured models. The implication problem for key
constraints is harder than in the relational and ER case. It involves implication
on regular path expressions which is known to be PSPACE-hard. The satisfia-
bility problem for key constraints and referential inclusion constraints becomes
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undecidable in the presence of DTD’s. For this reason, simpler language must
be used for specification of constraints in XML.

4 Mappings That Preserve Semantic Invariants

4.1 Mappings From Entity-Relationship Structures To Re-
lations

ER models have a rich structuring and a rich set of integrity constraints. Rela-
tional DBMS usually do not support such rich structuring facilities. Therefore,
mappings of richly structured HERM schemata to relational technology is for-
getful in the sense that structures or integrity constraints cannot be represented
within the structuring provided by relational DBMS. We can, however, repre-
sent static integrity constraints by transition constraints. In this case, we do
not loose integrity constraints which primary role is to be a filter of invalid data.
The entire translation strategy is discussed in [Tha00].

4.2 From Entity-Relationship Databases To XML Suites

DTD’s and XSchema do not allow a semantics preserving translation. So we
might either develop a normalization approach such that all constraints are
representable within the DTD’s or XSchema language or we use XML only for
playout of content and for exchange of content between views or views and the
database. We use the second approach and maintain consistency through the
database system. Therefore, we only need a translation procedure for HERM
views to XML suite schemes. The layering approach to the generation of XML
allows to use another strategy to generate XML documents. This facility is
displayed in Figure 3.

This transformation approach is already used in the DaMiT project and
implements an XML suite on top of the relational DBMS DB2. The extended
ER model [Tha00] provides a better approach to XML suite generation than
relational models or the classical ER model for a number of reasons:

e Structures can be defined already in complex nested formats.
e Types of higher order are supported.
e The model uses cardinality constraints with participation semantics.

We claim that the extended ER model is better suited than UML since:

e Types have a clearly defined semantics.
e Schema components are integrated.

e HERM has a development methodology that supports consistency and
completeness and thus leads to schemata of high quality.

We observe further that well-structured XML may be considered to be a re-
stricted form of HERM:
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e XML Schema and XForms are suited for defining hierarchical extracts of
HERM.

e HERM specialization is based on type specialization.

e Unary cardinality constraints are supported. If more complex constraints
are required we may use vertical decomposition approaches.

e Variants of web objects may be referenced by an annotated XDNL ap-
proach.

Therefore, suites of restricted XML documents may be understood as object-
oriented hierarchical database. If documents are reused by other documents we
associate them via XDNL variants.

Translation of HERM schemata to DTD can be based on a number of ap-
proaches which are similar to the translation approaches used for transformation
of schemata to hierarchical database schemata:

Full type separation: Each entity, relationship and cluster type is represented by
their own <!ELEMENT ..> representation. All entity types have an ID
which is used through IDREF by other types.

Small star schema representation: The central type of a star schema is repre-
sented by its own <!ELEMENT ..> representation which uses components
for association to other central types. Star associations to other types are
represented through attribute lists and the IDREF #REQUIRED data type.

We observe that the translation is not semantics preserving. All referential
constraints must be maintained through application programs.

The translation from HERM schemata to XML suites is based on the fol-
lowing steps which are similar to those in [Tha00] for transformation of HERM
schemata to hierarchical database structures:

e HERM translation to hierarchical database structures is based on the in-
troduction of copies in the master-slave mode. Master objects have their
ID. Slave objects do not have own data. They are only mirrors of the mas-
ter objects. The translation procedure for XML transformation is based
on two assumptions:

— Strong aggregations are exclusive, i.e., a components belongs to one
and only one supertype.

— Weak non-exclusive aggregations are mapped to mirrored types.
The translation may consider interaction on the basis of the story space.

e The transformation process is a stepwise transformation starting with
HERM types of order 0, continuing with types of order (i+1) after types
of order i have been translated.

137



— Attribute types are directly transformed to corresponding DTD struc-
tures. Attributes are exclusively used by their entity types and thus
form an attribute structure of the DTD structures.

— Entity types are directly translated to DTD structures and use the
attribute type translations.

— Relationship types are transformed to DTD types. They can be
integrated if cardinality constraints are (1,1)-(1,1) constraints.

— Hierarchies use the based-on construction which is similar to the one
of DTD schemata.

— Cluster types use the mirroring approach for their transformation.

e Views are queries and thus can be transformed to XML queries. We distin-
guish between retrieval views and modification views. The first are used
for the generation of media objects. The later are used for modification
of the database.

e Integrity constraints are handled similarly to the approaches in relational
databases. Since XML suites are generated on top of databases integrity
is maintained inside the database system.

Since we use XML suites on top of database systems we are able to handle
consistency of XML suites without inheriting the difficulties of XML document
sets.

5 Concluding

Semantical and relational databases are coherently specified sets. They are
based on rigid structuring. The advantage of such rigidity is the derivability
of functionality for querying, updating, transaction, concurrency, integrity ect.
A large set of integrity constraints have been developed and supported in the
database setting. XML is far less rigid. The flexibility of XML has a price
which might be too high: the loss of a general definition frame for structur-
ing and especially integrity constraints. XML suites are not supportable in the
same form. Already simple classes of constraints such as key constraints are
challenging. Simple constraint sets such as key constraints and referential in-
tegrity constraints are very difficult to handle. There are two approaches to
master this situation: either to build sophisticated engines or to restrict XML
suites. We advocate the second approach: XML suites as playout and exchange
documents on top of database technology.
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