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Graph data

A (directed) graph over a set of nodes N is a set G of edges:

ordered pairs (i, j) with i, j ∈ N .
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Graphs are everywhere!

• data structures • transportation networks

• hypertext documents • World Wide Web

• social networks • food webs

• protein structures • . . .



Mining for patterns in graphs

Q1. Given a class C of graphs, which patterns typically occur
frequently in graphs in C?

Q1 has become a very hot topic over the past years (Science,
Nature)

To do Q1 well we must at least be able to do:

Q2. Given a graph G, which patterns occur frequently in G?

This can be interesting in itself. We will focus on Q2.

Q3. Given a collection C of graphs, which patterns frequently
occur in graphs in C?
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Examples of patterns
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frequency: #{x | (x,8) ∈ G}



Examples of patterns
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Examples of patterns

x

8

y

frequency: #{(x, y) | (x,8) ∈ G ∧ (8, y) ∈ G}



Existential nodes in patterns

∃

x 8

frequency: #{x | ∃z : (z, x) ∈ G ∧ (z,8) ∈ G}



Existential nodes in patterns

0 ∃ ∃ x

frequency:

#{x | ∃z1, z2 : (0, z1) ∈ G ∧ (z1, z2) ∈ G ∧ (z2, x) ∈ G}



Our work

Efficiently mine all frequent tree-shaped patterns in a large graph

• Incremental in size of patterns

• Tree-shaped only, but with existential nodes

• Database approach: on top of SQL

• Mining results stay in database

• Provable optimality properties

• Underlying theory of conjunctive queries



Avoiding isomorphic trees
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⇒ Generate only canonical trees: “left-deep”



Generating all canonical trees

A. If T is canonical and n is its last node, then T − n is also

canonical.

⇒ Generate canonical trees incrementally by size

B. All canonical extensions of a given canonical tree can be

generated efficiently.

• All this is known for a long time!

• For general graph shapes, no such efficient canonization is

known.



Generating all canonical trees
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Equivalent patterns
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• Two patterns are equivalent if they become identical after

removal of redundancies.

⇒ Efficient redundancy check needed



Redundancy characterization

A pattern has a redundancy if and only if contains the following
pattern:

x
↙ ↘

T ∃
↘

. . .
↘

∃
where subtree T is at least as deep as the ∃-path.

• Efficiently checkable

• For general graph patterns, redundancy checking is NP-complete



Overall approach

1. Generate canonical trees of increasing size

2. Generate (non-redundant) projections

3. Generate selections

4. Count all instantiations with one SQL expression
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canon. tree projection selection instantiation



Levelwise generation of projections
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Levelwise generation of projections
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Levelwise generation of selections
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Levelwise generation of selections
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Levelwise generation of selections
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Pattern tables

∃

c2

x3

c4

c2 c4 count
66 77 20
66 78 24

...

In each row of the table,

count = #{x3 | ∃x1 : (x1, c2) ∈ G ∧ (c2, x3) ∈ G ∧ (x1, c4) ∈ G}



Computing the pattern table in SQL

1. Initalize with natural join of parent pattern tables

parent patterns of ∃

c2

x3

c4

are x1
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2. Compute counts with one SQL expression



SQL expression

Graph G stored in table G(from,to)

∃ c4

c2 x3

select tab.c2, tab.c3, count(*)

from (select table.c2, table.c3, G3.to

from G G2, G G3, G G4, table

where G2.from=G4.from and G2.to=G3.from

and G2.to=table.c2 and G4.to=table.c3)



Optimality properties

1. We never investigate distinct but equivalent patterns

2. We never investigate a pattern subsumed by another pattern

that we already know to be infrequent

• Incremental and levelwise approach

• Subsumption for general graph patterns is NP-complete



Current work

• Database performance tuning

• Apply to real-world graph data

• Pattern browsing

• Association rules

pattern
x

8

versus rule
x

∃
⇒

x

8


