
Mining frequent tree-conjunctive queries in large graphs

Jan Van den Bussche, Limburgs Universitair Centrum
joint with

Bart Goethals, University Antwerpen
Eveline Hoekx, Limburgs Universitair Centrum



Graph data

A (directed) graph over a set of nodes N is a set G of edges:

ordered pairs (i, j) with i, j ∈ N .





60

2

13

62

12

3

21

41

45

50

52

61

4

1

5

89

29 32

42

6

49

66

7

28

40

34

39

47

54

57

33

58

22

56

64

55

10

11

14

44

38

15

17

31

46

16

53

18

63

20

36

43

19

59

23

24

37

30

48

25

65

26

27

51

67

35



Graphs are everywhere!

• data structures • transportation networks

• hypertext documents • World Wide Web

• social networks • food webs

• protein structures • . . .



Mining for patterns in graphs

Q1. Given a class C of graphs, which patterns typically occur
frequently in graphs in C?

Q1 has become a very hot topic over the past years (Science,
Nature)

To do Q1 well we must at least be able to do:

Q2. Given a graph G, which patterns occur frequently in G?

This can be interesting in itself. We will focus on Q2.

Q3. Given a collection C of graphs, which patterns frequently
occur in graphs in C?



Mining for patterns in graphs

Q1. Given a class C of graphs, which patterns typically occur
frequently in graphs in C?

Q1 has become a very hot topic over the past years (Science,
Nature)

To do Q1 well we must at least be able to do:

Q2. Given a graph G, which patterns occur frequently in G?

This can be interesting in itself. We will focus on Q2.

Q3. Given a collection C of graphs, which patterns frequently
occur in graphs in C?



Examples of patterns

x

8

frequency: #{x | (x,8) ∈ G}



Examples of patterns

0

x

frequency: #{x | (0, x) ∈ G}



Examples of patterns

x

8

y

frequency: #{(x, y) | (x,8) ∈ G ∧ (8, y) ∈ G}



Existential nodes in patterns

∃

x 8

frequency: #{x | ∃z : (z, x) ∈ G ∧ (z,8) ∈ G}



Existential nodes in patterns

0 ∃ ∃ x

frequency:

#{x | ∃z1, z2 : (0, z1) ∈ G ∧ (z1, z2) ∈ G ∧ (z2, x) ∈ G}



Our work

Efficiently mine all frequent tree-shaped patterns in a large graph

• Incremental in size of patterns

• Tree-shaped only, but with existential nodes

• Database approach: on top of SQL

• Mining results stay in database

• Provable optimality properties

• Underlying theory of conjunctive queries



Avoiding isomorphic trees

x1

x2 x3

x4 x5

x6

x7

x1

x2

x3

x4

x5

x6 x7

⇒ Generate only canonical trees: “left-deep”



Generating all canonical trees

A. If T is canonical and n is its last node, then T − n is also

canonical.

⇒ Generate canonical trees incrementally by size

B. All canonical extensions of a given canonical tree can be

generated efficiently.

• All this is known for a long time!

• For general graph shapes, no such efficient canonization is

known.



Generating all canonical trees

x1 x2 x3 x4

x1 x2 x3 x1 x2
x4

x3

x1 x2 x1
x4

x2 x3

x1
x3

x2
x1

x4

x3

x2

. . .



Equivalent patterns

x

y

z

∃

∃

x

y

∃ z

x

y

z

• Two patterns are equivalent if they become identical after

removal of redundancies.

⇒ Efficient redundancy check needed



Redundancy characterization

A pattern has a redundancy if and only if contains the following
pattern:

x
↙ ↘

T ∃
↘

. . .
↘

∃
where subtree T is at least as deep as the ∃-path.

• Efficiently checkable

• For general graph patterns, redundancy checking is NP-complete



Overall approach

1. Generate canonical trees of increasing size

2. Generate (non-redundant) projections

3. Generate selections

4. Count all instantiations with one SQL expression

x1

x2

x3

x4

∃

x2

x3

x4

∃

c2

x3

x4

∃

66

x3

x4

canon. tree projection selection instantiation



Levelwise generation of projections

x1

x2

x3

x4

∃

x2

x3

x4

x1

∃

x3

x4

x1

x2

∃

x4

x1

x2

x3

∃



Levelwise generation of projections

x1

x2

x3

x4

∃

x2

x3

x4

x1

∃

x3

x4

x1

x2

∃

x4

x1

x2

x3

∃



Levelwise generation of projections

x1

x2

x3

x4

∃

x2

x3

x4

x1

∃

x3

x4

x1

x2

∃

x4



Levelwise generation of projections

∃

x2

x3

x4

∃

∃

x3

x4

∃

x2

∃

x4

∃

x2

x3

∃



Levelwise generation of selections

∃

x2

x3

x4

∃

c2

x3

x4

∃

x2

c3

x4

∃

x2

x3

c4



Levelwise generation of selections

∃

x2

x3

x4

∃

c2

x3

x4

∃

x2

c3

x4

∃

x2

x3

c4



Levelwise generation of selections

∃

c2

x3

x4

∃

c2

c3

x4

∃

c2

x3

c4



Pattern tables

∃

c2

x3

c4

c2 c4 count
66 77 20
66 78 24

...

In each row of the table,

count = #{x3 | ∃x1 : (x1, c2) ∈ G ∧ (c2, x3) ∈ G ∧ (x1, c4) ∈ G}



Computing the pattern table in SQL

1. Initalize with natural join of parent pattern tables

parent patterns of ∃

c2

x3

c4

are x1

c2

x3

c4

∃

c2

x3

x4

∃

x2

x3

c4

2. Compute counts with one SQL expression



SQL expression

Graph G stored in table G(from,to)

∃ c4

c2 x3

select tab.c2, tab.c3, count(*)

from (select table.c2, table.c3, G3.to

from G G2, G G3, G G4, table

where G2.from=G4.from and G2.to=G3.from

and G2.to=table.c2 and G4.to=table.c3)



Optimality properties

1. We never investigate distinct but equivalent patterns

2. We never investigate a pattern subsumed by another pattern

that we already know to be infrequent

• Incremental and levelwise approach

• Subsumption for general graph patterns is NP-complete



Current work

• Database performance tuning

• Apply to real-world graph data

• Pattern browsing

• Association rules

pattern
x

8

versus rule
x

∃
⇒

x

8


