Mining frequent tree-conjunctive queries in large graphs

Jan Van den Bussche, Limburgs Universitair Centrum joint with
Bart Goethals, University Antwerpen Eveline Hoekx, Limburgs Universitair Centrum

Graph data

A (directed) graph over a set of nodes N is a set G of edges: ordered pairs (i, j) with $i, j \in N$.

Graphs are everywhere!

- data structures
- hypertext documents
- social networks
- protein structures
- transportation networks
- World Wide Web
- food webs
- . . .

Mining for patterns in graphs

Q1. Given a class \mathcal{C} of graphs, which patterns typically occur frequently in graphs in C?

Q1 has become a very hot topic over the past years (Science, Nature)

To do Q1 well we must at least be able to do:
Q2. Given a graph G, which patterns occur frequently in G ?
This can be interesting in itself. We will focus on Q2.
Q3. Given a collection \mathcal{C} of graphs, which patterns frequently occur in graphs in C?

Mining for patterns in graphs

Q1. Given a class \mathcal{C} of graphs, which patterns typically occur frequently in graphs in \mathcal{C} ?

Q1 has become a very hot topic over the past years (Science, Nature)

To do Q1 well we must at least be able to do:
Q2. Given a graph G, which patterns occur frequently in G ?
This can be interesting in itself. We will focus on Q2.
Q3. Given a collection \mathcal{C} of graphs, which patterns frequently occur in graphs in C?

Examples of patterns

frequency: $\#\{x \mid(x, 8) \in G\}$

Examples of patterns

frequency: $\#\{x \mid(0, x) \in G\}$

Examples of patterns

frequency: $\#\{(x, y) \mid(x, 8) \in G \wedge(8, y) \in G\}$

Existential nodes in patterns


```
frequency: #{x| \existsz:(z,x)\inG\wedge(z,8)\inG}
```


Existential nodes in patterns

$$
0 \longrightarrow \exists \longrightarrow \exists \longrightarrow x
$$

frequency:

$$
\#\left\{x \mid \exists z_{1}, z_{2}:\left(0, z_{1}\right) \in G \wedge\left(z_{1}, z_{2}\right) \in G \wedge\left(z_{2}, x\right) \in G\right\}
$$

Our work

Efficiently mine all frequent tree-shaped patterns in a large graph

- Incremental in size of patterns
- Tree-shaped only, but with existential nodes
- Database approach: on top of SQL
- Mining results stay in database
- Provable optimality properties
- Underlying theory of conjunctive queries

Avoiding isomorphic trees

\Rightarrow Generate only canonical trees: "left-deep"

Generating all canonical trees

A. If T is canonical and n is its last node, then $T-n$ is also canonical.
\Rightarrow Generate canonical trees incrementally by size
B. All canonical extensions of a given canonical tree can be generated efficiently.

- All this is known for a long time!
- For general graph shapes, no such efficient canonization is known.

Generating all canonical trees

$$
x_{1} \longrightarrow x_{2}
$$

$$
\begin{aligned}
& x_{1} \rightarrow x_{2} \longrightarrow x_{3} \longrightarrow x_{4} \\
& x_{1} \rightarrow x_{2} \rightarrow x_{3} \quad x_{1} \rightarrow x_{2} \rightarrow x_{4} \\
& x_{1} \rightarrow x_{3} \\
& x_{1} \rightarrow x_{4} \rightarrow x_{3} \\
& \xrightarrow[x_{1}]{\rightarrow x_{3}}
\end{aligned}
$$

Equivalent patterns

- Two patterns are equivalent if they become identical after removal of redundancies.
\Rightarrow Efficient redundancy check needed

Redundancy characterization

A pattern has a redundancy if and only if contains the following pattern:

where subtree T is at least as deep as the \exists-path.

- Efficiently checkable
- For general graph patterns, redundancy checking is NP-complete

Overall approach

1. Generate canonical trees of increasing size
2. Generate (non-redundant) projections
3. Generate selections
4. Count all instantiations with one SQL expression

canon. tree projection selection instantiation

Levelwise generation of projections

Levelwise generation of projections

Levelwise generation of projections

Levelwise generation of projections

Levelwise generation of selections

Levelwise generation of selections

Levelwise generation of selections

Pattern tables

c_{2}	c_{4}	count
66	77	20
66	78	24
	\vdots	

In each row of the table,

$$
\text { count }=\#\left\{x_{3} \mid \exists x_{1}:\left(x_{1}, c_{2}\right) \in G \wedge\left(c_{2}, x_{3}\right) \in G \wedge\left(x_{1}, c_{4}\right) \in G\right\}
$$

Computing the pattern table in SQL

1. Initalize with natural join of parent pattern tables
parent patterns of

2. Compute counts with one SQL expression

SQL expression

Graph G stored in table G (from, to)


```
select tab.c2, tab.c3, count(*)
from (select table.c2, table.c3, G3.to
```

 from G G2, G G3, G G4, table
 where G2.from=G4.from and G2.to=G3.from
 and G2.to=table.c2 and G4.to=table.c3)

Optimality properties

1. We never investigate distinct but equivalent patterns
2. We never investigate a pattern subsumed by another pattern that we already know to be infrequent

- Incremental and levelwise approach
- Subsumption for general graph patterns is NP-complete

Current work

- Database performance tuning
- Apply to real-world graph data
- Pattern browsing
- Association rules

