
Relative expressive power of navigational querying on graphsq

George H.L. Fletcher a, Marc Gyssens b, Dirk Leinders b, Dimitri Surinx b, Jan Van den Bussche b,⇑,
Dirk Van Gucht c, Stijn Vansummeren d, Yuqing Wu c

a Eindhoven University of Technology, The Netherlands
bHasselt University & Transnational University of Limburg, Belgium
c Indiana University, United States
dUniversité Libre de Bruxelles, Belgium

a r t i c l e i n f o

Article history:
Received 2 January 2014
Received in revised form 6 November 2014
Accepted 22 November 2014
Available online 3 December 2014

Keywords:
Graph databases
Query languages
Expressive power

a b s t r a c t

Motivated by both established and new applications, we study navigational query lan-
guages for graphs (binary relations). The simplest language has only the two operators
union and composition, together with the identity relation. We make more powerful lan-
guages by adding any of the following operators: intersection; set difference; projection;
coprojection; converse; and the diversity relation. All these operators map binary relations
to binary relations. We compare the expressive power of all resulting languages. We do this
not only for general path queries (queries where the result may be any binary relation) but
also for boolean or yes/no queries (expressed by the nonemptiness of an expression). For
both cases, we present the complete Hasse diagram of relative expressiveness. In particular
the Hasse diagram for boolean queries contains some nontrivial separations and a few sur-
prising collapses.

! 2014 Elsevier Inc. All rights reserved.

1. Introduction

Graph databases, and the design and analysis of query languages appropriate for graph data, have a rich history in data-
base systems and theory research [3]. Originally investigated from the perspective of object-oriented databases, interest in
graph databases research has been continually renewed, motivated by data on the Web [2,16] and new applications such as
dataspaces [19], Linked Data [8], and RDF [32].

Typical of access to graph-structured data is its navigational nature. Indeed, in restriction to trees, there is a standard nav-
igational query language, called XPath, whose expressive power has been intensively studied [7,25]. XPath has been formal-
ized in terms of a number of basic operators on binary relations [26]. Hence a natural approach [30,22,1] is to take this same
set of operators but now evaluate them over graphs instead of over trees. Our goal in this paper is to understand the relative
importance of the different operators in this setting.

Concretely, in the present paper, we consider a number of natural operators on binary relations (graphs): union; compo-
sition; intersection; set difference; projection; coprojection; converse; and the identity and diversity relations. While some
of these operators also appear in XPath, they are there evaluated on trees. The largest language that we consider has all oper-
ators, while the smallest language has only union, composition, and the identity relation. When a language has set difference,

http://dx.doi.org/10.1016/j.ins.2014.11.031
0020-0255/! 2014 Elsevier Inc. All rights reserved.

q An extended abstract announcing the results of this paper was presented at the 14th International Conference on Database Theory, Uppsala, Sweden,
March 2011.
⇑ Corresponding author.

Information Sciences 298 (2015) 390–406

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.11.031&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.11.031
http://dx.doi.org/10.1016/j.ins.2014.11.031
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

it also has intersection, by R \ S ¼ R" ðR" SÞ. Interestingly, the ensemble of all operators except intersection and set differ-
ence precisely characterizes the first-order queries safe for bisimulation [36,26]. This logical grouping of operators is also
present in our research, where we often have to treat the case without intersection separately from the case with
intersection.1

Just as in the relational algebra, expressions are built up from input relation names using these operators. Since each
operator maps binary relations to binary relations, these query languages express queries from binary relations to binary
relations: we call such queries path queries. By identifying nonemptiness with the boolean value ‘true’ and emptiness with
‘false’, as is standard in database theory [4], we can also express yes/no queries within this framework. To distinguish them
from general path queries, we shall refer to the latter as boolean queries.

The contribution of the present paper is providing a complete comparison of the expressiveness of all resulting languages,
and this both for general path queries and boolean queries. While establishing the relative expressiveness for general path
queries did not yield particularly surprising results, the task for the case of boolean queries proved much more challenging.
For example, consider the converse operator R"1 ¼ fðy; xÞjðx; yÞ 2 Rg. On the one hand, adding converse to a language not yet
containing this feature sometimes adds boolean query power. This is, e.g., the case for the language containing all other fea-
tures. The proof, however, is nontrivial and involves a specialized application of invariance under bisimulation known from
arrow logics. On the other hand, adding converse to a language containing projection but not containing intersection does
not add any boolean query power. We thus obtain a result mirroring similar results known for XPath on trees [7,28,37],
where, e.g., downward XPath is known to be as powerful as full XPath for queries evaluated at the root.

Let us briefly discuss some of the methods we use. In many cases where we separate a language L1 from a language L2, we
can do this in a strong sense: we are able to give a single counterexample, consisting of a pair ðA;BÞ of finite binary relations
such that A and B are distinguishable by an expression from L1 but indistinguishable by any expression from L2. Notice that
in general, separation is established by providing an infinite sequence of relation pairs such that some expression from L1

distinguishes all pairs but no expression of L2 distinguishes all pairs. Existence of a single counterexample pair is therefore
nonobvious, and we do not really know whether there is a deeper reason why in our setting this strong form of separation
can often be established. Strong separation is desirable as it immediately implies separation of L1 not only from L2 but also
from the infinitary variant of L2 (which allows infinite unions, as in infinitary logic [10]). Note that indistinguishability of a
pair of finite binary relations can in principle be checked by computer, as the number of possible binary relations on a finite
domain is finite. Indeed, in many cases we have used this ‘‘brute-force approach’’ to verify indistinguishability. In some cases,
however, this approach is not feasible within a reasonable time. Fortunately, by applying invariance under bisimulation for
arrow logics [27], we can alternatively check a sufficient condition for indistinguishability in polynomial time. We have
applied this alternative approach in our computer checks. Finally, the cases where we could not establish strong separation
fall in the class of conjunctive queries [4]. We developed a method based on homomorphism techniques to establish ordinary
separation for these cases.

The languages considered here are very natural and date all the way back to the ‘‘calculus of relations’’ created by Peirce
and Schröder, and popularized and greatly developed by Tarski and his collaborators [33,34]. The full language actually has
the same expressive power as 3-variable first-order logic (FO3) under the active-domain semantics, for path queries as well
as for boolean queries. Due to the naturalness of the languages, they appear in many other fields where binary relations are
important, such as description logics, dynamic logics, arrow logics, and relation algebras [6,21,27,9,23,20]. Thus, our results
also yield some new insight into these fields. The investigation of expressive power as in the present paper is very natural
from a database theory perspective. In the above-mentioned fields, however, one is primarily interested in other questions,
such as computational complexity of model checking, decidability of satisfiability, and axiomatizability of equivalence. The
expressiveness issues investigated in this paper have not been investigated before.2

At this point we must repeat that also in the database field, graph query languages have been investigated intensively.
There is, for example, the vast body of work on conjunctive regular path queries (CRPQs) [5]. As a matter of fact, CRPQs
are subsumed in the calculus of relations, with the exception of the Kleene star (transitive closure) operator. Indeed, the
results reported in this journal article have been extended to the setting where transitive closure is present, as originally
announced in our conference paper [13]. This extension will be elaborated in a companion journal article [12]; additional
results on the special case of a single relation name have been published in a third journal article [14].

This paper is further organized as follows. In Section 2, we define the class of languages studied in the paper. In Section 3,
we describe the techniques we use to separate one language from another. In Section 4 we present our two main technical
results in a self-contained manner: first, the added power of projection in expressing boolean queries, compared to the lan-
guage without intersection and coprojection; second, the elimination of converse in languages with projection, but without
intersection. Then we establish the complete Hasse diagram of relative expressiveness. We do so for path queries in Section 5,
and for boolean queries in Section 6. Finally, we discuss future research directions in Section 7.

1 Strictly speaking, van Benthem’s discussion [36] does not include the converse operator nor the identity and diversity relations.
2 Strictly speaking, one may argue that the ‘‘calculus of relations’’ refers to a set of equational axioms now known as the axioms for relation algebras (see the

references above). However, the original and natural interpretation of the operations of the calculus of relations is clearly that of operations on binary relations
[34,31]. In modern terminology this interpretation corresponds to ‘representable’ relation algebras. We stress that the present paper focuses on the expressive
power of the various operations and not on axiomatizability, completeness of equations, or representability of abstract relation algebras.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 391

2. Preliminaries

In this paper, we are interested in navigating over graphs whose edges are labeled by symbols from a finite, nonempty set
of labels K. We can regard these edge labels as binary relation names and thus regard K as a relational database schema. For
our purposes, then, a graph G is an instance of this database schema K. That is, assuming an infinite universe V of data ele-
ments called nodes, G assigns to every R 2 K a relation GðRÞ#V % V . Each pair in GðRÞ is called an edge with label R. In what
follows, GðRÞ may be infinite, unless explicitly stated otherwise. All inexpressibility results in this paper already hold in
restriction to finite graphs, however.

The most basic language for navigating over graphs we consider is the algebra N whose expressions are built recursively
from the edge labels, the primitive ;, and the primitive id, using composition (e1 & e2) and union (e1 [e2). Semantically, each
expression e 2 N defines a path query. A path query is a function q taking any graph G as input and returning a binary relation
qðGÞ# adomðGÞ % adomðGÞ. Here, adomðGÞ denotes the active domain of G, which is the set of all entries occurring in one of
the relations of G. Formally,

adomðGÞ ¼ fmj9n;9R 2 K : ðm; nÞ 2 GðRÞ _ ðn;mÞ 2 GðRÞg:

In detail, the semantics of N is inductively defined as follows:

RðGÞ ¼ GðRÞ;
;ðGÞ ¼ ;;
idðGÞ ¼ fðm;mÞjm 2 adomðGÞg;
e1 & e2ðGÞ ¼ fðm;nÞj9p ððm; pÞ 2 e1ðGÞ & ðp; nÞ 2 e2ðGÞÞg;
e1 [e2ðGÞ ¼ e1ðGÞ [e2ðGÞ:

The basic algebra N can be extended by adding some of the following features: diversity (di), converse (e"1), intersection
(e1 \ e2Þ, difference (e1 " e2), projections (p1ðeÞ and p2ðeÞ), and the coprojections (p1ðeÞ and p2ðeÞ). We refer to the operators
in the basic algebra N as basic features; we refer to the extensions as nonbasic features. The semantics of the extensions is as
follows:

diðGÞ ¼ fðm;nÞjm;n 2 adomðGÞ & m – ng;
e"1ðGÞ ¼ fðm;nÞjðn;mÞ 2 eðGÞg;
e1 \ e2ðGÞ ¼ e1ðGÞ \ e2ðGÞ;
e1 " e2ðGÞ ¼ e1ðGÞ " e2ðGÞ;
p1ðeÞðGÞ ¼ fðm;mÞjm 2 adomðGÞ & 9n ðm;nÞ 2 eðGÞg;
p2ðeÞðGÞ ¼ fðm;mÞjm 2 adomðGÞ & 9n ðn;mÞ 2 eðGÞg;
p1ðeÞðGÞ ¼ fðm;mÞjm 2 adomðGÞ & :9n ðm;nÞ 2 eðGÞg;
p2ðeÞðGÞ ¼ fðm;mÞjm 2 adomðGÞ & :9n ðn;mÞ 2 eðGÞg:

If F is a set of nonbasic features, we denote by N ðFÞ the language obtained by adding all features in F to N . For example,
N ð\Þ denotes the extension of N with intersection, and N ð\;pÞ denotes the extension of N with intersection and both pro-
jections.3 We will see below that extending the basic algebra with diversity, difference, and converse is sufficient to express all
other nonbasic features. This full language N ð"; di; "1Þ is known as the calculus of relations.

We will actually compare language expressiveness at the level of both path queries and boolean queries. Path queries
were defined above; a boolean query is a function from graphs to ftrue; falseg.

Definition 2.1. A path query q is expressible in a language N ðFÞ if there exists an expression e 2 N ðFÞ such that, for every
graph G, we have eðGÞ ¼ qðGÞ. Similarly, a boolean query q is expressible in N ðFÞ if there exists an expression e 2 N ðFÞ such
that, for every graph G, we have that eðGÞ is nonempty if, and only if, qðGÞ is true. In both cases, we say that q is expressed by e.

In what follows, we write N ðF1Þ6pathN ðF2Þ if every path query expressible in N ðF1Þ is also expressible in N ðF2Þ. Similarly,
we write N ðF1Þ6boolN ðF2Þ if every boolean query expressible in N ðF1Þ is also expressible in N ðF2Þ. Note that
N ðF1Þ6pathN ðF2Þ implies N ðF1Þ6boolN ðF2Þ, but not necessarily the other way around. We write ipath and ibool for the nega-
tion of 6path and 6bool.

Remark 2.2. The attentive reader will note that every fragment N ðFÞ actually depends on the label vocabulary K which is
arbitrary but fixed. So to be fully precise we would need to use the notation N KðFÞ. For all the results in this paper, a
comparison of fragments of the form N ðF1Þ 6 N ðF2Þ (with 6 being 6path or 6bool) can be interpreted to mean that we have
N KðF1Þ 6 N KðF2Þ for every K. Moreover, whenever we have a negative result of the form N ðF1ÞiN ðF2Þ, this will actually
already hold for the simplest K consisting of a single label.

3 We do not consider extensions of N in which only one of the two projections, respectively one of the two coprojections, is present.

392 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

To illustrate, in the interpretation described above, the id relation may be considered redundant in any fragment that
includes the projections. Indeed, we can express id as

S
R2Kðp1ðRÞ [p2ðRÞÞ. This observation falls outside the scope of the

present investigation, however, since we do not consider id as an optional feature; it belongs to all fragments considered in
this paper.

Remark 2.3. The language XPath [38] also includes the path equality operator :½e1 ¼ e2((in XPath called ‘general compari-
son’), with the following semantics:

:½e1 ¼ e2(ðGÞ ¼ fðm;mÞjm 2 adomðGÞ & 9n ðm; nÞ 2 e1ðGÞ \ e2ðGÞg:

This operator can be expressed in the fragment N ðp;\Þ as p1ðe1 \ e2Þ, as well as in the fragment N ð"1;\Þ as ðe1 \ e"1
2 Þ \ id.

Actually the latter expression is not particular to this example, because it reflects the way in which projection is expressed
using converse and intersection, as we will see in Section 5.

3. Tools to establish separation

Our results in Sections 5 and 6 will use the following tools to separate a language N ðF1Þ from a language N ðF2Þ, i.e.,
to establish that N ðF1ÞipathN ðF2Þ, or N ðF1ÞiboolN ðF2Þ. It will also be useful to consider stronger variants of ipath and ibool.

Definition 3.1. The language N ðF1Þ is strongly separable from the language N ðF2Þ at the level of path queries if there exists a
path query q expressible in N ðF1Þ and a finite graph G, such that, for every expression e 2 N ðF2Þ, we have qðGÞ – eðGÞ. We
write N ðF1Þipath

strongN ðF2Þ in this case. Similarly, N ðF1Þ is strongly separable from N ðF2Þ at the level of boolean queries if there
exists a boolean query q expressible in N ðF1Þ and two finite graphs G1 and G2, with qðG1Þ true and qðG2Þ false, such that, for
every expression e 2 N ðF2Þ; eðG1Þ and eðG2Þ are both empty, or both nonempty. We write N ðF1Þibool

strongN ðF2Þ in this case.

3.1. Path separation

Since N ðF1Þ6pathN ðF2Þ implies N ðF1Þ6boolN ðF2Þ, also N ðF1ÞiboolN ðF2Þ implies N ðF1ÞipathN ðF2Þ by contraposition. In
most instances, we can therefore establish separation at the level of general path queries by establishing separation at
the level of boolean queries. In the cases where N ðF1ÞipathN ðF2Þ although N ðF1Þ6boolN ðF2Þ, we identify a finite graph G
and an expression e1 in N ðF1Þ and show that, for each expression e2 in N ðF2Þ, e1ðGÞ– e2ðGÞ. Notice that we actually establish
strong path separation in those cases.

3.2. Boolean separation

To establish separation at the level of boolean queries, we use the following techniques.

3.2.1. Brute-force approach
Two graphs G1 and G2 are said to be distinguishable at the boolean level in a languageN ðFÞ if there exists a boolean query q

expressible in N ðFÞ such that exactly one of qðG1Þ and qðG2Þ is true, and the other is false. If such a query does not exists, G1

and G2 are said to be indistinguishable in N ðFÞ.
Using this terminology, two languages N ðF1Þ and N ðF2Þ are strongly separable if there exist two finite graphs G1 and G2

that are distinguishable in N ðF1Þ, but indistinguishable in N ðF2Þ.
For two finite graphs G1 and G2, (in) distinguishability in a language N ðFÞ can easily be machine-checked through the

Brute-Force Algorithm described below.
First observe that adomðG1Þ and adomðG2Þ are finite since G1 and G2 are finite. Moreover, for any e in

N ðFÞ; eðG1Þ# adomðG1Þ % adomðG1Þ and eðG2Þ# adomðG2Þ % adomðG2Þ. Hence, eðG1Þ and eðG2Þ are finite and the set
fðeðG1Þ; eðG2ÞÞje 2 N ðFÞg is also finite. Clearly, G1 is indistinguishable from G2 if this set contains only pairs that are both
empty or both nonempty.

The Brute-Force Algorithm computes the above set by first initializing the set

B ¼ fðidðG1Þ; idðG2ÞÞg [fðdiðG1Þ;diðG2ÞÞg [fðG1ðRÞ;G2ðRÞÞjR 2 Kg

(where fðdiðG1Þ; diðG2ÞÞg is omitted if di R F). It then adds new pairs ðR1;R2Þ to B by closing B pair-wise under the features in
N ðFÞ. That is, for every binary operator) in N ðFÞ and all pairs ðR1;R2Þ; ðS1; S2Þ in B the algorithm adds ðR1) S1;R2) S2Þ to B,
and similarly for the unary operators. Since there are only a finite number of pairs, the algorithm is guaranteed to end. Of
course, the worst-case complexity of this brute-force algorithm is exponential. Nevertheless, we have successfully checked
indistinguishability using this Brute-Force Algorithm in many of the cases that follow.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 393

3.2.2. Bisimulation
We will not always be able to use the methodology above to separate two languages. In particular, to establish that

N ð"1;\ÞiboolN ð"; diÞ we will employ invariance results under the notion of bisimulation below. In essence, this notion is
based on the notion of bisimulation known from arrow logics [27]. Below, we adapt this notion to the current setting.

We require the following preliminary definitions. Let G ¼ ðG; a; bÞ denote a marked graph, i.e., a graph G with
a; b 2 adomðGÞ. The degree of an expression e is the maximum depth of nested applications of composition, projection
and coprojection in e. For example, the degree of R & R is 1, while the degree of both R & ðR & RÞ and p1ðR & RÞ is 2. Intuitively,
the depth of e corresponds to the quantifier rank of the standard translation of e into FO3. For a set of features F;N ðFÞk
denotes the set of expressions in N ðFÞ of degree at most k.

In what follows, we are only concerned with bisimulation results regarding N ð"; diÞ. The following is an appropriate
notion of bisimulation for this language.

Definition 3.2 (Bisimilarity). Let k be a natural number, and let G1 ¼ ðG1; a1; b1Þ and G2 ¼ ðG2; a2; b2Þ be marked graphs. We
say that G1 is bisimilar to G2 up to depth k, denoted G1 ’k G2, if the following conditions are satisfied:

Atoms a1 ¼ b1 if and only if a2 ¼ b2; and ða1; b1Þ 2 G1ðRÞ if and only if ða2; b2Þ 2 G2ðRÞ, for every R 2 K;
Forth if k > 0, then, for every c1 in adomðG1Þ, there exists some c2 in adomðG2Þ such that both ðG1; a1; c1Þ ’k"1 ðG2; a2; c2Þ

and ðG1; c1; b1Þ’k"1ðG2; c2; b2Þ;
Back if k > 0, then, for every c2 in adomðG2Þ, there exists some c1 in adomðG1Þ such that both ðG1; a1; c1Þ ’k"1 ðG2; a2; c2Þ

and ðG1; c1; b1Þ ’k"1 ðG2; c2; b2Þ.

Expressions in N ð"; diÞ of depth at most k are invariant under bisimulation:

Proposition 3.3. Let k be a natural number; let e be an expression in N ð"; diÞk; and let G1 ¼ ðG1; a1; b1Þ and G2 ¼ ðG2; a2; b2Þ be
marked graphs. If G1 ’k G2 then ða1; b1Þ 2 eðG1Þ() ða2; b2Þ 2 eðG2Þ.

In other words, if G1 ’k G2, then any expression of degree at most k either both selects ða1; b1Þ in G1 and ða2; b2Þ in G2, or
neither of them. As such, the marked graphs G1 and G2 are indistinguishable by expressions in N ð"; diÞk. The proof of Prop-
osition 3.3 is by a straightforward induction on e.

The following proposition states how we can use Proposition 3.3 to show that some boolean query is not expressible in
N ð"; diÞk.

Proposition 3.4. Let k be a natural number. A boolean query q is not expressible in N ð"; diÞk if there exist graphs G1 and G2 such
that qðG1Þ is true and qðG2Þ is false, and, for each pair ða1; b1Þ 2 adomðG1Þ2, there exists ða2; b2Þ 2 adomðG2Þ2 such that
ðG1; a1; b1Þ ’k ðG2; a2; b2Þ.

We omit the straightforward proof; we note that the converse implication holds as well [15].

3.2.3. Homomorphism approach
To show that N ðpÞiboolN ð"1; diÞ, we used an entirely different technique, based on the theory of conjunctive queries and

the nonexistence of certain homomorphisms on particular graphs. The details are given in Section 4.1.

4. The power of various operators

In this section, two main technical results are shown regarding the power of various operators. The first result (Proposi-
tion 4.1) states that the p operator (in combination with the basic operators) provides some boolean querying power that
cannot be provided by the "1 and di operators. This is a sharp expressivity result on projection, since adding any other feature
to the fragment N ð"1; diÞ leads to the expressibility of projection.

Proposition 4.1. N ðpÞiboolN ð"1; diÞ.

Since this result is highly technical, it is proven in Section 4.1.
The second result (Proposition 4.2) shows that, at the level of boolean queries, "1 does not add expressive power in the

presence of p and in the absence of \.

Proposition 4.2. Let F be a set of nonbasic features for which " R F and \ R F. Then, N ðF [f"1gÞ6boolN ðF [fpgÞ.

Example 4.3. To illustrate Proposition 4.2, consider the expression e1 ¼ R3 & R"1 & R3 in N ð"1Þ. The expression p1ðe1Þ can be
equivalently expressed in N ðpÞ as p1 R3 & p2ðp1ðR3Þ & RÞ

! "
. Now observe that, for any graph G, we have that e1ðGÞ is

nonempty if and only if p1ðe1ÞðGÞ is nonempty.

394 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

Using this same observation, one can express the non-emptiness of the expression e2 ¼ R & p2ððR & SÞ [ðR"1 & SÞÞ in
N ð"1;pÞ by the non-emptiness of the expression p1ðe2Þ ¼ p1 R & p2ðR & SÞ & p2ðp1ðRÞ & SÞð Þ in N ðpÞ.

Proof of Proposition 4.2. Let e be an expression in N ðF [f"1;pgÞ. Without loss of generality, we may assume that "1 is only
applied in e to edge labels, so for each edge label R we also consider R"1 as an edge label. By simultaneous induction on the
size of e (the number of nodes in the syntax tree), we prove for i ¼ 1;2 that

* piðeÞ is expressible in N ðF [fpgÞ; and
* if p 2 F, then piðeÞ is expressible in N ðFÞ.

Notice that the second statement is implied by the first, but we need to consider both statements together to
make the induction work. The basis of the induction is trivial. For all operators except composition we reason as
follows:

p1ðR"1Þ ¼ p2ðRÞ p1ðR"1Þ ¼ p2ðRÞ
p2ðR"1Þ ¼ p1ðRÞ p2ðR"1Þ ¼ p1ðRÞ
piðpjðe0ÞÞ ¼ pjðe0Þ piðpjðe0ÞÞ ¼ pjðe0Þ
piðpjðe0ÞÞ ¼ pjðe0Þ piðpjðe0ÞÞ ¼ pjðe0Þ
piðe1 [e2Þ ¼ piðe1Þ [piðe2Þ piðe1 [e2Þ ¼ piðe1Þ & piðe2Þ:

This leaves the case where e is of the form e1 & e2. Let n be the first node in preorder in the syntax tree of e that
is not an application of &, and let e3 be the expression rooted at n. By associativity of &, we can equivalently write e
in the form e3 & e4, where e4 equals the composition of all right-child expressions from the parent of n up to the root
(in that order). Note that e3 & e4 has the same size as e. We now consider the different possibilities for the form of
e3:

p1ðid & e4Þ ¼ p1ðe4Þ
p1ðdi & e4Þ ¼ p1ðdi & p1ðe4ÞÞ
p1ðR & e4Þ ¼ p1ðR & p1ðe4ÞÞ

p1ðR"1 & e4Þ ¼ p2ðp1ðe4Þ & RÞ
p1ðpjðe5Þ & e4Þ ¼ pjðe5Þ & p1ðe4Þ
p1ðpjðe5Þ & e4Þ ¼ pjðe5Þ & p1ðe4Þ
p1ððe5 [e6Þ & e4Þ ¼ p1ðe5 & e4Þ [p1ðe6 & e4Þ
p1ðid & e4Þ ¼ p1ðe4Þ
p1ðdi & e4Þ ¼ p1ðdi & p1ðe4ÞÞ
p1ðR & e4Þ ¼ p1ðR & p1ðe4ÞÞ

p1ðR"1 & e4Þ ¼ p2ðp1ðe4Þ & RÞ
p1ðpjðe5Þ & e4Þ ¼ pjðe5Þ [p1ðe4Þ
p1ðpjðe5Þ & e4Þ ¼ pjðe5Þ [p1ðe4Þ
p1ððe5 [e6Þ & e4Þ ¼ p1ðe5 & e4Þ & p1ðe6 & e4Þ:

The crucial rules that eliminate inverse in the composition step are the fourth and the fourth-last. Hence we prove their
correctness formally. Let G be an arbitrary graph. Then,

ðx; xÞ 2 p1ðR"1 & e4ÞðGÞ() 9y : ðx; yÞ 2 R"1 & e4ðGÞ
() 9y9z : ðx; zÞ 2 R"1ðGÞ ^ ðz; yÞ 2 e4ðGÞ
() 9z : ðz; xÞ 2 RðGÞ ^ ðz; zÞ 2 p1ðe4ÞðGÞ
() 9z : ðz; xÞ 2 p1ðe4Þ & RðGÞ
() ðx; xÞ 2 p2ðp1ðe4Þ & RÞðGÞ:

This proves the fourth rule. The fourth-last rule follows from the fourth rule and the fact that piðe0Þ ¼ id" piðe0Þ. This handles
p1ðeÞ and p1ðeÞ.

To handle p2ðeÞ and p2ðeÞ, let n now be the first node in reverse preorder that is not an application of &. We can now write
e as e4 & e3. The proof is now similar:

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 395

p2ðe4 & idÞ ¼ p2ðe4Þ
p2ðe4 & diÞ ¼ p2ðp2ðe4Þ & diÞ
p2ðe4 & RÞ ¼ p2ðp2ðe4Þ & RÞ

p2ðe4 & R"1Þ ¼ p1ðR & p2ðe4ÞÞ
p2ðe4 & pjðe5ÞÞ ¼ p2ðe4Þ & pjðe5Þ
p2ðe4 & pjðe5ÞÞ ¼ p2ðe4Þ & pjðe5Þ
p2ðe4 & ðe5 [e6ÞÞ ¼ p2ðe4 & e5Þ [p2ðe4 & e6Þ
p2ðe4 & idÞ ¼ p2ðe4Þ
p2ðe4 & diÞ ¼ p2ðp2ðe4Þ & diÞ
p2ðe4 & RÞ ¼ p2ðp2ðe4Þ & RÞ

p2ðe4 & R"1Þ ¼ p1ðR & p2ðe4ÞÞ
p2ðe4 & pjðe5ÞÞ ¼ pjðe5Þ [p2ðe4Þ
p2ðe4 & pjðe5ÞÞ ¼ pjðe5Þ [p2ðe4Þ
p2ðe4 & ðe5 [e6ÞÞ ¼ p2ðe4 & e5Þ & p2ðe4 & e6Þ:

In particular, if e is an expression inN ðF [f"1gÞ, it follows from the above that p1ðeÞ is expressible inN ðF [fpgÞ. Proposition
4.2 now follows from the observation that, for any graph G; eðGÞ is nonempty if and only if p1ðeÞðGÞ is nonempty. h

Remark 4.4. Proposition 4.2 may remind one of a similar result known for XPath on trees [7,28,37] where downward XPath
is known to be as powerful as full XPath for queries evaluated at the root. However, an important difference is that we are
using projections both on the first and second column of a relation, whereas in the result on trees only the first projection is
present.

Indeed, Proposition 4.2 no longer holds for a language which only contains the first, but not the second projection, or vice
versa. Consider the following two graphs G1 ¼ fRða; bÞ; Sðc; bÞg en G2 ¼ fRða; bÞ; Sðc; dÞg. For any expression e 2 N ðp1Þ it must
be that eðG1Þ# fða; aÞ; ðb; bÞ; ðc; cÞ; ða; bÞ; ðc; bÞg. It is not hard to see that for each ðx; yÞ 2 fða; aÞ; ðb; bÞ; ðc; cÞ; ða; bÞg;
ðx; yÞ 2 eðG1Þ iff ðx; yÞ 2 eðG2Þ and ðc; bÞ 2 eðG1Þ iff ðc; dÞ 2 eðG2Þ. Therefore, it is clear that G1 and G2 are indistinguishable
in N ðp1Þ. They are, however, distinguishable in N ð"1Þ by R & S"1.

Remark 4.5. Notice that the translation used to eliminate converse in the proof of Proposition 4.2 could blow-up the size of
the expressions exponentially. Indeed, define a family of expressions inductively as follows: e0 ¼ T and enþ1 ¼ p1ððR [TÞ & enÞ.
Let us denote the size of an expression e as jej. Clearly, je0j ¼ 0 and jenþ1j ¼ jenjþ 5, which implies that jenj is linear in n. Now,
let e0n be the expression formed from en according to the rules outlined in the proof of Proposition 4.2. Clearly, e00 ¼ T and
e0nþ1 ¼ p1ðR & e0nÞ [p1ðS & e0nÞ. Therefore, je00j ¼ 1 and je0nþ1j ¼ 2je0njþ 7, which implies that je0njP 2n.

On the other hand, our translation is never worse than single-exponential. We leave open whether a polynomial
translation is possible. Interestingly, the analogous question about the complexity of translating from FO3 to N ðdi; "1;"Þ,
mentioned in the Introduction, has not yet been addressed in the literature. For fragments of FO2, a relevant result has been
reported [11].

4.1. Proof of Proposition 4.1

We begin by recalling some basic terminology and notions concerning conjunctive queries [4]. A conjunctive query with
nonequalities is expressed in the form H B. Here the body B is a finite set of relation atoms over the vocabulary K, as well as
nonequalities of the form x – y. The head H is a tuple of variables from B. The head may be the empty tuple in which case a
boolean query is expressed.

Given a conjunctive query Q : H B and a graph G, an assignment is a function f from the set of variables in Q to adomðGÞ.
We call f a matching of B in G if for each relation atom Rðx; yÞ in B, we have ðf ðxÞ; f ðyÞÞ 2 RðGÞ, and for each x– y in B we have
f ðxÞ – f ðyÞ. The evaluation of Q on G is then defined as

QðGÞ ¼ ff ðHÞj f is a matching from B to Gg:

In particular, if H is empty then QðGÞ is either fðÞg or empty; these two possible results are interpreted as the boolean
values true and false respectively.

A query Q1 is said to be contained in a query Q2, if for every graph G we have Q1ðGÞ#Q2ðGÞ. This is denoted by Q1 #Q2.
If B is the body of a conjunctive query with nonequalities, then Brel denotes the set of relation atoms in B. As is customary

in the theory of conjunctive queries, we can view the body of a conjunctive query without nonequalities as a graph whose
nodes are the variables.

396 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

Recall that a homomorphism is a matching from a body without nonequalities to another body without nonequalities,
viewed as a graph.

Lemma 4.6. Let Q1 : H1 B1 and Q2 : H2 B2 be conjunctive queries with nonequalities. If Q1 #Q2 then there exists a
homomorphism h : Brel

2 ! Brel
1 .

Proof. Notice that H1 2 Q1ðBrel
1 Þ since the identity map is clearly a matching. Hence H1 2 Q2ðBrel

1 Þ because Q1 #Q2 by hypoth-
esis. Therefore there exists a matching f : B2 ! Brel

1 , which is also a matching from Brel
2 to Brel

1 , and is hence the desired homo-
morphism. h

We say that a directed graph G is a chain if it has no loops or cycles and its undirected version is isomorphic to the undi-
rected chain with nodes 1; . . . ;n where n is the number of nodes of G. Such a chain has edges fi; iþ 1g for i ¼ 1; . . . ;n" 1.
Beware that in this terminology, a chain may have forward as well as backward edges, as illustrated in Fig. 1.

The following lemma can easily be proven by structural induction.

Lemma 4.7. If e is a union-free expression in N ð"1; diÞ, then there exists an equivalent conjunctive query Q : Hðx; yÞ B with
nonequalities such that Brel has the form of a disjoint union of chains.

Let QZZZ be the conjunctive query ðÞ BZZZ that checks for the existence of the pattern displayed in Fig. 2. The name ZZZ is
derived from the characteristic triple zigzag form of the pattern. For later use, we show the following. (Recall that an endo-
morphism of a structure A is a homomorphism from A to itself.)

Lemma 4.8. The BZZZ pattern has no endomorphism except for the identity.

Proof. Let f be an endomorphism of the BZZZ pattern in Fig. 2. We first show that f ðaÞ ¼ a. Note that there has to start a direc-
ted path of length 6 in f ðaÞ for the homomorphism property to hold since there starts a directed path of length 6 in a. There-
fore f ðaÞ ¼ a or f ðaÞ ¼ j. If f ðaÞ ¼ j then f ðgÞ ¼ k, and hence f ðjÞ ¼ l. This, however, is not possible since there starts a directed
path of length 6 in j but not in l. Therefore f ðaÞ ¼ a.

Now, the only thing left to verify is that no chain starting in a can be mapped homomorphically on another chain starting
in a. First note that every chain starting in a has a very special structure, i.e., a path of forward edges, followed by an inverted
edge, which is again followed by the same number of forward edges as before the inverted edge. Therefore, it is clear that a
chain C1 starting in a can only be mapped on another chain C2 – C1 starting in a, if and only if, the number of forward edges
in C1 minus one is at most the number of forward edges in C2 preceding the inverted edge. In our graph, however, the
number of forward edges in every chain starting in a minus one is at least seven, and the number of forward edges in every
chain starting in a preceding the inverted edge is at most six. Therefore we can conclude that fmaps every node onto itself as
desired. h

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. The boolean query QZZZ is expressible in N ð"1;pÞ by

p1ðR4 & R"1 & R4Þ & p1ðR5 & R"1 & R5Þ & p1ðR6 & R"1 & R6Þ:

This can be seen to be equivalent to

p1ðR4 & p2ðp1ðR4Þ & RÞÞ & p1ðR5 & p2ðp1ðR5Þ & RÞÞ & p1ðR6 & p2ðp1ðR6Þ & RÞÞ

in N ðpÞ (a general argument for a result of this type will be given in the proof of Proposition 4.2). Let us now, for the sake of
contradiction, assume that QZZZ is also expressible in N ð"1; diÞ by an expression Q. Hence, for every graph G: (1) if
QZZZðGÞ ¼ true then QðGÞ– ;, and (2) if QðGÞ – ; then QZZZðGÞ ¼ true. Since unions inN ð"1; diÞ can always be brought outside,
we can assume that Q ¼

Sn
i¼0ei for some n 2 N where each ei is a union-free expression in N ð"1; diÞ. Now, since

QZZZðBZZZÞ ¼ true, we also have QðBZZZÞ ¼ [n
i¼0eiðBZZZÞ – ;. Hence there exists e 2 fe0; . . . ; eng such that eðBZZZÞ – ;. By Lemma

4.7, e is equivalent to a conjunctive query with nonequalities He Be such that Brel
e is a disjoint union of chains. Furthermore,

since eðBZZZÞ – ; there exists a matching f : Brel
e ! BZZZ which is a homomorphism by definition.

Now let Qe be the conjunctive query with nonequalities ðÞ Be so that QeðGÞ ¼ true if and only if eðGÞ – ; for every graph
G. Since eðGÞ#QðGÞ for any graph G;QeðGÞ ¼ true implies QðGÞ– ;, whence by (2) QZZZðGÞ ¼ true. Therefore Qe #QZZZ . By
Lemma 4.6 there is a homomorphism g from BZZZ into Brel

e . Notice that in the BZZZ pattern displayed in Fig. 2, the left most
node, labeled a, has three outgoing edges. Furthermore, since Brel

e is a disjoint union of chains, no node in Brel
e has 3 outgoing

edges, and hence two out of gðbÞ; gðcÞ and gðdÞ are equal. Thus g is not injective.
Now consider g followed by f. This function is an endomorphism of BZZZ . Because g is not injective, this endomorphism is

not injective, and hence certainly not the identity, which contradicts Lemma 4.8. Therefore Q does not exist. h

Fig. 1. Example of a chain.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 397

5. Path queries

In this section, we characterize the order 6path of relative expressiveness for path queries by Theorem 5.2 below.
Towards the statement of this characterization, first notice the following interdependencies between features:

p1ðeÞ ¼ ðe & e"1Þ \ id ¼ ðe & ðid [diÞÞ \ id ¼ p1ðp1ðeÞÞ;
p2ðeÞ ¼ ðe"1 & eÞ \ id ¼ ððid [diÞ & eÞ \ id ¼ p2ðp2ðeÞÞ;
p1ðeÞ ¼ id" p1ðeÞ;
p2ðeÞ ¼ id" p2ðeÞ;
e1 \ e2 ¼ e1 " ðe1 " e2Þ:

Notice that these rewriting rules with e as their input variable provide a means to translate an expression into an equiv-
alent expression in another language.

Inspired by the above interdependencies, for any set of nonbasic features F, we define F to be the smallest superset of F
satisfying the following rules:

* If p 2 F, then p 2 F;
* If \ 2 F and di 2 F, then p 2 F;
* If \ 2 F and "1 2 F, then p 2 F;
* If " 2 F and p 2 F, then p 2 F.
* If " 2 F, then \ 2 F;

We can compute F from F by repeated application of the above rules, a process which terminates quickly after at most
three iterations. For example, f"; "1g ¼ f"; "1;\;p;pg.

Notice that, if F1 # F2, we can always rewrite an expression e 2 N ðF1Þ into an equivalent expression in N ðF2Þ using the
rewriting rules displayed above. Notice that Therefore, we obtain

Proposition 5.1. If F1 # F2, then N ðF1Þ6pathN ðF2Þ.

We will actually show that the converse also holds, whence

Theorem 5.2. N ðF1Þ6pathN ðF2Þ if and only if F1 # F2.

The ‘‘only if’’ direction of Theorem 5.2 requires a detailed analysis. For clarity of presentation, we divide the languages
under consideration into two classes, i.e., the class C of languages without intersection, and the class C½\(of languages with
intersection. Formally:

C ¼ fN ðFÞj\ R Fg;
C½\(¼ fN ðFÞj\ 2 Fg:

We first establish the ‘‘only if’’ direction for the cases where N ðF1Þ and N ðF2Þ belong to the same class. We do so for each
class separately in Sections 5.1 and 5.2. Finally, in Section 5.3, we consider the case whereN ðF1Þ andN ðF2Þ belong to distinct
classes.

5.1. Languages without \

In this subsection, we show the ‘‘only if’’ direction of Theorem 5.2, restricted to C, the class of languages without \. Stated
positively, the proposition states that for fragments F1 and F2 using only the operators di;p and p;N ðF1Þ6pathN ðF2Þ can only
hold if F1 # F2.

Fig. 2. Query pattern BZZZ used to prove Proposition 4.1. All edges are assumed to have the same label R.

398 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

Proposition 5.3. Let N ðF1Þ and N ðF2Þ be in C. If F1 ! F2, then N ðF1ÞipathN ðF2Þ.
Propositions 5.1 and 5.3 combined yield the Hasse diagram of 6path for C, shown in Fig. 3. It is indeed readily verified that

for any two languages N ðF1Þ and N ðF2Þ in C, there is a path from N ðF1Þ to N ðF2Þ in Fig. 3 if and only if F1 # F2.
Towards a proof of Proposition 5.3, we first establish an auxiliary proposition. For later use, we sometimes prove results

that are stronger than strictly needed for this purpose.

Proposition 5.4. Let F1 and F2 be sets of nonbasic features.

1. If di 2 F1 and di R F2, then N ðF1Þibool
strongN ðF2Þ.

2. If p 2 F1;p R F2, and " R F2, then N ðF1Þibool
strongN ðF2Þ.

3. If "1 2 F1 and "1 R F2, then N ðF1Þipath
strongN ðF2Þ.

4. If p 2 F1 and F2 # f"1; dig, then N ðF1ÞiboolN ðF2Þ.

Proof. For (1), consider a graph G1 consisting of two self-loops, and a graph G2 consisting of a single self-loop, all with the
same label. For any nontrivial expression e not using di;" or p, it is evident that eðG1Þ and eðG2Þ both contain all possible self-
loops in G1 and G2 respectively. Therefore, applying " or p to any such expressions leads to expressions that show similar
behavior on G1 and G2. More specifically, they select either all self-loops in both G1 and G2, or select nothing in both graphs
simultaneously. The same reasoning can now be applied to general expressions in N ðF2Þ. This reasoning shows that G1 and
G2 cannot be distinguished in N ðF2Þ. They are, however, distinguishable by in N ðF1Þ by di– ;.

For (2), notice that F2 # fdi;p;\; "1; þg, whence N ðF2Þ only contains monotone expressions. Therefore it is clear that a
non-monotone query such as p2ðRÞ – ; is not expressible in N ðF2Þ.

For (3), we establish strong separation at the level of path queries as explained in Section 3.1. Thereto, we consider the
graph G shown in Fig. 5. By the Brute-Force method described in Section 3.2.1. we can exhaustively enumerate all the
possible result relations eðGÞ for all expressions e 2 N ðdi;"; þÞ, i.e., not using converse. There are 128 relations in this list. It
can then be verified that G"1 is not present in the list.4

The proof of (4) follows directly from Proposition 4.1 since N ðpÞ6pathN ðF1Þ and N ðF2Þ6pathN ð"1; diÞ. h

Proposition 5.4 is now used to show that for every pair F1 and F2 of sets of nonbasic features for which F1 ! F2 (i.e., for
which there is no path in Fig. 3), thatN ðF1ÞipathN ðF2Þ. The remainder of the proof of Proposition 5.3 is a combinatorial anal-
ysis to verify that Proposition 5.4 covers all the cases.

Proof of Proposition 5.3. First, suppose that p 2 F2. Then, F1 ! F2 if and only if F1 \ fdi; "1g ! F2 \ fdi; "1g. Hence we have
the following possible scenarios: di 2 F1 and di R F2; or "1 2 F1 and "1 R F2. If di 2 F1 and di R F2, then N ðF1ÞipathN ðF2Þ
due to Proposition 5.4(1). Otherwise, we achieved the result due to Proposition 5.4(3).

Fig. 3. The Hasse diagram of 6path for C. For each language, the boxed features are a minimal set of nonbasic features defining the language, while the other
features can be derived from them in the sense of Theorem 5.2 (using the appropriate interdependencies).

4 Note that if we would have used a simpler graph G, say G consisting of a single edge, then G"1 would be expressible without using converse, using the
expression di" R.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 399

On the other hand, suppose that p R F2. Then, F2 ¼ F2. Thus, F1 ! F2 if and only if F1 ! F2. Hence there has to exists
some x 2 F1 such that x R F2. Furthermore, since F1 # fdi;p;p;"1g and F2 # fdi;p; "1g Proposition 5.4 can be applied. Notice
that we cannot apply this proposition directly since it makes use of F1 instead of F1. This, however, is no issue since
F1 # F1. h

5.2. Languages with \

In this subsection, we show the ‘‘only if’’ direction of Theorem 5.2, restricted to C½\(, the class of languages with \.

Proposition 5.5. Let both N ðF1Þ and N ðF2Þ be in C½\(. If F1 ! F2, then N ðF1ÞipathN ðF2Þ.

Propositions 5.1 and 5.5 combined yield the Hasse diagram of 6path for C½\(, shown in Fig. 6.
Towards a proof of Proposition 5.5, we first establish the following.

Proposition 5.6. Let F1 and F2 be sets of nonbasic features.

1. If " 2 F1 and " R F2, then N ðF1Þibool
strongN ðF2Þ.

2. If p 2 F1, and F2 # f";\g, then N ðF1Þibool
strongN ðF2Þ.

Proof. For (1), consider a 3-clique G1, and a bow-tie G2 consisting of two 3-cliques (both graphs contain a self-loop on every
node). It can be proven by straightforward induction and case analysis that for any nontrivial expression e 2 N ðdi; "1;\; þÞ at
least idðGiÞ# eðGiÞ or R" idðGiÞ# eðGiÞ. In either case it is clear that a projection of any nontrivial expression in N ðdi; "1;\; þÞ
evaluated on both graphs leads to all self-loops. Using this fact, it can be seen that a coprojection of any expression in
N ðdi; "1;\;p;p; þÞ leads to either all self-loops, or a completely empty query result on both graphs simultaneously. There-
fore, no expression in N ðdi; "1;\;p;p; þÞ can distinguish G1 and G2. The graphs, however, are distinguishable by the boolean
query expressed by R2 " R.

For (2), consider the graphs displayed in Fig. 4 (a). Notice that expressions in N select paths of the same length in both
graphs simultaneously, e.g., if an expression selects all paths of length two in one graph, it also selects all the paths of length
two in the other and vice versa. Therefore, expressions using set difference evaluate to empty or nonempty on both graphs
simultaneously. Thus, expressions in N ð"Þ cannot distinguish the considered graphs, whence they are indistinguishable in
N ðF2Þ as well since N ðF2Þ6boolN ð"Þ. The graphs, however, are distinguishable in N ðF1Þ by the boolean query expressed by
p1ðR2Þ & R & p2ðR2Þ. h

Propositions 5.4 and 5.6 are now used to show that for every pair F1 and F2 of sets of nonbasic features for which F1 ! F2

(i.e., for which there is no path in Fig. 6), that N ðF1ÞipathN ðF2Þ.

(a)

(b)

(c)

Fig. 4. Graph pairs used to prove ibool
strong results in Sections 5 and 6. All edges are assumed to have the same label R.

Fig. 5. Graph used to prove Proposition 5.4 (3). Both edges are assumed to have the same label R.

400 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

The remainder of the proof of Proposition 5.5 is a combinatorial analysis to verify that Propositions 5.4 and 5.6 cover all
relevant cases.

Proof of Proposition 5.5. By definition \ 2 F1 and \ 2 F2 since both N ðF1Þ and N ðF2Þ are in C½\(. Hence, F1 ! F2 if and only
if there exists x 2 fp;p; di; "1;"g such that x 2 F1 and x R F2. We will consider every such x and show that our result directly
follows from Propositions 5.4 or 5.6.

If x ¼ di; x ¼ "1 or x ¼ ", then respectively Proposition 5.4(1), (3) or 5.6(1) gives us the desired result.
If x ¼ p, then clearly p R F2 if and only if F2 \ fdi; "1;p;pg ¼ ;. Hence F2 # f\;"g. Now, we can apply Proposition 5.6(2),

which proves the result.
If x ¼ p, then using the interdependencies introduced in the beginning of Section 5 we get

p R F2 () " R F2 _ ð" 2 F2 ^ p R F2Þ:

So we have two scenarios. If" R F2 then we can apply Proposition 5.4(2) to prove our result. On the other hand, when" 2 F2

we cannot apply Proposition 5.4(2). As said above, now p cannot be in F2. Furthermore, note that in this scenario

" 2 F2 ^ p R F2 () F2 \ f"1;dig ¼ ;;

which implies that F2 # f\;"g. Moreover, p 2 F1 since p 2 F1. Hence, we can apply proposition 5.6(2), which proves the
result. h

5.3. Cross-relationships between subdiagrams

To finish the proof of Theorem 5.2, we finally show the ‘‘only if’’ direction for the case where N ðF1Þ and N ðF2Þ belong to
different classes.

Proposition 5.7. LetN ðF1Þ andN ðF2Þ be languages such that one language belongs to C, and the other language belongs to C½\(. If
F1 ! F2, then N ðF1ÞipathN ðF2Þ.

Towards a proof of Proposition 5.7, we first establish the following.

Proposition 5.8. Let F1 and F2 be sets of nonbasic features. If \ 2 F1 and \ R F2, then N ðF1Þibool
strongN ðF2Þ.

Proof. Since \ R F2 it must be that F2 # fdi; "1;p;p; þg. So, it is sufficient to find a boolean query expressible in N ðF1Þ, which
is not expressible in N ðdi; "1;p; þÞ. Consider the graphs G1 and G2 in Fig. 4 (b). Notice that there starts and ends a path of
every length in each node in both graphs. Utilizing this fact, it can be shown that for any nontrivial expression
e 2 N ðdi; "1; þÞ, it must be that piðeÞðGjÞ ¼ idðGjÞ. Using this, it can be seen that the coprojection of any expression in
N ðdi; "1;p; þÞ leads to either all self-loops, or a completely empty query result on both graphs simultaneously. Therefore,
no expression in N ðdi; "1;p; þÞ can distinguish G1 and G2. The graphs, however, are distinguishable by the boolean query
expressed by R2 \ id. h

Fig. 6. The Hasse diagram of 6path and 6bool for C½\(.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 401

As detailed below, Propositions 5.4, 5.6 and 5.8 are now subsequently used to show that for every pair F1 and F2 of sets of
nonbasic features for which F1 ! F2, that N ðF1ÞipathN ðF2Þ, in the same way as in Sections 5.1 and 5.2.

The remainder of the proof of Proposition 5.7 is again a combinatorial analysis to verify that the above-mentioned prop-
ositions cover all relevant cases.

Proof of Proposition 5.7. First, suppose that N ðF1Þ 2 C½\(and N ðF2Þ 2 C. Then, by definition \ 2 F1 and \ R F2. The result
now follows directly from Proposition 5.8.

On the other hand, suppose that N ðF1Þ is in C and N ðF2Þ is in C½\(. Clearly, then F1 ! F2 if and only if F1 ! F2 " f\;"g.
Hence at least one feature x of di;p;p; "1 is present in F1 but missing in F2. We will consider every such x and show that our
result directly follows from Propositions 5.4, or 5.6.

If x ¼ di or x ¼ "1, then respectively Proposition 5.4(1) or (3) gives us the desired result.
If x ¼ p then p R F2 by the interdependencies introduced in the beginning of Section 5. Furthermore, F2 \ f"1; dig ¼ ;

since by hypothesis \ 2 F2. Therefore F2 # f";\g, and hence Proposition 5.6(2) can be applied, which proves the result.
If x ¼ p then F2 \ f";pg– f";pg. Suppose that " R F2, then our result follows from Proposition 5.4(2). On the other

hand, if p R F2, then the result follows from the previous case since p 2 F1. h

Propositions 5.1, 5.3, 5.5 and 5.7, together prove Theorem 5.2.
Hence, the Hasse diagram of 6path can be obtained from the subdiagrams for C and C½\(by simply adding the 12 canonical

inclusion arrows between the subdiagram for C and the subdiagram for C½\(. However, in the presence of \; di or "1 gives p, so
the arrows from N ðdiÞ to N ð\; di;pÞ;N ð"1Þ to N ð\; "1;pÞ, and N ð"1; diÞ to N ð\; "1; di;pÞ are transitive, and can therefore be
omitted.

So, all paths between the subdiagrams are induced by these canonical inclusion arrows and the 5 equations from the
beginning of Section 5.

6. Boolean queries

In this section, we characterize the order 6bool of relative expressiveness for boolean queries by Theorem 6.1 below.
Towards the statement of this characterization, first observe that N ðF1Þ6pathN ðF2Þ impliesN ðF1Þ6boolN ðF2Þ. The converse

does not hold, however. Indeed, from Proposition 4.2, it follows that, e.g., N ð"1Þ6boolN ðpÞ. From Theorem 5.2, however, we
know that N ð"1ÞipathN ðpÞ.

To accommodate the collapse of "1 in our characterization of 6bool, we introduce some new notation. For a set of nonbasic
features F, define bF as follows.

bF ¼ ðF " f"1gÞ [fpg; if "1 2 F;\ R F;
F; otherwise:

(

For example, dfdi; "1g ¼ fdi;pg.
We will establish the following characterization.

Theorem 6.1. Let F1 and F2 be sets of nonbasic features. Then, N ðF1Þ6boolN ðF2Þ if and only if F1 # F2 or cF1 # F2
The ‘‘if’’ direction of Theorem 6.1 is shown by Proposition 5.1 (since 6path implies 6bool) and Proposition 6.2.

Proposition 6.2. If cF1 # F2 then N ðF1Þ6boolN ðF2Þ.

Proof. We distinguish two cases. If F1 # F2, then N ðF1Þ6pathN ðF2Þ, by Proposition 5.1, whence N ðF1Þ6boolN ðF2Þ.
In the other case, "1 2 F1, and \ R F1. Hence N ðF1Þ6boolN ðF1 " f"1g [fpgÞ ¼ N ðcF1Þ by Proposition 4.2. Furthermore,

N ðcF1Þ6pathN ðF2Þ since cF1 # F2 by Proposition 5.1, whence N ðcF1Þ6boolN ðF2Þ. Now, by transitivity N ðF1Þ6boolN ðF2Þ as
desired. h

The converse of this proposition does not hold in general, e.g., N ð"1Þ6boolN ð"1;"Þ but df"1g ¼ fpg ! f"1;"g ¼ f"1;";\g.
The ‘‘only if’’ direction of Theorem 6.1, requires a detailed analysis, which proceeds along the same lines as the analysis in

Section 5. We first establish the ‘‘only if’’ direction for the cases where N ðF1Þ and N ðF2Þ belong to the same class among C
and C½\(, and then consider the case where N ðF1Þ and N ðF2Þ belong to distinct classes.

6.1. Languages without \

In this subsection, we show the ‘‘only if’’ direction of Theorem 6.1, restricted to C, the class of languages without \.

Proposition 6.3. Let N ðF1Þ and N ðF2Þ be in C. If F1 ! F2 and cF1 ! F2, then N ðF1ÞiboolN ðF2Þ.
Propositions 5.1, 6.2 and 6.3 combined yield the Hasse diagram of 6bool for C, shown in Fig. 7. It is indeed readily verified

that for any two languages N ðF1Þ and N ðF2Þ in C, there is a path from N ðF1Þ to N ðF2Þ in Fig. 7 if and only if F1 # F2 or cF1 # F2.
Towards a proof of Proposition 6.3, we first establish the following.

402 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

Proposition 6.4. Let F be a set of nonbasic features. If "1 2 F, then we have N ðFÞibool
strongN ðdiÞ.

Proof. Let C be the class of all graphs G such that G is acyclic and adomðGÞ contains at least three elements, and let e 2 N ðdiÞ.
We will show that on the class C, the boolean query e– ; is either ;– ; (always false) or equivalent to Rm – ; for some nat-
ural number m. Let us first show this for union-free expressions. Since dii ¼ id [di in C for i > 1, we may assume that
e ¼ Rn1 & di & Rn2 & di & . . . & di & Rnk where k > 1 and n1; . . . ;nk are natural numbers greater than zero. We set m to be the max-
imum of the nl for 1 6 l 6 k. Let G be an arbitrary graph in C. Clearly, if eðGÞ– ; then RmðGÞ – ;. For the other direction,
assume ðx; yÞ 2 RmðGÞ. Since G is acyclic, x– y, so ðy; xÞ 2 diðGÞ. Hence ðx; xÞ 2 Rm & diðGÞ. For any l 6 m, we also have
ðx; xÞ 2 Rl & diðGÞ. We conclude that ðx; xÞ 2 Rn1 & di & . . . & Rnk & diðGÞ. In particular, eðGÞ is nonempty as desired.

For the claim to hold with union, it suffices to show it for a union of two union-free expressions. Indeed, the form Rm is
union-free! So, consider an expression e of the form Rm1 [Rm2 . Then e– ; is equivalent to Rminðm1;m2Þ – ;, which proves the
claim.

Now consider graphs G1 and G2 in Fig. 4(a). These graphs belong to C, and are clearly indistinguishable by any expression
of the form Rm – ;. The graphs, however, are distinguishable by the boolean query R2 & R"1 & R2 – ;. h

As detailed below, Propositions 5.4 and 6.4 are now subsequently used to show that for every pair F1 and F2 of sets of
nonbasic features for which F1 ! eF2, that N ðF1ÞiboolN ðF2Þ, in the same way as in Sections 5.1 and 5.2.

The remainder of the Proposition 6.3 is again a combinatorial analysis to verify that the above-mentioned propositions
cover all relevant cases.

Proof of Proposition 6.3. First, note that F1 [F2 # f"1;p;p; dig since N ðF1Þ and N ðF2Þ are in C. We will consider two cases:

p 2 F2 and p R F2. First we will consider p 2 F2. Since cF1 ! F2, there must be another feature, not equal to "1 or p present. If
this feature is di, then Proposition 5.4(1) proves the result. On the other hand, if this feature is p then Proposition 5.4(2)
proves the result.

Now consider the case where p R F2. Here, p R F2 and thus F1 ! F2 # fdi; "1g. Hence one of "1;p;p or di is present in F1
but missing in F2. If that feature is "1, then F2 # fdig, and hence Proposition 6.4 proves the result. On the other hand, if that
feature is p; di or p, the result follows directly from Proposition 5.4. h

Fig. 7. The Hasse diagram of 6bool for C. For each language, the boxed features are a minimal set of nonbasic features defining the language, while the other
features can be derived from them in the sense of Theorem 5.2 (using the appropriate interdependencies).

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 403

6.2. Languages with \

In this subsection, we show the ‘‘only if’’ direction of Theorem 6.1, restricted to C½\(, the class of languages with \.

Proposition 6.5. Let N ðF1Þ and N ðF2Þ be in C½\(. If F1 ! F2 and cF1 ! F2, then N ðF1Þibool
strongN ðF2Þ.

Notice that since \ 2 F1;cF1 ¼ F1. Hence, Theorem 5.2 and Proposition 6.5 combined show that 6bool coincides with 6path

on C½\(. As a result, the Hasse diagram of 6bool for C½\(is the same as the Hasse diagram of 6path for C½\(shown in Fig. 6. Note
that, in addition, all separations are strong.

Towards a proof of Proposition 6.5, we first establish the following.

Proposition 6.6. Let F1 and F2 be sets of nonbasic features. If "1 2 F1;\ 2 F1, and "1 R F2, then N ðF1Þibool
strongN ðF2Þ.

Proof. The graphs G1 and G2 shown in Fig. 4 (c), top and bottom, are distinguished by the boolean query q expressed by
ðR2 & R"1 & RÞ \ R. On these graphs, the Brute-Force Algorithm of Section 3.2.1 does not terminate in a reasonable time. It
can be verified in polynomial time, however, that for each pair ða1; b1Þ 2 adomðG1Þ2, there exists ða2; b2Þ 2 adomðG2Þ2 such
that ðG1; a1; b1Þ ’k ðG2; a2; b2Þ for any depth k [15]. From Proposition 3.4, it follows that q is not expressible in N ðF2Þ. h

The remainder of the proof of Proposition 6.5 proceeds as the proof of Proposition 5.5, except that Proposition 6.6 is used
instead of Proposition 5.4 (3).

6.3. Cross-relationships between subdiagrams

To finish the proof of Theorem 6.1, we finally show the ‘‘only if’’ direction for the case where N ðF1Þ and N ðF2Þ belong to
different classes.

Proposition 6.7. LetN ðF1Þ andN ðF2Þ be languages such that one language belongs to C, and the other language belongs to C½\(. If
F1 ! F2 and cF1 ! F2, then N ðF1ÞiboolN ðF2Þ.

Towards a proof of Proposition 6.7, we first establish the following.

Proposition 6.8. Let F1 be a set of nonbasic features. If "1 2 F1, and F2 # f";\g, then N ðF1Þibool
strongN ðF2Þ.

Proof. Consider the graphs G1 and G2 displayed in Fig. 4 (a) and define R0ðGiÞ to equal idðGiÞ for i ¼ 1;2. First, notice that
idðGiÞ;RðGiÞ, and R2ðGiÞ are pairwise disjoint for i ¼ 1;2. Utilizing this, it can be proven by straightforward induction that
for every e 2 N ð"Þ there exists Z# f0;1;2g such that eðG1Þ ¼ [i2ZR

iðG1Þ and eðG2Þ ¼ [i2ZR
iðG2Þ. This clearly implies that G1

and G2 are indistinguishable in N ð"Þ. whence they are also indistinguishable in N ðF2Þ as well since N ðF2Þ6boolN ð"Þ. The
graphs, however, are distinguishable by the boolean query expressed by R2 & R"1 & R2. h

As detailed below, Propositions 5.4, 5.6, 5.8 and 6.8 are now subsequently used to show that for every pair F1 and F2 of
sets of nonbasic features for which F1 ! F2 and cF1 ! F2, that N ðF1ÞiboolN ðF2Þ, in the same way as in Sections 6.1 and 6.2.

The remainder of the proof of Proposition 6.7 is again a combinatorial analysis to verify that the above-mentioned prop-
ositions cover all relevant cases.

Proof of Proposition 6.7. If F1 2 C½\(and F2 2 C, then \ 2 F1 and \ R F2. Hence Proposition 5.8 directly implies our result.
Conversely, if F1 2 C and F2 2 C½\(, then x 2 fdi;p;p; "1g is present in F1, but lacking in F2. We will now consider every

such x.
If x 2 fdi;p;pg then the proof proceeds as the proof of Proposition 5.5.
If x ¼ "1, then cF1 ¼ ðF1 " f"1gÞ [fpg since F1 2 C. Furthermore, by hypothesis, there is a feature x present in cF1 which is

not present in F2. Notice that x – "1. If x – p, then there exists a feature in F1 other than "1 which is missing in F2, hence the
result follows from the previous case. On the other hand, if x ¼ p, then F2 \ fdi;p;p; "1g ¼ ;. Hence F2 # f";\g, and thus the
result follows directly from Proposition 6.8. h

Propositions 5.1, 6.2, 6.3, 6.5 and 6.7, together prove Theorem 6.1.
Hence, the Hasse diagram of 6bool can be obtained from the subdiagrams for C, and C½\(by simply adding arrows from N

to N ð\Þ;N ðdi;pÞ to N ð\; di;pÞ;N ðpÞ to N ð\;pÞ;N ðp;pÞ to N ð\;p;pÞ and N ðdi;p;pÞ to N ð\; di;p;pÞ. So, all paths between
the subdiagrams are induced by these arrows, the 5 equations from the beginning of Section 5, and Proposition 4.2.

7. Further research

There are alternative modalities for expressing boolean queries apart from interpreting the nonemptiness of an expres-
sion as the value true and emptiness as the value false. For example, one possibility is to consider a boolean query q express-
ible if there are two expressions e1 and e2 such that e1ðGÞ# e2ðGÞ if, and only if, qðGÞ is true, for all G. For some of our

404 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

languages, such alternative modalities would not make a difference, but it would for others. Looking into these alternative
modalities is an interesting topic for further research.

In the present paper, we have been focusing on expressive power, but, of course, it is also interesting to investigate the
decidability of satisfiability or containment of expressions. Much is already known. From the undecidability of FO3, it follows
that the most powerful language is undecidable, and the same holds even without converse. From the decidability of ICPDL
[17], all languages without set difference have a decidable satisfiability problem, although this is not yet known for satisfi-
ability restricted to finite relations. An interesting question is the decidability of satisfiability or validity of the languages
with set difference, but without the diversity relation. Recently, it has been shown that finite satisfiability for the quite weak
fragment N ð"Þ without id, formed by the operators union, composition, set difference and nothing else, over a single binary
relation, is still undecidable [35].

Another natural question is whether the notion of arrow logic bisimulation, that we use as a tool to prove some nonex-
pressibility results, can actually be adapted to obtain characterizations of indistinguishability in the various languages, as is
the case for modal logic [18]. We have in fact done this for all languages with intersection [15]. A further question then is
whether van Benthem-style expressive completeness results [29] can be established.

Finally, there are still other interesting operators on binary relations that can be considered. A good example is residua-
tion [31], a derived operator of the calculus of relations, and interesting to consider separately, as we have done for projec-
tion and coprojection. Residuation is interesting from a database perspective because it corresponds to the set containment
join [24].

Acknowledgment

We thank the anonymous referees for their constructive feedback. We thank Balder ten Cate and Maarten Marx for help-
ful information on the question of succinctness of FO3 compared to the algebra N ðdi; "1;"Þ.

References

[1] R. Angles, P. Barceló, G. Rios, A practical query language for graph dbs, in: L. Bravo, M. Lenzerini (Eds.), Proceedings 7th Alberto Mendelzon
International Workshop on Foundations of Data Management, CEUR Workshop Proceedings, vol. 1087, 2013.

[2] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufman, 2000.
[3] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput. Surv. 40 (1) (2008). article 1.
[4] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[5] P. Barceló, Querying graph databases, in: Proceedings 32st ACM Symposium on Principles of Databases, ACM, 2013, pp. 175–188.
[6] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, P. Patel-Schneider (Eds.), The Description Logic Handbook, Cambridge University Press, 2003.
[7] M. Benedikt, W. Fan, G.M. Kuper, Structural properties of XPath fragments, Theor. Comput. Sci. 336 (1) (2005) 3–31.
[8] C. Bizer, T. Heath, T. Berners-Lee, Linked data—the story so far, Int. J. Semantic Web Inform. Syst. 5 (3) (2009) 1–22.
[9] P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, Elsevier, 2007.
[10] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, second ed., Springer, 1999.
[11] K. Etessami, M.Y. Vardi, T. Wilke, First-order logic with two variables and unary temporal logic, Inform. Comput. 179 (2) (2002) 279–295.
[12] G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, Relative expressive power of navigational

query on graphs using transitive closure, submitted for publications.
[13] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, Relative expressive power of navigational querying

on graphs, in: Proceedings 14th International Conference on Database Theory, 2011.
[14] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Y. Wu, The impact of transitive closure on the

expressiveness of navigational query languages on unlabeled graphs, Ann. Math. Artif. Intell. (2013). Published online, 2 April.
[15] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, Similarity and bisimilarity notions appropriate for

characterizing indistinguishability in fragments of the calculus of relations, J. Logic Comput. (2014). Published online, 25 March 2014.
[16] D. Florescu, A.Y. Levy, A.O. Mendelzon, Database techniques for the World-Wide Web: a survey, SIGMOD Rec. 27 (3) (1998) 59–74.
[17] S. Göller, M. Lohrey, C. Lutz, PDL with intersection and converse: satisfiability and infinite-state model checking, J. Symbolic Logic 74 (1) (2009) 279–

314.
[18] V. Goranko, M. Otto, Model theory of modal logic, in: Blackburn et al. [9], 2007, chapter 5.
[19] A. Halevy, M. Franklin, D. Maier, Principles of dataspace systems, in: Proceedings 25th ACM Symposium on Principles of Database Systems, 2006, pp.

1–9.
[20] Robin Hirsch, Ian Hodkinson, Relation Algebras by Games, Elsevier, 2002.
[21] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, 2000.
[22] L. Libkin, W. Martens, D. Vrgoč, Quering graph databases with XPath, in: Proceedings 16th International Conference on Database Theory, ACM, 2013.
[23] R.D. Maddux, Relation Algebras, Elsevier, 2006.
[24] N. Mamoulis, Efficient processing of joins on set-valued attributes, in: Proceedings ACM SIGMOD International Conference on Management of Data,

2003, pp. 157–168.
[25] M. Marx, Conditional XPath, ACM Trans. Database Syst. 30 (4) (2005) 929–959.
[26] M. Marx, M. de Rijke, Semantic characterizations of navigational XPath, SIGMOD Rec. 34 (2) (2005) 41–46.
[27] M. Marx, Y. Venema, Multi-Dimensional Modal Logic, Springer, 1997.
[28] D. Olteanu, Forward node-selecting queries over trees, ACM Trans. Database Syst. 32 (1) (2007). article 3.
[29] M. Otto, Model theoretic methods for fragments of FO and special classes of (finite) structures, in: J. Esparza, C. Michaux, C. Steinhorn (Eds.), Finite and

Algorithmic Model Theory, Lecture Note Series, vol. 379, London Mathematical Society, 2011. chapter 7.
[30] J. Pérez, M. Arenas, C. Gutierrez, nSPARQL: a navigational language for RDF, J. Web Semantics 8 (4) (2010) 255–270.
[31] V. Pratt, Origins of the calculus of binary relations, in: Proceedings 7th Annual IEEE Symposium on Logic in Computer Science, 1992, pp. 248–254.
[32] RDF primer, W3C Recommendation, February 2004.
[33] A. Tarski, On the calculus of relations, J. Symbolic Logic 6 (1941) 73–89.
[34] A. Tarski, S. Givant, A Formalization of Set Theory Without Variables, AMS Colloquium Publications, vol. 41, American Mathematical Society, 1987.
[35] T. Tan, J. Van den Bussche, X. Zhang, Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference,

arXiv:1406.0349, 2014.

G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406 405

http://refhub.elsevier.com/S0020-0255(14)01112-8/h0010
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0010
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0015
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0020
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0020
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0025
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0025
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0030
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0035
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0040
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0045
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0045
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0045
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0045
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0050
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0050
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0055
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0070
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0070
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0075
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0075
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0080
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0085
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0085
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0100
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0100
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0105
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0105
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0110
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0110
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0115
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0115
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0125
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0130
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0135
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0135
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0140
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0145
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0150
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0165
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0170
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0170

[36] J. van Benthem, Program constructions that are safe for bisimulation, Studia Logica 60 (1998) 311–330.
[37] Y. Wu, D. Van Gucht, M. Gyssens, J. Paredaens, A study of a positive fragment of path queries: expressiveness, normal form and minimization, Comput.

J. 54 (7) (2011) 1091–1118.
[38] XML path language (XPath) version 1.0. W3C Recommendation, November 1999.

406 G.H.L. Fletcher et al. / Information Sciences 298 (2015) 390–406

http://refhub.elsevier.com/S0020-0255(14)01112-8/h0180
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0185
http://refhub.elsevier.com/S0020-0255(14)01112-8/h0185

	Relative expressive power of navigational querying on graphs
	1 Introduction
	2 Preliminaries
	3 Tools to establish separation
	3.1 Path separation
	3.2 Boolean separation
	3.2.1 Brute-force approach
	3.2.2 Bisimulation
	3.2.3 Homomorphism approach

	4 The power of various operators
	4.1 Proof of Proposition 4.1

	5 Path queries
	5.1 Languages without ?
	5.2 Languages with ?
	5.3 Cross-relationships between subdiagrams

	6 Boolean queries
	6.1 Languages without ?
	6.2 Languages with ?
	6.3 Cross-relationships between subdiagrams

	7 Further research
	Acknowledgment
	References

