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Declarative Networking

UC Berkeley

SIGMOD 2006: Network Datalog [Loo, Hellerstein, et al.]

• use Datalog to program network protocols, e.g.:

– routing (shortest path)

– peer-to-peer

PODS 2010: Dedalus [Hellerstein et al.]

• use Datalog to program clusters:

– querying distributed databases

– data-oriented cloud computing
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Distributed computing

Hard to program

Two extremes:

• Message-Passing Interface (in C or Fortran)

• SQL-like formalisms (MapReduce, Hive, Pig)

Dedalus offers something in between

Practical language: BLOOM

WebDamLog [Abiteboul et al.]
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Distributed transitive closure in Dedalus

Input: binary relation R, distributed among the nodes

Output: transitive closure T of R

T (u, v) | y ← R(u, v), All(y).

T (u, v) | y ← T (u, w), T (w, v), All(y).

T (u, v) • ← T (u, v).

Two sending rules—one inductive rule
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Distributed emptiness test in Dedalus

Input: nullary relation S, distributed among the nodes

Output: T is true if S is empty, false otherwise

empty(x) | y ← Id(x),¬S(), All(y).

empty(x) • ← empty(x).

notDone()← All(x),¬empty(x).

T ()← ¬notDone().

Last two rules are deductive

Distributed database queries
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Declarative networking?

Datalog has a nice model-theoretic semantics

Network Datalog only uses Datalog syntax,

lacks a formal semantics

An operational semantics seems most suitable

Dedalus people had crazy idea to use the stable model semantics

We have proven that this actually works!
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Operational semantics

Transition system with states containing, for each node x,

• local database (input relations, message relations, memory

relations, output relations)

• buffer with messages addressed to x

Transitions: a recipient node is chosen, and a subset of its

buffer is delivered

1. apply deductive rules

2. apply inductive rules, sending rules
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Datalog with negation

Positive datalog: T (u, v)← R(u, v)

T (u, v)← T (u, w), T (w, v)

Stratified datalog with negation: T ′(u, v)← S(u, v),¬T (u, v)

T (u, v)← R(u, v)

T (u, v)← T (u, w), T (w, v)

Unrestricted negation: Win(x)← Move(x, y),¬Win(y)

• Well-founded semantics, deterministic

• Stable model semantics, nondeterministic
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Stable models of Win(x)← Move(x, y),¬Win(y)

Given an instance I for Move

An expansion M of I to Win is called stable if:

1. ground the program on I

2. remove rules that have negative subgoal ¬Win(a)

with Win(a) ∈M

3. remove negative subgoals in rules that remain

4. M should be least fixpoint of resulting positive program
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Suppose I = Move(1,2), Move(2,3)

Ground program: Win(1)← Move(1,2),¬Win(2)

Win(2)← Move(2,3),¬Win(3)

M = ∅: keep both rules, infer Win(1) and Win(2), not stable

M = Win(2): remove first rule, infer only Win(2), stable
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Saccá and Zaniolo’s choice construction

Other(p, h)← Hobby(p, h), Chosen(p, h′), h′ 6= h

Chosen(p, h)← Hobby(p, h),¬Other(p, h).

Given relation Hobby, a stable model will contain exactly one

chosen hobby for each person

Use for sending rule: T (u, v) | y ← R(u, v), All(y)

syntactic sugar for T (y, t, u, v)← R(x, s, u, v), All(y),

Chosen(x, s, y, u, v, t)

Every relation gets two extra arguments:

location and timestamp
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Deductive, inductive rules

Deductive rule T ()← ¬notDone()

syntactic sugar for T (x, s)← ¬notDone(x, s)

Inductive rule T (u, v) • ← T (u, v)

syntactic sugar for T (x, s + 1, u, v)← T (x, s, u, v)

Timestamp domain is natural numbers

We obtain a pure Datalog program with negation
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Theorem

If the original Dedalus program was negation-free, then

the stable models of the resulting Datalog¬ program are exactly

the traces of the operational semantics
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Theorem

If the original Dedalus program is negation-free, then the fair

stable models of the resulting Datalog¬ program are exactly the

fair traces of the operational semantics

If original program uses negation:

• Deductive rules must be stratified

• Add some extra control rules that express vector clocks

• Same theorem obtains
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Conclusion

Expressive power: while queries

Study various notions of confluence
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