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Importance of Graph Databases

Semistructured data, dataspaces,

personal information management

Linked Data, RDF, Semantic Web

Network Data (social, biological, . . . )

GIS Data
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Query Languages for Graphs

Graph patterns (conjunctive queries)

First-order logic (FO)

Transitive-closure logic FO(TC)

(Extended) Regular path queries

[Abiteboul&Vianu, Libkin et al.]

Monadic second-order logic [Courcelle]
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Navigational Languages

Program logic, dynamic logic

Trees: XPath

Tarski’s Calculus of Relations [1941, 1980s]
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The Calculus of Relations

A set of operations on binary relations (graphs)

over some domain V

• union ∪, intersection ∩, set difference −

• composition

r ◦ s = {(x, z) | ∃y : (x, y) ∈ r & (y, z) ∈ s}

• converse

r−1 = {(y, x) | (x, y) ∈ r}

• identity

id = {(x, x) | x ∈ V }
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Additional Operations

• diversity di = {(x, y) ∈ V 2 | x 6= y}

Allows all = id ∪ di and complementation rc = all− r

• Projection

π1(r) = {(x, x) | ∃y : (x, y) ∈ r}
π2(r) = {(y, y) | ∃x : (x, y) ∈ r}

• Coprojection (i = 1,2)

π1(r) = {(x, x) | x ∈ V & ¬∃y : (x, y) ∈ r}
π2(r) = {(y, y) | y ∈ V & ¬∃x : (x, y) ∈ r}

• Transitive closure r+
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Expressions

Fix a binary relational vocabulary Γ

Structures over Γ = edge-labeled graphs

For a set F of operations, F-expressions are built up from

relation names in Γ using the operations in F

E.g. (R ◦ (id ∪ di)) ∩ id

≡ π1(R)

E.g. (Rc ◦ S−1)c

≡ {(x, y) | ¬∃z : ¬R(x, z) ∧ S(y, z)}
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Queries

Binary queries: result is a binary relation

Boolean queries (graph properties): test nonemptiness of result

E.g. (R ◦R)−R 6= ∅ ⇔ graph is not transitive

Binary queries expressible in the calculus of relations (without

transitive closure) = binary queries expressible in FO3
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Relative expressiveness

Compare different fragments F

• ∪, ◦, id always present

• add other operations to taste

F1 � F2 if every binary query expressible by an F1-expression is
also expressible by an F2-expression

E.g. (π) � (∩,di)

F1 �bool F2 if for every F1-expression e1 there is an F2-expression
e2 such that for all graphs G:

e1(G) 6= ∅ ⇔ e2(G) 6= ∅

E.g. (−1) �bool (π) but (+,−1) 6�bool (+, π)
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We have a complete picture of �bool

N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. A detailed proof is given in the Appendix;
here, we only give a sketch. Let Q1 = H1 ← B1 be a
boolean conjunctive query that checks for the existence of
the pattern shown in Figure 3. The query Q1 can be ex-
pressed in N (−1, π) by π1(R

6◦R−1◦R6)◦π1(R
5◦R−1◦R5)◦

π1(R
4 ◦R−1 ◦R4). Since each of the subexpressions π1(R

k ◦
R−1◦Rk), k = 4, 5, 6, is equivalent to π1(R

k◦π2(π1(R
k)◦R)),

Q1 can also be expressed in N (π).4 Now, assume there also
exists an expression e2 in N (−1, di , +) that expresses Q1. We
can then show that there exists an expression e′2 in N (−1, di)
such that (a) e′2(B1) %= ∅, and (b) e′2 ⊆ e2. Note that e′2 is
a conjunctive query H2 ← B2 with nonequalities. Let Brel

2

denote the relation atoms of B2. By (a), there is a homo-
morphism f from Brel

2 to B1. By (b), we have e′2 ⊆ Q1.
Hence, there is a homomorphism g from B1 to Brel

2 . We
argue that g is not injective. Therefore, g followed by f is
a nontrivial endomorphism of B1. We argue that such an
endomorphism does not exist.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 %⊆ F 2 (i.e.,
for which there is no path in Figure 1(a)), that N (F1) %≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) %≤bool

strong N (π) and hence also that
N (di , π) %≤bool N (π). Since ≤path implies ≤bool, we hence

4In the proof of Proposition 18, we show, more generally,
that converse can be eliminated from an expression of the
form π(e), with e not containing \, ∩, and +.

(d)

(c)

(a)

(b)

Figure 2: Graph pairs used to prove %≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.

downward XPath is known to be as powerful as full XPath
for queries evaluated at the root. Note that Marx [17] also
obtained a similar result for XPath with transitive closure,
but we will show below that this no longer holds on graphs
(see Proposition 27).

To accommodate the collapse of −1 in our characterization
of ≤bool, we introduce the following notation. For a set of
nonbasic features F , define eF as follows.

eF =

(
F ∪ {−1} if π ∈ F , ∩ %∈ F , and + %∈ F

F otherwise

For example, {̃π, di} = {−1, π, π, di}.
We will establish the following characterization.

Theorem 19. N (F1) ≤bool N (F2) if and only if F1 ⊆
eF2.

The “if” direction of Theorem 19 is shown in Proposi-
tion 20.

Proposition 20. If F1 ⊆ eF2, then N (F1) ≤bool N (F2).

Proof. We distinguish two cases. If F1 ⊆ F 2, then
N (F1) ≤path N (F2), by Proposition 6, whence N (F1) ≤bool

N (F2). In the other case, π ∈ F 2, ∩ %∈ F 2, and + %∈ F 2,
and F1 ⊆ F 2 ∪ {−1}. By definition, F 2 ∪ {−1} = F2 ∪ {−1},
since π ∈ F 2. Hence, F1 ⊆ F2 ∪ {−1}. Then, by Theorem 7,
N (F1) ≤path N (F2 ∪ {−1}). Since F2 ∪ {−1} ⊆ F 2 ∪ {−1}, it
also follows that N (F1) ≤path N (F 2 ∪ {−1}). Since ∩ %∈ F 2

and + %∈ F 2, we have that N (F 2 ∪ {−1}) ≤bool N (F 2 ∪
{π}) = N (F 2), by Proposition 18. By combining these, we
finally find that N (F1) ≤bool N (F 2). Proposition 20 now
follows from the fact that N (F 2) and N (F2) are equivalent
at the level of path queries and hence also at the level of
boolean queries.

The “only if” direction of Theorem 19, requires a detailed
analysis, which proceeds along the same lines as the analysis
in Section 4. We first establish the “only if” direction for
the cases where N (F1) and N (F2) belong to the same class
among C, C[∩], C[+], C[∩, +], and then consider the case
where N (F1) and N (F2) belong to distinct classes.

5.1 Languages without ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 19, restricted to C, the class of languages without ∩
and without +.

Proposition 21. Let N (F1) and N (F2) be in C. If F1 %⊆
eF2, then N (F1) %≤bool N (F2).

Propositions 20 and 21 combined yield the Hasse diagram
of ≤bool for C, shown in Figure 5. It is indeed readily verified
that for any two languages N (F1) and N (F2) in C, there is a

path fromN (F1) to N (F2) in Figure 5 if and only if F1 ⊆ eF2.
Towards a proof of Proposition 21, we first establish the

following.

Proposition 22. Let F be a set of nonbasic features. If
−1 ∈ F , then N (F ) %≤bool

strong N (di , +).

Proof. It can be verified by the Brute-Force Algorithm
of Section 3.2.1 that the graphs shown in Figure 2 (c) are
not distinguishable in N (di , +). The graphs, however, are
distinguishable by the boolean query expressed by R2◦R−1◦
R2.

N ( −1, di, π ) = N ( di, π )

N ( −1, π , π) = N ( π , π)

N ( −1, di, π , π) = N ( di, π , π)

N ( −1, π ) = N ( π )

N ( di )

N ( −1, di )

N

N ( −1 )

Figure 5: The Hasse diagram of ≤bool for C. For
each language, the boxed features are a minimal set
of nonbasic features defining the language, while the
other features can be derived from them in the sense
of Theorem 7 (using the appropriate interdependen-
cies).

As detailed below, Propositions 9 and 22 are now subse-
quently used to show that for every pair F1 and F2 of sets
of nonbasic features for which F1 %⊆ eF2, that N (F1) %≤bool

N (F2), in the same way as in Sections 4.1 and 4.2.
The remainder of the proof of Proposition 21 is again a

combinatorial analysis to verify that the above-mentioned
propositions cover all relevant cases. First, note that there
are 34 ordered pairs of distinct languages N (F1) and N (F2)

in C for which F1 %⊆ eF2. (These are exactly the pairs for
which there is no path from N (F1) to N (F2) in Figure 5.)
Concretely, Proposition 9 (1) deals with 16 of these pairs,
Proposition 9 (2) deals with another 9 pairs, Proposition 9 (3)
deals with another 6 pairs, and, finally, Proposition 22 deals
with the remaining 3 pairs.

5.2 Languages with ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 19, restricted to C[∩], the class of languages with ∩
but without +.

Proposition 23. Let N (F1) and N (F2) be in C[∩]. If

F1 %⊆ eF2, then N (F1) %≤bool
strong N (F2).

Notice that since ∩ ∈ F 2, eF2 = F 2. Hence, Proposition 7
and Proposition 23 combined show that ≤bool coincides with
≤path on C[∩]. As a result, the Hasse diagram of ≤bool for
C[∩] is the same as the Hasse diagram of≤path for C[∩] shown
in Figure 1(b). Note that, in addition, all separations are
strong.
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Projection

If fragment F contains at least one of

• projection

• coprojection

• converse and (intersection or set difference)

• diversity and (intersection or set difference)

then projection is already expressible in F.

Moreover, for any two fragments F1 and F2 not like that, we

have (F1, π) 6�bool F2.
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Projection proof:

case F2 has intersection or set difference∗

Following pattern match is not expressible in F2:

N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. A detailed proof is given in the Appendix;
here, we only give a sketch. Let Q1 = H1 ← B1 be a
boolean conjunctive query that checks for the existence of
the pattern shown in Figure 3. The query Q1 can be ex-
pressed in N (−1, π) by π1(R

6◦R−1◦R6)◦π1(R
5◦R−1◦R5)◦

π1(R
4 ◦R−1 ◦R4). Since each of the subexpressions π1(R

k ◦
R−1◦Rk), k = 4, 5, 6, is equivalent to π1(R

k◦π2(π1(R
k)◦R)),

Q1 can also be expressed in N (π).4 Now, assume there also
exists an expression e2 in N (−1, di , +) that expresses Q1. We
can then show that there exists an expression e′2 in N (−1, di)
such that (a) e′2(B1) %= ∅, and (b) e′2 ⊆ e2. Note that e′2 is
a conjunctive query H2 ← B2 with nonequalities. Let Brel

2

denote the relation atoms of B2. By (a), there is a homo-
morphism f from Brel

2 to B1. By (b), we have e′2 ⊆ Q1.
Hence, there is a homomorphism g from B1 to Brel

2 . We
argue that g is not injective. Therefore, g followed by f is
a nontrivial endomorphism of B1. We argue that such an
endomorphism does not exist.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 %⊆ F 2 (i.e.,
for which there is no path in Figure 1(a)), that N (F1) %≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) %≤bool

strong N (π) and hence also that
N (di , π) %≤bool N (π). Since ≤path implies ≤bool, we hence

4In the proof of Proposition 18, we show, more generally,
that converse can be eliminated from an expression of the
form π(e), with e not containing \, ∩, and +.

(d)

(c)

(a)

(b)

Figure 2: Graph pairs used to prove %≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.

Indistinguishable from

N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. A detailed proof is given in the Appendix;
here, we only give a sketch. Let Q1 = H1 ← B1 be a
boolean conjunctive query that checks for the existence of
the pattern shown in Figure 3. The query Q1 can be ex-
pressed in N (−1, π) by π1(R

6◦R−1◦R6)◦π1(R
5◦R−1◦R5)◦

π1(R
4 ◦R−1 ◦R4). Since each of the subexpressions π1(R

k ◦
R−1◦Rk), k = 4, 5, 6, is equivalent to π1(R

k◦π2(π1(R
k)◦R)),

Q1 can also be expressed in N (π).4 Now, assume there also
exists an expression e2 in N (−1, di , +) that expresses Q1. We
can then show that there exists an expression e′2 in N (−1, di)
such that (a) e′2(B1) %= ∅, and (b) e′2 ⊆ e2. Note that e′2 is
a conjunctive query H2 ← B2 with nonequalities. Let Brel

2

denote the relation atoms of B2. By (a), there is a homo-
morphism f from Brel

2 to B1. By (b), we have e′2 ⊆ Q1.
Hence, there is a homomorphism g from B1 to Brel

2 . We
argue that g is not injective. Therefore, g followed by f is
a nontrivial endomorphism of B1. We argue that such an
endomorphism does not exist.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 %⊆ F 2 (i.e.,
for which there is no path in Figure 1(a)), that N (F1) %≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) %≤bool

strong N (π) and hence also that
N (di , π) %≤bool N (π). Since ≤path implies ≤bool, we hence

4In the proof of Proposition 18, we show, more generally,
that converse can be eliminated from an expression of the
form π(e), with e not containing \, ∩, and +.

(d)

(c)

(a)

(b)

Figure 2: Graph pairs used to prove %≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.

Pattern match expressible as π1(R
2) ◦R ◦ π2(R

2) 6= ∅

∗But does not have converse or diversity
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Projection proof:

case F2 does not have intersection or set difference∗

Following pattern match is not expressible in F2:

Figure 3: Query pattern used to prove Proposition 9
(3). All edges are assumed to have the same label
R.

Figure 4: Graph used to prove Proposition 9 (4).
Both edges are assumed to have the same label R.

also obtain N (di , π) !≤path N (π) by contraposition.
The remainder of the proof of Proposition 8 is a combina-

torial analysis to verify that Proposition 9 covers all relevant
cases. First, note that there are 90 ordered pairs of dis-
tinct languages N (F1) and N (F2) in C for which F1 !⊆ F 1.
As illustrated above, we subsequently use the statements
in Proposition 9 to establish that, for each of these pairs,
N (F1) !≤path N (F2). Concretely, Proposition 9 (1) deals
with 36 pairs, Proposition 9 (2) deals with another 24 pairs,
Proposition 9 (3) deals with another 12 pairs, and, finally,
Proposition 9 (4) deals with the remaining 18 pairs.

4.2 Languages with ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 7, restricted to C[∩], the class of languages with ∩ but
without +.

Proposition 10. Let N (F1) and N (F2) be in C[∩]. If
F1 !⊆ F 2, then N (F1) !≤path N (F2).

Propositions 6 and 10 combined yield the Hasse diagram
of ≤path for C[∩], shown in Figure 1(b).

Towards a proof of Proposition 10, we first establish the
following.

Proposition 11. Let F1 and F2 be sets of nonbasic fea-
tures.

1. If \ ∈ F 1 and \ !∈ F 2, then N (F1) !≤bool
strong N (F2).

2. If π ∈ F 1, and F2 ⊆ {\,∩, +}, then N (F1) !≤bool
strong

N (F2).

Proof. For (1), consider a 3-clique, and a bow-tie con-
sisting of two 3-cliques. It can be verified by the Brute-Force
Algorithm of Section 3.2.1 that these graphs are not distin-
guishable in N (F2). The graphs, however, are distinguish-
able by the boolean query expressed by R2 \ R. For (2), it
can be verified by the Brute-Force Algorithm that the graphs
shown in Figure 2 (b) are not distinguishable in N (F2). The
graphs, however, are distinguishable by the boolean query
expressed by π1(R

2) ◦R ◦ π2(R
2).

Propositions 9 and 11 are now used to show that for ev-
ery pair F1 and F2 of sets of nonbasic features for which
F1 !⊆ F 2 (i.e., for which there is no path in Figure 1(b)),

that N (F1) !≤path N (F2). To illustrate the reasoning in-
volved, consider the case where F1 = {∩, π} and F2 = {∩}.
By Proposition 11 (2) we obtain N (∩, π) !≤bool

strong N (\, +)
and hence, since N (∩) ≤path N (\, +), also N (∩, π) !≤bool

strong

N (∩). Therefore, N (∩, π) !≤path N (∩).
The remainder of the proof of Proposition 10 is a combi-

natorial analysis to verify that Propositions 9 and 11 cover
all relevant cases. First, note that there are 123 ordered
pairs of distinct languages N (F1) and N (F2) in C[∩] for
which F1 !⊆ F 2. As illustrated above, we subsequently use
the statements in Propositions 9 and 11 to establish that, for
each of these pairs, N (F1) !≤path N (F2). Concretely, Propo-
sition 9 (1) deals with 48 pairs, Proposition 9 (2) deals with
another 28 pairs, Proposition 9 (4) deals with another 25
pairs, Proposition 11 (1) deals with another 18 pairs, and,
finally, Proposition 11 (2) deals with the remaining 4 pairs.

4.3 Languages without ∩ and with +

The characterization of≤path for C[+], the languages with-
out ∩ but with +, can easily be derived from the character-
ization of ≤path for C, using the following observation.

Proposition 12. Let F1 and F2 be sets of nonbasic fea-
tures for which ∩ !∈ F 1, ∩ !∈ F 2,

+ !∈ F 1, and + !∈ F 2. Then,
N (F1 ∪ {+}) ≤path N (F2 ∪ {+}) if and only if N (F1) ≤path

N (F2).

Proof. The “if” is obvious. To see the “only if”, assume
that N (F1) !≤path N (F2). In Section 4.1, we showed that
this can be established using one of the 4 statements of
Proposition 9. Therefore, we can distinguish the following
cases:

(1) Case N (F1) !≤bool
strong N (F2). By definition of !≤bool

strong

there exists a boolean query q expressible in N (F1), and
two finite graphs G1 and G2 such that q(G1) is true, q(G2)
is false, and, for any expression e ∈ N (F2), e(G1) and
e(G2) are both empty, or both nonempty. From this, we
will now establish N (F1 ∪ {+}) !≤bool

strong N (F2 ∪ {+}), which
implies N (F1 ∪ {+}) !≤path N (F2 ∪ {+}). Towards this
end, first observe that, since q is expressible in N (F1), it
is also expressible in N (F1 ∪ {+}). Now let e′ be an ex-
pression in N (F2 ∪ {+}). We will show that again, e′(G1)
and e′(G2) are both empty, or both nonempty. The crux
here is that, on finite graphs, one can always compute the
transitive closure by means of a finite composition. Indeed,
let n = max(n1, n2) with n1 the number of nodes in G1 and
n2 the number of nodes in G2. It is readily verified that, for
any graph H with at most n nodes, and any expression f ∈
N (F2), we have f+(H) = (

Sn
i=1 f i)(H). By consistently

replacing occurrences of the transitive closure operator in
e′ using this equality, we obtain an expression e′′ ∈ N (F2)
such that e′′(G1) = e′(G1) and e′′(G2) = e′(G2). Since
e′′(G1) and e′′(G2) are both empty or both nonempty, also
e′(G1) and e′(G2) must be both empty, or both nonempty,
as desired.

(2) Case N (F1) !≤path
strong N (F2). Similar to Case (1). (De-

tails omitted.)

(3) Case π ∈ F 1 and F2 ⊆ {−1, di}. Follows immediately
from Proposition 9 (3).

Corollary 13. Let N (F1) and N (F2) be in C[+]. If
F1 !⊆ F 2, then N (F1) !≤path N (F2).

Expressible as

π1(R
6 ◦ π2(π1(R

6) ◦R))

◦ π1(R
5 ◦ π2(π1(R

5) ◦R)) ◦ π1(R
4 ◦ π2(π1(R

4) ◦R)) 6= ∅

∗But may have converse, diversity, transitive closure
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Set difference

If F1 and F2 do not have set difference, then (F1,−) 6�bool F2.

This is not surprising (monotonicity), but we have here a

strong separation: two finite graphs cannot be distinguished

4 versus ./

R2 −R 6= ∅

Compare to FO where set difference can be expressed using

diversity if you know the structure
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Converse

For any fragment F that has neither intersection nor transitive

closure, we have (F ,−1) �bool (F , π).

In all other cases, (F1,−1) 6�bool F2 where F2 is a fragment

without converse.

• F1 has ∩:

N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. A detailed proof is given in the Appendix;
here, we only give a sketch. Let Q1 = H1 ← B1 be a
boolean conjunctive query that checks for the existence of
the pattern shown in Figure 3. The query Q1 can be ex-
pressed in N (−1, π) by π1(R

6◦R−1◦R6)◦π1(R
5◦R−1◦R5)◦

π1(R
4 ◦R−1 ◦R4). Since each of the subexpressions π1(R

k ◦
R−1◦Rk), k = 4, 5, 6, is equivalent to π1(R

k◦π2(π1(R
k)◦R)),

Q1 can also be expressed in N (π).4 Now, assume there also
exists an expression e2 in N (−1, di , +) that expresses Q1. We
can then show that there exists an expression e′2 in N (−1, di)
such that (a) e′2(B1) %= ∅, and (b) e′2 ⊆ e2. Note that e′2 is
a conjunctive query H2 ← B2 with nonequalities. Let Brel

2

denote the relation atoms of B2. By (a), there is a homo-
morphism f from Brel

2 to B1. By (b), we have e′2 ⊆ Q1.
Hence, there is a homomorphism g from B1 to Brel

2 . We
argue that g is not injective. Therefore, g followed by f is
a nontrivial endomorphism of B1. We argue that such an
endomorphism does not exist.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 %⊆ F 2 (i.e.,
for which there is no path in Figure 1(a)), that N (F1) %≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) %≤bool

strong N (π) and hence also that
N (di , π) %≤bool N (π). Since ≤path implies ≤bool, we hence

4In the proof of Proposition 18, we show, more generally,
that converse can be eliminated from an expression of the
form π(e), with e not containing \, ∩, and +.

(d)

(c)

(a)

(b)

Figure 2: Graph pairs used to prove %≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.

• F1 has TC: R2 ◦ (R ◦R−1)+ ◦R2 6= ∅

• otherwise:

N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. A detailed proof is given in the Appendix;
here, we only give a sketch. Let Q1 = H1 ← B1 be a
boolean conjunctive query that checks for the existence of
the pattern shown in Figure 3. The query Q1 can be ex-
pressed in N (−1, π) by π1(R

6◦R−1◦R6)◦π1(R
5◦R−1◦R5)◦

π1(R
4 ◦R−1 ◦R4). Since each of the subexpressions π1(R

k ◦
R−1◦Rk), k = 4, 5, 6, is equivalent to π1(R

k◦π2(π1(R
k)◦R)),

Q1 can also be expressed in N (π).4 Now, assume there also
exists an expression e2 in N (−1, di , +) that expresses Q1. We
can then show that there exists an expression e′2 in N (−1, di)
such that (a) e′2(B1) %= ∅, and (b) e′2 ⊆ e2. Note that e′2 is
a conjunctive query H2 ← B2 with nonequalities. Let Brel

2

denote the relation atoms of B2. By (a), there is a homo-
morphism f from Brel

2 to B1. By (b), we have e′2 ⊆ Q1.
Hence, there is a homomorphism g from B1 to Brel

2 . We
argue that g is not injective. Therefore, g followed by f is
a nontrivial endomorphism of B1. We argue that such an
endomorphism does not exist.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 %⊆ F 2 (i.e.,
for which there is no path in Figure 1(a)), that N (F1) %≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) %≤bool

strong N (π) and hence also that
N (di , π) %≤bool N (π). Since ≤path implies ≤bool, we hence

4In the proof of Proposition 18, we show, more generally,
that converse can be eliminated from an expression of the
form π(e), with e not containing \, ∩, and +.

(d)

(c)

(a)

(b)

Figure 2: Graph pairs used to prove %≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.
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Transitive closure

S ◦ R+ ◦ T 6= ∅ cannot be expressed in any fragment lacking

transitive closure

Do we really need two relations?

• If F has at most π and di (apart from the default ◦, ∪, id),

then (F , +) �bool F over a single binary relation

• In all other cases (F1, +) 6�bool F2 where F2 lacks transitive

closure

• R+ ∩ id 6= ∅

• R2 ◦ (R ◦R−1)+ ◦R2 6= ∅
16



• π1((R
+ ◦ π1(R)) ∪ π1(R) 6= ∅

“there is a non-sink node from which no sink node can be

reached”



Conclusion

Complete understanding of relative expressiveness within frag-

ments considered

Other operations, e.g., residuation

Other modalities for expressing boolean queries, e.g., emptiness

instead of nonemptiness

Unary queries
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