Mining for Tree-Query Associationsin a Graph

Eveline Hoekx and Jan Van den Bussche
Hasselt University and transnational University of Limburg
Agoraaan D, 3590 Diepenbeek, Belgium
{eveline.hoekx, jan.vandenbussche} @uhasselt.be

Abstract

New applications of data mining, such as in biology,
bioinformatics, or sociology, are faced with large datasets
structured as graphs. We present an efficient algorithm for
mining associations between tree queriesin a large graph.
Treequeriesare powerful tree-shaped patternsfeaturing ex-
istential variables and data constants. Our algorithm ap-
pliesthe theory of conjunctive database queriesto make the
generation of association rulesefficient. Ve proposea prac-
tical, database-oriented implementation in SQL, and show
that the approach works in practice through experiments
on data about food webs, protein interactions, and citation
analysis.

1 Introduction

The problem of mining graph-structured data has re-
ceived considerable attention in recent years, as it has ap-
plicationsin such diverse areas as biology, the life sciences,
the World Wide Web, or social sciences. At KDD 2005,
we presented an efficient algorithm for mining tree queries
in alarge graph [12], but we considered only atrivial form
of associations between such queries. In the present paper,
we present an efficient algorithm to mine fully fledged tree-
query associationsin alarge graph.

Tree queries are powerful tree-shaped patterns, inspired
by conjunctive database queries [28]. In comparison to
most other graph mining approaches, tree queries have two
powerful extra features in that they allow variables in the
pattern to be existential or parameterized. Existential vari-
ables must be matched in the graph just like any other
variable, but their different matchings are not counted as
contributing towards the overall frequency of the pattern.
So, only the matchings of the non-existential variables are
counted. Parameterized variables, on the other hand, can be
matched only by one specific data constant (nodein the data
graph).

By mining for tree-query associations we can discover

quite subtle properties of the graph. Figure 1(a) shows a
very simple example of an association that our algorithm
might find in a socia network: a graph of persons where
thereisan edge x — y if x considersy to be a close friend.
The tree query on the left matches all pairs (x 1, 2) of “co-
friends’: personsthat are friends of a common person (rep-
resented by an existential variable). The query on the right
matches all co-friends x; of person #5 (represented by a
parameterized variable), and pairs all those co-friendsto 5.
Now were the association from the left to the right to be
discovered with a confidence of ¢, with0 < ¢ < 1, then
this would mean that the pairs retrieved by the right query
actually constitute afraction of c of al pairsretrieved by the
left query, which indicates (for nonnegligiblec) that 5 plays
aspecial rolein the network.*

Figure 1(b) shows quite a different, but again simple, ex-
ample of a tree-query association that our algorithm might
discover in afood web: a graph of organisms, where there
isanedge z — y if y feeds on z. With confidence ¢, this
association means that of al organismsthat are not on top
of the food chain (i.e., they are fed upon by some other or-
ganism), afraction of ¢ is actually at least two down in the
food chain.

The two examples we just saw are didactical examples,
but in Section 11 we will see examples of associations
mined in real-life datasets.

The three main features of our algorithm are the follow-

ing.

1. Asinclassical association rules over itemsets [3], our
association rule generation phase comes after the gen-
eration of frequent patterns and does not require ac-

INote that this does not just mean that 5 has many co-friends; if we
only wanted to express that, just a frequent pattern in the form of the right
query would suffice. For instance, imagine agraph consisting of n digoint
2-cliques (pairs of persons who have each other as a friend), where addi-
tionally al these persons also consider 5 to be an extra friend (but not vice
versa). Insuch agraph, 5isaco-friend of everybody (except herself), and
the association has arather high confidence of morethan 2/7. If, however,
we would now add to the graph a separate n-clique, then still 2/3rds of all
persons are aco-friend of 5, which is still alot, but the confidence dropsto
below 2/n.

(z1,72) (21,5)
3 3
/N T /N
Ty T2 T 5
@

(z)

(z) "
3

Vo7 3
3 7
3

(b)

Figure 1. Simple examples of association
rules over tree queries.

cess to the original dataset. In our case, however, al
frequent tree queries are stored in structured form in a
relational database. The associations can be obtained
from this database in an automatic way using carefully
constructed, yet simple, SQL queries, aswe will show.
For every potential association rule containing param-
eterized variables, one single SQL query retrieves, in
paralel, al possible instantiations of the parameters
by data constants that yield a confident association.
Thanksto this feature, it is easy to develop a very fast
association browsing tool.

2. We apply the theory of conjunctive database queries
[28] to formally define and to correctly generate as-
sociation rules over tree queries. The conjunctive-
query approach to pattern matching allows for an ef-
ficiently checkable notion of frequency, whereasin the
subgraph-based approach, determining whether a pat-
tern is frequent is NP-complete (in that approach the
frequency of a pattern is the maxima number of dis-
joint subgraphsisomorphic to the pattern [20]).

3. A fundamental notion in our approach is that of con-
tainment among conjunctive queries, which in genera
is NP-complete, but which again is efficiently check-
able here, thanks to the restriction to tree shapes. This
not only allows us to generate associations efficiently,
but also to efficiently avoid the generation of dupli-
cates, i.e., associations equivalent to a previously gen-
erated association. We can actually solve only part
of the duplicate detection problem efficiently, but we
prove that the genera problem is as hard as general
graph isomorphism, even under our restriction to tree
shapes.

The primary purpose of this paper is to present our al-
gorithm. Concrete applicationsto discover new knowledge

about scientific datasets are the topic of planned future re-
search. Yet, the agorithm is aready fully implemented,
and we can aready show that our approach works in prac-
tice, by showing some concrete results mined from a food
web, a protein interactions graph, and a citation graph. We
will also give performance results on random graphs (as a
worst-case scenario) which show that the generation of as-
sociationsis very fast.

2 Reated Work

Approaches to graph mining, especially mining for fre-
guent patterns or association rules, can be divided in two
major categories which are not to be confused. In trans-
actional graph mining, eg., [8, 14, 15, 16, 19, 30, 31],
the dataset consists of many small graphs which we call
transactions, and the task is to discover patterns that oc-
cur at least once in a sufficient number of transactions.
(Approaches from machine learning or inductive logic pro-
gramming usually call the small graphs*“examples’ instead
of transactions.) In contrast, in single-graph mining, e.g.,
[7, 11, 17, 20, 29], the dataset is a single large graph, and
the task is to discover patterns that occur sufficiently often
inthe dataset. Our approachfalls squarely withinthe single-
graph category. Note that single-graph mining is more dif-
ficult than transactional mining, in the sense that transac-
tiona graph mining can be simulated by single-graph min-
ing, but the converseis not obvious.

Within single-graph mining, not much previouswork ex-
ists on association rules. Jeh and Widom [17] consider pat-
terns that are, like our tree queries, inspired by conjunctive
database queries, and they also emphasize the tree-shaped
case. A severe restriction, however, is that their patterns
can be matched by single nodes only, rather than by tuples
of nodes. Moreover, they mention association rules only in
passing. Their work is till interesting in that it presents a
rather nonstandard approach to graph mining, quite differ-
ent from our own incremental, levelwise approach, and in
that it incorporates ranking.

The related work that was most influential for us is
Warmr [8, 9]. Based on inductive logic programming, pat-
ternsin Warmr also feature existential variables and param-
eters. While not restricted to tree shapes, the queries in
Warmr are restricted in another sense so that only trans-
actional mining can be supported. Association rules in
Warmr are defined in a naive manner through pattern exten-
sion, rather than being founded upon the theory of conjunc-
tive query containment. The Warmr system is also Prolog-
oriented, rather than database-oriented, which we believeis
fundamental to mining of single large graphs, and which
allows a more uniform and parallel treatment of parameter
instantiations, aswe will show in this paper. Finally, Warmr
does not serioudly attempt to avoid the generation of du-

plicates. Yet, Warmr remains a pathbreaking work, which
did not receive sufficient follow-up in the data mining com-
munity at large. We hope our present work represents an
improvement in thisrespect. Many of theimprovementswe
make to Warmr were already envisaged (but without con-
crete agorithms) in 2002 by Goethal s and the second author
[13].

Finally, we note that parameterized conjunctive database
queries have been used in data mining quite early, e.g.,
[27, 26], but then in the setting of “data mining query lan-
guages’, where a single such query servesto specify afam-
ily of patterns to be mined or queried for, rather than the
mining for such queries themselves, let alone associations
among them.

3 Mining for Association Rules over Tree
Queries

In this section we define the problem formally. We basi-
cally assumeaset U of data constantsfrom which the nodes
of the graph to be mined will be taken. Graphs are always
directed, so basically, for the purposes of the present paper,
agraph is simply a finite set of ordered pairs of elements
from U. We assume familiarity with the notion of atree as
a special kind of graph, and with standard graph-theoretic
concepts as supplied by any algorithms textbook.

TreePatterns A tree pattern P is atree whose nodes are
called variables, and where additionally:

e Some variables may be marked as being existential;
e Some other variables may be marked as parameters;

e Thevariables of P that are neither existential nor pa-
rameters are called distinguished.

We will denotethe set of existential variables by I1, and the
set of parametersby 3. To make clear that these sets belong
to some tree pattern P we will use a subscript asin I1p or
Yp.

A parameter assignment «, for atree pattern P, isamap-
ping X — U which assigns data constants to the parame-
ters.

Aninstantiated tree patternisapair (P,), with P atree
pattern and « a parameter assignment for P. We will also
denote thisby P<.

When depicting tree patterns, existential nodes are indi-
cated by labeling them with the symbol ‘3" and parameters
are indicated by labeling them with the symbol ‘o’. When
depictinginstantiated tree patterns, parametersareindicated
by directly writing down their parameter assignment.

Figure 2 shows an illustration.

o1 0
v v
T T
v ¥
3 3
Y\ Y\
02 02 8 6

@ (b)

Figure 2. (a) is a tree pattern, and (b) is an
instantiation of (a).

Matching Recall that a homomorphism from a graph G,
to agraph G, isamapping f from the nodes of G, to the
nodes of G that preserves edges, i.e, if (i,j) € G4 then
(f(i), f(4)) € G2. We now define a matching of an instan-
tiated tree pattern P< in a graph G as a homomorphism f
from the underlying tree of P to G, with the constraint that
for any parameter o, if a(o) = a, then f(o) must be the
node a.

Frequency of atree pattern The frequency of an instan-
tiated tree pattern P¢ inagraph G, is defined as the number
of matchingsof P in G, where we identify any two match-
ings that agree on the distinguished variables. For a given
threshold & (anatural number) we say that P« is k-frequent
if its frequency is at least k. Often the threshold is under-
stood implicitly, and then we talk simply about “fregquent”
patterns and denote the threshold by minsup.

TreeQueries A treequery QQ isapair (H, P) where:
1. Pisatreepattern, called the body of Q;

2. H isatuple of distinguished variables and parameters
coming from P. All distinguished variables of P must
appear at least oncein H. We call H the head of Q.

A parameter assignment for) is simply a parameter as-
signment for its body, and an instantiated tree query is then
again apar (Q, «) with atree query and « a parameter
assignment for Q. We will again also denote thisby Q.

When depicting tree queries, the head is given above a
horizontal line, and the body below it. Two illustrations are
givenin Figure 3.

Containment of tree queries The final step towards our
formal definition of tree-query association is the notion of
containment among queries.

First, we define the answer set of an instantiated tree
query Q*, with @ = (H, P), inagraph G asfollows:

Q°(G) :={f(H) | f isamatching of P in G}

(x17x27x3) (CL‘,ZC,6)
—0 - -
0
/' N\ |
X1 X9 T
v v v
3 3 i
vl Y\
8 I3 8 6
@ (b)

Figure 3. Simple examples of instantiated tree
queries. Query (b) is contained in query (a)

We then say that an instantiated tree query Q5 is contained
in an instantiated tree query Q7, if Q5%(G) C QT'(G)
for al graphs G. In shorthand notation we write this as

32 g Q<1)61

Containment as just defined is a semantical property,
referring to al possible graphs, and it is not immediately
clear how one could decide this property syntactically. The
required syntactical notion for this is that of containment
mapping, which we next define in several steps. Con-
sider again two instantiated tree queries Q{* and @52, with
Qi = (HuPz) fori = 1,2.

1. A containment mapping from P; to P, is ahomomor-
phism f from the underlying tree of P; to the underly-
ing tree of Py, with the property that f maps the distin-
guished nodes of P; to distinguished nodes or param-
eters of P,, and the parameters of P; to parameters of
Ps.

2. A containment mapping from P{** to Py is a con-
tainment mapping f from P; to P, that respects the
parameter assignments, i.e., for any parameter o of P,
we have as(f(0)) = aq (o).

3. Finally, a containment mapping from Q7" to Q52 is
a containment mapping f from P{** to P such that
f(Hy) = Hs.

A classical result [5, 28, 2] now states that Q52 is con-
tained in Q" precisely when there exists a containment
mapping from Q{* to Q5*. Checking for a containment
mapping is evidently computable, and although the problem
for general database conjunctive queries is NP-complete,
our restriction to tree shapes allows for efficient checking,
aswewill seelater.

Example. Consider the instantiated tree queries shown in
Figure 3. In the example graph shown in Figure 4(a), the
frequency of query (@) is 10 and that of query (b) is2. A
moment’s reflection should convince the reader that (b) is
contained in (a), and indeed a containment mapping from

Figure 4. Two graphs.

(a) to (b) canbefound asfollows. 0 — 0; 21 — x; 2 — x;
dy — 3; d5 — 3; 8 — 8; 23 — 6. For agood understand-
ing, note that were we to change the head of (b) to (z, z, 8),
then this new query (b) would still be contained in (a), be-
cause we can aternatively map x3 — 8 and still have a
containment mapping from the body of (a) to the body of
(b).

Association Rules A potential association rule (AR) is of
the form Q{* = Q352, with Q" and Q3? instantiated tree
queries. The AR islegal if Q52 C Q7*. Wecal Qf* the
left-hand side (lhs), and Q5 the right-hand side (rhs).

The confidence of the AR in agraph G is defined as the
frequency of the rhsin G, divided by the frequency of the
Ihsin G. If the AR is legal, we know that the answer set
of therhsis a subset of the answer set of the lhs, and hence
the confidence equals precisely the proportion that the rhs
answer set takes up in the Ihs answer set. Thus, our notion
of legal AR and confidenceis very intuitive and natural.

For a given threshold ¢ (a rational number, 0 < ¢ < 1)
we say that the AR is c-confident in G if its confidence in
G isat least ¢. Often the threshold is understood implicitly,
and then we talk simply about “confident” ARs and denote
the threshold by minconf.

Furthermore, the AR is called frequent in G if the body
of therhsisfrequent in G. Note that if the AR islegal and
frequent, then also the body of the Ihsis frequent, since the
rhsis contained in the Ihs.

Example. Continuing the previous example, we can see that
we can form alegal AR from the queries of Figure 3, with
(a) thelhs and (b) the rhs. The confidence of this AR in the

graph of Figure 4(a) is 2/10. Many more examples of ARs
are given in the next Section.

Association Rule Mining We are finally ready to formu-
late the problem we want to solve:

Input: A graph G; athreshold minsup; an instantiated tree
query (Qieft, cuieit) that is frequent in G; a threshold
minconf.

Output: All instantiated tree queries Q® such that
i = Q~ isalega and confident association rule
inG.

In theory, however, there are infinitely many legal and
confident association rules for a fixed Ihs, and even if we
set an upper bound on the size of the rhs, there may be ex-
ponentially many. Hence, in practice, we want an algorithm
that runs incrementally, and that can be stopped any time it
has run long enough or has produced enough results.

4 Problem Reduction

In this section, we show that it is not necessary to attack
theprobleminitsfull generality. We will show that, without
loss of generality, we can focus on the case where the given
Ihsquery Qe 1S* pure” in asensethat wewill make precise.
We will also show that this restriction cannot be imposed
on the rhs queries to be output. We also make a remark
regarding “free constants’ in the head of a query.

Pure tree queries To define this formally, assume that
all possible variables (nodes of tree patterns) have been ar-
ranged in some arbitrary but fixed order. We then call a
tree query Q = (H, P) pure when H consists of the enu-
meration, in order and without repetitions, of all the dis-
tinguished variables of P. In particular, H cannot contain
parameters. Asanillustration, thelhs of rule (a) of Figure3
isimpure, while the lhs of rule (b) is pure.

An AR with an impure Ihs can always be rewritten to an
equivalent AR with apurelhs, with the same confidenceand
frequency. Indeed, take alegal AR Q{* = @52, with @
not pure. We know that);’s head is mapped to Q»’s head
by some containment mapping. Hence, we can purify @ 1
by removing all constants and repetitions of distinguished
variables from (),’s head, sort the head by the order on the
variables, and perform the corresponding actions on @ 5’s
head as prescribed by the containment mapping. An illus-
tration is givenin Figure 5.

We can concludethat it is sufficient to only consider ARs
with purelhs's. The rhs, however, need not be pure; impure
rhs'sarein fact interesting, as we will demonstrate next.

(Zl,Il,CCQ,Z) ($,$,8,2)
2 2
v = v
T T
N AN
6 T2 6 8
@

(z1,22) (z,8)

2 2
v = v
X1 X
RN AN
6 T2 6 8

(b)

Figure 5. Rule (a) has a non-pure Ihs. Rule (b)
is the purification of rule (a), and expresses

precisely the same information.

(w1, 22,23) (21,22, 22)
X1 = x1
Y\ v
o xs3 T2
@
(w1, 22) (z1,8)
L1 = T1
A 1%
T2 8
(b)
(z1) (z1)
Z1 = Tl
¥ ¥
= 8

©

Figure 6. (a) and (b) are ARs with impure rhs.
(c)is anill-advised attempt to purify (b) on the

rhs.

(w1, 22)
(1'171'2) 1
xr1 = \L
¢ X2
T2 ¥
3

Figure 7. An AR with a pure rhs.

Impure rhs's Consider the AR in Figure 6(a). The rhs
is impure since x, appearstwice in the head. The AR ex-
presses that a sufficient proportion of the matchings of the
Ihs pattern, are also matchings of the rhs pattern, which is
the same as the lhs pattern except that x, is equal to xs.
The confidence of this AR ism/ ", deg® x, where m is
the number of edges, = ranges over the nodesin the graph,
and deg x is the outdegree of (number of edges leaving) x.
Sincem =) degx, an easy calculation shows that this
confidenceis much larger than 1/m. Hence, the sparser the
graph (with the number of nodes remaining the same), the
higher the confidence, and thusthe AR isinteresting in that
it tells us something about the sparsity of the graph. As an
illustration, on the graph of Figure 4(a) the confidence is
0.4, but on the the graph of Figure 4(b), itis0.6.

Also consider the AR in Figure 6(b). Again the rhs is
impure sinceits head contains a parameter. With confidence
¢, the AR expresses that a fraction of ¢ of al edges point to
node 8, which again would be an interesting property of the
graph.

The knowledge expressed by the above two example
ARs cannot be expressed using ARs with pure rhs's. To
illustrate, the AR of Figure 6(c) may at first seem equiva-
lent (and has a pure rhs) to that of Figure 6(b). On second
thought, however, it says nothing about the proportion of
edges pointing to 8, but only about the proportion of nodes
with an edge to 8.

Of course, we are not implying that ARs with purerhs's
are uninteresting. But al they can express are statements
about the proportion of matchings of the lhs that can be
specialized or extended to a matching of the rhs (another
example is in Figure 7, which says something about the
proportion of edges that can be extended); they cannot say
anything about the proportion of matchings of the lhs that
satisfy certain equalities in the distinguished variables.

Free Constants Most treatments of conjunctive database
queries[2, 28] alow arbitrary constantsin the head. In our
treatment, a constant can only appear in the head as the
value of a parameter. This restriction is justified, since we
can show that for the sake of legal association rules among
conjunctive queries, constants appearing in the head but not
in the body do not buy us anything. We defer the easy argu-
ment (based on the existence of a containment mapping) to
the full paper.

5 Overall Approach

Given the inputs: G, Qs = ((Hieit, Peit), cueit), and
minconf and minsup, an outline of our algorithm for the
association rule mining problemisthat of four nested loops:

1. Generate, incrementaly, all possible trees of increas-

ing sizes. Avoid treesthat areisomorphicto previously
generated ones. The height of the generated trees must
beat |east the height of thetree underlying Pieri. (When
enough trees have been generated, this |oop can be ter-
minated.)

2. For each new generated tree T', generate al frequent
instantiated tree patterns P based on that tree, in a
way that is “levelwise” in the sense of Mannila and
Toivonen [22].

3. For each tree pattern P, generate all containment map-
pings f from P to P, ignoring parameter assign-
ments.

4. For each f, generate al instantiated tree queries Q@ =
((f(Hiert), P),) such that f : Q' — Q respects
the parameter assignments;, Q< is frequent; and the
confidence of Q&' = Q“ exceeds minconf. The gen-
eration of al these o’s happensin aparallel fashion.

This approach is complete, i.e., it will output everything
that must be output. In proof, consider alegal, frequent and
confident AR Qi = Q°, with @ = (Hg, Pp). Thetree
T istheunderlyingtree of Pg; thetree pattern P inloop 2is
Pg; the containment mapping f in loop 3 is a containment
mapping from Q 5 to Q*; and « inloop 4 is 3.

Asto loop 1, it is already well known how to efficiently
generate all trees uniquely up to isomorphism, inincreasing
number of nodes [6, 21, 25, 31]. We present loops 2, 3 and
4 indetail in Sections 6, 7 and 8.

The reader may wonder whether loop 3 cannot be or-
ganized in a levelwise fashion as well as loop 2. Thisis
not obvious, however, since any two queries of the form
((fl (H|Eft)7 P)v a) and ((f2(Hleft>a P)a OL) have exactly the
same frequency, namely that of P“. Loop 4, however, is
levelwise because it is based on loop 2 whichis levelwise.

In Section 9, we will show how our overall approach
must be refined so that the generation of equivalent asso-
ciation rulesis avoided.

6 Thelevelwise generation of tree patterns

Loop 2 of our algorithm, the generation of al frequent
instantiated tree patterns P based on afixed tree, in alev-
elwise fashion, has already been solved in our earlier work
[12]. We recall here the details that are needed further on.?

The levelwise search is based on a natural specialization
relation that is suggested by an alternative notation for the
instantiated tree patterns under consideration. Concretely,

2We warn the reader that what we earlier called a“tree query” [12] is
here called an “instantiated tree pattern”; what we here call a“tree query”
was not yet studied in our earlier work.

since the underlying tree is fixed, any tree pattern is char-
acterized by two parameters: the set IT of existential nodes,
and the set ¥ of parameters. Thus, an instantiated tree pat-
tern P*, with P = (I1, X)) is completely characterized by
thetriple (IL, X, o).

We now say that P** = (IIy, X1, a1) specializes Py? =
(H2722,a2) if II; D IIy; 31 D Yg; and g agre%WIth (o)
on 5. We also say that P> generalizes P;*.

Clearly, if P/ specializes P52, then the frequency
of P is a most that of P;2. Furthermore if Q7' =
((Hy, P1),a1) and Q52 = ((Ha, P2),a9) are instanti-
ated tree queries such that ARL: Q)" = Q7' and AR2:
Qi = Q5* arelegal ARs, then the confidence of AR1
will be at most that of AR2. So we can use this relation
to guide a levelwise search for the frequent and confident
association rules.

Our algorithm outputs the frequent patterns in the form
of frequency tables, which are defined as follows:

FreqTaby y, = {(a, k) | (I, 3, o) is frequent
with frequency k}

So, afrequency table FreqTaby; y, containsall parameter as-
signments « for which P, with P = (11,), isafrequent
instantiated tree pattern.

Technically, the table has columns for the different pa-
rameters, plusacolumnf r eq. Notethat when ¥ = 0, i.e.,
P has no parameters, this is a single-column, single-row
table containing just the frequency of P. Of coursein prac-
tice, al frequency tables for parameterless patterns can be
combined into asingle table. All frequency tables are kept
inarelationa database.

7 Generation of containment mappings

In this section, we discuss loop 3, the generation of all
containment mappingsfrom P to P. So, we need to solve
the following problem: Given two tree patterns P, and P,
find al containment mappings from P; to Ps.

Since the patterns are typically small, a naive algorithm
suffices. For a node x; of P, and a node x5 of P, we
say that 21 “matches’ x4 if thereis a containment mapping
f from the subtree pattern of P; rooted at z; to the sub-
tree pattern of P, rooted at x5 such that f(z1) = z2. In
a first phase, we determine for every node y of P, sepa
rately whether the root r of P; matches y. While doing so,
we also determine for every other node x, of Py, and ev-
ery node xo below y at the same distance as x1 is from r,
whether £; matches z5. We store all these boolean values
in atwo-dimensional matrix.

This first phase compares every possible pair (z1, z2),
with z; anodein P; and z2 a node in P,, a most once.

Indeed, if z; is at distance d from r, then x; will be com-
pared to x5 only during the matching of r with the node y
that is d steps above x5 in P (if existing). We thus have
an O(n; x ng) agorithm, where ny (ns) is the number of
nodesin P, (PQ)

In a second phase, we output all containment mappings.
Initially, by a synchronous preorder traversal of P; and P,
we map each node of P; to the first matching node of Ps.
In each subsequent step, we look for the last node =1 (in
preorder) of Py, currently matched to some node x5, with
the property that «; can also be matchedto aright sibling « 3
of x5, and now map x; to thefirst such z3. The mappings
of al nodes of P; coming after =, are reinitialized. Every
such step takes timethat islinear in n; and independent of
ng. Of course, the total number of different containment
mappings may well be exponential inn .

We can thus easily generate all containment mappings
f from P to P as required for loop 3 of our overall al-
gorithm. Note, however, that in loop 4 these mappings are
used to produce the head f(Het) of query Q. For Q to be
alega query, this head must contain all distinguished vari-
ables of P. Hence, we only pass to loop 4 those f whose
image contains all distinguished variables of P.

8 Generation of parameter assignments

In loop 4, our task is the following. Given a contain-
ment mapping f : Pt — P, generate al instantiated tree
queries Q% = ((f(Hie), P), @) suchthat f : Qi — Q°
respects the parameter assignments; Q< is frequent; and the
confidence of Q" = Q“ exceeds minconf.

Since@ = (f(Hieit), P) isdetermined, the only problem
is to generate the parameter assignments, «. This happens
in aparallel database-oriented fashion.

Indeed, recall from Section 6 that the frequency tables
for Pt and P are available in arelational database. Our
crucia observationisthat we can compute precisely the re-
quired set of parameter assignments «, together with the
frequency and confidence of the corresponding association
rules, by a single relational algebra expression.® This ex-
pression has the following form:

Tplist O FreqTabp .freq .
P FreqTab p g e >minconf

(o (FreqTabp,) Mo FreqTabp)

Here, 7r denotes projection, o denotes selection, and X de-
notesjoin. Thejoin condition 8, the selection condition 6,
and the projection list plist are defined as follows. Let X ¢t
be the set of parameters of Pig;. Then 6 is the conjunction:

/\ FreqTabp, .0 = FreqTabp. f(o)
o EDeit

3The relational algebra is the basic query language for relational
databases; see any database textbook.

The selection condition) is defined as the conjunction:

/\ FreqTabp,, .0 = cueit(0)
0 EDjeft

Furthermore, plist consists of all attributes P.o, with
o € X, together with the attributes FreqTab p.freq and
FreqTab p.freq/ FreqTab p, freq.

Referring back to our overall agorithm (Section 5), we
thus generate, for each pattern P generated in loop 2 and
each containment mapping f inloop 3, all association rules
with the given Q" as Ihs in parallel, by one relational
database query (which can be implemented by a simple
SQL select-statement).

Moreover, we now see that we not actually have to limit
ourselves to one given instantiation «et Of Qert! Indeed,
simply by omitting the selection o 4, On FreqTabp,,, and
by adding the parameters of P to the projection list, we
obtain in parallel all legal and confident association rules
for all possible instantiations of Qe aslhs.

Example. Consider Q& and P asshownin Figures8(a) and
Flgure8(b) WEhaVEmet = {xl,x4} andH|eft = {353, l‘g},
and Xp = {x1,24,25} and I[Ip = {z3}. Teke the fol-
lowing containment mapping f from P to P: 1 — x1;
To F> Tg, T3 > T3, T4 +> T4, Ty +> Tz, Te > T3,
x7 — x4. Thentherhs query Q equals ((z2,x2,04), P),
and the relational algebra expression for computing all pa-
rameter assignments « for al instantiations aert Of Qest
looks as follows:

Tplist O rregtwvp.iiea o o (FreqTabp, Mg FreqTabp)
Fr-eqTable freq =

with plist equal to

FreqTabp.x1, FreqTabp.x4,FreqTab p.xs,
FreqTabp.freq, FreqTab p.freq/ FreqTab p, .freq

and 6 equal to

FreqTabp.x1 = FreqTabHeﬂ.acl
A FreqTabp.xy = FreqTabHeﬂ.u

In SQL, we get:

SELECT freqP.x1, freqgP. x4,
freqP. x5, fregP.freq,
freqP.freq/freqQ eft.freq
FROM freqP, freqQ eft
VWHERE freqQ eft.x1= freqP. x1
AND freqQ eft.x4=freqP. x4
AND freqP.freq/freqQ eft.freq >= mi nconf

(@2, x5, x7)

01 01
YN\ N
T I5 2
v v M
3 3 3
Vo AN
o4 e
@

Figure 8. Example Qe and P.

9 Equivalent association rules

In this section, we make anumber of modificationsto the
algorithm described so far, so asto avoid duplicate work on
equivalent queries.

From our previous work [12] we already know how
to make sure that the tree patterns that are generated in
loop 2 of the overall approach (Section 5) are never equiv-
alent to a previoudly generated one. Thus, we can focus
on ARs ARL: Qg = Q1 and AR2: Qiet = 2, With
Q1 = (fi(Het), P) and Q2 = (f2(Hert), P) and f1 and
f2 containment mappings from P to P, and we want to
know when these two ARs are equivalent.

A tricky example of two ARs that convey precisely the
sameinformation and should thus be considered equival ent,
is shown in Figure 9. We formalize equivalence as fol-
lows: the structures (P, P, f1) and (P, P, f2) are iso-
morphic. Specifically, there must exist isomorphisms (ac-
tually automorphisms) g : Pet — PBegtand h : P — P
such that f, o g = h o f;. In the figure, where f, (for
(@) and f> (for (b)) can be read out from the heads of the
rhs's, h swaps x2 and z3, and g is the cyclic permutation
To — T3 > Ty — T2.

So, using graph isomorphism (to be precise, edge-
colored graph isomorphism, where we use different colors
for the edges in P, the edges in P, and the pairsin f;
or fs), we can test for equivalence. Since our patterns are
not very large, fast heuristics for graph isomorphism can be
used [23]. Thisworkswell in practice, but theoretically this
situation is not entirely satisfying, as graph isomorphismis
not known to be efficiently (polynomial-time) solvable in
general. By areduction from the isomorphism problem for
bipartite graphs, we can actually show that isomorphism of
our structuresis really as hard as the general graph isomor-
phism problem (proof deferred to the full paper). But aswe
show next, we can still capture an important special case
in polynomial time, so that the general graph isomorphism
heuristics only have to be applied on instances not captured
by the special case.

The special efficient case is to check whether
(Pett, P, f1) and (Pest, P, f2) areaready isomorphicwith g

($1,$2,$3,l‘4) (x17x25m25m3)

X1 = X1
N Y\
T2 T3 T4 X2 X3
(€)
($1,$27x37x4) ($1,$27x37x3)
1 Z1
=
AR I Y\
X2 &3 T4 T2 x3

(b)

Figure 9. Equivalent association rules.

the identity, i.e., whether the structures (P, f1) and (P, f2)
are already isomorphic. So, we look for an automorphism
h of P suchthat fo = h o f;. Thiscan be solved efficiently
by a reduction to node-labeled tree isomorphism. As ex-
plained in Section 6, if we know the tree T' underlying P,
then P is characterized by the pair (I1, X), and thus (P, f)
is characterized by (I1, X, f). We can view thistriple as a
labeling of T', asfollows. We label every nodey of P witha
triple (br1, bs, f~1(y)), where byy isabit that is 1iff y € IT;
by is a bit that is defined likewise; and f~1(y) is the set
of nodes of Py that are mapped by f to y. Then (P, f1)
and (P, f2) are isomorphic if and only if the correspond-
ing node-1abeled trees are isomorphic, and the latter can be
checked in linear time using canonical ordering [4, 6].

We are now in a position to describe how our general
algorithm must be modified to avoid equivalent association
rules. Thereisonly extracheckingto be doneinloop 3. For
each new containment mapping f from P to P, we canon-
ize the corresponding node-label ed tree and we check if the
canonical formisidentical to an earlier generated canonical
form; if so, f isdismissed. We can keep track of the canon-
ical forms seen so far efficiently using a trie data structure.
If the canonical form was not yet seen, we can either let f
through to loop 4, if the presence of duplicatesin the output
is tolerable for the application at hand, or we can default
to an edge-colored graph isomorphism check with the con-
tainment mappings previously seen, to be absolutely sure
we will not generate a duplicate.

10 Browsing association rules, and
per formance

As already explained in Section 6, in loop 2 we build up
a structured database containing all frequency tables for all
treesgeneratedinloop 1. Thesetwo first loops should bere-
garding as a preprocessing step; once built up, the database
isan idea platform for an interactivetool by which the user
can repeatedly specify Ihs's, after which the tool only needs

to run loops 3 and 4 to produce rhs's that form an associa-
tion with the given Ihs.

In atypical usage scenario, the user draws a tree shape,
marks some nodes as existential, marks some others as pa-
rameters, instantiates some parameters by constants, but
possibly also leaves some parameters open. The browser
then returns, by consulting the appropriate frequency ta-
ble in the database, all instantiations of the parameters that
make the pattern frequent, together with the frequency. The
user can then select one of these instantiations, set a min-
conf value, and ask the browser to return al rhs's that form
a confident association with the selected pure tree query as
Ihs. Also, instead of letting the browser return al associ-
ation rules, the user can aready suggest a rhs by drawing
a tree shape, possibly with some nodes already marked as
parameter or existential, and let the browser return al rhs's
of the prescribed form.

The preprocessing step, i.e., the building up of the
database with frequent patterns, is of course ahugely inten-
sivetask, first because thelarge data graph must be accessed
intensively, and second because the number of frequent
patterns is huge. Nevertheless, in our previous work [12]
we already presented detailed experimental results showing
that this can be implemented with satisfactory performance.
Also, in scientific discovery applications it is no problem,
indeed typical, if a preprocessing step takes afew hours, as
long as after that the interactive exploration of association
rules can happen very fast.

And indeed, we found the actual generation of associa-
tion rules (i.e., loops 3 and 4) to be very fast. For instance,
Figure 10 shows the performance of generating association
rules for two different (absolute) values of minconf, against
afrequency table database built up for arandom graph with
33 nodes and 113 edges, an absolute minsup of 25, and
all trees up to size 7. We see that associations are gener-
ated with constant overhead, i.e., in linear-output time. The
coefficient is larger for the larger minconf, because in this
experiment we have counted instantiated rhs's, and per rhs
query lessinstantiations satisfy the confidence threshold for
larger such thresholds. Had we simply counted rhs’'s regard-
less of the number of confident instantiations, the two lines
would have had the same slope.

The experiments were performed on a Pentium IV
(3.6GHz) architecture with 2GB of internal memory, run-
ning under Linux 2.6. The program was written in C++
with embedded SQL, with DB2 UDB 8.2 as the relational
database system.

11 Experimental results

While the application of our algorithm to serious scien-
tific data mining is planned future work, in this section, we
till report on some preliminary experiments performed us-

T T
minconf =10 —+—
X minconf =30 ---x---

time(sec)
o
(=3
3

0 L L L L L L L
0 50000 100000 150000 200000 250000 300000 350000
#rules

400000

Figure 10. Performance in terms of number of
discovered rules.

ing our prototype implementation applied to a food web, a
protein interactions graph, and a citation graph. These re-
sults show that our approach is workable.

For each dataset we built up a frequency table database
using the following parameters:

| #nodes #edges minsup max treesize

food web 154 370 100 6
proteins 2114 4480 100 5
citations 2500 350000 100 4

The food web [24] comprises 154 organismsthat live on
the Scotch Broom (a common kind of shrub). Here are two
associ ations we discovered:

(71,22, 23,24, T5) (0,2, 23, 24, x5)

X1 0
v v
T2 X2
{ 45% y
xs3 = 3
v v
T4 T4
v v
x5 Ts5

10

(mla T2,T3, T4, fL‘5)

(1'1,35'271'3,%4,%5) 0
I »11
v 1
X9 »L
¢ 55% To
T3 = ‘l‘
! 73
T4 ¢1
v T4
xIs »L
Is

Since 45% + 55% = 100%, these rules together say that
each path of length 5 either starts in 0, or one beneath 0.
This tells us that the depth of the food web equals 6. Con-
stant 0 turns out to denote the Scotch Broom itself, whichis
the root of the food web.

Ancther rule we mined, just to give a rather arbitrary
example of the kind of rules we find with our algorithm,
isthefollowing:

(21,22, 23,24, T5) (71,22, 24,22, T5)

X x1

2 11% v
X2 X4 = x2
Voo 4N
xs3 T 101 T4 x5

Theprotein interactionsgraph [18] comprises molecu-
lar interactions (symmetric) among 1870 proteins occurring
in the yeast Saccharomyces cervisae. We found the follow-
ingrule

(w1, 22) (w1, 22)
X1 &
y 90% y
X2 = x2
v ¥ \
746 746 376

This rule expresses that almost all interactions that link to
protein 746 aso link to protein 376, which unveils a close
relationship between these two proteins.

The citation graph comes from the KDD cup 2003,
and contains around 2500 papers about high-energy physics
taken from arXiv.org, with around 350 000 citations among
these papers. One of the discovered rules is the following:

(961,302) (3017302)
Z1 Z1
Y\ 15% y
3 X9 = D)
¥ v

3 9503124

This rule shows that paper 9503124 is an important paper.
In 15% of all “non-trivial” citations (meaning that the citing
paper cites at least one paper that also cites a paper), the
cited paper cites 9503124.

Acknowledgment

We thank Bart Goethals, Jan Hidders, and Dries Van
Dyck for fruitful discussions.

References

(1]

(2]
(3]

(4]
(5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

Proceedings of the 2002 |EEE International Conference on
Data Mining (ICDM 2002), 9-12 December 2002, Maebashi
City, Japan. IEEE Computer Society Press, 2002.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast discovery of association rules. In Fayyad
et a. [10], pages 307-328.

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley, 1974.

A. Chandraand P. Merlin. Optimal implementation of con-
junctive queriesin relational data bases. In Proceedings Sth
ACM Symposium on the Theory of Computing, pages 77-90.
ACM Press, 1977.

Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for la-
belled trees and their applications in frequent subtree min-
ing. Knowl. Inf. Syst., 8(2):203-234, 2005.

D. Cook and L. Holder. Substructure discovery using min-
imum description length and background knowledge. Jour-
nal of Artificial Intelligence Research, 1:231-255, 1994.

L. Dehaspe and H. Toivonen. Discovery of frequent Datalog
patterns. Data Mining and Knowledge Discovery, 3(1):7—
36, 1999.

L. Dehaspe and H. Toivonen. Discovery of relational associ-
ationrules. In S. Dzeroski and N. Lavrac, editors, Relational
Data Mining, pages 189-212. Springer-Verlag, 2001.

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and
Data Mining. MIT Press, 1996.

S. Ghazizadeh and S. Chawathe. SEUS: Structure extraction
using summaries. In S. Lange, K. Satoh, and C. Smith, ed-
itors, Discovery Science, volume 2534 of Lecture Notes in
Computer Science, pages 71-85. Springer, 2002.

B. Goethals, E. Hoekx, and J. Van den Bussche. Min-
ing tree queries in a graph. In R. L. Grossman, R. Ba
yardo, K. Bennett, and J. Vaidya, editors, Proceedings
of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining., pages 61-69.
ACM, 2005.

B. Goethals and J. Van den Bussche. Relational association
rules: getting warmer. In D. Hand, R. Bolton, and N. Adams,
editors, Proceedings of the ESF Exploratory Workshop on
Pattern Detection and Discovery in Data Mining, volume
2447 of LNCS, pages 125-139. Springer-Verlag, 2002.

11

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

T. Horvath, J. Ramon, and S. Wrobel. Frequent subgraph
mining in outerplanar graphs. KDD 2006, to appear.

J. Huan, W. Wang, and J. Prins. Efficient mining of fre-
quent subgraphs in the presence of isomorphism. In Pro-
ceedings of the 3rd |EEE International Conference on Data
Mining (ICDM 2003), pages 549-552. |EEE Computer So-
ciety Press, 2003.

A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based
algorithm for mining frequent substructures from graph
data. In D. Zighed, H. Komorowski, and J. Zytkow, editors,
PKDD, volume 1910 of Lecture Notesin Computer Science,
pages 13-23. Springer, 2000.

G. Jeh and J. Widom. Mining the space of graph proper-
ties. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel,
editors, Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 187—196. ACM Press, 2004.

H. Jeong, S. Mason, et a. Lethality and centrality in protein
networks. Nature, 411(3 May 2001).

M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. InN. Cercone, T. Lin, and X. Wu, editors, Proceedings
of the 2001 IEEE International Conference on Data Min-
ing (ICDM 2001), pages 313-320. |EEE Computer Society
Press, 2001.

M. Kuramochi and G. Karypis. Finding frequent patterns
in alarge sparse graph. In M. Berry, U.Dayal, C.Kamath,
and D. Skillicorn, editors, Proceedings of the Fourth S AM
International Conference on Data Mining. SIAM, 2004.

G. Li and F. Ruskey. The advantages of forward thinking in
generating rooted and freetrees. In Proceedings 10th Annual
ACM-S AM Symposium on Discrete Algorithms, pages 939—
940, 1999.

H. Mannila and H. Toivonen. Levelwise search and bor-
ders of theories in knowledge discovery. Data Mining and
Knowledge Discovery, 1(3):241-258, 1997.

B. D. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45-87, 1981.

J. Memmott, N. Martinez, and J. Cohen. Predators, par-
asites and pathogens. species richness, trophic generality,
and body sizes in a natural food web. Journal of Animal
Ecology, 69:1-15, 2000.

H. Scions. Placing trees in lexicographic order. In
D. Michie, editor, Machine Intelligence 3, pages 43-62. Ed-
inburgh University Press, 1968.

W.-M. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Meta-
queries for data mining. In Fayyad et al. [10], pages 375—
398.

S. Tsur, J. Ullman, et a. Query flocks: A generaliza-
tion of association-rule mining. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data, volume 27:2 of SGMOD Record, pages 1-12. ACM
Press, 1998.

J. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume I1. Computer Science Press, 1989.

N. Vanetik, E. Gudes, and S. Shimony. Computing frequent
graph patterns from semistructured data. In Proceedings of
the 2002 |EEE International Conference on Data Mining
(ICDM 2002) [1], pages 458-465.

(30]

(31]

X. Yan and J. Han. gSpan: Graph-based substructure pat-
tern mining. In Proceedings of the 2002 |EEE | nternational
Conference on Data Mining (ICDM 2002) [1], pages 721—
724.

M. Zaki. Efficiently mining frequent treesin aforest. In Pro-
ceedings of the Eighth ACM SSIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 71—
80. ACM Press, 2002.

12

