
A Graph�Oriented Object Database Model�

Marc Gyssensy Jan Paredaensz Jan Van den Busschez Dirk Van Guchtx

Abstract

A graph�oriented object database model �GOOD� is introduced as a theoretical

basis for database systems in which manipulation as well as conceptual representation

of data is transparently graph�based� In the GOOD model� the scheme as well as the

instance of an object database is represented by a graph� and the data manipulation

is expressed by graph transformations� These graph transformations are described

using �ve basic operations and a method construct� all with a natural semantics� The

basic operations add and delete objects and edges in function of the matchings of a

pattern� The expressiveness of the model in terms of object�oriented modeling and

data manipulation power is investigated�

Index terms� Database models� query languages� graph transformations� object�

oriented databases� user interfaces�

�Preliminary versions of this paper were presented at the �th ACM Symposium on Principles of Database
Systems ���� and the ���� ACM SIGMOD International Conference on Management of Data ����� This
work was partially supported by the DPWB of Belgium under program IT�IF��	�

yUniversity of Limburg
 Dept� WNI
 Universitaire Campus
 B�	��� Diepenbeek
 Belgium� E�mail

gysm�bdiluc���bitnet�

zUniversity of Antwerp �UIA�
 Dept� Math� � Comp� Science
 Universiteitsplein �
 B����� Antwerp

Belgium� E�mail
 Paredaens
 pareda�wins�uia�ac�be� Van den Bussche
 vdbuss�wins�uia�ac�be� Jan Van
den Bussche is a Research Assistant of the NFWO�

xIndiana University
 Comp� Science Department
 Bloomington
 IN ����������
 USA� E�mail

vgucht�cs�indiana�edu�

�



� Introduction

The current database research trend is towards systems which can deal with advanced

data applications that go beyond the standard �o�ce� database application� This trend is

re�ected in the research on object�oriented databases ��	 
�	 ��
�

Along with this trend	 the need for better database end�user interfaces has been stressed

���	 ��
� To this end	 the two�dimensional nature of a computer screen should be fully

exploited� It seems natural that in order to achieve these goals	 graphs are used as the

basic data type�

Graphs have indeed been an integral part of the database design process ever since

the introduction of semantic and	 more recently	 object�oriented data models ���	 
�	 
�
�

Their usage in data manipulation languages	 however	 is far less common� To deal with the

language component	 schemes in semantic and object�oriented data models are typically

transformed into a conceptual data model such as the relational model� The required

database language features then become those of the conceptual model�

Some semantic and object�oriented data models are equipped with their own data lan�

guage� DAPLEX �
�
	 for example	 is a data language for the Functional Data Model�

Even though databases in DAPLEX can be conveniently speci�ed as graphs	 queries are

expressed textually and hence can become quite cumbersome�

The �rst graphical database end�user interfaces were developed for the relational model

�e�g�	 QBE ���
�� The earliest graphical database end�user interfaces for semantic models

were associated with the Entity�Relationship Model ���	 �
	 ��	 ��	 ��
� Subsequently	

graphical interfaces were developed for more complex semantic object�oriented database

models ��	 ��	 
�	 
�
� Graph�oriented end�user interfaces have also been developed for

recursive data objects and queries ��	 ��	 ��
� Unfortunately	 most interfaces using graphs

as their central tool are rather limited in expressive power	 as far as data manipulation is

concerned�

Most object�oriented database models	 on the other hand	 o�er computationally com�

plete data languages� These languages are mostly non�graphical however	 and therefore

do not lend themselves easily as a basis for graphical user interfaces� Rather	 they are ex�

pressed textually	 using constructs such as path expressions	 derived from object�oriented

programming languages such as Smalltalk� As we will show in this paper however	 the

same and even greater functionality of path expressions can also be expressed graphically	

using graph patterns�

It is our purpose to present an object�oriented database model in which both data

representation and data manipulation are graph�based� Thereto	 we introduce the Graph�

Oriented Object Database Model �GOOD� and discuss its properties�






In GOOD	 objects are represented as nodes in a graph� The edges in the graph represent

the relationships and properties of the objects� This simple framework provides a convenient

way to model complex object bases and take full advantage of graphical user interfaces�

Object bases can be manipulated by adding or deleting nodes and edges in the graph

using GOOD�s graphical transformation language� The basic operations of this language

are based on pattern matching� not surprisingly	 they are reminiscent of graph grammars

���
	 and in fact even of conventional grammars �cfr� ���
�� The language also includes a

method mechanism	 and is computationally complete� Thus	 it satis�es the expressiveness

conditions usually imposed on object�oriented data manipulation languages�

The GOOD model provides a theoretical basis for working with complex object bases

in a transparent manner� In order to demonstrate this	 an implementation of GOOD has

recently been developed at the University of Antwerp ��
�

This paper is further organized as follows� In Section 
 we de�ne how graphs represent

object database schemes and instances� In Section �	 we �rst introduce the �ve basic

operations of our language� node addition	 edge addition	 node deletion	 edge deletion and

abstraction� We further introduce a method construct� In Section �	 we discuss additional

aspects� macros	 object�orientation	 and computational completeness� Finally	 in Section �	

we compare our approach with graph grammars	 further discuss implementation matters	

and mention some further work�

� Object base schemes and instances

To introduce the concept of an object base scheme	 consider the following example�

Assume that we want to specify a hyper�media system ��
 storing documents which may

contain text	 graphics or sound information� Figure � shows a possible object base scheme

for such a system� The graphical representation used is quite standard� The nodes in this

graph represent object classes� Node labels serve as class names� User�de�ned classes have

a rectangular shape� system�de�ned classes have an oval shape� We will refer to system�

de�ned classes as printable classes since objects in these classes usually have a format in

which they can be output to the user� For example	 the rectangular�shaped node with

label Info represents the class of nodes of information in the hyper�media system� The oval

shaped node with label String is the class of character strings�

The single�arrowed �double�arrowed� edges in the scheme graph represent properties of

and relationships between classes� They are labeled by so�called functional �multivalued�

edge labels serving as names� Functional edges represent functional relationships� For

example	 the functional edge created indicates that each info node will have only one

creation�date� Multivalued edges represent non�functional relationships� For example	 the

�



InfoVersion
new

old

links-to Date

modified
created

Stringname

Reference

isa
in

Data

isa

Comment

comment is

Text

Number

Graphics

isa

is

width
heightisa

Sound

isa

Bitstream Longstring Bitmap

data

#words

datadata

#chars

frequency

Figure �� The hyper�media object base scheme�

�



edge links�to is multivalued� a certain info node can link to multiple other info nodes�

Let us look in more detail at the example scheme of Figure �� An info node represents

a node of information in the hyper�media system� Associated with this node are a creation

date	 a last modi�cation date	 a name	 a comment �either a string or a number�	 and

possibly other info nodes�

Since it is typical in hyper�media systems to have various versions of the same document	

we need a way to keep track of di�erent versions� This is facilitated with version nodes�

A version node indicates that an info node has obtained a new version� The node pointed

at by the edge labeled old indicates the old version	 whereas the edge with new edge label

points to the node corresponding to the new version�

Furthermore	 we distinguish two subclasses of info nodes� �i� the class of data nodes

containing either text	 graphics	 or sound data� and �ii� the class of reference nodes spec�

ifying references in info nodes� Since a reference may occur in multiple info nodes	 the in

label is multivalued�

Associated with a graphics node are the height and width	 and the actual data stored

as a bitmap� Associated with a text node are its number of words and characters and the

actual data stored as a long string� Associated with a sound node are its frequency and

the actual data stored as a bit stream�

We now turn to the formal de�nition of an object base scheme� Throughout this paper	

we assume there are in�nitely enumerable sets of nodes 	 object labels 	 printable object labels 	

functional edge labels and multivalued edge labels � These four sets of labels are assumed

to be pairwise disjoint� Labels can be thought of as type names� In accordance with our

assumption that printable classes are system�given	 we also assume there is a function �

associating to each printable object label the appropriate set of constants �e�g�	 characters	

strings	 numbers	 booleans	 but also drawings	 graphics	 sound	 etc��

An object base scheme is a �ve�tuple S � �OL�POL�FEL�MEL�P� with

� OL a �nite set of object labels�

� POL a �nite set of printable object labels�

� FEL a �nite set of functional edge labels�

� MEL a �nite set of multivalued edge labels� and

� P � OL� �MEL� FEL�� �OL � POL��

An object base scheme is represented by a directed graph with two kinds of nodes� oval�

shaped nodes� labeled by an element of POL� and rectangular�shaped nodes� labeled by an

�



element of OL� and two kinds of edges� functional edges �shown as ��	�� labeled by elements

of FEL� and multivalued edges �shown as ���	�� labeled by elements of MEL� The set P is

represented by the edges of the graph�

We now turn to object base instances� Succinctly speaking	 an object base instance de�

�ned over an object base scheme is a directed graph of objects	 conforming to the structure

of the scheme� The edges between the objects are individual properties of or relationships

between these objects�

In Figures 
 and � we show an example of a hyper�media object base instance over

the object base scheme shown in Figure ��� First notice how each printable node has an

associated constant� To make Figure 
 more readable	 we have duplicated certain printable

nodes� For example	 the printable node with label date and value Jan 
�� 
��
 is repeated

seven times� In reality	 only one such node appears in the object base instance	 obviously

with seven edges arriving at it� In Figure 
 we have marked the info nodes with names

Pink�oyd and the The Doors with the numbers � and 
 respectively� These nodes are

redisplayed in Figure � in dotted outline� They contain the actual data nodes in these info

nodes�

The info node in the left upper corner of Figure 
 represents a document about music

history� It is attached with functional edges to a creation date	 a last modi�cation date	 a

name	 and a comment node� This node is furthermore linked �via multivalued edges labeled

linked�to� to three other info nodes representing rock history	 classical music history	 and

jazz history	 respectively�

The version node is connected to two info nodes� The new edge points to the info node

containing the new version and the old edge points to the old version� Notice how the new

and old info nodes are both linked to the info node containing information about the rock

group The Doors � This re�ects the property that this information is preserved across the

two versions� The single reference node indicates that the info node with name The Beatles

is a reference in the Jazz info node�

Some edges speci�ed in the object base scheme can be absent from a node in the object

base instance� For example	 the info node with name The Doors has no comment associated

with it� This is a convenient way to allow for incomplete or nonexisting information� There

could be even info nodes without any outgoing edges� They would represent info nodes

that have no known name	 comment	 creation date and last�modi�ed date� Further	 if these

nodes have neither incoming edges	 we only know their existence� no relation with other

facts stored in the database is known�

�We should note that we do not intend to present this typically large and complex graph as such to
the user� The GOOD transformation language
 to be introduced in the next section
 provides tractable
primitives for manipulating and visualizing relevant parts of the instance graph�

�



Info
String

Comment

String

Author: JonesMusic History

Jan 12, 1990
Date

Date

Jan 14, 1990

modified

created

name

comment is

Info

Version oldnewlinks-to

Date
Jan 14, 1990

String
Rock

created

name

Comment
comment

is String

Version1

Info
Jan 12, 1990

Date
created

String
Rockname

Info

Jan 12, 1990
Date

created

String The Doorsname

Info

Jan 12, 1990
Date

created

String The Beatlesname

links-to

links-to

Info

Jan 14, 1990
Date

created

String Pinkfloydname

links-to
links-to

2

1

Info

Jan 12, 1990
Date

created

String Classical Musicname

Info

Jan 12, 1990
Date

created

String
Mozartname

Info

Jan 12, 1990
Date

created

String
Jazzname

links-to

links-to

links-to

Reference

in

isa

Figure 
� An example of a hyper�media object base instance�

�



Info

Jan 14, 1990
Datecreated

Pinkfloydname

1

Info

Data

Info

isa

Text

isa

Number Number

#words data

Longstring
Pinkfloyd was created…1000

Info

Data

isa

InfoSound

isa

Number Number

frequency data

01001101011115000

Bitstream

links-to links-to

Info

Jan 12, 1990
Datecreated

String The Doorsname

2

Info

Data

Info

isa

Text

isa

Number Number

#words data

Longstring
The Doors are a…2000

Info

Data

isa

InfoGraphics

isa

Number

data

64010110001

links-to links-to

Bitmap Number

height
width

String

Figure �� Continuation of the hyper�media object base instance�

�



As a �nal remark	 note that the scheme and instance contain edges labeled �isa�	 a name

typically reserved to express inheritance in semantic data models� For simplicity	 we will

at this moment not formally attach special semantics to these edges� In Section ��
 we will

consider inheritance in more depth�

We are now ready to formally de�ne object base instances�

Let S � �OL�POL�FEL�MEL�P� be an object base scheme� Formally� an object base

instance over S is a labeled graph I � �N�E� for which

� N is a �nite set of labeled nodes� if n is a node in N� then the label ��n� of n must be

in OL�POL� if ��n� is in OL �respectively in POL�� then n is also called an object

�respectively a printable object��

� each printable node n in N can have one additional label print�n�� called the print

label� print�n� must be a constant in ����n���

� E is a set of labeled edges� if e is a labeled edge in E� then e � �m� ��n� with m and

n in N� the label � � ��e� of e in FEL � MEL� and ���m�� �� ��n�� � P� if ��e�

is in FEL �respectively in MEL�� then e is called a functional edge �respectively a

multivalued edge��

� if �m� ��n�� and �m� ��n�� � E� then ��n�� � ��n�� �i�e�� the labels of all nodes

connected by � edges to the node m have to be equal�� moreover� if � � FEL� then

n� � n��

� if ��n�� � ��n�� is in POL and if print�n�� � print�n�� then n� � n��

Instances are graphically represented in the same way as schemes�

� The transformation language

The GOOD data transformation language is a database language with graphical syntax and

semantics� It contains �ve basic graph transformation operations� Four of these correspond

to elementary manipulations of graphs� addition of nodes	 addition of edges	 deletion of

nodes and deletion of edges� The �fth operation	 called abstraction	 is used to group objects

on the basis of some of their properties� Moreover	 the language includes a method call

mechanism in the spirit of object�oriented database systems� All operations of the language

are deterministic up to the particular choice of new objects�

Formally	 the e�ect of a program will be de�ned as a transformation of the database

graph	 resulting in another database graph� Whether this latter database graph is only a

temporary entity or actually replaces the original database graph depends on whether the

�



created

name

Info

Info

Date

String

links-to

Rock

Jan 14, 1990

Figure �� An example of a pattern�

transformation represents	 e�g�	 a query or an update� The GOOD transformation language

has indeed been designed in such a way that it can as well be used for querying	 updating	

scheme manipulations	 restructuring	 browsing	 and visualizing parts of a complex instance�

A systematic treatment of these di�erent �modes of interpretation� is given in �

 and will

not be dealt with in this paper�

Throughout the remainder of this paper	 we will use the example object base instance

of Figure 
 �and continued in Figure ��	 unless explicitly speci�ed otherwise�

In order to specify the operations of GOOD	 we need the notion of pattern� A pattern

is a graph used to describe subgraphs in an object base instance over a given scheme� As

such	 a pattern is syntactically itself an instance over that scheme�

For example	 consider the graph in Figure �� This graph is a pattern over the hyper�

media object base scheme� Intuitively	 it describes an info node	 created on Jan 
�� 
��
 	

with name Rock which is linked to another info node�

In order to specify the subgraphs in an object base instance corresponding to a pattern	

we need to introduce the concept of matching � The pattern in Figure � can be matched

within the instance of Figure 
 in two di�erent ways� A �rst way is shown in Figure ��

in the second way	 one matches the lower Info node of the pattern with the Info node

numbered �
� in Figure 
� Formally�

Let S be an object base scheme� let I � �N�E� be an object base instance over S and let

J � �M�F� be a pattern over S� A matching of J in I is a total mapping i � M � N

satisfying�

� For each m �M� ��i�m�� � ��m��

� For each m �M� if print�m� is de�ned then print�i�m�� � print�m��

� If �m� ��n� � F� then �i�m�� �� i�n��� E�

In words� i preserves labels and edges�

��



Info

Info

Version oldnewlinks-to

Date
Jan 14, 1990

String
Rock

created

name

Comment
comment

is String

Version1

Info
Jan 12, 1990

Date
created

String
Rockname

Info

Jan 12, 1990
Date

created

String The Doorsname

Info

Jan 12, 1990
Date

created

String The Beatlesname

links-to

links-to

Info

Jan 14, 1990
Date

created

String Pinkfloydname

links-to links-to

2

1

Figure �� A �rst way to match the pattern of Figure ��

��



created

name

Info

Info

Date

String

links-to

Rock
tagged-to

Rock

Jan 14, 1990

Figure �� An example of a node addition operation�

We can now start with the discussion of the operations of the GOOD transformation

language�

��� Node addition

Suppose that we want to locate the info nodes to which the info node with name Rock and

date Jan 
�� 
��
 is linked� Therefore	 reconsider the pattern in Figure �� As indicated

before	 there are two such info nodes identi�ed by the two di�erent matchings of this

pattern in the hyper�media object base instance� The �rst node is the info node with name

The Doors and created on Jan 
�� 
��
 � The second node is the info node with name

Pink�oyd and created on Jan 
�� 
��
 � A way to locate these two nodes is to associate

with each one a new node� This can be accomplished with a node addition operation� The

speci�c node addition for this example is displayed in Figure �� This �gure contains two

distinguishable parts� the �rst part is the pattern in Figure � �this pattern will be called

the source pattern� and the second part	 indicated in bold	 speci�es the types of nodes

and edges to be added� Intuitively	 the e�ect of this operation is that for each matching

of the source pattern	 a new node and a new edge are added to the instance and linked to

the proper node identi�ed by the matching� Figure � shows that part of the hyper�media

object base a�ected by this node addition�

The node addition is more general than suggested by this �rst example� In its general

form	 it can introduce objects that represent aggregates of multiple nodes in the object base

instance under consideration� Consider the node addition of Figure �� The source pattern

speci�es info nodes with name Rock and for which a creation date exists� Furthermore	

these nodes have to be linked to other info nodes which also have a creation date� �As

can be veri�ed	 there a four matchings of the source pattern in the hyper�media object

base instance of Figure 
�� Assume that we are interested in the pairs �in general	 the

aggregates� of creation dates of such info nodes� The node addition under consideration

derives these pairs� The four added nodes will have the node label pair 	 and will be attached

�




Info

Info

Version oldnewlinks-to

Date
Jan 14, 1990

String
Rock

created

name

Comment
comment

is String

Version1

Info
Jan 12, 1990

Date
created

String
Rockname

Info

Jan 12, 1990
Date

created

String The Doorsname

Info

Jan 12, 1990
Date

created

String The Beatlesname

links-to

links-to

Info

Jan 14, 1990
Date

created

String Pinkfloydname

links-to links-to

2

1

Rock

Rock

tagged-to

tagged-to

Figure �� The result of the node addition of Figure ��

��



name

Info

Info

String

links-to

created
Date

created
Date

Pair

parent

child

Rock

Figure �� A node addition deriving aggregates of creation dates�

with functional edges �labeled parent and child� to the appropriate creation dates�

As can be seen from the two previous examples	 node additions never introduce printable

nodes� This is based on our assumption that printable nodes are system�de�ned and need

not be explicitly added by GOOD transformation language operations� Furthermore	 node

additions only introduce functional edges � This implies that a node addition operation

imposes a one to one relationship between the matchings of the source pattern	 restricted

to the nodes in which a bold edge arrives	 and the nodes that are added by the operation�

We are now ready for the formal de�nition of a node addition�

Let I � �N�E� be an object base instance and J � �M�F� a pattern over object base

scheme S �J will be called the source pattern of the node addition�� Let m�� � � � �mn be

nodes in M� Let K be an object label and let ��� � � � � �n be di�erent functional edge labels�

The node addition

NA�J �S� I� K� f����m��� � � � � ��n�mn�g


results in a new pattern J � over a new scheme S�� and a new instance I� over S �� de�ned

as follows�

� J � � �M��F�� where M� is obtained by adding to M a new node m with

label K� F� is then obtained by adding to F the labeled functional edges

�m� ���m��� � � � � �m� �n�mn��

� S� is the minimal scheme of which S is a subscheme� and over which J � is a pattern�

and

� I� is the minimal object base instance �up to isomorphism� over S� for which


� I is a subinstance of I��

�� for each matching i of J in I� there exists a K�labeled node n in I� such that

�n� ��� i�m���� � � � � �n� �n� i�mn�� are functional edges in I�� and

�Subscheme and subinstance are de�ned with respect to set inclusion�

��



function NA�J �S� I� K� f����m��� � � � � ��n�mn�g
�
I� �� I� J � �� J � S� �� S�
augment J � as in the de�nition�
augment S� with object label K� and for � � � � n�
functional edge labels �� and triples �K���� ��m����

for each matching i of J in I do

if not exists a K�labeled node n in I� with outgoing edges �n� ��� i�m���� � � � � n

then add such a node n and edges �n� ��� i�m��� to I
��

return �J ��S�� I��
end

Figure �� Procedural semantics of node addition�

�� each edge in I� leaving a node of I is also an edge of I�

Like the formal de�nitions of the other GOOD operations that will be presented in this

section	 the above de�nition of node addition is given in a �declarative� style� To show that

the de�nition corresponds to a �procedural� semantics	 we give an algorithm to compute

the result of a node addition operation in Figure �� The algorithms for the other operations

are similar�

��� Edge addition

The node addition operation can be used to introduce new objects into an object base� The

edge addition operation	 in contrast	 is a tool to build relationships between the objects

already in an object base instance�

Consider the info node in the hypermedia object base instance with name Pink�oyd and

creation date Jan 
�� 
��
� This node is connected to two other info nodes �see Figure ���

These info nodes correspond to data nodes	 one of type text	 the other of type sound� Now

assume that we want to associate the creation date of the Pink�oyd info node with the

info nodes representing the text and sound data� This can be accomplished with the edge

addition operation shown in Figure ��� This �gure contains two distinguishable parts� the

�rst part is the source pattern which selects the appropriate info nodes	 and the second

part	 indicated with the bold edge labeled data�creation	 speci�es the types of edges to be

added� Figure �� shows that part of the hyper�media object base a�ected by this edge

addition�

Combinations of node and edge additions are useful for generating objects corresponding

to sets� Assume that we want to determine the set of all info nodes created on Jan 
��


��
 � This can be done in two steps� The �rst step consists of introducing an object which

will denote this set� This is accomplished with the node addition shown in Figure �
 �notice

��



Data

name

InfoInfo

String

links-to created
Date

Pinkfloyd

Jan 14, 1990
isa

data-creation

Figure ��� An example of an edge addition�

Info

Jan 14, 1990
Datecreated

Pinkfloydname

1

Info

Data

Info

isa

Text

isa

Number Number

#words data

Longstring
Pinkfloyd was created…1000

Info

Data

isa

InfoSound

isa

Number Number

frequency data

01001101011115000

Bitstream

links-to links-to

String

data-creation

data-creation

Figure ��� The result of the edge addition of Figure ���

��



Created Jan 14, 1990

Figure �
� Adding a single node labeled Created on Jan 
�� 
��
 �

Info
created

Date
contains

Created Jan 14, 1990 Jan 14, 1990

Figure ��� Linking to Created on Jan 
�� 
��
 the info nodes created on Jan ��	 �����

how the source pattern is simply the empty pattern	 and consequently only one node is

added here�� The result of this node addition consists of the introduction of a single node

with label Created on Jan 
�� 
��
 � The second step consists of connecting to this newly

created node all the info nodes created on Jan 
�� 
��
� This is accomplished with the

multivalued edge�addition shown in Figure ���

We are now ready for the formal de�nition of the edge addition�

Let I � �N�E� be an object base instance and J � �M�F� a pattern over object base

scheme S� �J will be called the source pattern of the edge addition�� Let m�� � � � �mn�

m�
�� � � � �m

�
n be nodes in M and let ��� � � � � �n be arbitrary edge labels�

The edge addition

EA�J �S� I� f�m�� ���m
�
��� � � � � �mn� �n�m

�
n�g


results in a new pattern J � over a new scheme S�� and a new instance I� over S �� de�ned

as follows�

� J � � �M��F�� where M� equals M and F� is obtained by adding to F the labeled edges

�m�� ���m
�
��� � � � � �mn� �n�m

�
n��

� S� is the minimal scheme of which S is a subscheme and over which J � is a pattern�

� I� is the minimal instance over S� for which I is a subinstance of I�� and such that

for each matching i of J in I� �i�m��� ��� i�m
�
���� � � � � �i�mn�� �n� i�m

�
n�� are labeled

edges in I��

Observe that the result of an edge addition is not de�ned if the addition of the required

edges would yield di�erent edges �i� with the same label and leaving the same node� and

�ii� that either are functional	 or arrive in nodes with di�erent labels� Unfortunately	 given

an arbitrary GOOD program	 i�e�	 a sequence of GOOD operations	 statically checking

the �consistency� of an edge addition in the program is undecidable in general	 as can be

shown using results from ��	 


� So in general	 some limited run�time checks have to be

��



nameInfo String

Classical Music

Figure ��� Example of a node deletion�

performed� In practice	 one can always construct a program in such a way that the edge

additions are guaranteed to succeed�

��� Node deletion

In order to remove objects from an object base instance	 the GOOD transformation lan�

guage has the node deletion operation�

Suppose that we are no longer interested in the info node corresponding to classical

music in the hyper�media object base� Removing this information can be accomplished by

the node deletion shown in Figure ��� Again this �gure has two distinguishable parts� The

�rst part is the source pattern which as always determines the relevant matchings� The

second part consists of a single node �in double outline� specifying the nodes to be deleted�

Figure �� shows that part of the hyper�media object base a�ected by this node deletion�

The info node with name Classical Music as well as the edges leaving it have been deleted�

Notice also how as a result of this node deletion	 the info node with name Mozart has

become isolated in the object base� In general of course	 one node deletion will remove

several nodes�

The node deletion operation can also be useful in queries that involve negation� Assume

that we want to tag all data info nodes that do not contain any sound data� This can be

accomplished in a two step process involving a node addition and node deletion� The �rst

step attaches to each data info node a node with label No Sound � The second step removes

these tags from data info nodes containing sound data� The remaining tagged info nodes

are those that do not contain sound data� So	 negation can be thought of as a macro� see

Section ����

We are now ready for the formal de�nition of a node deletion�

Let S be an object base scheme� Let I � �N�E� be an object base instance and J � �M�F�

a pattern over S� �J will be called the source pattern of the node deletion�� Let m be a

node in M�

The node deletion

ND�J �S� I�m


results in a new pattern J � over a new scheme S�� and a new instance I� over S �� de�ned

as follows�

��



Info
String

Comment

String

Author: JonesMusic History

Jan 12, 1990
Date

Date

Jan 14, 1990

modified

created

name

comment is

Info

Version oldnewlinks-to

Date
Jan 14, 1990

String
Rock

created

name

Comment
comment

is String

Version1

Info
Jan 12, 1990

Date
created

String
Rockname

Info

Jan 12, 1990
Date

created

String The Doorsname

Info

Jan 12, 1990
Date

created

String The Beatlesname

links-to

links-to

Info

Jan 14, 1990
Date

created

String Pinkfloydname

links-to
links-to

2

1

Info

Jan 12, 1990
Date

created

String
Mozartname

Info

Jan 12, 1990
Date

created

String
Jazzname

links-to

Reference

in

isa

Figure ��� Result of the node deletion of Figure ���

��



name

Info

String

modified
Date

Music History

name

Info

String

modified
Date

Music History

Jan 16, 1990

Figure ��� Example of an update through an edge deletion followed by an edge addition�

� J � � �M��F�� where M� is obtained by removing from M the node m� F� is then

obtained by removing from F all labeled edges involving m�

� S� equals S� and

� I� is the maximal instance over S� such that I� is a subinstance of I� and such that

for each matching i of J in I� i�m� is not a node of I��

��� Edge deletion

In order to disassociate certain relationships between objects	 the GOOD transformation

language has the edge deletion operation�

Suppose we modi�ed the info node with name Music History on Jan ��	 ����� Conse�

quently	 we need to update the last�modi�ed property from Jan 
�� 
��
 to Jan 
�� 
��
 �

This can be done in two steps� The �rst step	 shown in Figure ��	 involves the deletion

of the edge with label last�modi�ed from the info node with name Music History �notice

how this edge is represented as a doubly outlined edge in the source pattern�� The second

operation	 shown at the bottom of Figure ��	 adds a new edge resulting in the intended

update� Though not illustrated in this example	 it should be clear that it is also possible

to remove multivalued edges�

We are now ready for the formal de�nition of an edge deletion�

Let S be an object base scheme� Let I � �N�E� be an object base instance and J �

�M�F� a pattern over S� �J will be called the source pattern of the edge deletion�� Let

�m�� ���m
�
��� � � � � �mn� �n�m

�
n� be labeled edges in F�


�



The edge deletion

ED�J �S� I� f�m�� ���m
�
��� � � � � �mn� �n�m

�
n�g


results in a new pattern J � over a new scheme S�� and a new instance I� over S �� de�ned

as follows�

� J � � �M��F�� where M� equals M and F� is obtained by removing from F the labeled

edges �m�� ���m
�
��� � � � � �mn� �n�m

�
n��

� S� equals S� and

� I� is the maximal instance over S� such that I� is a subinstance of I� and such that for

each matching i of J in I� �i�m��� ��� i�m
�
���� � � � � �i�mn�� �n� i�m

�
n�� are not labeled

edges of I��

��� Abstraction

GOOD supports object identity� This means that objects exist independently of their

properties� Sometimes	 however	 it is desirable to �abstract� over �duplicate� objects that

share a same set of properties� The operation supporting this technique in GOOD is the

abstraction operation� The abstraction creates a unique object for each equivalence class

of duplicate objects� as such	 it acts as a duplicate eliminator�

As an example	 reconsider the hyper�media scheme speci�ed in Figure �� This scheme

allows for the maintenance of di�erent versions of info nodes� Now consider Figure ���

This �gure displays a sub�instance of a hyper�media object base instance di�erent from

the one displayed in Figures 
 and �� As can be seen	 the info nodes pointed at by the

version nodes share info nodes to which they are linked� In fact	 in some cases	 info nodes

share the same set of other info nodes	 as do for instance the �rst and second info nodes

from the left� In order to �abstract� over info nodes which share the same set of nodes	

consider Figure ��� This �gure contains two node additions and an abstraction operation�

The two node additions are used to tag the info nodes over which the abstraction will take

place� An abstraction operation consists of three distinguishable parts� The �rst part �in

solid lines� is the source pattern� The second part �in dashed lines� speci�es the type of

set equality �i�e�	 info nodes are grouped together if they are linked to the same set of info

nodes�� The third part �in bold lines� speci�es the type of nodes and edges to be added as

the result of the abstraction operation� The semantics of this operation is simply that for

each group of info nodes being linked to the same set of info nodes	 a new node with label

same�info is introduced and linked to all the members of the group by edges with label

contains � The result of this operation is shown in Figure ���


�



Info

Version Version Version Version

Info Info Info Info

new old new old new old new old

Info Info Info Info

links-to

links-to
links-to links-to

links-to
links-to

links-to
links-to

links-to

links-to

Figure ��� A sequence of versions of related information�

links-to

Same-Info
contains

Version Info
new

Interested
in

Version
old

Info Interested
in

Info Interested
in

Figure ��� Example of an abstraction operation�







Info

Version Version Version Version

Info Info Info Info

new old new old new old new old

Info Info Info Info

links-to

links-to
links-to links-to

links-to
links-to

links-to
links-to

links-to

links-to

Same-Info Same-Info Same-Info

contains contains contains

containscontains

Figure ��� Result of the abstraction operation of Figure ���

We are now ready for the formal de�nition of the abstraction operation�

Let S be an object base scheme� Let I � �N�E� be an object base instance and J � �M�F�

a pattern over S� �J will be called the source pattern of the abstraction�� Let n be a

node in M� Let K be an object label� and let �� � be multivalued edge labels� Intuitively�

the abstraction creates sets �labeled K�� Each set contains all the objects n that match the

pattern J and that have the same � properties�

More formally� the abstraction

AB�J �S� I�n� K� �� �


results in a new pattern J � over a new scheme S�� and a new instance I� over S �� de�ned

as follows�

� J � � �M��F�� where M� is obtained by adding to M a new node m with label K� F�

is then obtained by adding to F the labeled multivalued edge �m� ��n��

� S� is the minimal scheme of which S is a subscheme and over which J � is a pattern�

� I� is the minimal instance over S� such that


� I is a subinstance of I��


�



�� for each matching i of J in I� there exists a K�labeled node p in I� such that

�p� ��m� is an edge of I� if and only if the sets of nodes fr � �m� �� r� � Eg and

fr � �i�n�� �� r� � Eg are equal� and

�� each edge in I� leaving a node of I is also an edge of I�

Observe that abstraction is always well de�ned� The third condition captures the

essence of the concept of abstraction�

The reader may wonder why we de�ne abstractions only over one single multivalued

property �� It could indeed be useful to group together objects that agree on a set of func�

tional or multivalued properties� However	 it can be shown that abstraction over functional

properties is expressible using the other GOOD operations introduced in this section� Fur�

thermore	 abstraction over multiple properties can always be reduced to abstraction over

one single property� More details on the expressive power of abstraction are given in ��

�

��� Methods

As in any high�level programming language	 it is useful to incorporate in the GOOD trans�

formation language	 a programming construct to allow the grouping of a sequence of other

operations� Furthermore	 the object�oriented approach in software engineering advocates

the principle of encapsulation	 where code is associated to objects of a given receiver class�

All this is supported in GOOD through methods�

For example	 consider a method �Update� for updating the last�modi�ed date of an info

node� It takes a Date object as parameter	 and a call to the method can be received by an

info node object� This information� the name	 the labels of the parameters and the label

of the receiver	 is given by the method speci�cation	 shown at the top of Figure 
�� Now	

the body of the method	 shown in the remainder of Figure 
�	 consists of an edge deletion	

deleting the old information	 followed by an edge addition	 inserting the new information�

Note how the diamond�shaped method node is used to bind pattern nodes to the formal

receiver and formal parameters in the method body� Having written the body	 we can

�nally call the method for all info nodes satisfying a certain pattern� This is shown in

Figure 
�	 where the last�modi�ed date of each info node with name �Music History� is

updated to �Jan ��	 ������ Again a diamond�shaped method node	 now in bold	 is used to

bind pattern nodes to the actual receiver and actual parameters of the method call�

Methods can also be used to specify recursive processes� Suppose that we want to

remove all the old versions of an info node� This requires a kind of transitive closure of

the Version relationship	 which is impossible using only the basic �ve operations of the

GOOD transformation language� We next show how methods can be used to overcome

this problem� Consider the method in Figure 

� The method speci�cation introduces


�



method specification

method body

Update

Info

Date
parameter

Update

Info Date
modified

Update

Info

Date
parameter

modified

Figure 
�� A method to change the last modi�cation date of an info node�

String

Update

Info

Date
parameter

name

Jan 16, 1990

Music History

Figure 
�� A method call to change the last modi�cation date ofMusic History info nodes�


�



R-O-V

method specification
(`R-O-V' = `Remove-Old-Versions')

method body

Info

Version

Info InfoR-O-V R-O-V

new old

Version

Info InfoInfoR-O-V

new old

Version

InfoR-O-V

new

Figure 

� An example of a recursive method to delete old versions of an info node�

the method Remove Old Versions with as receivers info nodes� The method body consists

of three operations� The �rst operation involves a recursive call �bold diamond�shaped

node� which removes all the old versions of the current receiver �pointed at by the regular

diamond�shaped node�� Notice that the recursion halts when a receiver info node does not

have a previous version� The bottom two operations actually perform the appropriate node

deletions� First the version node directly associated with the receiver is deleted� Then the

no longer useful version node is removed�

Besides the method speci�cation	 body	 and call	 there is a fourth basic part of our

method mechanism� the method interface� Method interfaces allow the user of a method

to compute the scheme resulting from the method without any knowledge of the method�s

body� Concretely	 an interface is a �usually small� scheme which describes the e�ect of

the method at the scheme level� If	 in order to compute the desired e�ect of the method	


�



DDate Date
old

method specification

DDate Date

method interface

Elapsed
olddate newdate

Number

diff

Figure 
�� Speci�cation and interface of a method to compute the number of days elapsed
between two dates�

intermediate operations in the method body introduce some temporary nodes and edges	

which are irrelevant to the �nal result	 the method interface will automatically �lter them

out�

To illustrate the interface mechanism	 consider a method to compute the number of days

between two given dates	 the speci�cation and interface of which are shown in Figure 
��

Given the user knows the meaning of the labels used in Figure 
�	 he can now employ the

method D without having to have any knowledge whatsoever about the method body� In

other words	 the method interface serves to hide implementation details for the user�

Using the methodD	 it is now easy to write a method that	 for each info node	 computes

the number of days elapsed between its creation and its last modi�cation �Figures 
�

and 
��� Observe that the Elapsed nodes	 introduced as an e�ect of calling the method D	

will not appear in the resulting instance	 even though they are not deleted in the method

body	 as these nodes do neither occur in the original scheme nor in the method interface�

We are now ready for the formal de�nition of the method concept�

A GOOD method is a named procedure� It has receiver and parameter labels� a speci�

�cation� a body� and an interface� Let S � �OL�POL�FEL�MEL�P� be an object base

scheme�

The method speci�cation contains the method	s name and parameter types� Formally�

the method speci�cation of a method M is a pair �sM� RM�� where sM is a total function�

sM�LM � OL� POL� with LM a �nite �possibly empty� set of functional edge labels� sM


�



Number

Info E

method specification

Info

method interface

days-unmod

Figure 
�� Speci�cation and interface of a method to compute the number of days elapsed
between creation and last modi�cation of an info node�

D

Date

old

Elapsed
olddate

newdate

diff

Date

Info

created

modified
E

Date

InfoE

created

Date
modified

Number

days-unmod

Figure 
�� Body of a method to compute the number of days elapsed between creation and
last modi�cation of an info node�


�



associates with each of these parameter labels a node label� RM � OL � POL is the node

label of the receiver� Graphically� M is represented by a diamond�shaped node that is labeled

by M� with a labeled outgoing edge for each label � � LM to a node labeled by sM���� and

an unlabeled outgoing edge to a node labeled by RM�

The method body speci�es the implementation of the method� Formally� the method

body BM of a method M is a sequence of parameterized operations� Parameterized op�

erations are normal operations �i�e�� NA� ND� EA� ED� AB or MC �method call� see

further�� or normal operations where the source pattern J is augmented with one diamond�

shaped node labeled by M� called the M�head�node� and with edges leaving that node� At

most one edge for each label � of LM can leave the M�head�node� It has to point to a node

labeled by sM���� Furthermore� there can be an unlabeled outgoing edge to a node labeled

by RM� No other edges can leave the M�head�node�

The method interface CM is formally a scheme�

The method call is the operation that invokes the execution of the method body in a

context speci�ed by a pattern and actual parameters� Formally� let I � �N�E� be an object

base instance and J � �N��F� a pattern over S� Let M � �sM� RM� be the speci�cation

of a method over S� g be a total function� g�LM � N� where g��� must have the label

sM���� let n be a node in J with node label RM� The method call MC�J �S� I�M� g�n


is graphically represented by the pattern J augmented with a bold diamond shaped node�

labeled M� and a bold edge for each � � LM to the node g��� and a bold edge to n�

The semantics of the method call is then that the steps in the body of the method are

executed consecutively� but only for those nodes in the instance under consideration that

match the nodes in the pattern to which the method parameters point and only with the

actual values of the parameters�

Formally� the method call

MC�J �S� I�M� g�n


results in a new scheme S� and a new instance I� over S� de�ned as follows� Consider

the node addition NA�J �S� I� K� f��� g���� j � � LMg � f��n�n�g
 � �J��S�� I��� Let

�PO�� PO�� � � � � POk� be the method body� We de�ne for every parameterized operation

POi an operation OPERi as follows�

� If POi is a normal operation then OPERi is the same operation as POi� except that

an isolated node labeled K is added to the source pattern of OPERi�

� If the source pattern of POi contains a diamond�shaped node labeled by M � then

OPERi is the same operation as POi� except that this diamond�shaped node is sub�

stituted by a rectangular�shaped node labeled by K�


�



StringAnswer
contains name

Info Date

modified

created

Figure 
�� Expressing absence of edges�

Let now �Si� Ii� be the result of executing POi on �Si��� Ii���� The execution of these

operations eventually results in �Sk� Ik�� Let ND�JK �Sk� Ik�m
 � �Jk���Sk��� Ik���� where

JK is the pattern that has no edges and only contains one node m labeled K� Then S� is

de�ned as the union� of S and CM� and I� is de�ned as Ik�� restricted� to S��

� Other features of GOOD

In this section	 we discuss the following additional aspects of the GOOD model� macros	

object�orientation	 and computational completeness�

��� Macros

A variety of additional graphical operation can be added to the GOOD language� They

allow for more succinct expression of certain frequently occurring data manipulations� how�

ever	 they do not increase the expressive power of the language� Hence	 they can be thought

of as macros� In this subsection	 we consider a number of possible macros�

Negation� The pattern matching technique checks for the presence of nodes and edges

in a particular combination� For some transformations	 however	 we need the absence of

nodes or edges� Consider for instance the query� �Give the set of the names of the info

nodes with a creation date that is di�erent from its last�modi�ed date�� This query is

shown in Figure 
�� The crossed edge indicates that we are interested in the patterns that

have no last�modi�ed edge between the indicated nodes �similarly one can consider patterns

with crossed nodes�� As already suggested in Section ���	 the general technique to simulate

patterns with a crossed part in GOOD utilizes deletions� Figure 
� simulates the query

of Figure 
�� First	 intermediate nodes are created for every matching of the non�crossed

part of the pattern� Then the intermediate nodes are deleted that are associated to an

matching that can be enlarged to the complete pattern� The intermediate nodes that are

left represent the desired matching�

�I�e�
 the smallest scheme of which both S and CM are subgraphs �recall that CM is the method interface��
�I�e�
 the largest subinstance of Ik�� that is an instance over S ��

��



Info Date

Answer
contains

String
name created

Intermediate

Intermediate

Intermediate

1 32

DateInfo
modified

created

1 32

String
name

String
1

Figure 
�� Simulation of negation in GOOD�

Additional predicates on printable objects� In practice	 queries need more involved

conditions on printable objects than merely testing for equality� For example	 checking

whether certain values are in a given range� As an example consider the request to deter�

mine the info nodes created between January �	 ���� and January ��	 ����� A straightfor�

ward extension of the GOOD model allowing the speci�cation of extra conditions �possible

using external functions� applied to printable objects �e�g�	 in the style of QBE�s condition

boxes ���
� would allow one to handle this query�

Recursive addition operations� Suppose that we want to compute the transitive clo�

sure of the links�to property� Concretely	 we want to add an edge labeled rec�links�to

between any two info nodes that are connected by links�to edges� The �rst operation of

Figure 
� is a standard edge addition	 specifying the direct links� The second operation is

a recursive edge addition� The starred edge indicates that the edge addition is repeated

as long as new rec�links�to edges can be added� Similarly	 one can consider recursive node

addition� Note however that this can result in an in�nite sequence of node additions� As

already suggested in Section ���	 the general technique to simulate recursive operations in

GOOD utilizes recursive method calls� The method in Figure 
� simulates the recursive

edge addition of Figure 
�� The �rst operation in the method body uses the given pat�

��



Info Info
links-to

rec-links-to

Info Info
links-to

rec-links-to

Info
links-to

*

Figure 
�� Computing transitive closure using recursive edge addition�

tern with corresponding method parameters	 and performs the �underlying� non�starred

operation� The second operation in the body calls the method recursively� The pattern

is augmented with a crossed part that corresponds to the starred part of the recursive

operation� this expresses the stopping condition for the recursion�

��� Object�oriented aspects of GOOD

In this subsection	 we show how GOOD can account for a number of object�oriented features

as described in ��
�

Complex objects and object�identity� Complex objects ��
 are typically built from

printable objects according to certain object constructors	 such as tuples	 sets and lists�

These structures all have a natural graph�based representation� Therefore	 GOOD is a

natural model for working with complex objects�

The notion of object�identity refers to the existence of objects in the database indepen�

dent of their associated properties	 so that objects can be shared and updated indepen�

dently� As stressed from the outset	 object�identity is a basic feature of GOOD�

Encapsulation� Encapsulation means that an object can be accessed only through the

methods de�ned in its class� The precise representation of the data and implementation

of the methods is invisible� It is customary in this respect to divide the methods into

two categories� those which only retrieve certain properties of the object and have no side

e�ects	 and those which do have side e�ects� Properties of objects are modeled in GOOD as

edges in the instance graph� general methods with side e�ects are provided by the GOOD

method mechanism�

�




Info Info

method specification

RLT arg

Info

RLT
arg

Info Info
rec-links-to links-to

method body

Info

RLT
arg

Info
rec-links-to

rec-links-to

method call

Info

RLT
arg

Info
links-to

Figure 
�� Simulation of recursion in GOOD�

��



Info StringReferenceString
name in name

J-R

Jazz

contains

Figure ��� A GOOD query utilizing inheritance�

Info ReferenceString
name in

String
name

Jazz

J-R

contains

Info

isa

Figure ��� Simulation of inheritance in GOOD�

Inheritance� Object�oriented databases support some form of inheritance	 i�e�	 the abil�

ity to de�ne new classes as subclasses of existing ones	 by organizing the classes in a class

hierarchy � We can modestly extend the GOODmodel and let functional edge labels support

the notion of subclass� Those functional edges in the scheme graph we wish to interpret as

subclass edges must of course somehow be marked� We will also assume that the subclass

edges do not form a cycle�

For example	 we can consider the isa edges in the hyper�media object base of Figures ��

� between Reference and Info nodes as subclass edges� The e�ect to the user is the same

as if all properties of info objects were also attached to the corresponding reference objects�

The user can now apply Info operations directly to Reference objects� For example	 in

order to obtain all references to Jazz	 the user may specify the query of Figure ��� Since

name is not a property of Reference	 GOOD will translate this query internally into the

query of Figure ��� Similarly	 a method can be called on objects belonging to subclasses of

the method�s speci�ed receiver and parameter classes� Note that	 while designing a GOOD

scheme	 the user must be very careful to de�ne the isa�links unambiguously�

In other words	 using inheritance in formulating GOOD queries comes down to working

in a virtual instance obtained by explicitly adding the properties of the target nodes of an

isa�link to the source nodes as well� Clearly	 this transformation can be computed by a

number of consecutive edge additions� Hence	 the use of inheritance in patterns is but a

��



macro in the sense of the previous subsection� In fact one can argue that isa�links actually

de�ne a view of the object base the user can work with to formulate his or her queries�

��� Computational completeness

Programs in GOOD are built from the �ve basic operations	 node �edge� addition	 node

�edge� deletion and abstraction	 together with method construction� In this subsection we

brie�y discuss the computational power of the GOOD language�

When we restrict the language to only node and edge additions and deletions	 we ob�

tain a language which is relationally complete in the well�known sense proposed by Codd

��
� Concretely	 suppose we represent a relation R with attributes A�� A�� A� with do�

mains D�� D�� D� as a class R with functional edges labeled A�� A�� A� to printable classes

D�� D�� D�� Tuples of R are represented by objects of this class� Then using this simulation

of relations and tuples as classes and objects	 we invite the reader to convince himself that

every relation computable in the relational algebra is also computable in the restricted

GOOD language �see also ���
��

By adding abstraction	 one can moreover simulate the nested relational algebra �
�
�

Nested relations are represented in an analogous manner as standard relations	 now using

also multivalued edges� The abstraction operation is needed in this case to obtain �faithful�

simulations of relation�valued attributes	 meaning that duplicate relations can be eliminated

�see also ��

�� Again	 the details of the simulation are left to the reader�

The full language with methods is su�ciently strong to simulate arbitrary Turing Ma�

chines� this can be shown using well�known techniques �e�g�	 ���
��

Finally	 on the most general level	 one may ask exactly which graph transformations �i�e�	

computable mappings from graphs to graphs� can be expressed in GOOD� This question

was addressed in ���
� informally speaking	 it was shown there that GOOD can express all

isomorphism�preserving transformations for which newly created objects can be e�ectively

�constructed��

� Concluding remarks

We end the paper with some concluding remarks�

The GOOD transformation language is reminiscent of graph grammars ���
� An appli�

cation of a graph grammar production rewrites a matching of a pattern by another pattern�

Similarly	 the basic operations node �edge� addition �deletion� rewrite matchings of a pat�

tern by adding or deleting nodes or edges� �The �fth basic operation	 abstraction	 works

more global and does not �t this description�� There are however important di�erences

between the GOOD approach and graph grammars� First	 in graph grammars	 the main

��



objectives are to �nd convenient	 general formalisms for specifying rewritings of subgraphs�

this involves solving di�cult problems such as determining how the rewritten subgraph

has to be �glued� into the original graph� In GOOD	 we wish to avoid these �not yet

completely resolved� problems and employ only the simplest rewritings �node and edge

addition and deletion�� A second important di�erence is that the operational semantics

of �graph� grammar derivations is non�deterministic	 both in the choice of the production

to be applied as in the choice of the particular matching of the corresponding pattern to

be rewritten� In GOOD	 basic operations are applied in a predetermined order �possibly

within method executions�	 and	 importantly	 work on every matching of the pattern	 in

parallel� This is in line with the more set�oriented processing nature of database systems�

Although GOOD programs are written in a procedural way	 the basic operations node

�edge� addition �deletion� have a partly declarative nature� Indeed	 the pattern of such

an operation can be seen as the �declarative� condition part of a rule	 while the bold or

outlined part corresponds to a rule�s action �in this case the addition or deletion of nodes

or edges�� This simple mechanism for visualization of rules can provide a basis for the

development of graph�based	 rule�based	 object�oriented database languages �
�
�

The GOOD system is currently being implemented at the University of Antwerp ��
�

Fundamental design concepts for graph�based database user interfaces in the spirit of

GOOD are discussed in �

� A concrete database user interface for GOOD has been de�

veloped� The interface provides graphical tools to specify patterns and GOOD programs	

as well as tools for pattern�directed browsing� The graphical representation of the object

base scheme can be customized� More details can be found in ���
� A prototype of the

actual data management is implemented on top of a relational system� Classes are stored

as relations with attributes for the object identi�er and the functional properties� Multi�

valued edges are stored as binary relations� The set of all matchings of the pattern of a

GOOD operation is expressed as an SQL query� The actual transformation is performed

using SQL�s update capabilities� In this way	 GOOD programs �including methods� are

interpreted by C programs with embedded SQL statements�

At Indiana University	 an alternative approach to implementing the GOOD system is

explored �
�
� There	 a binary relational model	 called the Tarski Data Model	 is used to

store and compute with GOOD databases� The model includes its own �binary� relational

algebra	 which is inspired by Tarski�s work�

Acknowledgment

We wish to thank Marc Andries	 Latha Colby	 Marc Gemis	 Peter Peelman	 Ed Robertson	

Vijay Sarathy	 Larry Saxton	 and Inge Thyssens for helpful discussions� We also wish to

��



thank the referees for their constructive criticism�

References

��
 S� Abiteboul and R� Hull� Data functions	 datalog and negation� In H� Boral and P�A�

Larson	 editors	 
��� Proceedings SIGMOD International Conference on Management

of Data	 pages �������� ACM Press	 �����

�

 M� Andries	 M� Gemis	 J� Paredaens	 I� Thyssens	 and J� Van den Bussche� Concepts

for graph�oriented object manipulation� In A� Pirotte	 C� Delobel	 and G� Gottlob	

editors	 Advances in Database Technology�EDBT	��	 volume ��� of Lecture Notes in

Computer Science	 pages 
����� Springer�Verlag	 ���
�

��
 M� Atkinson	 F� Bancilhon	 D� DeWitt	 K� Dittrich	 D� Maier	 and S� Zdonik� The

object�oriented database system manifesto� In W� Kim	 J��M� Nicolas	 and S� Nishio	

editors	 Proceedings 
st International Conference on Deductive and Object�Oriented

Databases	 pages ������ Elsevier Science Publishers	 �����

��
 D� Bryce and R� Hull� SNAP� A graphics�based schema manager� In Proceedings of

the International Conference on Data Engineering	 pages �������	 �����

��
 E� Codd� Relational completeness of data base sublanguages� In R� Rustin	 editor	

Data Base Systems	 pages ������ Prentice�Hall	 ���
�

��
 J� Conklin� Hypertext� An introduction and survey� Computer	 
����������	 �����

��
 M� Consens and A� Mendelzon� GraphLog� A visual formalism for real life recursion�

In PODS �
�
	 pages ��������

��
 M� Gemis	 J� Paredaens	 I� Thyssens	 and J� Van den Bussche� GOOD� A graph�

oriented object database system� In P� Buneman and S� Jajodia	 editors	 Proceedings

of the 
��� ACM SIGMOD International Conference on the Management of Data	

ACM SIGMOD Record 

�
���������	 �����

��
 C� Davis	 S� Jajodia	 P� Ng	 and R� Yeh	 editors� Entity�Relationship Approach to Soft�

ware Engineering� Proceedings of the International Conference on Entity�Relationship

Approach� North�Holland	 �����

���
 H� Ehrig	 H��J� Kreowski	 and G� Rozenberg	 editors� Graph�Grammars and Their

Application to Computer Science	 volume ��
 of Lecture Notes in Computer Science�

Springer�Verlag	 �����

��



���
 R� Elmasri and J� Larson� A graphical query facility for ER databases� In J� Liu	 editor	

Proceedings of the Fourth International Conference on Entity�Relationship Approach	

pages 
���
��� IEEE Computer Society Press	 �����

��

 D� Fogg� Lessons from a �Living In a Database� graphical query interface� In B� Yor�

mark	 editor	 Proceedings of SIGMOD �� Annual Meeting	 volume ���
 of SIGMOD

Record	 pages �������� ACM Press	 �����

���
 M� Gemis	 J� Paredaens	 and I� Thyssens� A visual database management interface

based on GOOD� Technical Report �
���	 UIA Dept� Math� � Comp� Science	 ���
�

To appear in Proceedings International Workshop on Interfaces to Database Systems	

Springer�Verlag�

���
 K�J� Goldman	 S�A� Goldman	 P�C� Kanellakis	 and S�B� Zdonik� ISIS� Interface for a

semantic information system� In Proceedings of ACM�SIGMOD International Confer�

ence on Management of Data	 volume ���� of SIGMOD Record	 pages �
����
� ACM

Press	 �����

���
 M� Gyssens	 J� Paredaens	 and D� Van Gucht� A grammar�based approach towards

unifying hierarchical data models� In J� Cli�ord	 B� Lindsay	 and D� Maier	 editors	

Proceedings of the 
��� ACM SIGMOD International Conference on the Management

of Data	 volume ���
 of SIGMOD Record	 pages 
���
�
� ACM Press	 �����

���
 M� Gyssens	 J� Paredaens	 and D� Van Gucht� A graph�oriented object database model�

In PODS �
�
	 pages �����
��

���
 M� Gyssens	 J� Paredaens	 and D� Van Gucht� A graph�oriented object database model

for database end�user interfaces� In H� Garcia�Molina and H�V� Jagadish	 editors	

Proceedings of the 
��
 ACM SIGMOD International Conference on Management of

Data	 volume ���
 of SIGMOD Record	 pages 
����� ACM Press	 �����

���
 S� Heiler and A� Rosenthal� G�WHIZ	 a visual interface for the functional model with

recursion� In Proceedings 

th International Conference on VLDB	 pages 
���
��	

�����

���
 R� Hull and R� King� Semantic database modelling� Survey	 applications	 and research

issues� ACM Computing Surveys	 ������
���
��	 �����

�
�
 W� Kim and F�H� Lochovsky	 editors� Object�Oriented Concepts� Databases� and Ap�

plications� Frontier Series� ACM Press	 Addison�Wesley	 �����

��



�
�
 R� King and S� Melville� The semantics�knowledgeable interface� In Proceedings of the



th VLDB Conference	 pages �����	 �����

�


 A� Klug� Calculating constraints on relational expressions� ACM Transactions on

Database Systems	 �����
���
��	 �����

�
�
 A� Motro	 A� D�Atri	 and L� Tarantino� The design of KIVIEW an object�oriented

browser� In Proceedings �nd International Conference on Expert Database Systems	

pages ������	 �����

�
�
 J� Paredaens	 P� Peelman	 and L� Tanca� G�Log� A declarative graphical query lan�

guage� In C� Delobel	 M� Kifer	 and Y� Masunaga	 editors	 Deductive and Object�

Oriented Databases	 volume ��� of Lecture Notes in Computer Science	 pages �����
��

Springer�Verlag	 �����

�
�
 J� Peckham and F� Maryanski� Semantic data models� ACM Computing Surveys	


������������	 �����

�
�
 Proceedings of the Ninth ACM Symposium on Principles of Database Systems� ACM

Press	 �����

�
�
 V�M� Sarathy	 L�V� Saxton	 and D� Van Gucht� Algebraic Foundation and Optimiza�

tion for Object Based Query Languages� Proceedings Ninth International Conference

on Data Engineering	 pages ������ IEEE Computer Society Press	 �����

�
�
 H��J� Schek and M�H� Scholl� The relational model with relation�valued attributes�

Information Systems	 ���
���������	 �����

�
�
 D� Shipman� The functional data model and the data language DAPLEX� ACM

Transactions on Database Systems	 ��������������	 �����

���
 M� Stonebraker	 editor� Readings in Database Systems� Morgan Kaufmann	 �����

���
 Ursprung and Zehnder� HIQUEL� An interactive query language to de�ne and use

hierarchies� In Davis et al� ��
	 pages 
�������

��

 J� Van den Bussche and J� Paredaens� The expressive power of structured values in

pure OODB�s� In Proceedings of the Tenth ACM Symposium on Principles of Database

Systems	 pages 
���
��� ACM Press	 �����

���
 J� Van den Bussche	 D� Van Gucht	 M� Andries	 and M� Gyssens� On the completeness

of object�creating query languages� In Proceedings ��rd Symposium on Foundations

of Computer Science	 pages ��
����� IEEE Computer Society Press	 ���
�

��



���
 D� Varvel and L� Shapiro� The computational completeness of extended database query

languages� IEEE Transactions on Software Engineering	 ��������
����	 �����

���
 H�K� Wong and I� Kuo� GUIDE� A graphical user interface for database exploration�

In Proceedings �th International Conference on VLDB	 pages 

��
	 ���
�

���
 S�B� Zdonik and D� Maier	 editors� Readings in Object�Oriented Database Systems�

Morgan Kaufmann	 �����

���
 Zhang and Mendelzon� A graphical query language for entity�relationship databases�

In Davis et al� ��
	 pages ��������

���
 M� Zloof� Query�by�example� a data base language� IBM Systems Journal	 �������
��

���	 �����

��



Index terms

database models

query languages

graph transformations

object�oriented databases

user interfaces

��



Figure captions

Figure �� The hyper�media object base scheme�

Figure 
� An example of a hyper�media object base instance�

Figure �� Continuation of the hyper�media object base instance�

Figure �� An example of a pattern�

Figure �� A �rst way to match the pattern of Figure ��

Figure �� An example of a node addition operation�

Figure �� The result of the node addition of Figure ��

Figure �� A node addition deriving aggregates of creation dates�

Figure �� Procedural semantics of node addition�

Figure ��� An example of an edge addition�

Figure ��� The result of the edge addition of Figure ���

Figure �
� Adding a single node labeled Created on Jan 
�� 
��
 �

Figure ��� Linking to Created on Jan 
�� 
��
 the info nodes created on Jan ��	 �����

Figure ��� Example of a node deletion�

Figure ��� Result of the node deletion of Figure ���

Figure ��� Example of an update through an edge deletion followed by an edge addition�

Figure ��� A sequence of versions of related information�

Figure ��� Example of an abstraction operation�

Figure ��� Result of the abstraction operation of Figure ���

Figure 
�� A method to change the last modi�cation date of an info node�

Figure 
�� A method call to change the last modi�cation date ofMusic History info nodes�

Figure 

� An example of a recursive method to delete old versions of an info node�

Figure 
�� Speci�cation and interface of a method to compute the number of days elapsed

between two dates�

Figure 
�� Speci�cation and interface of a method to compute the number of days elapsed

between creation and last modi�cation of an info node�

Figure 
�� Body of a method to compute the number of days elapsed between creation and

last modi�cation of an info node�

Figure 
�� Expressing absence of edges�

Figure 
�� Simulation of negation in GOOD�

Figure 
�� Computing transitive closure using recursive edge addition�

Figure 
�� Simulation of recursion in GOOD�

Figure ��� A GOOD query utilizing inheritance�

Figure ��� Simulation of inheritance in GOOD�

�




Footnotes

�Preliminary versions of this paper were presented at the �th ACM Symposium on Prin�

ciples of Database Systems ���
 and the ���� ACM SIGMOD International Conference on

Management of Data ���
� This work was partially supported by the DPWB of Belgium

under program IT�IF����

yUniversity of Limburg	 Dept� WNI	 Universitaire Campus	 B����� Diepenbeek	 Bel�

gium� E�mail� gysm�bdiluc���bitnet�

zUniversity of Antwerp �UIA�	 Dept� Math� � Comp� Science	 Universiteitsplein �	 B�


��� Antwerp	 Belgium� E�mail� Paredaens� pareda�wins�uia�ac�be� Van den Bussche�

vdbuss�wins�uia�ac�be� Jan Van den Bussche is a Research Assistant of the NFWO�

xIndiana University	 Comp� Science Department	 Bloomington	 IN ����������	 USA�

E�mail� vgucht�cs�indiana�edu�

�We should note that we do not intend to present this typically large and complex

graph as such to the user� The GOOD transformation language	 to be introduced in the

next section	 provides tractable primitives for manipulating and visualizing relevant parts

of the instance graph�

�Subscheme and subinstance are de�ned with respect to set inclusion�

�I�e�	 the smallest scheme of which both S and CM are subgraphs �recall that CM is the

method interface��

�I�e�	 the largest subinstance of Ik�� that is an instance over S��

��



Preferred address for all correspondence

Dirk Van Gucht

Indiana University

Computer Science Dept�

Bloomington

Indiana ����������

telephone� ����
���� ��
�

fax� ����
���� ��
�

e�mail� vgucht�cs�indiana�edu

��


