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Abstract

Information extraction (IE) addresses the problem of extracting specific information from a collection of
documents. Much of the previous work on IE from structured documents, such as HTML or XML, uses
learning techniques that are based on strings, such as finite automata induction. These methods do not
exploit the tree structure of the documents. A natural way to do this is to induce tree automata, which
are like finite state automata but parse trees instead of strings. In this work, we explore induction of k-test-
able ranked tree automata from a small set of annotated examples. We describe three variants which differ
in the way they generalize the inferred automaton. Experimental results on a set of benchmark data sets
show that our approach compares favorably to string-based approaches. However, the quality of the
extraction is still suboptimal.
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1. Introduction

When searching for particular information, one is usually confronted with two problems. The
first one is the selection of relevant documents and is addressed by information retrieval; the sec-
ond one is the extraction of specific information from documents and is addressed by information
extraction (IE). Traditionally, IE is focussed on the extraction of information from unstructured
texts. It is a major issue at fora such as the Message Understanding Conferences (MUC) and Text
REtrieval Conferences (TREC). For example a IE task investigated in the Sixth Message Under-
standing Conference (MUC-6) [37], is “Management Succession’. Given an article, the tasks are
to extract the name of the new company officers or the old officers, the company name, and the
position title succeeded.

However, besides IE from unstructured texts, one distinguished also IE from semi-structured
texts and IE from structured texts [51]. The latter have gained importance with the explosive
growth of the World Wide Web (Web) as a medium for disseminating information and the work
on Web information integration [35,55]. Indeed, there is an increasing need for IE systems that
support the extraction of information from Web documents. The latter are often stored as HTML
and/or XML documents, hence are (semi-)structured. These documents make use of non-linguis-
tic elements, such as HTML/XML tags, and sometimes use ungrammatical language to convey
information. This makes the methods appropriate for grammatical text mostly unusable and calls
for a non-linguistic approach.

Several query languages supporting the extraction of information from Web data have been
developed. Examples are in [5,57]. However, their use is time consuming and requires non-trivial
skill. As argued by several authors [41,33], there is a need for systems that can learn to extract
information from a few annotated examples. The reason is that building IE systems manually
is not feasible and scalable for such a dynamic and diverse medium as the Web. The problem, also
known as wrapper induction, has already been addressed by several authors. Several machine
learning techniques for inducing wrappers have been proposed, for instance rule learning algo-
rithms [17] or multi-strategy approaches [18]. Also grammatical inference techniques are used
to induce a kind of delimiter-based patterns [41,20,19,51,16,27,10].

These methods consider the document as a string. However, structured documents such as
HTML and XML documents have a tree structure. Therefore it is natural to explore the use of
tree automata for IE from structured documents. Indeed, tree automata are well-established
and natural tools for processing trees [14]. An advantage of using the more expressive tree formal-
ism is that the extracted field can depend on its structural context in a document. A structural con-
text that is close to the target field in the tree structure of the document, and at a fixed distance
from it, can be arbitrarily far away and at variable distances from it in the string representing the
document. This makes the learning task very difficult if a string-based approach is used, and re-
sults in wrappers with rather poor performance.

The current paper develops a novel wrapper induction method that utilizes the tree structure of
the document. Accordingly, it uses tree automata as wrappers. Recent work by Gottlob and Koch
[23] shows that all existing wrapper languages for structured document IE can be captured using
tree automata. This result provides a strong justification for the use of tree automata instead of
string automata.
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We will use the k-testable tree automaton inference algorithm [46], an algorithm for grammat-
ical inference that is able to identify in the limit [22] any k-testable tree language (in the strict
sense) from positive examples only. Informally, a k-testable tree language is a language that
can be determined just by looking at all the subtrees of length k. The amount of generalization
occurring when learning from the positive examples of the k-testable tree algorithm is mainly
determined by the value of k; it decreases with increasing k. It is an algorithm for ranked trees
(where the number of children of a node is fixed given the symbol in the node), while documents
are unranked trees. The simplest way to apply the algorithm is to convert Web documents into
(ranked) binary trees. As the extraction is based on some structural context, kK must be large en-
ough such that the field to be extracted and its structural context are covered in the same subtree.
Because of the binarization, the value of k£ needed for capturing the structural (or distinguishing)
context tends to be rather large. Consequently, the generalization tends to be rather low, often
resulting in rather poor recall [31].

To overcome this problem, we have experimented with two generalizations of the k-testable
algorithm, namely, the g-testable and gl-testable algorithms. In the g-testable algorithm [30],
the generalization is parameterized by /. It considers generalizations of states (which are trees)
where the state labels at the lowest / levels are replaced by wildcards. The gl-algorithm, which
is introduced in this paper, considers another generalization and uses the partial order between
different generalizations to limit the search. Experiments show that these generalizations improve
the performance of the induced wrappers.

Not only does our method exploit the tree structure, it also requires very little user inter-
vention. The user only has to annotate the field to be extracted in a few representative exam-
ples. Previous approaches require substantially more user intervention such as splitting the
document in small fragments, and selecting some of them for use as a training example
[51]; or the manual specification of the length of a window for the prefix, suffix and target
fragments [20,19], and of the special tokens or landmarks such as “> or *;” [19,41]. Not
all of these parameters can easily be optimized using cross-validation, as we do with the &
and / parameters.

Preliminary versions of parts of this article appeared in conference proceedings (k-testable algo-
rithm [31], g-testable algorithm [30]).

The rest of the paper is organized as follows. Section 2 provides some background on tree auto-
mata and their use for IE. Section 3 describes our methodology, the k-testable algorithm and its
generalizations: the g-testable and g/-testable algorithms. Experimental setting and results are de-
scribed in Section 4 and related work in Section 5. In Section 6 we conclude by summarizing the
contributions of this paper.

2. Preliminaries

2.1. Grammatical inference

Grammatical inference refers to the process of learning rules from a set of labeled examples.
It belongs to a class of inductive inference problems [2] in which the target domain is a formal



132 R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129—158

language (a set of strings over some alphabet X) and the hypothesis space is a family of gram-
mars. It is also often referred to as automata induction, grammar induction, or automatic lan-
guage acquisition. It is a well-established research field in Al that goes back to Gold’s work [22].
The inference process aims at finding a minimum automaton (the canonical automaton) that is
compatible with the examples. The compatibility with the examples depends on the applied qual-
ity criterion. Quality criteria that are generally used are exact learning in the limit of Gold [22],
query learning of Angluin [1] and probably approximately correct (PAC) learning of Valiant
[53]. There is a large body of work on grammatical inference, including some excellent surveys
[38,49,44].

In regular grammar inference, we have a finite alphabet X and a regular language L C X*. Given
a set of examples that are in the language (S7) and a (possibly empty) set of examples not in the
language (S7), the task is to infer a deterministic finite automaton (DFA) A4 that accepts the exam-
ples in S* and rejects the examples in S™.

2.2. Tree automata

Assume given a finite set V" of labels, each with an associated rank (or arity; a natural number).
Trees labeled by V are formally defined as terms over V, as follows: a label of rank 0 (f/0 or just f)
is a tree; and if f/n is a label of rank n >0 and ¢,,...,t, are trees, then f{z,,...,1,) is a tree. For
example the term a(b(a(c, ¢)),c) with a/2,b/1,¢/0 € V, represents the tree shown below.

»— T
o

@)
o

A deterministic tree automaton (DTA) M is a quadruple (V, Q, 4, F), where V' is a set of ranked
labels, Q is a finite set of states, F C Q is a set of final (accepting) states, and 4: U,V x O° — Qs
the transition function. Here, V. denotes the subset of } of labels of rank k. For example,
(v,q1,.-.,qx) — q, where v/k € V. and ¢,q,; € O, represents a transition.

A DTA processes trees bottom up. Given a leaf labeled v/0 and a transition (v) — g, the state ¢
is assigned to it. Given a node labeled v/k with children in state ¢y,...,qx and a transition
(v,q1,. - -.qx) — g, the state ¢ is assigned to it. We say that a tree is accepted if the state assigned
to its root is accepting, i.c., belongs to F.

Grammatical inference can be generalized from string languages to tree languages. Rather than
a set of strings over an alphabet 2 given as example, we are now given a set of trees over a ranked
alphabet V. Rather than inferring a standard finite automaton compatible with the string exam-
ples, we now want to infer a compatible tree automaton. Tree automata are the natural general-
ization of string automata. Typically algorithms for tree automata induction are developed by
upgrading the existing algorithms for string automata induction (e.g., [46,48)).
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2.3. Information extraction by grammatical inference

If we model structured documents as trees over some ranked alphabet V" as above, an IE task
can be reduced to a grammatical inference task (as noted by Freitag [16]). Specifically, suppose the
IE task consists of selecting certain nodes from a tree. We are given a set of examples, each con-
sisting of a tree and a selected node. By adding for each label v € V" a new label (v, x), where x is a
new “‘target” symbol, we can represent such examples as trees over the new alphabet V' = VU
(V' x {x}), where the label of precisely one node, namely the selected one, is in V' x {x}, and the
other labels are in V" as before.

We can now try to infer a grammar for the obtained set of example trees, producing a DTA M
over V. If successful, we can use M to perform the original IE task simply by selecting each node,
one by one, relabeling it to (v, x) if its original label is v, and verifying whether M accepts the thus
relabeled tree. If so, the selected node is extracted.

In what follows, we will focus on applications where only leaf nodes are to be extracted. These
nodes are text nodes; unseen documents likely include unseen text nodes. As explained below, to
obtain a sufficiently general wrapper, they are generalized into a fixed known label (CDATA). It
implies the v in the pair (v, x) carries no useful information. Hence we can simplify the setting a bit
by labeling selected nodes simply by the target symbol x instead of (v, x) and the new alphabet V”
then simply becomes V' U {x}.

3. Approach and algorithms

Structured documents in HTML, or, more generally, XML format, can be readily represented
as trees, where internal nodes represent the elements, and are labeled by tags, and leaf nodes rep-
resent the text content. Before we can use grammatical inference to perform IE on such trees, as
described above, we must deal with two issues:

1. How do we deal with text content? A node of the tree contains one symbol, which in the con-
text of HTML or XML documents can be any piece of text. We cannot have a separate sym-
bol for any text, that would yield an infinite alphabet and overly specific automata.

2. Tags are not ranked. Recall that in a ranked tree, any node with a given symbol (in this case, a
given HTML or XML tag) always has the same number of children. But in HTML, for exam-
ple, an (ul) element can have an arbitrary number of (11i) subelements, and more generally,
in XML documents, there is no bound on the number of subelements an element can have.

In the next two subsections, we will deal with these two issues. After that, we summarize our
general approach. Finally, we introduce the various concrete grammatical inference algorithms
we will use for IE from structured documents.

3.1. Preprocessing

Fig. 1 shows a simplified view of a representative document. (The real documents, as used in the
experiments by us and the other authors, are more complex.) In this document, the fields to be
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File Edit View Go Communicator
1. Name: ¢ Lithium' J Smith
E-Mail: anlmer@u.washi m.edn
Last Update: 0810145
Organization: University of Washing
i, Name: *Sir Brand' Gregrobin Smith
Alt. Name: Smith Gregrobin
E-Mail:
Crganization: university of washington
Last Update: 06/21/96
Crganization: University of Washington
.3 Name: (raig Smith
E-Mail:
Last Update: 080154
Crganization: University of Oregon
4. Name: - Richard Smith
Alt. Name: Richard
E-Mail:
Last Update: 111285
Organization: Stephen F. Austin State University
5. Name: - David S Smith
Alt, Name: David §
E-Mail: t] )i
Last Update: 11/1695
Service Provider: Indiana University
=3 maillo:aulmer@uwast ] -8h Y &P (8 N2

Fig. 1. An example of a HTML document.

extracted are the fields following the ‘A1t.Name’ and ‘Organization’ fields. A document con-
sists of a variable number of records. As we can see, in each record the number of occurrences of
the fields to be extracted is also variable (from zero to several occurrences). Also the position
where they occur is not fixed. There is evidence that extracting this kind of information is a dif-
ficult task [26,40].

An important issue is how to deal with the various text nodes in the document. Treating every
piece of text as a distinct label is unacceptable as it results in overly specific automata. Labeling all
text nodes (except the node to be extracted, which is labeled x) by some fixed label CDATA, as in
XML DTD’s [56], is also unacceptable, as this results in overly general automata. Indeed, consider
Fig. 2 which shows a fragment of a document tree that could originate from the document shown
in Fig. 1.

Suppose the target field x is always preceded by a field labeled Organization. If the labels
Provider and Organization are both replaced by CDATA then any automaton that extracts
the x node will likely also extract the att node when it is replaced by x. Hence we should not
replace the field Organization by CDATA. Fields such as Organization and Alt.Name
are called distinguishing contexts (or structural context). Roughly speaking, a distinguishing con-
text is the text content of a tree node that is useful for the identification of the field of interest.
However, not every field of interest has a unique distinguishing context.

In our experiments, we consistently used the following automatic procedure to determine the
distinguishing context. We look for the invariant text label that is nearest to the field of interest
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Fig. 2. A fragment of a HTML tree for the document in Fig. 1.

and occurs at the same distance from the field of interest in all examples. For example, the text
‘Organization:’ is an invariant text label that is nearest to the organization name in the HTML
document of Fig. 1. If no such text is found, no context is used and all text is turned into CDATA.
If there are several possibilities, one is chosen at random. As distance measure, we use the length
of the shortest path in the document tree (for example, the distance of a node to its parent is one;
to its sibling, two; to its uncle, three).

3.2. Conversion to ranked trees

Existing tree automata inference algorithms expect ranked trees. The simplest way to apply
them on HTML or XML documents, which are unranked trees, is to transform the latter into
ranked (binary) trees. This is the approach that we follow in this paper.

Using the symbol T to denote unranked trees and F to denote a sequence of unranked trees (a
forest), the following grammar defines unranked trees:

T:=a(F), a€V F:u=c¢
F:=TF
One can think for several ways of representing an unranked tree by a ranked one. For example,
one could replace the children of a node by a list of nodes. The unranked tree on the left of Fig. 3

would then be encoded as a([b, c¢([a]), d]), the second tree in Fig. 3. However this has the drawback
of introducing extra symbols (the list constructor and the empty list) and of increasing the

a = a - a = Qeft
T ‘ S
b oeod : b Dright
‘ N A~
a b . ¢ C
PN ap A~
P a d v d
\ PN
d [

P

a ||

Fig. 3. An unranked tree (left) and its representation using lists, as a ranked binary tree without list constructors, and
using the encodey function (right).
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distance between each pair of nodes. Given that extraction is to be based on the local context of
nodes, this is a serious drawback. Obviously, it is not possible to preserve all distances. We opt for
a transformation that preserves the distance between a node and all its siblings and between a
node and its first child. Such a transformation can be formally defined with the following recursive
function encode (with encodey for the encoding of forests):

encode(T) def encode(T)

u if F=af(e)
ayign(encode, (F)) if F=ua(e), F»
(F f € '
encode(F) dS arep(encode,(F)) if F=a(F,)

a(encodes(F), encodes(F)) if F=a(F,), F2

As can be seen in Fig. 3, the first child of a node v in an unranked tree 7 is encoded as the left
child of the corresponding node v" of 7", the binary encoding of 7, while the right sibling of a node v
in tree 7 is encoded as the right child of v" in 7”. To distinguish between a node with one left child
and a node with one right child, the node is annotated with left and right respectively. For example,
the unranked tree a(b, c(a), d) is encoded into the binary tree a(b,gn{c(a,d))) as shown in the fig-
ure. Note that the binary tree has exactly the same number of nodes as the original tree.

As mentioned above, we can now directly use the tree automata inference algorithms that have
been proposed in the literature [21,46,7,3]. In this paper we explore the application of the k-test-
able algorithm [21,46]. We choose the k-testable algorithm because it requires fewer examples than
the other tree-based algorithms, and hence less effort from the user (who needs to provide these
labeled examples). A drawback of converting an unranked tree to a binary tree is that the distance
between the distinguishing context and the target node can increase. A so far less explored alter-
native is to work directly with unranked trees. Unranked tree automata [43,52] have transition
rules of the form (v,e) — ¢, where e is a regular expression that describes a sequence of states.
A first step towards using them for information extraction has recently been made [29].

3.3. Approach
Our approach for information extraction has the following characteristics:

o Strings stored at the nodes are treated as a whole. If extracted, the whole node is returned. For
example, our method is able to extract the whole node “att global services” in Fig. 2, but is not
able to extract the substring “att” only.

¢ One automaton is learned for one type of field to be extracted, e.g., the field following “Orga-
nization” in Fig. 2.

¢ In the examples used during learning, one target field is replaced by x. When a document con-
tains several fields of the same type, then several examples are created from it, one for each
occurrence of the target field.

One characteristic of our tree automata wrappers is that they do single-slot (or single-field) extrac-
tion. A single-slot IE system extracts isolated facts from the text, while a multi-slot I1E system groups
the related extracted fields together into correctly ordered multi-slot facts. A group of related ex-



R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129-158 137

tracted fields is commonly called a case frame. There are some domains where multi-slot extraction is
a necessity. For example, a webpage may contain a list of house addresses with their corresponding
prices. Unless the address and the price are combined in a pair, the extracted information is rather
useless because we do not know which price should be the correct attribute for a particular address.
Multi-slot extraction can be achieved by extracting also the location of the extracted fields. Know-
ing the locations, one can combine the extracted fields into the correct tuples. This simple post-pro-
cessing method works reasonably well for structured documents such as HTML/XML documents,
since the order of the fields in a case frame typically follows the order of their position in the docu-
ment. However, we did not collect the extracted fields in a case frame in our experiments.
The learning procedure is as follows:
1. Replace in the examples the target field by “x”, the distinguishing context (if present) by
“ctx” and all other text fields by CDATA.
2. Convert the example trees to binary trees.
3. Run a tree automaton inference algorithm on the examples and return the inferred
automaton.

The extraction procedure is as follows:

1. Replace the distinguishing context (if present) by “czx” and all other text fields by CDATA.
2. Convert the tree to a binary tree.
3. Repeat for all CDATA nodes:
e Replace the label of one CDATA node by the special label ‘x’.
e Run the inferred tree automaton.
o If the tree is accepted by the automaton, then extract the original text of the node labeled
with x.

The automaton can succeed for zero, one or more text nodes. The text nodes for which it suc-
ceeds are the extracted fields. Only the first step of the learning procedure requires user interven-
tion. The second step of the learning procedure and the whole extraction procedure are done
automatically. The above procedures are repeated for each field of interest in the dataset. If
one wants to do a novel extraction task on a novel dataset, then the learning procedure above
has to be done for this novel task. That is, the user should mark the fields of interest and distin-
guishing context if they exist, then run the learning algorithm on the novel data.

3.4. Tree automaton inference algorithms

The k-testable algorithm is a basic tree automaton inference algorithm. As we will see in Section
4, the algorithm is precise, but is sometimes too specific, as indicated by the low recall. Hence we
develop two generalization algorithms: g-testable and g/-testable. We start with some definitions.

3.4.1. Definitions
The basic idea underlying k-testable languages is that a language is defined by a set of small
fragments (of size at most k). Any structure built from only those fragments is an element of
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the language. To learn such a language, one simply extracts all the fragments of size at most &
from the positive examples. An unseen example is classified as a member of a given language if
and only if its set of fragments is a subset of the fragments representing the language.

In the case of k-testable tree languages, the fragments are tree structured, and we divide them
into roots, forks and subtrees, depending on whether they occur at the top of the example trees
(roots), at the bottom (subtrees), or anywhere (forks). To define them formally, we first introduce
the notion of height of a tree: height(¢) is the number of nodes on the longest path from the root.

The k-root ri(t) of a tree ¢ is the tree of height at most k obtained from ¢ by cutting off branches
longer than k:

v if k=1

ot ) = {v(rk1(t1),...,rk1(tm)) if k> 1 N

The set f;(¢) of k-forks is the set of all trees of height k obtained from 7 by taking all subtrees of
height at least k and cutting off branches longer than k:

0 if height(v(zy,...,t,)) <k
U ifi(t) U{r(o(t, ..., ta))}  otherwise

Finally, the set s,(¢) of k-subtrees is the set of all subtrees at the bottom of ¢ of height at most &:

" 0 if height(v(t1,...,t,)) >k
Hyooity)) = t) U ,
(ol ) ijlsk( ) { v(ty,...,t,) otherwise

fk(v(tlv"'?tm)) = { (2)

(3)

Note that the k-root and the k-subtrees have height at most k, and that the k-forks have height
exactly k. An example is shown in Fig. 4.

The level of a node is defined as the number of edges on the path from the node to the root. The
skeleton of tree ¢, skeleton(t), is defined as ¢ with all of its labels, except the root label, changed to a
wildcard *. For example, skeleton(a(b(d), c(e,f))) = a(*(*), *(*,*)). A partition of a set S is a set of
disjoint non-empty subsets of S (called classes) such that the union of the subsets is S. The children
of a tree v(ty,...,t,) are ty,...,t,. A tree t covers a tree t' if ¢’ can be derived from ¢ by replacing
some of the wildcards in 7.

The tree and its 2-root: a a
P A~
b c b ¢
\
a
P
b x
Its 2-forks: a b a
A~ | N~
b ¢ a b x
Its 2-subtrees: a b X 4
A~
b x

Fig. 4. A tree a(b(a(b, x)),c), its 2-root, 2-forks and 2-subtrees.
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3.4.2. The k-testable algorithm

The k-testable algorithm [46] is parameterized by a natural number k; its name comes from the
notion of a “k-testable tree language”. Informally, a tree language (set of trees) is k-testable if
membership of a tree in the language can be determined just by looking at its (k — 1)-root, k-
forks, and (k — 1)-subtrees. The k-testable algorithm is capable of identifying in the limit any
k-testable tree language from positive examples only. We have selected it because the information
to be extracted typically has a locally testable character. Intuitively, given an example, the right
value of k is the minimal value that ensures that the target x and the distinguishing context are
in the same fork.

The choice of k is performed automatically using cross-validation, choosing the smallest & giv-
ing the best results. Our cross-validation approach takes randomly one half of the dataset for
training and uses the rest for testing. First calculating a score for k = 2, the value for k is increased
until the score shows a decrease. The least k-value giving a maximal score is then selected as the
best value. As argued in Section 4, the FI-score used to measure the quality of the extraction first
increases and then decreases, hence the selected k is indeed the optimal one.

The procedure to learn the tree automaton [46]is shown in Algorithm 1. Essentially, the autom-
aton is an efficient procedure to check whether a tree contains only fragments that occurred in the
training examples. The algorithm uses the (k — 1)-roots, k-forks and (k — 1)-subtrees occurring in
the examples to derive states and transitions.

The final state FS of the automaton is the (k — 1)-root of the tree. The set of states Q is the
union of the (k — 1)-subtrees (%), the (k — 1)-forks (computed as the (k — 1)-roots of the k-forks
%) and the (k — 1)-roots (which are a subset of the (k — 1)-forks). Using trees as states ensures
that the state associated with a node not only depends on its label, but also on the states of
the children. Finally, there is a transition for each (k — 1)-subtree (the state of the node at the root
of the subtree is the subtree itself) and a transition for each k-fork (the state of the node at the root
of the fork is the (k — 1)-root of the fork).

Algorithm 1. k-testable.
Input: A set T of positive examples (ranked trees over V) and a positive integer k.
Output: A tree automaton (V, Q, 4, FS).
. 7=l 1€ T)
S = U{Skfl(t) | t e T}
FS = {Vk_](l)‘le T}
: Q::yUFSU{Vk_l(f) |f€97}
A:={(v,t1,...,tn) = V(t1,... ty) | V(t1,. . tn) € S}
A:=AU{(v,t1,...,tn) = 11 (0(tr, ... tn)) | v(t1,... ty) € F}

It was observed that it was difficult to obtain optimal results. For small k, too many targets
are extracted. Increasing k eliminates false positives but also true positives as the generalization
tends to be insufficient for large k. Therefore, two (ad hoc) variants where developed that
generalize better for large k. Their development was motivated by the intuition that the forks
that contribute to the recognition of the target are close to it while forks further away are
merely contributing to recognizing that the document belongs to the class containing targets.
As it is assumed that all documents belong to the right class, the latter is not part of the
extraction task. Moreover, learning the class tends to require more examples than learning

kRN
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the target, hence one can better generalize the forks mainly contributing to the recognition of
the class.

3.4.3. The g-testable algorithm

The basic idea of the g-testable algorithm is to generalize the transitions originating from forks
that are not important for the recognition of the target. Important forks are those that contain the
target label x as they belong to the local context of the target. In Algorithm 2, they are collected in
the set 7% (target forks), the other ones in the set 0.% (other forks). The generalization is param-
eterized by a level / that measures the distance to the root. It replaces the label of a node by a
wildcard when its distance to the root is at least /; hence generalization increases with decreasing
[. The algorithm uses a function gen(f, /) for this. Fig. 5 shows a fork f'(left), gen(f, 1) (middle) and
gen(f,2) (right). To prevent overgeneralization and to keep the automaton deterministic, we re-
quire that the generalization of a fork does not interfere with forks close to the target. Formally,
the condition is that it does not cover any target fork. The value of parameters k and / are deter-
mined by the same cross-validation method as explained above.

The meaning of a generalized fork is the set of all trees that can be obtained by instantiating
labels for the wildcards. Generalized forks yield transitions with wildcards. For example, with
k =3 and [/ = 2, the fork gen(f,2) from the figure would yield the transition a(b, c(*, *)) — a(b, ¢),
which on a 5-label alphabet V' = {a,b, c,d, e} effectively stands for the 52 =25 possible transitions
obtained by instantiating labels for the wildcards. Similarly, with k£ = 3 and / = 1, the fork gen(f, 1)
from Fig. 5 would yield the transition a(*, *(*,*)) — a(*, *), which then stands for 5% possible tran-
sitions obtained by instantiating labels for the wildcards on the left-hand side of the transition.
Since the right-hand side stands for the 2-root of the fork, the wildcards on the right-hand side
are instantiated in accordance with the left-hand side. Some concrete example instantiations of
the transition are:

o a(b,c(d,e)) — a(b,c),
o a(d,e(b,c)) — a(d,e),
o a(a,a(b,b)) — ala,a).

The detailed g-testable procedure is shown in Algorithm 2. %, the set of k-forks, is divided in
T F, the target forks, (0.7 o, the other forks that cannot be generalized because the generaliza-
tion would interfere with the target forks, and the forks to be generalized. After generalization,
the latter yield .7 o,. Together, the three sets make up the .7, the final set of forks. The remain-
ing difference with the k-testable algorithm is that the (k — 1)-subtrees of k-forks are explicitly
added as states. In the k-testable algorithm, they were already present as (k — 1)-subtrees or as
(k — 1)-roots of other forks. For generalized k-forks, this is no longer the case due to the wild-

f:oa gen(f,1): a gen(f,2): a

/\ /\

b ¢ * ok b ¢
P T~ T~
d e * ok * ok

Fig. 5. Generalizing a fork.
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cards. Note also that with / = k, the g-testable algorithm will output exactly the same automaton
as the k-testable algorithm as no wildcards are introduced.

Algorithm 2. g-testable algorithm.
Input: A set T of positive examples, parameters k and /.
Output: A tree automaton (V, 0, 4, FS)

1. Fo:=U{ilt) |t €T}

20 7F :={f €F,|[f contains x}

3 0Fy=Fy—-TF

4t OF nogen = {f € OF | gen(f,1) covers one of T F }
5: OF gon = {gen(f, 1) | f € OF g — OF pogen}

6: F = TF UOF gon U OF pogen

70 S = U{ska(t) |t €T}

8 FS:={r_(t)|teT}

9: Q:=FSUFSU{r.(f) | f e 7Y UUsia(f) |/ € 7}
10: A:={(v,t1,...,tn) = 0(t1,... tn) | V(t1,... 1) € F}
11 A:=AU0{(v,t1,... tw) = ri1(0(ty, ... tw)) | 0(t1, .. tw) € F}

3.4.4. The gl-testable algorithm

Like the k-testable algorithm, the g/-testable algorithm has a single parameter £ whose optimal
value is determined by the same cross-validation method. Like the g-testable algorithm, the g/-
testable algorithm divides forks in target forks 9 and other forks O.% and generalizes the other
forks. However, the amount of generalization is not determined by a second parameter /, but by a
more exhaustive exploration of possible generalizations.

Checking whether a (generalized) fork f is overly general is done with a test overly_general
(f,7 7,7 ). This includes a cover test against the target forks 7% as in the g-testable algo-
rithm but also checks that the children of /' (which are also states) do not cover states containing
the target x. Such states can originate from subtrees of height & — 1. These states (target subtrees)
are collected in the set .7 .% which is the last argument of the procedure.

To avoid an exhaustive search over all possible generalizations of a fork, some heuristics are
used. As a first heuristic, the other forks are partitioned according to their skeleton by means
of a procedure partition (not shown). For instance, with 0.7 = {a(d), a(c,d),a(b), a(c),a(b,c),
a(e,d,e)}, partition(0.F ) = {{a(b),a(c),a(d)},{a(b,c),a(c,d)},{a(c,d,e)}}. Then the procedure
pgen (also not shown) computes a single generalization of the forks in the same class (with the
same skeleton): common labels are preserved but all other labels are replaced by a wildcard *.
For instance, pgen({a(b(c),d),a(b(c),e), a(b(f),e)}) = a(b(*),*). If this generalization is not overly
general, it is used as initial value for a search of further generalizations. Otherwise, each fork of
the partition is considered for generalization. This further generalization is performed by the
procedure genl (Algorithm 4) with as inputs a set of target subtrees, a set of target forks (both
used to check against overgeneralization) and the set of forks to be generalized. This procedure
returns the most general forks that are allowed by the overgeneralization check. It only considers
generalizations at the bottommost level (i.e., introducing wildcards only for leaves that are at
depth n, with n the height of the tree); this is a heuristic decision inspired by earlier experimental
results.
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Consider for instance a fork a(b(d), c(e,f)). It has seven possible generalizations for the labels at
the bottommost level. They are partially ordered by the covers relation. The most specific ones are
a(b(*),c(e,f)), a(b(d), c(*,f)) and a(b(d), c(e,*)) (the ones tested by gentree when passed the initial
fork), the more general ones are a(b(*), c(*,f)), a(b(*),c(e,*)) and a(b(d), c(*,*)) and a(b(*), c(*, *))
is the most general one. The fork and two of its generalizations are shown below.

t: a a a
PN PN PN
b c b C b C
d e f d x f x € ok

The detailed g/-testable procedure is shown in Algorithm 3. Lines 1-3 compute the forks and
split them in 0.7, the other forks and .7 %, the target forks. The latter initialize the %, the final
set of forks, while the former are partitioned into Z (line 5). Besides the final state .S and the
(k — 1)-subtrees, the algorithm now computes also .7 .%, the target subtrees (line 6). Then each
set Cin 2 is generalized. If pgen(%) is not overly general, it is further generalized by the gen/ pro-
cedure (line 14), otherwise, all elements of C are further generalized (line 12). The generalizations
are added to the forks # and states and transitions are computed as before (lines 17-19). The used
heuristics were determined by experiment.

Algorithm 3. gl-testable.
Imput: A set T of positive examples and a positive integer k
Output: A tree automaton (V, Q, 4, FS)
I: go = U{fk(l) |t€ T}

T F ={f € F,|f contains x}

OF =Fy—TF
F=TF
P = partition(0F )
FS:={r\()|teT}

S = U{Sk—l(l) | t e T}

T ={s € & | s contains x, height(s) =k — 1}
9: for each ¥ € 2 do
10: ¢ = pgen(%¥) % candidate generalization
11:  if —overly_general {(c¢,7 F#,7 %)} then

12: F =F Ugenl( TS, T F,%¥)
13: else

14: F =F Ugenl(T7S, T F,{c})
15: end if

16: end for

17: Q=S U U{rn.(f) | f € FUUsia(f) | [ € 7}
18: A:={(v,t1,...,tn) = V(t1,... tn) | V(t1,... tn) € L}
190 A:=AU{(v,t1,...,tn) = 11 (V(t1, ... tw)) | v(t1,.. . tn) € F}
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Example 1. Applying Algorithm 3 on the term of Fig. 4 for k = 3, we obtain:

o FS=ry(t)={a(b,c)}, 0F ={a(b(a),c)}, 7F = {b(a(b,x))} and & = 5,(¢) = {a(b,x),b,x,c},

* 7% ={a(b,x)},
* 7 ={{a(b(a),c)}},
o 7 ={a(b(x),c), b(a(b,x))},
e 0= {q(b c),b(a), b(*), a(b,x), b, x, c},
e transitions:
— a(b,x) € & : (a,b,x) — a(b,x),
_beS:(b) — b,
- x€S:(x) =2,
—ce¥:(c)—c,
— a(b(x),c) € F : (a,b(*),c) — a(b,c),
— b(a(b,x)) € F : (b,a(b,x)) — b(a).

Algorithm 4. genl.
Input: Sets .7 & of target subtrees, 7% of target forks, and T of trees
Output: A set of trees G (a generalization of 7)
D G=0

2: while T # () do

3:  select ¢t from T and remove it

4 C:={'|t' is derived from ¢ by replacing one bottommost label #*

by * and —overly_general({ , 7 F ,7 )}

5 if C = () then

6: G=GU {1}

7 else

8: T:=T— {t|te Tand ¢ is covered by some c € C}
9: T=TuC

10: end if

11: end while

Note again that the use of wildcards in the representation of the sets %, Q and 4 in the example
is really just an abbreviation; e.g., when Q contains b(*), this really means it contains the states
b(a), b(b), b(c) and b(x).

4. Experimental results

We performed two series of experiments. The first series focuses on comparing our methods on
existing methods, using benchmark datasets where results for other systems are available. The
second series tests the performance of our approach on larger datasets; comparison with other
systems is more difficult there due to greater variation in the tasks and performance metrics used
in the literature.
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4.1. Test on the benchmark datasets

We evaluated our method on some semi-structured data sets commonly used in the IE re-
search': a collection of webpages containing people’s contact addresses (the Internet Address Fin-
der (IAF) database) and a collection of webpages about stock quotes (the Quote Server (QS)
database). There are 10 example documents in each of these datasets. The number of fields to
be extracted is respectively 94 (IAF-organization), 12 (IAF-alt.name), 24 (QS-date), and 25
(QS-vol). The motivation to choose these datasets is as follows. Firstly, they are benchmark data-
sets that are commonly used for research in information extraction, so we can compare the results
of our method directly with the results of other methods. Secondly, they are the most difficult
benchmarks we are aware of that require the extraction of a whole node of the document tree.
In fact, one of the authors in [40] has tried to build a handcrafted extractor given all available
documents from the QS dataset and achieved only 88% accuracy.

We also test the k-testable, g-testable, and gl-testable algorithms on a small and simplified
Shakespeare® data set. This dataset is a significantly reduced version of Jon Bosak’s Shakespeare
XML dataset, which can be found from http://www.ibiblio.org/bosak/; its DTD is shown in Fig.
6. In words: an act consists of a title followed by one or more scenes; a scene consists of a title
followed by one or more speech acts; a speech act consists of a speaker followed by one or more
lines; finally title, speaker and line are normal strings of text.

We use this dataset to test the expressiveness of our methods. The task is to extract the title of
the second scene of every act, in a particular play. This extraction task is very difficult for string-
based methods even on the simplified data, because each scene has a complex structure of varying
length. We used the simplified Shakespeare dataset because our three algorithms above performed
very poorly on the full dataset.” The latter is a consequence of the conversion to ranked trees: an
‘act’ field, for instance, can have many children, many of which precede the second scene of the
act. After the conversion, this second scene then ends up very deep in the subtree below the
‘act’ tag, making it very difficult to identify using a k-testable automaton. Thus, we expect the sim-
plified data set to be a good example of a task that is difficult for string-based wrappers but man-
ageable for those based on ranked trees. The full Shakespeare dataset is currently out of reach for
all these methods.

The training and the testing processes follow the procedures outlined in Section 3.3. For eval-
uating our method, we use criteria that are commonly used in the information retrieval research
community. Precision P is the number of correctly extracted objects divided by the total number
of extractions, while recall R is the number of correct extractions divided by the total number of
objects present in the answer template. The FI-score is defined as 2PR/(P + R), the harmonic
mean of P and R.

4.1.1. Summary of the results
Table 1 shows the results we obtained as well as those obtained by some current state-of-the-art
string-based methods: an algorithm based on Hidden Markov Models (HMMs) [20], the Stalker

' Available from http://www.isi.edu/~muslea/RISE/.
2 Available from http://www.cs.kuleuven.ac.be/~ml/ie/.
3 Also available from http://www.cs.kuleuven.ac.be/~ml/ie/.
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<!ELEMENT ACT (TITLE, SCENE+)>
<!ELEMENT SCENE (TITLE, SPEECH+)>
<!ELEMENT SPEECH (SPEAKER, LINE+)>
<!ELEMENT TITLE (#PCDATA) >
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT LINE (#PCDATA) >

Fig. 6. A DTD of the small Shakespeare dataset.

wrapper induction algorithm [41] and BWI [19]. We also include the results of the k-testable algo-
rithm (as we reported in [31]) and the g-testable algorithm (as we reported in [30]). The results of
HMM, Stalker and BWI are adopted from [19]. All tests are performed with standard cross-
validation performed ten times following the splits used in [19], except in the small Shakespeare
dataset where standard cross-validation was performed two times only. Each split has 5 docu-
ments for training and 5 for testing. We refer to the related work section for a brief description
of the other methods.

Table 1 shows the results of the k-testable, g-testable and g/-testable algorithms for the optimal
k-value. More specifically, k was optimized with standard cross-validation, which is performed ten
times, using a separate dataset not used for training and testing.

As can be seen, our methods perform better in most of the test cases than the existing state-of-
the-art string-based methods. The only exception is the field date in the QS dataset where BWI
performs better. Compared to the results of k-testable, the gl-testable algorithm performs better
in the IAF-alt.name, IAF-organization and small Shakespeare data. Compared to the results of g-
testable, the gl-testable performs better in the IAF-alt.name and IAF-organization data but equal
in the small Shakespeare data. We shall discuss these results below.

Table 2 shows the parameters k, (k,/) and k that were used by the k-testable, g-testable, and g/-
testable algorithms respectively to produce the results in Table 1. As mentioned before, these

Table 1
Comparison of the results

IAF-alt.name IAF-organization 0S-date OS-volume

P R FI P R FI P R FI P R FI
HMM 1.7 90 3.4 16.8 89.7 284 36.3 100 53.3 184 96.2 309
Stalker 100 - - 48.0 - - 0 - - 0 - -
BWI 909 435 588 77.5 459 577 100 100 100 100 619 765
k-testable 100 739 85 100 579 733 100 60.5 754 100 73.6  84.8
g-testable 100 739 85 100 82.6 90.5 100 60.5 754 100 73.6 848
gl-testable 100 84.8 91.8 100 84.6 91.7 100 60.5 754 100 73.6  84.8

Small Shakespeare

P R Fl
k-testable 56.2 90 69.2
g-testable 66.7 80 72.7

gl-testable 66.7 80 72.7
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Table 2
Parameters used for the experiments

IAF-alt. name IAF-org. 0S-date 0S-volume Shakespeare
k-testable (k) 4 4 2 5 3
g-testable (k, 1) (5,2) (5,2) (3,2) (6,5) (4,2)
gl-testable (k) 4 4 2 6 4

parameters were optimized using cross-validation. A distinguishing context was discovered and
used in the datasets IAF-alt.name and IAF-organization.

4.1.2. More detailed discussion of the results

In these datasets some of the best results with the g/-testable algorithm (i.e. in QS-volume and
small Shakespeare data) are obtained with a k-value bigger than the value used in the k-testable
algorithm. This means that our goal, performing more generalization while using bigger contexts,
is achieved. Some other best results (i.e., in [AF-alt.name, IAF-organization and QS-date data)
are obtained with using the same k-value. These results indicate that: (1) The wildcards are useful
for our IE tasks as they can improve the results of the k-testable algorithm. (2) The two step gen-
eralization, done by the procedure pgen that generalizes all forks in each partition and by the pro-
cedure gen/ that searches the generalization of the bottommost labels more thoroughly, is useful
for our IE tasks. This is shown by the better results of the g/-testable algorithm compared to the
results of the g-testable algorithm in the two IAF datasets that are obtained with a smaller value
of k.

Despite the improvements of both g/-testable and g-testable algorithms in TAF-alt.name, IAF-
organization and small Shakespeare datasets, they were not able to improve the results of the k-
testable algorithm in the two QS datasets. For the QS-volume data, the reason is not clear to us.
One explanation is that the result might be optimal for these learners given a certain set of training
examples. For the QS-date data, the reason is that the inferred automaton is not general enough,
as can be seen in Fig. 7. In that figure, the recall of the most general automaton inferred (k = 2) is
not very high and the maximum precision is already reached with k£ = 2. Thus we cannot improve
the Fi-score by increasing the k.

Fig. 7 shows how the Fil-score of the gl-testable algorithm changes with k. The solid line is the
Fl-score, the dotted line precision and the dashed line recall. In this figure, we can clearly see the
trade-off between precision and recall. The behavior of the three tree-based algorithms that we test
is quite similar. With small value of k, the precision of these tree-based methods tend to be low
because the automaton inferred is relatively general. As the value of k increases, the precision rises
until a certain value of k where the maximum precision is reached. The recall of these tree-based
methods behaves the other way around. At the low value of k, the recall of these tree-based meth-
ods tends to be high. However, as the value of k becomes higher, the recall decreases gradually. As
the harmonic mean of the precision and recall, typically the FI-score curve starts with a low value
at k = 2, increases, reaches a maximum and then starts to decrease.

Fig. 8 shows the average training time of the k-testable and the g/-testable algorithms for dif-
ferent values of k. Overall, both algorithms show somewhat similar training time on our datasets.
By using a suitable data structure for looking up forks and subtrees, the k-testable algorithm can
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Fig. 7. The graphs of FI-score versus k, for the g/-testable algorithm.

be made to run in O(kn) time, where #n is the total size of the examples. A similar upper bound
holds for the time complexity of the g-testable algorithm. The theoretical running time of the
gl-testable algorithm is exponential in the size of the subtrees, in the worst case, due to the finer
search in the generalization lattice. In our experiments, the g/-testable algorithm is still feasible to
run if the k-value used is less than 8. The preprocessing consists of parsing, conversion to the
binary tree representation (both processes take time linear in the size of the document) and the
manual insertion of the label x. Our prototype implementation was implemented in Prolog and
tested on a Pentium 1.7 GHz PC. The figure shows that the actual training time (after preprocess-
ing) needed to infer the automaton is more or less linear in k. One exception is the training time of
the gl-testable algorithm for IAF-alt.name which looks non-linear. The reason is that with k£ <6
most candidate generalizations (the result of pgen function) do not suffer from overgeneralization.
Thus only one candidate generalization is input to the gen/. This is also the reason why in this task
the gl-testable algorithm is slightly faster than the k-testable algorithm for k < 6. At k = 6 several
candidate generalizations suffer from overgeneralization.

Actually the theoretical training time of the k-testable and the g-testable algorithms is better
than that of BWI [19], one of the string-based methods that are used for comparison. The training
time of BWI increases exponentially with the increase of the look-ahead parameter. As reported in
[19] the TAF-alt.name, IAF-organization and QS-volume datasets need a long lookahead. They
used lookaheads of 8 because these tasks need very long boundary detectors. We cannot compare
the actual training time of BWI to ours in these datasets, as it was not reported.
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Fig. 8. The graphs of training time versus k.

Fig. 9 shows the average extraction time per document of the g/-testable algorithms for different
values of k. The theoretical time complexity of the extraction procedure is O(n*) where n is the
number of nodes in the document. Indeed, the time of a single run is linear in the number of nodes
(using suitable data structures), while the automaton has to run for each replacement of a node by
the target symbol x. Just for comparison, the extraction time of the tree automaton inferred by the
k-testable algorithm (not shown here) is about two times faster than the extraction time of the

generalized automaton inferred by the g/-testable algorithm. The reason is that the latter autom-
aton needs additional time to match the wildcards.
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Fig. 9. The graph of extraction time versus k, for the g/-testable algorithm.
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Fig. 10. The graphs of the number of states versus k.

Fig. 10 shows the number of states inferred by the k-testable and g/-testable algorithms for dif-
ferent values of k. As we can see from the figure, the number of states inferred by the g/-testable
algorithm is always smaller than the number of states inferred by the k-testable algorithm for
k> 2. For k=2, the number of states inferred is equal as the g/-testable algorithm performs
no generalization in this case.

4.2. Test on larger datasets

The previous experiments were on benchmark datasets, which made a more precise comparison
with other systems possible but did not allow us to explore the limitations of our approach with
respect to, for instance, the size of the database, or the computational complexity of the method.

In this second series of experiments, we test the g/-testable algorithm on larger datasets. For the
experiments below we use the Bigbook and the Okra datasets that are also available online from
RISE.? In the Bigbook dataset we train the automaton to extract the ‘name’ and ‘address’ fields,
and in the Okra dataset we train the automaton to extract the ‘name’ and ‘email’ fields. The Big-
book and Okra datasets contains 235 and 252 files respectively. The number of the name and ad-
dress fields to be extracted from the Bigbook dataset is 4299 while the number of the name and
email fields in the Okra datasets is 3334.

4 http://www.isi.edu/~muslea/RISE/.
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All experiments in this section are done with ten-fold cross-validation and the experimental set-
ting is as follows. We divide both datasets in two parts.

The first part, consisting of 10 files (or documents), is used to test the generalization ability of
the gl-testable algorithm. From these 10 files we obtain 184 and 120 examples from the Bigbook
and Okra datasets respectively. First we determine for each extraction task the optimal k by cross-
validation in one random fold of training and test set. The best k found is 5 for the tasks in the
Bigbook dataset and 4 for the tasks in the Okra dataset. Then, from the same set of 184 (120)
examples, we take randomly ten examples, then twenty examples, then thirty, and so on, and give
them as training examples while the rest is for testing. This process is performed ten times for
every extraction task. We stop when the induced automaton has an average FI-score of 98%
or better on the test examples. The fourth column of Table 3 shows the number of examples
needed for good generalization. We can see that the number of examples needed to learn a good
wrapper for these datasets is quite small.

In the ten documents of the Bigbook dataset in Table 3, the training time for each document
ranges from 0.11 to 0.12 s and the average testing time for each document is 11.24 s (the average
number of nodes in a document ~513). In the ten documents of the Okra dataset in Table 3, the
training time for each document ranges from 0.26 to 0.54 s and the testing time for each document
varies from 0.08 to 38.67 s (the average number of nodes in a document ranges from 66 to 1299
respectively).

The second part of the experiment is to test the quality of the learned automata on unseen
examples. The remaining data in the second part consists of 225 (=235 —10) and 242
(=252 — 10) documents from the Bigbook and Okra datasets respectively. Using the learned tree
automaton from the first part of the experiments, we perform extraction on the remaining docu-
ments in the data set. Note that none of these documents was used during the learning. Table 4
shows the results. The results for the Okra-name and Okra-email datasets are very good consid-

Table 3
The number of examples needed for good generalization

k Hdocuments #fields Hexamples P R FI
Bigbook-name 5 10 184 40 100 98.7 99.3
Bigbook-address 5 10 184 40 100 99.1 99.5
Okra-name 4 10 120 10 100 100 100
Okra-email 4 10 120 10 100 100 100
Table 4
The test on the rest of the larger datasets

k #Hdocuments #fields P R Fl

Bigbook-name 5 225 4115 100 70.5 82.7
Bigbook-address 5 225 4115 100 71.7 83.5
Okra-name 4 242 3214 100 97 98.5
Okra-email 4 242 3214 100 97 98.5




R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129-158 151

Table 5
Comparison to the other IE systems on the larger datasets

Bigbook (4 fields) Okra (6 fields)

R (%) #Examples R (%) #Examples
Stalker 97 8 97 1
WIEN 100 274 100 46
SoftMealy 100 6 100 1
wL? 100 6 100 1
gl-testable 71.7 (2 fields) 40 97 (2 fields) 10

ering that it used only 10 examples for learning. However, the results for the Bigbook-name and
Bigbook-address datasets are not as good. The reason is that the tree automaton is sensitive to the
small variability in the document tree, even after generalization. In the Bigbook data, there is an
index in every page that enables the user to jump to’ the first company name beginning with a
certain letter. This index sometimes contains full links but sometimes only partial links. The var-
iability in this bottom part of the document is creating new states that were not seen before by the
tree automaton, causing failure of the extraction task.

These results cannot be compared rigorously with any results published in the literature, due to
differences in experimental setup. We nevertheless include some of those results, to give some idea
of the relative quality of our results.

Hsu and Chang [26] list the performance of Stalker, WIEN, and SoftMealy systems on these
datasets as shown in Table 5. Their setup differs from ours in that above wrapper systems extract
six fields from the Okra dataset and four fields from the Bigbook dataset, while our system was
only tested on two fields from each dataset. Due to other differences in their setup, what they re-
port as “accuracy” corresponds to recall in our experiments. In the Bigbook dataset, Stalker [41]
achieves 97% recall with 8 examples, WIEN [32] achieves 100% recall using an average of 15 doc-
uments containing approximately 274 examples, and SoftMealy [26] achieves 100% recall given 6
examples. In the Okra dataset, Stalker achieves 97% recall with only 1 example, WIEN achieves
100% recall using an average of 3.5 documents containing approximately 46 examples, and Soft-
Mealy achieves 100% recall given 1 example.

Recently [12], a novel approach called WL? was compared to WIEN and Stalker. We
include the results of WL? on the Bigbook and Okra datasets in Table 5. WL? has also been
tested on the IAF and QS datasets and is able to extract all four tasks in the IAF and QS datasets
with 100% recall. We should note that WL? is not string-based or tree-based, like the other
approaches mentioned here, but uses a variety of representations. This comparison makes clear
that the g/-testable algorithm needs more examples to learn from than the string-based meth-
ods we compare with. This is not unexpected: our tree-based methods search a larger hypothesis
space, looking also for patterns further away from the field to be extracted, whereas the other
methods look for patterns that narrowly enclose this field. As our methods consider more possible
hypotheses, they need more examples to eliminate the incorrect ones. This is an example of the
well-known bias-variance trade-off: a larger hypothesis space decreases bias but increases
variance.
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5. Related work

A lot of methods have been used for IE problems. Many are described in [39,51,33]. As men-
tioned above, the work on IE can be classified into three main categories: IE from unstructured
texts, IE from semi-structured texts and IE from structured texts. Within each of these categories,
the work can be further divided into manually built systems and (semi-)automatic systems. Within
the domain of extraction from structured documents, the work on IE can be divided into:

o Manual systems. Examples of manually built systems can be found in [3,24]. They apply knowl-
edge engineering techniques for building wrappers. Manually building a wrapper for each data
source becomes infeasible when confronted with the variety of Web sources. A separate area
aims at the development of query languages for HTML/XML, e.g. [5,57]. While these query
languages are suitable for expressing complex extraction problem, their use remains time con-
suming and requires non-trivial skill. The advantage over other manual approaches is that they
provide the user with a sophisticated user interface that simplifies the wrapper specification pro-
cess as the user neither need the ability to program nor to know the HTML syntax. Most of the
work in this area originated from the database community, other work originated from the
document and logic programming communities. Some recent systems developed in this area
are W4F [47], XWrap [36], and Lixto [4]. Related to this work is the large body of work on
Web information integration. This addresses the problem of integrating heterogeneous data
on the Web with the purpose of allowing users to pose queries to these integrated data. A typ-
ical information integration system consist of: wrappers that transform data from the original
sources into a form that can be further processed by the system, a mediator consisting of a
query planner and an execution engine, and a user interface for entering queries. Some exam-
ples of information integration systems are: Tsimmis [9], and Jedi [28].

o Semi-automatic systems. Our work is situated in the domain of semi-automatically built systems
for IE from structured documents. Such systems make use of machine learning and data mining
techniques, as well as other algorithms. The process is known as wrapper induction. With the
recent attention for the Web, this line of work has been more popular than the work on man-
ually-built IE system. It can be noted, that some wrapper induction systems (not ours) are also
able to work on semi-structured data and even on unstructured texts.

e Automatic systems. We classify an IE system as an automatically-built system if the wrapper is
built only once and can be used for new extraction tasks directly, or if wrappers can be built for
each new task using unsupervised training only. Some examples of the IE systems in this cat-
egory are as follows. WHIRL [11]is a ‘soft’ logic system that incorporates a notion of textual
similarity developed in the information retrieval community. WHIRL has been used to imple-
ment some heuristics that are useful for IE [13]. Hemnani and Bressan [25] proposed a tree
alignment algorithm that are based on two heuristics for extracting multiple record Web doc-
uments. IEPAD [8] is a system that automatically discovers extraction rules for identifying
record boundaries from webpages.

Other work, e.g. [54,42], on Web structure mining aims at finding structural similarity between
webpages. It is known as schema discovery and DTD inference and is different in nature from
ours. They aim at mining the frequent or common structure of webpages. The problem that we
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are facing goes beyond finding the common structure of Web documents. We also try to find the
pattern of the field to be extracted inside the common document structure.

In what follows, we restrict our attention to work on wrapper induction techniques that, similar
to our work, use machine learning or data mining techniques for IE from structured texts. We
refer to other articles for reviews of classical IE and the issues of IE from unstructured [6,15]
or semi-structured [39,51,33] texts.

The term wrapper induction was first introduced in [34]. As mentioned in the introduction,
much work on wrapper induction learns wrappers based on regular expressions. BWI [19] is a
boosting approach in which the weak learner learns a simple regular expression with high preci-
sion but low recall. The HMM approach reported in Table 1 was proposed by Freitag and McCal-
Ium [20]. They learn a hidden Markov model, solving the problem of estimating probabilities from
sparse data using a statistical technique called shrinkage. This model has been shown to achieve
state-of-the-art performance on a range of IE tasks. The Stalker algorithm [41] induces extraction
rules that are expressed as simple landmark grammars. The latter are a class of finite automata.
Stalker performs hierarchical extraction guided by an embedded catalog tree. This tree describes
the structure of the fields to be extracted from the documents.

Freitag [16] describes several techniques based on naive-Bayes, two regular language inference
algorithms, and their combinations for IE from unstructured texts. His results demonstrate that
the combination of grammatical inference techniques with naive-Bayes improves the precision and
accuracy of the extraction. WHISK [51] is a system that learns extraction rules with a top-down
rule induction technique. The extraction rules of WHISK are based on a kind of regular expres-
sion patterns. To make the rules more powerful, WHISK has some built-in semantic classes and in
addition allows for user-defined semantic classes. A semantic class is basically a set of terms that
are considered to be equivalent. Chidlovskii et al. [10] describe an incremental grammar induction
approach; their language is based on a subclass of deterministic finite automata that do not con-
tain cyclic patterns. Hsu and Dung’s SoftMealy system [27] learns separators that identify the
boundaries of the fields of interest. These separators are described by strings of fixed height in
which each symbol is an element of a taxonomy of tokens (with fixed strings on the lowest level
and concepts such as punctuation or word at higher levels). Hsu and Chang [26] propose two clas-
ses of SoftMealy extractors: single-pass, which is biased for tabular documents such as the QS
dataset, and multi-pass, which is biased for tagged-list document such as the IAF dataset.
Although their systems were tested on the same datasets as ours, their results cannot be compared
directly because the experimental setting is different. Their evaluation gives only numbers for re-
call and uses a different set of examples.

The above mentioned methods learn string languages while our method learns a more expres-
sive tree language. Compared to HMMs and BWI our method does not require the manual spec-
ification of the windows height for the prefix, suffix and the target fragments. Compared to Stalker
and BWI our method does not require the manual specification of the special tokens or landmarks
such as “>"" or ““;”. Compared to SoftMealy extractors in [26] our method is generally applicable
to any type of document formatting without requiring different classes of wrappers for different
categories of documents.

Despite the above advantages, our method also has some limitations. A first one is that our
method only outputs a whole node. This seems to limit its applicability. For data-centric docu-
ments such as XML documents, this is not really the case since the data to be extracted is typically
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a whole node. However, it is true for HTML formatted documents. One way to broaden the appli-
cability of our method is to perform a two step extraction. A whole node of the tree can be ex-
tracted in a first step while a second step (using other techniques) can post-process the selected
information to extract a part of it. A second limitation is that our method works only on struc-
tured documents. Indeed our method cannot be used for text-based IE, and is not intended for it.
A third limitation is that our method is possibly slower (when extracting) than string-based meth-
ods because it has to parse the document tree and has to substitute each node with x when extract-
ing information from the document. Despite these limitations, our results suggest that our method
works better in the four structured domains than the more generally applicable string-based IE
methods.

Some other approaches that exploit the structure of the documents have been proposed. WL?
[12], a logic-based wrapper learner that uses multiple (string, tree, visual, and geometric) represen-
tations of the HTML documents, consists of one master learner and several specific builders that
are created for specific page formats. The learning method is an inductive logic programming
algorithm similar to FOIL [45]. In fact, WL? is able to extract all four tasks in the IAF and
QS datasets with 100% recall. The work of WL? suggests that indeed using task-specific document
representation can yield a much better performance. Sakamoto et al. [S0] propose a certain class
of wrappers that use the tree structure of HTML documents and propose an algorithm for induc-
ing such wrappers. They identify a field with a path from root to leaf, imposing conditions on each
node in the path that relate to its label and its relative position among siblings with the same label
(e.g., “second child with label (B)”’). Their hypothesis language corresponds to a subset of tree
automata.

Besides the k-testable algorithm proposed in this paper, we have also experimented with
Sakakibara’s reversible tree algorithm [48]. Preliminary results with this algorithm suggested that
it generalizes insufficiently on our data sets. Hence, we did not further pursue its use.

6. Conclusion

We have explored induction of ranked tree automata for information extraction from Web doc-
uments. Our main findings and contributions are as follows.

We have argued for the use of tree automata, instead of string automata, for wrapper induction
for Web documents. Our main argument is that string based methods cannot exploit the tree
structure of these documents. We have conjectured that exploiting this tree structure should make
it easier to correctly extract information.

Focusing on the induction of ranked tree automata, a subset of tree automata for which algo-
rithms have been presented before, we have described an approach based on the existing k-testable
algorithm. Several versions of a tree induction algorithm, together with a preprocessing proce-
dure, have been presented.

Experimental results confirm our conjecture that exploiting the tree structure is often advanta-
geous: on several benchmark problems, our methods perform better than string-based methods.
But the results also indicate limitations of the approach. First, the conversion of unranked trees
into ranked trees, which is part of the preprocessing phase, and necessary to apply ranked tree
induction algorithms, destroys the tree structure to some extent. Second, by considering a more
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global context for identification of the field to be extracted (i.e., a subtree of the document tree,
instead of delimiters of the field as string-based methods typically do), the method becomes more
sensitive to changes in non-relevant parts of the documents, which causes it to work less well on
some data sets.

We have looked only into variants of the k-testable algorithm for induction of ranked tree auto-
mata. Other algorithms are conceivable for induction of ranked tree automata. However, all of
these will suffer from the first limitation mentioned above. Instead of studying other algorithms
for induction of ranked tree automata, a more promising direction is to study algorithms for
induction of unranked tree automata. Early results on the latter, presented in another paper
[29], confirm this impression.

Further limitations of the tree automata induction approach in general, are that one can extract
only a whole node, and only single-field extraction can be performed. The first limitation can be
removed by combining string-based methods with tree-based methods, that is, one could identify
a node in the document tree using a tree automaton, then extract the relevant field from this node
using a string automaton. The second limitation is somewhat more difficult to resolve in a prin-
cipled manner. Both issues need further research.

A last direction that seems interesting to explore is to incorporate probabilistic information in
the inference process; this could compensate for the lack of negative examples.

Acknowledgements

We thank Nicholas Kushmerick for providing us with the datasets used for the BWI experi-
ments. This work is supported by the FWO project query languages for data mining. Hendrik
Blockeel is a post-doctoral fellow of the Fund for Scientific Research of Flanders.

References

[1] D. Angluin, Queries and concept learning, Machine Learning 2 (4) (1988) 319-342.

[2] D. Angluin, C.H. Smith, Inductive inference: Theory and methods, ACM Computing Surveys 15 (3) (1983) 237-
269.

[3] P. Atzeni, G. Mecca, Cut & paste, in: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ACM Press, 1997, pp. 144-153.

[4] R. Baumgartner, S. Flesca, G. Gottlob, Visual web information extraction with lixto, in: Proceedings of 27th
international conference on very large data bases (VLDB 2001), 2001, pp. 119-128.

[S] F. Bry, S. Schaffert, Towards a declarative query and transformation language for XML and semistructured data:
Simulation unification, in: Proceedings of the international conference on logic programming, 2002.

[6] C. Cardie, Empirical methods in information extraction, AI Magazine 18 (4) (1997) 65-79.

[7]1 R.C. Carrasco, J. Oncina, J. Calera-Rubio, Stochastic inference of regular tree languages, in: Proceedings of the
3rd International Colloquium on Grammatical Inference, Lecture Notes on Articial Intelligence, vol. 1433, 1998,
pp. 187-198.

[8] C.-H. Chang, S.-C. Lui, IEPAD: Information extraction based on pattern discovery, in: Proceedings of the Tenth
International Conference on World Wide Web, 2001, pp. 681-688.

[9] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom, The
TSIMMIS project: Integration of heterogeneous information sources, in: Proceedings of the 10th Meeting of the
Information Processing Society of Japan, 1994, pp. 7-18.



156 R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129-158

[10] B. Chidlovskii, J. Ragetli, M. de Rijke, Wrapper generation via grammar induction, in: 11th European Conference
on Machine Learning, ECML’00, 2000, pp. 96-108.

[11] W. Cohen, Whirl: A word-based information representation language, Artificial Intelligence 118 (2000) 163-196.

[12] W. Cohen, M. Hurst, L.S. Jensen, A flexible learning system for wrapping tables and lists in HTML documents,
in: The Eleventh International World Wide Web Conference (WWW2002), 2002.

[13] W.W. Cohen, Recognizing structure in web pages using similarity queries, in: Proceedings of the Sixteenth
National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence, 1999, pp. 59-66.

[14] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree Automata
Techniques and Applications, Available from: <http://www.grappa.univ-lille3.fr/tata>, 1999.

[15] J. Cowie, W. Lehnert, Information extraction, Communications of the ACM 39 (1) (1996) 80-91.

[16] D. Freitag, Using grammatical inference to improve precision in information extraction, in: ICML-97 Workshop
on Automata Induction, Grammatical Inference, and Language Acquisition, 1997.

[17] D. Freitag, Information extraction from HTML: Application of a general learning approach, in: Proceedings of the
Fifteenth Conference on Artificial Intelligence AAAI-98, 1998. pp. 517-523.

[18] D. Freitag, Machine learning for information extraction in informal domains, Machine Learning 39 (2/3) (2000)
169-202.

[19] D. Freitag, N. Kushmerick, Boosted wrapper induction, in: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Innovative Applications of Al Conference, AAAI Press, 2000, pp. 577-583.

[20] D. Freitag, A. McCallum, Information extraction with HMMs and shrinkage, in: AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999.

[21] P. Garcia, Learning k-testable tree sets from positive data, Technical Report DSIC-ii-1993-46, DSIC, Universidad
Politecnica de Valencia, 1993.

[22] E.M. Gold, Language identification in the limit, Information and Control 10 (5) (1967) 447-474.

[23] G. Gottlob, K. Koch, Monadic datalog over trees and the expressive power of languages for web information
extraction, in: 21st ACM Symposium on Principles of Database Systems, 2002, pp. 17-28.

[24]J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, R. Aranha, Extracting semistructured information from the
Web, in: Proceedings of the Workshop on Management of Semistructured Data, 1997, pp. 18-25.

[25] A. Hemnani, S. Bressan, Information extraction-tree alignment approach to pattern discovery in web documents,
in: Database and Expert Systems Applications, 13th International Conference, DEXA 2002, 2002, pp. 789-798.

[26] C.-N. Hsu, C.-C. Chang, Finite-state transducers for semi-structured text mining, in: Proceedings of IJCAI-99
Workshop on Text Mining: Foundations, Techniques and Applications, 1999.

[27] C.-N. Hsu, M.-T. Dung, Generating finite-state transducers for semi-structured data extraction from the web,
Information Systems 23 (8) (1998) 521-538.

[28] G. Huck, P. Fankhauser, K. Aberer, E.J. Neuhold, Jedi: Extracting and synthesizing information from the web,
in: Conference on Cooperative Information Systems, 1998, pp. 32-43.

[29] R. Kosala, M. Bruynooghe, H. Blockeel, J.V. den Bussche, Information extraction from web documents based on
local unranked tree automaton inference, in: Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, 2003, pp. 403-408.  <http://www.cs.kuleuven.ac.be/cgi-bin-dtai/
publ_info. pl?id=40757>.

[30] R. Kosala, M. Bruynooghe, H. Blockeel, J. Van den Bussche, Information extraction by means of a generalized k-
testable tree automata inference algorithm, in: Proceedings of the Fourth International Conference on Information
Integration and Web-based Applications and Services (ITWAS), 2002, pp. 105-109.

[31] R. Kosala, J. Van den Bussche, M. Bruynooghe, H. Blockeel, Information extraction in structured documents
using tree automata induction, in: Proceedings of the 6th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), 2002, pp. 299-310.

[32] N. Kushmerick, Wrapper induction for information extraction, Ph.D. thesis, University of Washington, 1997.

[33] N. Kushmerick, Wrapper induction: Efficiency and expressiveness, Artificial Intelligence 118 (2000) 15-68.

[34] N. Kushmerick, D. Weld, R. Doorenbos, Wrapper induction for information extraction, in: Proceedings of the
International Joint Conference on Artificial Intelligence IJCAI-97, 1997, pp. 729-737.

[35] A. Levy, C. Knoblock, S. Minton, W. Cohen, Trends and controversies: Information integration, IEEE Intelligent
Systems 13 (5) (1998).


http://www.grappa.univ-lille3.fr/tata
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40757
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40757

R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129-158 157

[36] L. Liu, C. Pu, W. Han, Xwrap: An XML-enabled wrapper construction system for web information sources, in:
Proceedings of the 16th International Conference on Data Engineering, IEEE Computer Society, 2000, pp. 611-
621.

[37] MUC-6, Proceedings of the Sixth Message Understanding Conference, Morgan Kaufmann, San Francisco, CA,
1995.

[38] K. Murphy, Learning finite automata, Technical Report 96-04-017, Santa Fe Institute, 1996.

[39] I. Muslea, Extraction patterns for information extraction tasks: A survey, in: AAAI-99 Workshop on Machine
Learning for Information Extraction, 1999.

[40] I. Muslea, S. Minton, C. Knoblock, A hierarchical approach to wrapper induction, in: Proceedings of the 3rd
International Conference on Autonomous Agents, 1999.

[41] 1. Muslea, S. Minton, C. Knoblock, Hierarchical wrapper induction for semistructured information sources,
Journal of Autonomous Agents and Multi-Agent Systems 4 (2001) 93-114.

[42] S. Nestorov, S. Abiteboul, R. Motwani, Infering structure in semistructured data, SIGMOD Record 26 (4) (1997).

[43] C. Pair, A. Quere, Définition et etude des bilangages réguliers, Information and Control 13 (6) (1968) 565-593.

[44] R. Parekh, V. Honavar, Automata Induction, Grammar Inference, and Language Acquisition, Handbook of
Natural Language Processing, Marcel Dekker, New York, 1998.

[45] J.R. Quinlan, Learning logical definitions from relations, Machine Learning 5 (1990) 239-266.

[46]J. Rico-Juan, J. Calera-Rubio, R. Carrasco, Probabilistic k-testable tree languages, in: A. Oliveira (Ed.),
Proceedings of 5th International Colloquium, ICGI 2000, Lisbon (Portugal), Lecture Notes in Computer Science,
vol. 1891, Springer, 2000, pp. 221-228.

[47] A. Sahuguet, F. Azavant, Looking at the web through XML glasses, in: Proceedings of the Fourth IFCIS
International Conference on Cooperative Information Systems, 1999, pp. 148-159.

[48] Y. Sakakibara, Efficient learning of context-free grammars from positive structural examples, Information and
Computation 97 (1) (1992) 23-60.

[49] Y. Sakakibara, Recent advances of grammatical inference, Theoretical Computer Science 185 (1) (1997) 15-45.

[50] H. Sakamoto, H. Arimura, S. Arikawa, Knowledge discovery from semistructured texts, in: S. Arikawa, A.
Shinohara (Eds.), Progress in Discovery Science—Final Report of the Japanese Discovery Science Project, LNAI,
vol. 2281, Springer, 2002, pp. 586-599.

[51] S. Soderland, Learning information extraction rules for semi-structured and free text, Machine Learning 34 (1-3)
(1999) 233-272.

[52] M. Takahashi, Generalizations of regular sets and their application to a study of context-free languages,
Information and Control 27 (1975) 1-36.

[53] L. Valiant, A theory of the learnable, Communications of the ACM 27 (11) (1984) 1134-1142.

[54] K. Wang, H. Liu, Discovering structural association of semistructured data, IEEE Transactions on Knowledge
and Data Engineering 12 (3) (2000) 353-371.

[55] G. Wiederhold, Intelligent Information Integration, Kluwer, 1996.

[56] XML. Extensible markup language (XML) 1.0, second ed., W3C Recommendation 6 October 2000, Available
from: <http://www.w3.org>, 2000.

[57] XQL. XQuery 1.0: An XML query language. W3C Working Draft 16 August 2002, Available from: <http://
www.w3.org/TR/xquery>.

Raymond Kosala obtained a B.Sc. degree in Electronics Engineering from the University of Atma
Jaya, Indonesia (1994), Master in Artificial Intelligence (1999) and Ph.D. in Informatics (2003)
degrees from the Katholieke Universiteit Leuven. He is currently a faculty member in the
Computer Science Department of the Bina Nusantara University, Indonesia. His research
interests include Data Mining and Machine Learning.



http://www.w3.org
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery

158

R. Kosala et al. | Data & Knowledge Engineering 58 (2006) 129-158

Hendrik Blockeel obtained the degrees of Engineering in Computer Science (1993), Master of
Artificial Intelligence (1994), and a Ph.D. in Applied Sciences (1998) from the Katholiecke Uni-
versiteit Leuven. He currently leads a machine learning research group at the same University. His
research interests are in machine learning and data mining, with a focus on learning from
structured and relational data.

Maurice Bruynooghe obtained a degree of Engineer in Computer Science at the K.U. Leuven. He
received a Ph.D. from the same University in 1979; the subject of the thesis was logic program-
ming. He started a logic programming group at the K.U. Leuven that later became the group
Declarative Languages and Artificial Intelligence of which he is still the head. His research
interests covers the three research areas of the group: Design, Analysis and Implementation of
Declarative Programming Languages, Knowledge Representation and Reasoning and Machine
Learning and Data Mining. From 1991 to 2000 he was Editor-in-Chief of the Journal of Logic
Programming, and from 2001 to 2005 of Theory and Practice of Logic Programming, the low
budget successor of JLP. He is a fellow of ECCAI, the European Coordinating Committee for
Artificial Intelligence.

Jan Van den Bussche received his Ph.D. from the University of Antwerp in 1993, under the
advising of Jan Paredaens, and became a faculty member at the Limburg University Centre in
1996, where he is now professor of theoretical computer science. His research interests are in
databases, broadly construed.



	Information extraction from structured documents using k-testable tree automaton inference
	Introduction
	Preliminaries
	Grammatical inference
	Tree automata
	Information extraction by grammatical inference

	Approach and algorithms
	Preprocessing
	Conversion to ranked trees
	Approach
	Tree automaton inference algorithms
	Definitions
	The k-testable algorithm
	The g-testable algorithm
	The gl-testable algorithm


	Experimental results
	Test on the benchmark datasets
	Summary of the results
	More detailed discussion of the results

	Test on larger datasets

	Related work
	Conclusion
	Acknowledgements
	References


