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Abstract—

In this paper, we propose a system for finding partial posi-
tive and negative coregulated gene clusters in microarray data.
Genes are clustered together if they show the same pattern of
changing tendencies in a user definied number of condition
pairs. It is assumed that genes which show similar expression
patterns under a number of conditions are under the control
of the same transcription factor and are related to a similar
function in the cell. Taking positive and negative coregulation
of genes into account, we find two types of information:(1)
clusters of genes showing the same changing tendency and
(2) relationships between two such clusters whose respective
members show opposite changing tendency.

Because genes may be coregulated by different transcription
factors under different environmental conditions, our algorithm
allows the same gene to fall into different clusters. Overlapping
gene clusters are allowed because coregulation normally takes
place in only a fraction of the investigated condition pairs,
and because the gene expression data is noisy so that the
approach should be tolerant to errors. In a first step, the gene
expression matrix is transformed to a binned matrix of chang-
ing tendencies between all condition pairs. For the binning
of the gene expression levels, a statistical technique is used,
for which no arbitrary threshold needs to be chosen, which
automatically corrects for multiple testing, and which is able
to handle replicates for the different conditions, immediately
accounting for the random variability of gene expression data.
To present the results of a clustering a new structure called
coregulation graph is proposed.

I. INTRODUCTION

The metabolism of all organisms is tightly controlled by
internal and external conditions so that not all proteins are
produced under all circumstances. Products which function

together in the cell are often under common regulatory control
and expressed coordinately [1]. Because many gene products
have multiple roles in the metabolism, genes may be coex-
pressed with different other genes under different environmen-
tal conditions. A clustering to find coregulated genes should
therefore allow for a gene to be a member of different clusters
under different conditions.

There are different patterns of coregulated genes suggested
by [2], [3]. Lee at al. [2] mention different loops of regulatory
networks found in Yeast cells, e.g. the regulatory chains with at
least three regulators where the product of one regulator binds
to the promoter sequence for the next regulator. Examples of
other motifs mentioned are the single input motif, where a
single regulator binds to the the promoter of a set of genes,
and a multiple input motif where a set of regulators bind to
a set of genes. Yu and coworkers [3] relate these motifs to
different time patterns of gene expression. They point out that
there are 4 different relationships of gene expression which are
coregulated, time shifted coregulated, negative and negative
time shifted.

To find interesting coregulated genes, the gene expression
matrix is transformed into a binned matrix which captures
changing tendencies between condition pairs (increase, de-
crease or no change) [4]. In our approach, a threshold ar-
bitrarily to decide if a gene is differently expressed and needs
to chosen by the user ahead of time ([4], [5]), is avoided.
Instead we use a statistical technique called SAM by Tusher
et al. [6], that only needs a prespecified significance level
(usually 5%). SAM also automatically corrects for multiple
testing (since many genes and conditions are involved in
this process), and it can handle replicates for the different
conditions, meanwhile accounting for the random variability
present in gene expression data. Clustering methods which
use the normalised gene expression levels directly often have
the problem that they mistake small fluctuations in gene
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expression levels as significant. This can result in clusterings
with little or no biological meaning.

Our clustering is based on finding similar patterns of chang-
ing tendencies, not on finding similar absolute values of gene
expression. Genes which have different gene expression values
in some condition pairs may still show the same changing
tendency between these condition pairs. These shift based
clusters will be missed by methods based on distance measures
[7]. Because for microarray data with many condition pairs
it is unlikely that all condition pairs of the two genes are
coregulated and because of the intrinsic noise of the data, our
algorithm allows to find clusters with matches in only a part
of consecutive condition pairs. Because we are also looking
for genes with the opposite changing tendency, our approach
is able to find the negative gene expression motifs as well.

The outcome of the clustering is visualised in a coregulation
graph. In this graph, positively coregulated genes are found in
the same vertex of the graph. Negative coregulation between
gene clusters can be recognised by edges which connect two
(positive) clusters that show opposite changing tendencies and
therefore are negatively coregulated. Clusters which show no
negative coregulation with any other cluster of the graph are
not connected.

II. RELATED WORK

There are different clustering methods with different dis-
tance measures used for finding groups in gene expression
data. Fuzzy k-means clustering is used by Eisen and coworkers
[1]. In contrast to k-means clustering where genes are par-
titioned into a defined set of discrete clusters attempting to
maximize the expression similarity in each cluster, each gene
belongs to every cluster with a variable degree of membership
using the fuzzy k-means method. To overcome the seeding
problem where the random initialisation of the centroids of the
clusters can have an impact on the results, they seed prototype
centroids with eigen vectors identified by PCA. To identify
patterns missed in the first round, they continue the clustering
on a subset of the data in a second and third round. While
this approach allows genes to be assigned to more than one
cluster, it does not address the issue of negative coregulation.

Clustering approaches finding objects based on similar
patterns which might not be close concerning distances like
Euclidian distance are proposed by Wang et al. [7], [8]. Their
algorithm, which finds pclusters [7], groups objects that
exhibit a coherent pattern on a subset of dimensions. This
is interesting for gene expression data, because the magnitude
of the expression levels might not be close although the two
genes show a similar pattern of expression. They introduce the
pscore and a user defined threshold δ and cluster together two
objects if their pscore is less than δ.

As this approach does not scale well to large data sets, they
proposed an extension suitable for larger data sets [8]. They
introduce a distance measure to decide whether two objects
are similar in a subspace. Again, both methods do not address
the issue of negative coregulated genes.

An algorithm to extract clusters of coregulated genes was
proposed by Ji and Tan [4]. They introduce the concept

of positive and negative coregulated gene clusters to cover
positive and negative gene regulation. Positive coregulated
gene clusters are defined as clusters which show a similar
behaviour under a number of condition pairs, whereas negative
coregulated gene clusters are defined to show the opposite
behaviour in a number of condition pairs. However, their
definition of positive and negative coregulated clusters is not
symmetrical, which means that under the same conditions two
genes may be identified as coregulated in one case and may not
be identified as such if the genes are processed in a different
order. This is due to their precision threshold which is the
dependent probability of genei being upregulated given genej

is upregulated, which may lead to different clusters if either
genei or genej is taken as a reference gene to form the cluster.

They transform the gene expression data in a binned matrix
with pairwise changing tendencies for all conditions. For the
decision if a gene is up- or downregulated or not differentially
expressed, the user has to choose an arbitrary normalisation
threshold. The outcome of the clustering is depending on this
threshold. With a low normalization threshold, lots of genes
will be classified as significantly expressed which leads to
more clusters. With a higher normalization threshold, on the
other hand, many genes are classified as not significantly
expressed which leads to less clusters. Their algorithm is
proposed as an improvement over the support confidence
framework used in A-priori-based data mining methods which
reduces the large number of rules that may be generated by
uncorrelated genes. Their negative clusters are based on one
reference gene which shows the opposite behaviour compared
to a positive cluster. The output of their algorithm is gene-
centered, where positive and negative clusters are reported
for each gene. This leads to multiple appearences of positive
clusters in their output if the cluster contains more than one
gene, which makes it hard to read the clustering result.

An approach also able to detect negative coregulation be-
tween genes was proposed by Zhao et al. [5]. They use a
model based on so called g-cluster to find positive and negative
coregulation between genes. They allow partial coregulation of
genes by taking into account submatrices of conditions. For
finding significant up- or downregulated neighbour conditions,
they check if the difference of the absolute gene expression
values of conditions c1 and c2 is larger than δ× expression
c1, where δ is chosen by the user and is restricted to values
between 0 and 1. By restricting the threshold to 1, only cases
with a 2-fold up- or downregulation can be taken into account,
whereas in gene expression data, often up- or downregulations
higher than 3-fold are taken as significant. Again this static
choice of a threshold can lead to certain regulation patterns
being missed.

III. METHODS

The goal of the coregulated gene mining process is to con-
struct a coregulation graph for a given microarray experiment.
In this graphical representation, genes with a similar gene
expression pattern are clustered together at a vertex of the
graph making it easy to see which genes share a similar
expression pattern and therefore might be regulated by the
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same transcription factors. In addition, edges in the graph
indicate which gene clusters show opposite expression patterns
and are negatively coregulated.

A. Binning of the Gene expression matrix

In a first phase of the algorithm, the gene expression matrix
is transformed into a binned matrix showing the pairwise
changing tendency between conditions. We assume that there
are n genes in total on a microarray, that m conditions need
to be considered, and lj > 1 replicates (arrays) are available
for each condition j. The gene expression matrix Y then has
n rows and

∑m
j=1 lj columns with elements Yijk, where Yijk

is the measured gene expression of gene i (i = 1, . . . , n) in
condition j (j = 1, . . . , m) for replicate k (k = 1, . . . , lj).
From the matrix Y we want to produce a binned matrix, which
will have n rows and m(m− 1)/2 columns, corresponding to
the pairs of conditions. The creation of the binned matrix will
be based on the SAM method by Tusher et al. [6], which is
used to analyse microarray experiments and detect significant
genes.

For each gene i and pair of conditions j1, j2 with j1 < j2,
the score

dij1j2 =
rij1j2

sij1j2 + s0

is calculated. It is based on the difference in average gene
expression rij1j2 = Y ij1.−Y ij2. between conditions j1 and j2,
relative to its standard deviation sij1j2 , augmented by a small
positive constant s0, called a fudge factor. This fudge factor
ensures that the variance of the difference is independent of the
mean gene expression level. Its value is chosen to minimize
the coefficient of variation of the test statistic dij1j2 .

Determining whether the value of dij1j2 is significantly
different from zero is not straightforward because one should
control for multiple testing, and, due to the small numbers
lj of replicates, the test statistic dij1j2 cannot be assumed to
be normally distributed. In SAM, both problems are solved.
Since SAM needs to use all dij1j2 for all genes i and all pairs
of conditions j1, j2 simultaneously, we will simplify notation
to dp, with p = 1, . . . , N , where N = n × m(m − 1)/2.

The idea is to use a number B of arbitrary permutations
of the columns of the matrix Y (recall that these columns
represent all replicates of all conditions). For each permutation
b, we recalculate dp but on the permuted matrix Y b, denoted
by db

p. For each b, we sort the values db
1, . . . , d

b
N , resulting in

the order statistics db
(1) ≤ . . . ≤ db

(N). We now determine, for
each p, the average of db

(p) over all b’s, denoted by d̄(p). We
also sort the original values d1, . . . , dN , resulting in the order
statistics d(1) ≤ . . . ≤ d(N).

Now, for a fixed threshold ∆ > 0, all gene – condition pair
combinations for which d(p)−d(p) > ∆ are called “significant
positive”. Similarly, all gene – condition pair combinations
for which d(p) − d(p) < −∆ are called “significant negative”.
This is repeated for a grid of ∆ values, and a list of significant
gene – condition pair combinations is obtained for each value.
Moreover, the False Discovery Rate (FDR) is estimated for
each ∆. FDR is the expected proportion of false positive gene
– condition pair combinations among all gene – condition pair

C2 C3 C4
C1 1 1 1
C2 1 1
C3 -1

Fig. 1. Row of the binned matrix for one gene in triangular matrix form.

combinations called significant. Based on an a priori chosen
level for FDR (mostly 5%), the corresponding ∆ value is
chosen, and the significant gene – condition pair combinations
are listed. More details can be found in Chu et al. [9].

Finally, when, based on the analysis of the test statistic
dij1j2 , the average change rij1j2 in gene expression for gene i
between conditions j1 and j2 is determined to be significantly
different from zero, the value Oij1j2 in the binned matrix is
taken to be equal to 1 when rij1j2 > 0, and equal to −1 when
rij1j2 < 0. For all other genes and pairwise comparisons,
Oij1j2 = 0.

B. Clustering

After the gene expression matrix has been binned, we use a
clustering technique to identify groups of similarly expressed
and hence coregulated genes within the matrix. Our goals
with our new approach where to identify coregulated as well
as negative coregulated genes and present them in an easy,
human-readable form. To achieve those goals, we first need
to define what we mean by the terms ”similarly expressed” or
”coregulated” in a clustering sense.

One aspect important for clustering expression data is the
fact that a gene can be coregulated with different other genes
under different conditions. Consequently, the expression be-
havior of two coregulated genes is usually not the same for all
conditions within one microarray experiment. To take this into
account, the clustering technique should not be partitioning,
i.e. assign an object to exactly one cluster. On the contrary,
a gene could be part of different clusters, depending on the
conditions under which they were expressed.

As described above, each gene in the microarray experiment
is represented in the binned matrix by a row of m(m−1)

2
values indicating the pairwise changing tendency between the
m conditions of the original microarray data. One such row in
the binned matrix can itself be viewed as an upper triangular
matrix. The first entry of the first row in the binned matrix
for a gene denotes the change of expression behavior when
transitioning from condition C1 to Condition C2 during the
microarray experiment. The next entry in the first row denotes
the overall change in expression behavior when transitioning
from condition C1 to C3. The values change for a transition
from C2 directly to C3 is then stored in the next row of the
triangular view. Figure 1 illustrates the principle and Figure 2
shows an example for two genes. It should be noted that for
a microarray experiment with m conditions, there are exactly
(m − 1) rows to such a triangular matrix.

For microarray data with a natural order within the con-
ditions, not all parts of the binned matrix do have the same
importance for answering the different questions posed to gene
expression data. Examples for commonly used microarrays
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gene1
1 1 1

1 0
-1

gene2
1 1 0

1 -1
-1

Fig. 2. Dosage response of two genes

with such an order are time series experiments where con-
ditions are time points and dose response microarrays where
the effect of different doses of a substance are tested. For time
series data, the change between non-consecutive time points
which are not on the diagonal of the triangular matrix provides
additional information about the course of the gene expression
over longer time spaces, but the main trend can be seen by
comparing the values on the diagonal. The same applies for
dose response data, where the diagonal values describe the
effect on gene expression from one amount of the substance
given to the next higher amount of the substance (e.g. from
amount 0 to 2 or from amount 2 to 4 in Figure 2). The
off-diagonal values of the matrix describe the effect on the
gene expression between different amounts of the substance
which are not consecutive. Using this additional information
in Figure 2, it can e.g. be seen that concerning dose 6, gene 1
and gene 2 show a different behaviour. For gene 2, dose 6 has
the same effect as giving dose 0, whereas for gene 1 there is
clearly an effect for this dose of the substance, although the
trend in both genes (the diagonal values) are the same. How
this information can be used for filtering clusters is explained
below. While the algorithm described in this paper is focused
on such data with a natural order in the conditions, it can easily
be adapted to data sets where all positions of the binned matrix
are of equal importance.

Zeros in the binned matrix indicate that the gene did not
show any significant change in expression level between the
condition pair for this cell. This is normally due to the fact
that the gene is not part of the specific cell reaction under
investigation. Therefore, genes which exhibit a large number
of zeros in the binned matrix should be excluded from the
investigation because they do not belong to the differentially
expressed genes for the investigated condition. A certain
number of zeros should be tolerated in the clusters in contrast
to the Ji and Tan algorithm [4], since even a gene which shows
a specific reaction under the investigated conditions does not
necessarily show it for each condition pair. For example, this
can happen due to the intrinsic noise of the gene expression

data, which makes it difficult to decide whether a gene is
differentially expressed. The number of accepted zeros in a
cluster is a parameter of the clustering algorithm which can
be easily adopted by the user.

Considering all of the above, we define genes as being
coregulated in the following way:

Definition 1 (coregulated and negative coregulated genes):
Let S = {g1, g2, . . . , gi} be a set of genes, each represented
by a sequence of (m−1) expression level change values. The
genes in S are (k, l)-coregulated if there exists a subsequence
of at least k ≤ (m − 1) consecutive components common to
all genes in S and this subsequence contains at most l < k
zeros.

Two genes g1 and g2 are negative coregulated if they are
coregulated after all values for g1 in the binned matrix have
been inverted. The value in the binned matrix are inverted by
changing each value 1 to -1 and vice versa.

Two points have to be noted about this definition. One is
that a coregulation relationship between two genes as defined
above is symmetrical contrary to the definition in [4]. Another
important point is that the definition covers the fact that a
gene can be coregulated with different and even the same
genes under different experimental conditions. Consequently,
any clustering algorithm used to identify coregulated genes
has to allow a gene to be assigned to several clusters based
on the different condition subsets.

With the above definition, we can now describe our al-
gorithm for finding all cluster of coregulated genes from a
microarray experiment. The algorithm consists of four main
steps: binning, preprocessing, clustering coregulated genes,
detecting inverse coregulations.

After the binning described in section III-A, the resulting
matrix is subject to a pre-processing step. As discussed earlier,
there should not be too many cases for a gene in which
no change in expression behavior happens between condition
transitions. Otherwise, the gene can not be assumed to be
part of the cell specific answer to the different conditions
tested in the experiment. For genes with are always up- or
downregulated, the same assumption holds for some cases as
well. Genes which react with an up- or downregulation to
each change of the conditions during the experiment do not
belong to the specific response tested in the microarray and
are therefore normally not interesting for the researcher who is
interested in this specific response to the conditions applied.
Therefore, we remove all genes whose expression behavior
always stays the same or is always up-regulated or always
down-regulated from the binned matrix and cluster only the
remaining genes. If the user is interested in these genes as
well, the preprocessing step can be omitted.

After the binning and preprocessing of the gene expression
data, all clusters of coregulated genes are detected. This is
done in an iterative manner. As a first step for the clustering,
a gene is chosen and its entry removed from the matrix. For
this gene all possible subsequences which fulfill the clustering
condition, i.e. have length k and contain at most l zeros, are
generated. For each one of those subsequences a new cluster is
created and all remaining genes from the matrix which show
this subsequences are assigned to the respective cluster. After
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A B C D
1 1 1 1 1
2 1 1 1
3 -1 0
4 1

Fig. 3. Binned expression profile of a gene in triangular matrix form.

all subsequences have been processed, a new gene from the
matrix is chosen and the process repeats.

As the next step of the clustering, the inverse coregulation
relationships are detected. For all clusters found in the previ-
ous step, the inverted coregulated clusters are searched. One
cluster is chosen and the associated subsequence is inverted.
Coregulated clusters with a subsequence equal to the inverted
sequence are noted to be inverse coregulated.

Since the number of clusters found with the above approach
is potentially very large, we propose a new structure to visu-
alize the clusters and the negative coregulation relationships
between them. This structure is called the coregulation graph.
This graph consists of nodes which each are one of the clusters
of coregulated genes found in the first step of the clustering
process. There exits an edge between two nodes in the
coregulation graph, if the cluster in the adjacent nodes are in
a negative coregulation relationship. Presenting the clustering
results as a coregulation graph allows to quickly visually
identify which groups of genes are negative coregulated to
each other.

Filtering Cluster. Displaying the clustering result as a
coregulation graph improves the readability significantly and
thereby eases interpretation of results. But still, the number
of clusters deduced from a large microarray experiment can
be very large. To identify promising clusters for further
investigation, a ranking based on the quality of the clusters
would be needed. So far we have only used the values
for changes between immediately adjacent conditions in the
microarray experiment for our clustering. While these are the
most important ones to describe the change of expression
behavior of a gene under the different conditions of the exper-
iment, changes between not directly adjacent conditions can
provide additional insight. These values refine the information
about the details of the changes between the values along
the main diagonal as illustrated by the example in Figure
3. In this example, the upregulation shown on position C2
indicates that the downregulation in C3 is smaller than the
preceding upregulation in B2. Therefore, genes agreeing on
the values in positions B2, C2 and C3 can be seen as stronger
coregulated than genes only agreeing on positions B2 and C3.
We propose two measures to be used for filtering the clustering
result and reducing its size to the most interesting structures.
Both measures are based on the number of values off the
main diagonal which also support the coregulation relationship
among the cluster members. Which off-diagonal elements have
to be considered, depends on which elements on the diagonal
are taken into account to define the respective cluster.

As an example consider again the situation depicted in
Figure 3. If the diagonal elements A1, B2 and C3 establish a
coregulation relationship between the genes of a cluster, the

Fig. 4. Part of the coregulation graph obtained from the GEO data set.

values in cells B1, C1 and C2 provide additional information
about the change of expression levels between the conditions
represented by the diagonal elements. Therefore, we count the
number of those additional elements on which the genes in the
cluster also agree. In the following, we denote the the number
of cells on the diagonal, which establish the coregulation
relationship, with λ and the number of corresponding cells
off the diagonal on which the genes of a cluster agree κ. We
use the following two numbers to filter and rank cluster:

• m1 = κ
κ+λ

• m2 = κ
ρ , with ρ the number of cells in a row of the

binned matrix.

Both measures are normalized allowing the user to choose
values applicable to a wide range of data sets. For both mea-
sures higher values indicate a stronger correlation between the
values of the genes in the cluster. While m1 favours stronger
correlations of shorter subsequences, m2 gets largest for longer
subsequences. Depending on the micorarray experiment and
the user intentions, one or the other will be more favorable
for limiting the size of the clustering result and support the
evaluation purposes. An example of a coregulation graph is
shown in Figure 4.

IV. EXPERIMENTS

The binning part of the algorithm was compared to the
binning of the Ji-Tan algorithm. We use a data set of 500
genes for which gene expression levels are measured under
3 conditions. There are 20 replicates for condition 1 and
15 replicates for condition 2 and 3 in the data set. This
data set is part of the SAM plugin for Excel which can be
downloaded at http://www-stat.stanford.edu/∼tibs/SAM/. To
be able to compare the performance of the binning with the
Ji-Tan algorithm [4], we need to summarise the replicates into
a single observation per condition, such as the mean value
and use the input for the Ji-Tan algorithm [4]. Using the mean
values, we found 388 positive and negative coregulated gene
clusters taking a normalisation threshold of 0.3, a frequency
threshold of 0 and a precision threshold of 0.8. Using our
algorithm and allowing a false discovery rate of 5%, we found
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Fig. 5. Part of the coregulation graph obtained from the GEO data set.

38 gene clusters which are not at all a subset of the 388
clusters of Ji and Tan. This is due to the fact that multiple gene
expressions are summarised into a single value, not taking
into account the variability of the data. This might result in
assuming a different gene expression level while it is not
differentially expressed or in the assumption of no difference
when the difference is significant.

The clustering part of the algorithm is tested on 2 different
data sets of Yeast cell cycle data which are both parts of the
Spellman data set [10]as well as a data set from the GEO
database http://www.ncbi.nlm.nih.gov/geo/. As first data set,
the 17 time points for Yeast synchronised in the cell cycle
by alpha-factor were taken. This test set contains 6178 Yeast
genes. As second data set, a subset of this data of 2884 genes
used by Ji and Tan for their clustering algorithm was taken [4].
This data can be downloaded at http://www.comp.nus.edu.sg/
∼jiliping/p1/Yeast%20Matrix.txt. Because this data does not
contain replicates, it was binned using the first phase of the
Ji and Tan algorithm with a normalisation threshold of 0.3.
The third data set is freely available Gene expression data
from the GEO database (http://www.ncbi.nlm.nih.gov/geo).
The data set downloaded was the GDS1804 data set containing
16 microarray experiments with expression levels from E.
coli K12 cells at different time points after inducing an
alternative sigma factor which plays a role in transcriptional
regulation. For this data set, replicates for different time points
are available so that the new binning method could be used.
Because there are many genes where at least one condition in
one of the microarray experiments is a NULL value, these
genes are excluded leading to a data set with 3766 genes
instead of the original 6400 genes (including controls). The
clusters are interpreted biologically using textual description
from http://db.yeastgenome.org/ for yeast ORFs and the E.coli
K12 Genome Annotation from the EBI http://www.ebi.ac.uk/
GOA/proteomes.html.

Our clustering algorithm finds 436 positive clusters for
the first Yeast test set containing 6178 genes matching a

subsequence of length 15 and allowing one position to be zero
within this subsequence. Because of the graph structure which
facilitates the examination, interesting clusters can be easily
identified. Some examples for interesting clusters found are
given below. Closer examinations of the results are still work
in progress.

We could identify an interesting cluster in the second data
set, i. e. the smaller Yeast data set with 2884 genes, containing
two genes involved in the linkage of transcriptional regulation
to RNA Polymerase II (Gene 432 (YCR081W) and Gene 2870
(YPR168W)). Both genes are annotated with the same GO-
term (GO : 0016455) for biological function and interact both
with the same mediators (Med2 and SRB6). Using the larger
first data set, meaningful clusters were found as well. An
example is a cluster with 4 genes where 3 encode for structural
protein of ribosomes are found (Gene 879 (YDL130W), Gene
2777 (YHR203C) and Gene 4781 (YNL067W)). For the fourth
gene, no information in the used annotation was available.

Another very interesting relationship can be found in the
clustering obtained form the third data set from E. coli (cf.
Fig. 5). Gene 3025 has a very central role repressing many
other clusters. This gene is the arcA Gene, which is one of
the main regulators in the E. coli metabolism. The protein
coded by this gene is a sensor for oxygen in the environment.
It represses many genes involved in anaerobic metabolism of
E.coli. In cells, different metabolic pathways are activated in
the presence or absence of oxygen. This gene is negatively co-
regulated with gene number 3080, which is a Lactat Dehydro-
genase (ldhA). Lactat DH is used under anaerobic conditions
to gain energy from Pyruvate. This enzyme is known to be
repressed under aerobic conditions. These examples show that
our found clusters can be interpreted biologically. Using the
binning of the Ji-Tan algorithm on this data set (normalisation
threshold 0.3) leads to different clusters. The central genes
number 3025 and 3080 do not appear in our clusters using
this binned matrix.

1-4244-1509-8/07/$25.00 ©2007 IEEE 98



V. CONCLUSION

Detecting coregulated genes is an important task in microar-
ray data analysis. In this paper, we presented a new approach
to detecting coregulated genes in time-series microarray data,
using clustering techniques. We proposed a new approach
to discretize expression data in order to detect the changing
tendency between conditions. We formalized the notion of
positive and negative coregulated genes and presented an
algorithm to find all such relationships among the genes
present on a microarray. Finally, we introduced the concept
of a coregulation graph to present the clustering results in a
visual and human-readable from. In several experiments, we
showed that our approach produces biologically meaningful
results.

A more thorough investigation of the obtained clusters of
coregulated genes and their part in the regulatory network of
the respective organism remains for the future. Another open
question is how to integrate also time-shifted coregulation
patterns into our approach.
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