
On minimizing the ��� degree of a formula

Jan Van den Bussche�

August ��� ����

Abstract

We address the following optimization problem� given a member

of a restricted class of predicate logic formulas� give all equivalent

formulas in which the number of occurring negations and universal

quanti�ers is minimal� This problem has applications in the �eld

of nested relational databases� We present algorithms that solve the

problem and its associated decision� search and enumeration problems�

� Introduction

In the �eld of databases� most research e�orts were spent in the context of
the relational model of databases �Ull���� One of the main reasons for the
success of relational database systems is that they naturally lend themselves
to high�level� declarative query languages�

A fundamentally important query operation is the selection� which de�
rives from a relation those tuples that satisfy a certain condition� Selection
conditions are typically built from comparisons of the form A 	 B� where A
and B are attribute names� and negation and logical connectives�

Recently� next generation database applications became aware of the need
of more directly representing complex structures than is possible in the re�
lational model �ABD�
��� In the quest for extending the abilities of rela�
tional database systems without losing the advantages of such systems� the

� Address� University of Antwerp �UIA�� Dept� Math� � Comp� Science� Universiteit�
splein �� B��	�
 Antwerp� Belgium� E�mail� vdbuss�ccu�uia�ac�be�

�



nested relational model �SS
�� TF
�� was a particularly elegant step forward�
Roughly� the components of the tuples in a nested relation need not be un�
structured values� but can be 
nested� relations in turn�

Relational query languages can be extended to work on nested relational
databases� But� due to the richer data structures provided by nested re�
lations� much more complicated query mechanisms arise naturally� For in�
stance� the selection condition of a selection operation for nested relations can
now involve quanti�ers� For example� if X and Y are set�valued attributes�

�A � X�
�B � Y ��A 	 B expresses the condition that X � Y 	 �� and

�A � X�
�B � Y ��A 	 B expresses X �� Y �

Consequently� the implementation strategies for evaluating selection op�
erations� as were developed for traditional relational systems in the seven�
ties �A���� GAC����� must be thoroughly reinvestigated and adapted to the
nested relational case� In �VdB���� we studied the evaluation of a class of
nested relational selections whose condition has the form of a sequence of
negations and quanti�cations� followed by a simple comparison 
for exam�
ple� the conditions given in the previous paragraph�� It is shown there that
such selection operations can be translated into sequences of elementary ones�
which are well optimizable� A similar situation occurs in �OW
��� where a
translation is described of relational calculus expressions in a �set�oriented�
calculus� by which negation and universal quanti�cation are eliminated and
expressed instead using set comparisons� which was claimed in �OW
�� to
have several advantages� Important is that in both cited cases� the complex�
ity of the result of the translation is proportional to the number of occurring
negations and universal quanti�ers in the input�

Hence� for optimization purposes� it is desirable to preprocess the expres�
sions into an equivalent form� such that this number of occurring negations
and universal quanti�ers is minimized� In this paper� we address and elab�
orate further upon this problem� We rephrase the problem independently
from its connection with databases� Thus� we are as general as possible� al�
lowing possible other applications too� Moreover� the results presented here
may be appreciated in their own right�

Concretely� de�ne a connective�free predicate logic formula as a formula
having the format of a sequence of negations� existential and universal quan�
ti�ers� followed by a �xed predicate� Such formulas naturally correspond to
strings over the alphabet f�� �� �g� and two formulas are equivalent if they
can be rewritten into each other using the well�known equations � 	 ����

�



� 	 ��� and �� 	 � 
the empty string�� Furthermore� the ��� degree of
a formula is de�ned as the total number of occurring � and � in it� For
example� the formula


�x�
�y��p
x� y�

is equivalent to
�
�x�
�y�p
x� y��

which can be alternatively seen by the string rewritings

��� � ����� � ��� � ����� � ����

The �rst formula has degree �� while the second� equivalent one� is more
e�cient� having only degree ��

The contents of this paper can be summarized as follows� Preliminaries
are given in Section �� In Section �� we solve the above mentioned problem�
by presenting and proving correct an algorithm that outputs all strings with
minimal number of occurring � and � that are equivalent to a given string�
In Section � we then observe that in general� the number of such outputs
cannot be polynomially bounded� However� it is shown that the associated
decision� search and enumeration problems can be solved in low polynomial
time�

� Preliminaries

The following notations will be used throughout� A is the ��letter alphabet
f�� �� �g and A� denotes the monoid of �nite strings over A� When talking
about strings� we will always mean strings in A�� unless explicitly stated
otherwise� The empty string� over any alphabet� is denoted by �� Letters
i� j� k� �� m� and n stand for natural numbers� For a rational number z�
dze denotes the �ceiling� function applied to z� i�e�� the smallest integer m
such that m 	 z� For any string s� 
s�k denotes s repeated k times� and jsj
denotes its length� For a set or list V � �V denotes the number of elements
of V �

We next recall the basic notion of rewrite system�

De�nition A rewrite system R over A is a set of binary relations over A��
called rewrite rules� Let s� s� � A�� We denote by s 
�R s� the fact that

�



hs� s�i is in � for some rewrite rule � of R� So formally� 
�R 	
S
��R �� We

say that s is in normal form w�r�t� R if there is no s� such that s 
�R s�� The
transitive closure of 
�R is denoted by 
��

R� and the re�exive and transitive
closure by 
��

R� When R is understood from the context� the subscript R will
sometimes be omitted� If s 
��

R s� and s� is in normal form w�r�t� R� then we
will say that s� is a normal form of s w�r�t� R�

We de�ned a rewrite rule as a binary relation� which can alternatively be
seen as a multivalued or nondeterministic function� Of course� any rewrite
system is equivalent to one having only one single rewrite rule� being the
union of all rewrite rules in the original system� It will however be convenient
to distinguish between several rules in the way as de�ned above� However�
if it does turn out to be the case that a certain rewrite system R indeed
consists of a single rewrite rule �� then we will� for simplicity� not make the
formal distinction between R and ��

Let us introduce some rewrite rules that will be important in the sequel�

� fh��� � �����i j �� � � A�g will be denoted by � � ����

� The inverse of � � ��� will be denoted by ��� � ��

� The union of � � ��� and ��� � � will be denoted by � 	 ����

� fh���� � ��i j �� � � A�g will be denoted by �� � ��

� The inverse of �� � � will be denoted by �� ��� and

� The union of the last two will be denoted by �� 	 ��

We will call the rewrite system f� 	 ������ 	 �g the standard rewrite
system� and denote it by Rstand� If s 
�

�
Rstand

s� then we say that s and s� are
equivalent and denote this by s � s�� For example�

� 
��
Rstand

����� 
� ����

and hence � � ���� Since the rewrite rules of Rstand are symmetric� � is
indeed an equivalence relation�

We will also use the rewrite system R�� de�ned as f� � ������ � �g�
Note that if s 
�R�

s� then s 
�Rstand
s�� This rewrite system is important for

the following reason�

�



Fact Every string has a unique normal form w�r�t� R��
This observation can be veri�ed by a straightforward induction on the

length of the string� and will also follow from Lemma �� for which we will
give a detailed proof�

For s � A�� the normal form of s w�r�t� R� will be denoted by sR�� This
normal form can be constructed by performing a left�to�right scan� in which
each occurring � is replaced by ���� and where pairs of consecutive � are
eliminated� For example� for s 	 ����

s 
� ����� 
� ������� 
� ����� 	 sR��

This leads us to an e�cient procedure to decide whether two strings are
equivalent� in view of the following� readily veri�ed property�

Fact Let s� s� � A�� Then s � s� i� sR� 	 s�R��
As an immediate corollary� it is decidable in linear time whether two given

strings are equivalent�
Our topic of main interest is now the following�

De�nition Let s � A�� The ��� degree 
or degree for short� of s� denoted
d
s�� is the total number of occurring � and � in s�

For example� d
������ 	 �� but the degree of ���� which is equivalent�
is only ��

The problem that will be addressed in this paper is� Given s � A�� �nd
among all equivalent strings those of minimal degree�

Formally� we de�ne�

De�nition Let s � A�� Then�

Min
s� �	 fs� � A� j s � s� and d
s�� 	 min
s���s

d
s���g�

� Finding the equivalent strings of minimal

degree

Before specifying our main algorithm� we introduce three more rewrite rules
that will be used in this algorithm�

�



� �� is the rule consisting of all pairs

h��
���k� � ��
���
k��
� �i�

where k is odd� � � A� 
 A���� and � � A� 
 ��A���

� �� is the rule consisting of all pairs

h��
���k� � �
������
������i�

where �� � are as above� k is even� and ��� �� satisfy ��� � ��� 	 k�

� �� equals fh������ � ���� j �� � � A�g� and will sometimes also be
denoted by ���� � ��� and its inverse by �� � �����

It is important to note that if s 
� s� by any of the above three rules�
then s � s�� Indeed� �� and �� merely apply the rule ��� � � in particular
orders� and �� uses the equivalence

���� � ������ � ���

Also� it is readily veri�ed that the following holds�

Fact Every string has a unique normal form w�r�t� ���
For s � A�� the normal form of s w�r�t� �� will be denoted by s�� � This

normal form can be obtained by rewriting every maximal occurrence of a
substring of the form �
���k� such that k is odd� into �
���

k��
� �

Neither �� nor �� have the unique normal form property� For ��� every
maximal occurrence of a substring of the form �
���k� such that k is even�
can be rewritten in several ways� the number of which equals the number
of di�erent pairs 
��� ��� satisfying ��� � ��� 	 k� We will come back to
this in Lemma �� Concerning ��� strings having �overlapping� occurrences
of ���� have several normal forms w�r�t� ��� the most simple example being
s 	 �������� which has normal forms ����� and ������

We are now ready to specify our main algorithm�

Algorithm �

� Informally� � does not end on �� and � does not start with ���

�



Input� s � A��

Output� Min
s��

Method�

�� Compute s� �	 
sR���� �

�� Output all normal forms of s� w�r�t� ���

�� For each string s� output in the previous step� output also all strings s��

for which s� 
��
��
s���

Step � can of course be performed simultaneously with step �� The algo�
rithm can thus alternatively be read as� output for each normal form s� of

sR���� w�r�t� ��� all strings s

�� for which s� 
��
��
s���

For example� let
s 	 ��������������

Then s equals sR�� Computing s� goes as follows�

s 
� ����������� 
� ������� 	 s�� �

s� is already in normal form� both w�r�t� �� and ��� and hence is the only
output of the algorithm� We have d
s�� 	 �� while d
s� 	 ��

As another example� consider

s 	 ����������

Then
sR� 	 ������������

which is already in normal form w�r�t� ��� One possible output of step � then
is

����������

by a single application of ��� with k 	 �� �� 	 � and �� 	 �� In step � this
output gives rise to another output�

��������

Both outputs have degree �� while the degree of the original s is ��

�



The remainder of this section is devoted to the proof of�

Theorem Algorithm � is correct�
Thereto� we �rst need to introduce a number of auxiliary notions�

De�nition Let s � A�� The number of quanti�ers occurring in s is denoted
by ns� For � � i � ns� qi
s� denotes the i�th occurrence of a quanti�er in
s� For � � i � ns� the substring of s starting at qi
s� and ending at qi��
s�
is denoted by ri
s�� If ns �	 �� this notation can be naturally extended to
include r�
s� and rns
s�� the former denotes the pre�x of s up to q�
s�� the
latter denotes the su�x of s starting from qns
s�� Finally� if ns 	 � 
i�e�� if s
is a sequence of ��s� then we simply put r�
s� �	 s�

We now associate with s a string b
s� over f�� �g�

b
s� 	 b�
s� � � � bns
s��

with bi
s� �	 d
ri
s�� mod �� for � � i � ns�
Note that jb
s�j 	 ns � �� For example� if s 	 ������ then ns 	 ��

r�
s� 	 ���� r�
s� 	 �� and b
s� 	 ������
Remark also that s � s� implies ns 	 ns�� The following important

property now holds�

Lemma � Let s� s� � A�� Then s � s� i� b
s� 	 b
s���

Proof� The only�if is readily veri�ed� To see the if� we use induction on ns

	 ns��� If ns 	 �� then s 	 
��k and s� 	 
��k

�

for some k� k� such that
k mod � 	 k� mod �� Clearly� s 
��

Rstand
s�� using the rewrite rule �� 	 �� If

ns 	 N � �� then s 	 �Q
��k and s� 	 ��Q�
��k
�

for some �� �� � A� and
quanti�ers Q�Q�� with n� 	 n�� 	 N � We distinguish two cases�

�� Q 	 Q�� Then� since b
s� 	 b
s��� we have b
�� 	 b
���� whence � � ���
by the induction hypothesis� Furthermore� k mod � 	 k� mod �� whence

��k � 
��k

�

� again by the induction hypothesis� So we conclude that s � s��

�� Q �	 Q�� By symmetry we can assume Q 	 �� Q� 	 �� By the rewrite rule
� � ���� we have s� � s�� 	 ����
��k

���� Clearly� b
s��� 	 b
s�� and hence�
by case ��� we have s � s�� � s��

This property can also serve as basis of an alternative to the decision
procedure for equivalence mentioned in Section ��






From the structure of b
s� we can get information about the behaviour
of Algorithm � on input s� To see this� we de�ne�

De�nition Let s � A�� Then the list of maximal occurrences of non�empty
substrings of b
s� that consist completely of ��s is denoted by B
s�� These
occurrences are ordered in B
s� as they appear in s�

For example� for

s 	 ����������������������

we have b
s� 	 ��������������� and B
s� 	 h�� ��� ���� �i� Note that s 	
sR��

Now recall that every application of the rewrite rules �� and �� used in the
algorithm involves a pair h��� � ����i� where � is a maximal occurrence of a
substring of sR� of the form �
���k� Such occurrences precisely correspond
to elements a in B
s�� E�g�� in the above example� with a 	 � corresponds
� 	 �� and with a 	 ��� corresponds � 	 ������ More speci�cally� if a
in B
s� starts at position bp
s� in b
s�� then the corresponding occurrence in
sR� is �
���k� starting in rp
s

R��� with k 	 jaj
�� This correspondence will
be frequently employed in the sequel�

We will also need two more lemmas�

Lemma � Let s � A�� Then Min
s� contains a string not containing con�
secutive occurrences of ��

Proof� Let s� � Min
s� be arbitrarily chosen� If s� has no consecutive
occurrences of �� then we are done� Otherwise� consider a normal form of s�

w�r�t� �� � ����� This string has no consecutive occurrences of �� has the
same degree as the original s�� is also equivalent to s�� and hence is in Min
s��

Lemma � Let t � A�� such that b
t� 	 �jb�t�j 	i�e�� b
t� consists completely
of �
s�� Then�

�� d
t� 	 djb
t�j	�e�

�� If d
t� 	 djb
t�j	�e� then

t 	

�
�
���

nt��
� if nt is odd�


������
����� if nt is even�

where ��� � ��� 	 nt�

�



Proof�

�� By induction on jb
t�j 	 nt � �� If jb
t�j 	 �� then d
t� 	 � 	 d�	�e� If
jb
t�j 	 N�� 
with N 	 ��� then t can be written either as ���k� with
k 	 � and odd� or as ���k� with k even� In both cases� n� 	 N 
 ��
We have

d
t� 	 d
�� � � 	 db
��	�e� � 	 dN	�e� � 	
�
N � �

�

�
	 djb
t�j	�e�

�� For any i � � � i � nt� we have that d
ri
t�� 	 � and odd� But then
by the previous item� d
ri
t�� must also be minimal with this property�
and therefore d
ri
t�� 	 �� It is now straightforward to see that t must
be of the form stated in the proposition�

We are now ready to prove soundness of our algorithm�

Proposition � Algorithm � outputs only strings in Min
s��

Proof� Since the rewritings by �� in step � of the algorithm are degree�
preserving� it su�ces to verify the claim for outputs of step �� To keep
notation simple� we can assume that s 	 sR� � We use induction on �B
s��
If �B
s� 	 �� then s 	 
��ns � which is also the only output� and is clearly of
minimal degree� Now consider an input string s for which �B
s� 	 N � ��
and let s� be an output string of step � of the algorithm� We have to show
that s� � Min
s�� for which it is su�cient to show that for some s�� � Min
s��
d
s��� 	 d
s���

First we introduce some notations� Let B
s� 	 ha�� � � � � aN � aN��i� and
let aN�� start at bp
s� in b
s�� Then s 	 ��
���k
��m� where�

� � is the pre�x of s up to rp��
s�� or� if p 	 �� � 	 �� So n� 	 p�
Moreover� � does not end in ��� So either � 	 �� � 	 �� or � has the
form ����

� k 	 jaN��j 
 ��

� m is the number of ��s following aN�� in b
s��

Correspondingly� s� 	 ����
��m� where�

��



� �� is de�ned similarly as �� but now for s� instead of for s� Moreover�
�� is an output of step � of the algorithm on input �� In particular�
n�� 	 n��

� �� 	

�
�
���

k��
� if k is odd�


������
����� if k is even�
where ��� � ��� 	 k�

Note that n�� 	 k�

Now let s�� � Min
s�� Note that s � s� � s��� and hence b
s� 	 b
s�� 	
b
s���� By Lemma �� we may also assume that s�� contains no consecutive ��s�
But then s�� can be written as s�� 	 ������
��m� where ��� equals � or � or is
of the form � ����� depending on the corresponding form of �� In particular�
n��� 	 n�� 	 n�� Note that b
�� 	 b
��� 	 b
����� and hence � � �� � ����

Since d
s�� 	 d
����d
��� and d
s��� 	 d
�����d
����� if we can show that
d
���� 	 d
��� and d
���� 	 d
���� we will have obtained that d
s��� 	 d
s���

Since �� is an output of the algorithm on input �� and ��� � �� by the
induction hypothesis 
given that �B
�� 	 N� we have d
��� � d
�����

It remains to show that d
���� 	 d
���� We know that b
�� 	 b
��� 	
b
���� 	 aN��� By Lemma �� item ��� we must have that d
���� 	 djaN��j	�e�
and since d
��� 	 djaN��j	�e� as is readily veri�ed� the proof is complete�

Having shown soundness� showing completeness is now a lighter task�

Proposition � Algorithm � outputs all strings in Min
s��

Proof� Consider �rst the following subclaim� Each s� � Min
s� which con�
tains no consecutive occurrences of � is output by the algorithm in step ��
This claim can be shown along the lines of the proof of Proposition �� using
Lemma �� We leave the details to the reader� Now consider s� � Min
s�
having consecutive occurrences of �� Let s�� be a normal form of s� w�r�t�
�� � ����� Then s�� 
��

�� s
�� So� since by the above subcase� s�� is output

by the algorithm in step �� s� is output by the algorithm in step �� Hence�
Algorithm � outputs all strings in Min
s��

The correctness of Algorithm � now follows immediately from Proposi�
tions � and ��

��



� Complexity analysis

In this section� we look at the complexity of the problem of �nding equivalent
strings of minimal degree� We do this by considering the associated decision�
search and enumeration problems�

A �rst observation is that Algorithm � cannot in general run in polyno�
mial time� since its number of outputs cannot in general be bounded by a
polynomial� To see this� we de�ne�

De�nition Let s � A�� Then the list of maximal occurrences of substrings
of sR� of the form �
���k� such that k is even� is denoted by C
s�� The
occurrences are ordered in C
s� as they appear in sR� �

The following property was already suggested in the previous section�

Lemma � Let s � A�� Then the number of outputs of step � of Algorithm �
on input s equals Y

tinC�s�



nt
�
� ���

Proof� It is readily seen on inspection of the algorithm that the number of
outputs of step � equals Y

tinC�s�

N�
t��

where N�
t� is the number of di�erent normal forms of t w�r�t� ��� This
number equals the number of di�erent pairs 
��� ��� for which ������� 	 nt�
clearly� this is precisely nt	� � � 
nt is even��

If we de�ne �C
s� to be the subset of C
s�� consisting of those elements t
for which nt 	 �� it follows that on input s� Algorithm � outputs at least
��

	C�s� strings� In view of this� the only hope to have a polynomial upper
bound on the number of outputs of Algorithm � is that � �C
s� is logarithmic
in jsj� But this fails to be true� there is an in�nite class of strings for which
� �C
s� is linear in jsj� Indeed� for an arbitrary m 
 �� de�ne

sm 	 
��������m��������

Then � �C
sm� 	 m and jsmj 	 �m
 ��
Concluding� the problem of �nding all equivalent strings of minimal de�

gree is of superpolynomial output complexity� However� it is not di�cult

��



to see that Algorithm � can be implemented in time linear in its number
of outputs� Remark also that for each s� � Min
s�� js�j is bounded by
�ns � � � �jsj � �� since a necessary condition for s� to be minimal is that
no consecutive ��s occur in s�� This suggests that the problem is not inher�
ently intractable� We will con�rm this by next showing that the associated
decision� search� and enumeration problems can be solved in low polynomial
time�

Devising linear�time algorithms for the search 
Algorithm 
� and decision

Algorithm �� problem is easy�

Algorithm 	 
Search problem�

Input� s � A��

Output� An s� � Min
s��

Method� Output the particular normal form of sR� w�r�t� ��� � �� ob�
tained by applying the rule in a single scan from left to right�

Algorithm � 
Decision problem�

Input� s� s� � A��

Output� Is s� � Min
s�


Method� First� test whether s � s�� using the procedure mentioned in Sec�
tion �� If not equivalent� output false� Otherwise� apply the search algo�
rithm� yielding a string s�� � Min
s�� Output the boolean d
s�� 	 d
s����

We have�

Proposition Algorithms 
 and � are correct and run in linear time�

Proof� First consider the search algorithm� During the repeated left�to�right
application of ��� � �� maximal occurrences of �
���k� such that k is odd�

are rewritten into �
���
k��
� � which corresponds to applying ��� while maximal

occurrences of �
���k� such that k is even� are rewritten into 
���k�� which
corresponds to applying �� with �� 	 k	� and �� 	 �� Hence� the output
of the search algorithm is also an output of Algorithm �� in step �� Clearly�

��



only linear time is needed for computing sR� and performing the left�to�right
scan�

The correctness and linear time complexity of the decision algorithm now
follow immediately�

The enumeration problem is more complicated� Given s� our task is to
compute �Min
s�� Of course� a naive way to do this is to run Algorithm ��
while increasing a counter each time a string is output� But obviously� a
serious drawback of this enumeration procedure is that it takes superpolyno�
mial time� as we saw above� What we want is an exact �gure for �Min
s��
formally independent of Algorithm �� and computable in polynomial time�

In Lemma �� we already found how to compute the cardinality of the
subset of Min
s� consisting of those strings output in step � of Algorithm ��
Now we must re�ne this calculation by taking also step � of the algorithm into
account� Recall that in step �� random occurrences of ���� are rewritten
into ��� Our analysis will be built around the following auxiliary notion�

De�nition Let s � A�� Then D
s� is the list of maximal occurrences
of substrings of sR� of the form 
t���� � � � 
tm���tm��� where ti is in C
s��
for � � i � m� The weight of such a substring is de�ned to be m� The
occurrences are ordered in D
s� as they appear in sR��

For example� in the following string s� D
s� 	 hL�� L�i�

s 	 sR� 	 ���������� �z �
L�

��������������� �z �
L�

������

The weight of L� is �� that of L� is ��
The weight of an element ofD
s� equals exactly the number of occurrences

of ���� in it� Moreover� the occurrences of ���� in 
elements of� D
s�
match exactly those in 
sR���� � The reader is invited to check this claim on
the above example� This leads to�

Lemma �
 Let s � A�� Then

�Min
s� 	
Y

LinD�s�

�Min
L��

A formal proof of this lemma is straightforward and left to the reader�
By the lemma� we can further concentrate on individual members of D
s�� or

��



s� � Min
s� �s
s
��

��������� ��
��������� ��
������� ��
������� ��
������� ��

Table �� �s
s
�� for each s� � Min
s�� where s 	 ������������

somewhat more general� on strings of the form 
t���� � � � 
tm���tm��� where
ti 	 �
���ki with ki even� for � � i � m� �� Note that for a string s of this
type� 
sR���� 	 s� so we can ignore step � of Algorithm ��

With s 	 
t���� � � � 
tm���tm�� as above� we can associate a sequence
N 
s� of m� � numbers de�ned by�

N 
s� �	 hk�	� � � � � � � � km��	� � �i


compare with Lemma �� noting that ki 	 nti�� Further� with each s� �
Min
s�� we associate a boolean string �s
s

�� over the alphabet fT 
rue��F 
alse�g
of length m� de�ned by�

�s
s
�� 	 �s
s

��� � � � �s
s
��m�

where �s
s
��i is True i� in the computation of s� by Algorithm � applied to

s� the i�th occurrence of ���� in s is preserved in step � and is rewritten
into �� in step � of the algorithm�

For example� if s 	 ������������ then N 
s� 	 h�� �� �i� and Table �
shows �s
s

�� for each s� � Min
s��
Not all boolean strings equal �s
s

�� for some s�� Actually� we can precisely
characterize the range of �s� as done in the next lemma� the proof of which
�rst requires a de�nition�

De�nition Let z be a boolean string of length m� A position i � � � i �
m � � is called free w�r�t� z if both the i 
 ��th and the i�th symbol of z
are False� If m �	 �� this notion can be naturally extended to include � and
m � �� � 
resp� m � �� is free w�r�t� z if the �rst 
resp� the last� symbol of
z is False� Finally� if m 	 � 
i�e�� if z is the empty string�� then we simply
state that � is free w�r�t� z� The set fi � � � i � m � � j i free w�r�t� zg is
denoted by Free
z��

��



Lemma �� Let s equal 
t���� � � � 
tm���tm�� as above� and let z be a boolean
string of length m� Then z 	 �s
s

�� for some s� � Min
s� i� z contains no
consecutive occurrences of True�

Proof� Only if� For simplicity� we assume that m 	 �� the general argument
is analogous� We must show that there is no s� � Min
s� for which �s
s

�� 	
TT � Suppose that there is such a s�� Then in the computation of s� from s
by Algorithm �� in step �� the �rst as well as the second occurrence of ����
must be preserved� in order to be rewritten into �� in step �� For the �rst
occurrence to be preserved� t� must be rewritten into �
���k��� in step ��
however� for the second to be preserved� t� must be rewritten into 
���k�����
If k� 
 �� this yields a contradiction� If k� 	 �� then s 	 t������t�� and
regardless of how t� and t� are rewritten in step �� at most one application
of ���� � �� will be possible in step �� a contradiction with �s
s

�� 	 TT �
If� For each i � � � i � m � �� de�ne t�i as follows� If i � Free
z�� then t�i

may be any normal form of ti w�r�t� ��� Otherwise� we consider the following
possibilities�

� If i 	 �� then t�i �	 
���k�����

� If i 	 m� �� then t�i �	 �
���km�����

� Otherwise� if the i
 ��th symbol of z is True� then t�i �	 �
���ki���

� Otherwise� the i�th symbol of z is True� and t�i �	 
���ki����

All the above possibilities are mutually exclusive� Now de�ne s�� �	 
t����� � � �

t�m���t

�
m��� and de�ne s� as the string obtained from s�� by repeatedly ap�

plying ���� � �� according to z� s� is well�de�ned� since z contains no
consecutive occurrences of True� Clearly� s� � Min
s� and �s
s

�� 	 z�
We will denote the set of all boolean strings of length m having no con�

secutive occurrences of True by Em� We point out that �Em equals Fm���
the m� ��th Fibonacci number�

In order now to tie all the above notions together� we introduce one more
auxiliary construct� Consider an arbitrary m � ��ary sequence of numbers
R 	 hrii��i�m��� and an arbitrary boolean string z of length m� Then the
product of R and z is de�ned by�

R� z �	
Y

i�Free�z�

ri�

��



We can now show�

Lemma �� Let s be as above� and let z � Em� Let ���
s 
z� denote fs� �

Min
s� j �s
s
�� 	 zg� Then ����

s 
z� 	 N 
s�� z�

Proof� By induction onm� Ifm 	 �� then s 	 t�� and Min
s� 	 f
������
����� j
��� � ��� 	 k�g� Furthermore� z must be the empty string� and ���

s 
z� 	
Min
s�� So

����
s 
z� 	 �Min
s� 	 k�	� � � 	 N 
s�� z�

Ifm 
 �� then s can be written as ���tm��� where � 	 
t���� � � � 
tm�����tm�
We write z as z� � � � zm� where each zi is True or False� By the induction
hypothesis� ����

� 
z� � � � zm��� 	 N 
�� � z� � � � zm��� We now consider two
cases�

If zm 	 False� then for each s� for which �s
s
�� 	 z� in the computa�

tion of s� from s by Algorithm �� tm�� can be rewritten into any one of
f
������
����� j ��� � ��� 	 km��g in step �� This yields km��	� � � possi�
bilities� and we have

����
s 
z� 	 
km��

�
� ������

� 
z� � � � zm��� 	 
km��

�
� ��N 
��� z� � � � zm�� 	

N 
s�� z�

If zm 	 True� then for each s� for which �s
s
�� 	 z it holds that in the

computation of s� from s by Algorithm �� tm�� is necessarily rewritten into
�
���km���� in step �� It follows that

����
s 
z� 	 ����

� 
z� � � � zm��� 	 N 
��� z� � � � zm�� 	 N 
s�� z�

By the combined e�orts of Lemmas ��� �� and ��� we have thus estab�
lished�

Proposition �� Let s � A�� Then

�Min
s� 	
Y

LinD�s�

X
z�Ew�L�

N 
L�� z�

where for each L in D
s�� w
L� denotes the weight of L�

��



Although we now have an exact �gure for �Min
s� formally independent
of Algorithm �� we still have not arrived at our �nal goal� being an e�cient

polynomial time� algorithm for computing �Min
s�� Indeed� in the product
of Proposition ��� each factor is a sum over �Ew�L� terms� the naive imple�
mentation of which may require an exponential number of steps� since w
L�
may be linear in jsj and �Em 	 Fm���

�

Fortunately� we have the following property� For an arbitrary sequence
of m � � numbers R 	 hrii��i�m��� denote the sum

P
z�Em R� z by �
R��

Then the following Fibonacci�like recurrence holds for �
R��

Lemma ��

m 	 � � �
hr�i� 	 r��
m 	 � � �
hr�� r�i� 	 r�r� � ��
m 	 � � �
hr�� � � � � rm��i� 	 r��
hr�� � � � � rm��i� � �
hr�� � � � � rm��i��

Proof� If m 	 �� then Em 	 f�g� and hr�i � � 	 r�� If m 	 �� then
Em 	 f�� �g� and hr�� r�i � � � hr�� r�i � � 	 r�r� � �� Now let m 	 �� We
have

Em 	 Em�� t Em���

where Em�� 
Em��� is the subset of Em consisting of those strings whose �rst
symbol is False 
True���

If we write z 	 z� � � � zm� where each zi is True or False� then clearly�

� if z � Em���

R� z 	 r� � 
hr�� � � � � rm��i � z� � � � zm��

and z� � � � zm is an arbitrary element of Em���

� if z � Em���
R� z 	 hr�� � � � � rm��i � z� � � � zm�

and z� � � � zm is an arbitrary element of Em���

� Recall that Fn is asymptotically exponential in n�
� Note that �Em�� 
 �Em�� and �Em�� 
 �Em��� which gives us� as mentioned

earlier� that �Em 
 Fm��� since �E� 
 � 
 F� and �E� 
 � 
 F��

�




Hence�

�
R� 	
X

z�Em��

R� z �
X

z�Em��

R� z

	 r��
hr�� � � � � rm��i� � �
hr�� � � � � rm��i��

Note that using the recurrence of the above lemma� we can compute �
R�
in time proportional to m�

We can �nally present�

Algorithm �� 
Enumeration problem�

Input� s � A��

Output� �Min
s��

Method� Compute the product shown in Proposition ��� where each factor�
�
N 
L��� is computed using Lemma ���

Proposition Algorithm �� is correct and runs in quadratic time�

Proof� The correctness was already shown by Proposition ��� The quadratic
time complexity follows from the following facts�

�� �D
s� � jsj�

�� for each L in D
s�� w
L� � jsj�

�� computing N 
L� takes only linear time� and

�� computing �
N 
L�� using Lemma �� takes only time proportional to
w
L��

Acknowledgement

Thanks go to Jan Paredaens� for inspiring discussions�

��



References

�A���� M�M� Astrahan et al� System R� a relational approach to data
management� ACM Transactions on Database Systems� �
������
���� �����

�ABD�
�� M� Atkinson� F� Bancilhon� D� DeWitt� K� Dittrich� D� Maier�
and S� Zdonik� The object�oriented database system manifesto�
In W� Kim� J��M� Nicolas� and S� Nishio� editors� Proceedings
�st International Conference on Deductive and Object�Oriented
Databases� pages ������ Elsevier Science Publishers� ��
��

�GAC���� P� Gri�ths� M� Astrahan� D� Chamberlin� R� Lorie� and T� Price�
Acces path selection in a relational database management system�
In P� Bernstein� editor� ACM SIGMOD ���� International Con�
ference on Management of Data� Proceedings� pages ������ ACM
Press� �����

�OW
�� G� Ozsoyoglu and H� Wang� A relational calculus with set opera�
tors� its safety� and equivalent graphical languages� IEEE Trans�
actions on Software Engineering� ��
������
������ ��
��

�SS
�� H��J� Schek and M�H� Scholl� The relational model with relation�
valued attributes� Information Systems� ��
����������� ��
��

�TF
�� S� Thomas and P� Fischer� Nested relational structures� In
P� Kanellakis� editor� The Theory of Databases� pages ��������
JAI Press� ��
��

�Ull��� J� Ullman� Principles of Database and Knowledge�Base Systems�
volumes I and II� Computer Science Press� ��
�������

�VdB��� J� Van den Bussche� Evaluation and optimization of complex
object selections� In C� Delobel� M� Kifer� and Y� Masunaga�
editors� Deductive and Object�Oriented Databases� volume ���
of Lecture Notes in Computer Science� pages �������� Springer�
Verlag� �����

��


