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Abstract

We address the following optimization problem: given a member
of a restricted class of predicate logic formulas, give all equivalent
formulas in which the number of occurring negations and universal
quantifiers is minimal. This problem has applications in the field
of nested relational databases. We present algorithms that solve the
problem and its associated decision, search and enumeration problems.

1 Introduction

In the field of databases, most research efforts were spent in the context of
the relational model of databases [UlI90]. One of the main reasons for the
success of relational database systems is that they naturally lend themselves
to high-level, declarative query languages.

A fundamentally important query operation is the selection, which de-
rives from a relation those tuples that satisfy a certain condition. Selection
conditions are typically built from comparisons of the form A = B, where A
and B are attribute names, and negation and logical connectives.

Recently, next generation database applications became aware of the need
of more directly representing complex structures than is possible in the re-
lational model [ABD*89]. In the quest for extending the abilities of rela-
tional database systems without losing the advantages of such systems, the
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nested relational model [SS86, TF86] was a particularly elegant step forward.
Roughly, the components of the tuples in a nested relation need not be un-
structured values, but can be (nested) relations in turn.

Relational query languages can be extended to work on nested relational
databases. But, due to the richer data structures provided by nested re-
lations, much more complicated query mechanisms arise naturally. For in-
stance, the selection condition of a selection operation for nested relations can
now involve quantifiers. For example, if X and Y are set-valued attributes,
(VA € X)(VB € Y)—=A = B expresses the condition that X NY = (), and
(A€ X)(VB €Y)—~A = B expresses X Z Y.

Consequently, the implementation strategies for evaluating selection op-
erations, as were developed for traditional relational systems in the seven-
ties [AT76, GACT79], must be thoroughly reinvestigated and adapted to the
nested relational case. In [VdB91], we studied the evaluation of a class of
nested relational selections whose condition has the form of a sequence of
negations and quantifications, followed by a simple comparison (for exam-
ple, the conditions given in the previous paragraph). It is shown there that
such selection operations can be translated into sequences of elementary ones,
which are well optimizable. A similar situation occurs in [OW89], where a
translation is described of relational calculus expressions in a “set-oriented”
calculus, by which negation and universal quantification are eliminated and
expressed instead using set comparisons, which was claimed in [OW89] to
have several advantages. Important is that in both cited cases, the complex-
ity of the result of the translation is proportional to the number of occurring
negations and universal quantifiers in the input.

Hence, for optimization purposes, it is desirable to preprocess the expres-
sions into an equivalent form, such that this number of occurring negations
and universal quantifiers is minimized. In this paper, we address and elab-
orate further upon this problem. We rephrase the problem independently
from its connection with databases. Thus, we are as general as possible, al-
lowing possible other applications too. Moreover, the results presented here
may be appreciated in their own right.

Concretely, define a connective-free predicate logic formula as a formula
having the format of a sequence of negations, existential and universal quan-
tifiers, followed by a fixed predicate. Such formulas naturally correspond to
strings over the alphabet {—,3,V}, and two formulas are equivalent if they
can be rewritten into each other using the well-known equations V = —d-,



3 = =V- and == = X (the empty string). Furthermore, the V-— degree of
a formula is defined as the total number of occurring — and V in it. For
example, the formula

(Vz)(Vy)—p(z,y)

is equivalent to
=(32)Fy)p(z, y),

which can be alternatively seen by the string rewritings
W =VaV- =V-d = -—V-d =-3J3.

The first formula has degree 3, while the second, equivalent one, is more
efficient, having only degree 1.

The contents of this paper can be summarized as follows. Preliminaries
are given in Section 2. In Section 3, we solve the above mentioned problem,
by presenting and proving correct an algorithm that outputs all strings with
minimal number of occurring — and V that are equivalent to a given string.
In Section 4 we then observe that in general, the number of such outputs
cannot be polynomially bounded. However, it is shown that the associated
decision, search and enumeration problems can be solved in low polynomial
time.

2 Preliminaries

The following notations will be used throughout. A is the 3-letter alphabet
{=,3,V¥} and A* denotes the monoid of finite strings over A. When talking
about strings, we will always mean strings in A*, unless explicitly stated
otherwise. The empty string, over any alphabet, is denoted by A. Letters
t, 7, k, £, m, and n stand for natural numbers. For a rational number z,
[2] denotes the “ceiling” function applied to z, i.e., the smallest integer m
such that m > z. For any string s, (s)* denotes s repeated k times, and |s|
denotes its length. For a set or list V', #V denotes the number of elements
of V.
We next recall the basic notion of rewrite system:

Definition A rewrite system R over A is a set of binary relations over A*,
called rewrite rules. Let s,s' € A*. We denote by s —pr s’ the fact that



(s,s") is in p for some rewrite rule p of R. So formally, —r = U,cgp. We
say that s is in normal form w.r.t. R if there is no s’ such that s —p s’. The
transitive closure of —p is denoted by +—}, and the reflexive and transitive
closure by —%. When R is understood from the context, the subscript R will
sometimes be omitted. If s —7% s’ and s’ is in normal form w.r.t. R, then we
will say that " is a normal form of s w.r.t. R.

We defined a rewrite rule as a binary relation, which can alternatively be
seen as a multivalued or nondeterministic function. Of course, any rewrite
system is equivalent to one having only one single rewrite rule, being the
union of all rewrite rules in the original system. It will however be convenient
to distinguish between several rules in the way as defined above. However,
if it does turn out to be the case that a certain rewrite system R indeed
consists of a single rewrite rule p, then we will, for simplicity, not make the
formal distinction between R and p.

Let us introduce some rewrite rules that will be important in the sequel:

{{aV3, a—3-0) | a, f € A*} will be denoted by V — —3—;

The inverse of V — —3— will be denoted by —=9— — V,

The union of V —+ —-3— and —-3— — V will be denoted by V = —3—;

{{a==0, af) | a, 5 € A*} will be denoted by == — \;
e The inverse of =— — A will be denoted by A — ——; and

e The union of the last two will be denoted by =— = A.

We will call the rewrite system {V = =3-, == = A} the standard rewrite
system, and denote it by Rsiana- If s =% 5" then we say that s and s are
equivalent and denote this by s = s'. For example,

3 HRstand —|—|3—|—| — —|\V/—|,
and hence 4 = —V-. Since the rewrite rules of Rg.nq are symmetric, = is
indeed an equivalence relation.

We will also use the rewrite system Ry, defined as {V — —3-,—— — A}
Note that if s —p, s’ then s —r_, . s'. This rewrite system is important for

the following reason:

stand



Fact Every string has a unique normal form w.r.t. Ry.

This observation can be verified by a straightforward induction on the
length of the string, and will also follow from Lemma 2, for which we will
give a detailed proof.

For s € A*, the normal form of s w.r.t. Ry will be denoted by sv. This
normal form can be constructed by performing a left-to-right scan, in which
each occurring V is replaced by —3—, and where pairs of consecutive — are
eliminated. For example, for s = VV3:

s = =3V — —I=—=I=F — —TFF-3F = sfv,

This leads us to an efficient procedure to decide whether two strings are
equivalent, in view of the following, readily verified property:

Fact Let s,s’ € A*. Then s = s iff sftv = s'fv,

As an immediate corollary, it is decidable in linear time whether two given
strings are equivalent.

Our topic of main interest is now the following:

Definition Let s € A*. The V-— degree (or degree for short) of s, denoted
d(s), is the total number of occurring V and — in s.

For example, d(—=33V—) = 3, but the degree of ¥YV3, which is equivalent,
is only 2.

The problem that will be addressed in this paper is: Given s € A*, find
among all equivalent strings those of minimal degree.

Formally, we define:

Definition Let s € A*. Then:

Min(s) ;= {s' € A" | s = s" and d(s') = mind(s")}.

3 Finding the equivalent strings of minimal
degree

Before specifying our main algorithm, we introduce three more rewrite rules
that will be used in this algorithm.



e p; is the rule consisting of all pairs
(a=(3-)"8, a¥(IV) = ),
where k is odd, a € A* — A*=3, and § € A* — I-A*!
e p, is the rule consisting of all pairs
(a=(37)°3, a(v3)"=(3V)25),
where «, § are as above, k is even, and /1, {5 satisfy 2¢; + 20y = k.

e p3 equals {{(«—=33-3, oW | a, 3 € A*}, and will sometimes also be
denoted by —dd— — VV, and its inverse by YV — —3d-.

It is important to note that if s — s’ by any of the above three rules,
then s = s'. Indeed: p; and p; merely apply the rule =3— — V in particular
orders, and ps uses the equivalence

Also, it is readily verified that the following holds:

Fact Every string has a unique normal form w.r.t. p;.

For s € A*, the normal form of s w.r.t. p; will be denoted by s”*. This
normal form can be obtained by rewriting every maximal occurrence of a
substring of the form —(3-)¥, such that k is odd, into V(3¥)"=" .

Neither ps nor ps3 have the unique normal form property. For ps, every
maximal occurrence of a substring of the form —(3-)*, such that k is even,
can be rewritten in several ways, the number of which equals the number
of different pairs (¢1, o) satisfying 2¢; + 20, = k. We will come back to
this in Lemma 7. Concerning ps, strings having “overlapping” occurrences
of =33— have several normal forms w.r.t. p3, the most simple example being
s = =d4-=dd—, which has normal forms VVdd— and —~34VV.

We are now ready to specify our main algorithm:

Algorithm 1

! Informally, @ does not end on =3 and 8 does not start with 3.



Input: s € A*.
Output: Min(s).
Method:
1. Compute sy := (s%)P1;
2. Output all normal forms of sy w.r.t. po;
3. For each string s’ output in the previous step, output also all strings s"
for which s' =7 s".

Step 3 can of course be performed simultaneously with step 2. The algo-
rithm can thus alternatively be read as: output for each normal form s of
(s™)r w.r.t. pa, all strings s" for which s' % s".

For example, let

s = 23-33-3-I-3-4.

Then s equals s%. Computing s; goes as follows:
s+ VI34-3=3-3-d — VIIVIVT = s,

sy is already in normal form, both w.r.t. p, and ps3, and hence is the only
output of the algorithm. We have d(s;) = 3, while d(s) = 6.
As another example, consider

§ = ~33-IVWV.

Then
s® = =33-3-3-33,

which is already in normal form w.r.t. p;. One possible output of step 2 then
is

~33-3v33-,

by a single application of py, with £ = 2, /; = 0 and {5 = 1. In step 3 this
output gives rise to another output,

VvVavad-.

Both outputs have degree 4, while the degree of the original s is 6.
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The remainder of this section is devoted to the proof of:

Theorem Algorithm 1 is correct.
Thereto, we first need to introduce a number of auxiliary notions.

Definition Let s € A*. The number of quantifiers occurring in s is denoted
by ns. For 1 < i < ng, ¢;(s) denotes the i-th occurrence of a quantifier in
s. For 1 < i < ng, the substring of s starting at ¢;(s) and ending at ¢;11(s)
is denoted by r;(s). If nsy # 0, this notation can be naturally extended to
include ro(s) and r,,(s): the former denotes the prefix of s up to ¢;(s), the
latter denotes the suffix of s starting from g¢,,(s). Finally, if ny =0 (i.e., if s
is a sequence of —’s) then we simply put ry(s) := s.
We now associate with s a string b(s) over {0, 1}:

with b;(s) := d(r;(s)) mod 2, for 0 < i < ng.

Note that |b(s)| = ns + 1. For example, if s = V=3V3, then n, = 4,
ri(s) = V=3, r4(s) = 3, and b(s) = 10110.

Remark also that s = s’ implies ny; = ny. The following important
property now holds:

Lemma 2 Let s,s' € A*. Then s = ' iff b(s) = b(s').

Proof: The only-if is readily verified. To see the if, we use induction on n,
(= ng). If ny = 0, then s = (=)¥ and s’ = (=) for some k, %' such that
k mod 2 = k' mod 2. Clearly, s =73 s, using the rewrite rule == = A. If
ng = N + 1, then s = aQ(—)* and s’ = o/Q'(—)* for some o,/ € A* and
quantifiers @, @Q)', with n, = ny = N. We distinguish two cases:

1. @ = Q'. Then, since b(s) = b(s'), we have b(a) = b(c), whence o = ¢/,
by the induction hypothesis. Furthermore, £ mod 2 = k'’ mod 2, whence
(=)F = (=)¥, again by the induction hypothesis. So we conclude that s = .

2. Q # Q. By symmetry we can assume () = 3, Q' = V. By the rewrite rule
V — =3, we have s' = s} = o/=3(=)¥*!. Clearly, b(s") = b(s') and hence,
by case 1., we have s = s} = 5. [

This property can also serve as basis of an alternative to the decision
procedure for equivalence mentioned in Section 2.



From the structure of b(s) we can get information about the behaviour
of Algorithm 1 on input s. To see this, we define:

Definition Let s € A*. Then the list of maximal occurrences of non-empty
substrings of b(s) that consist completely of 1’s is denoted by B(s). These
occurrences are ordered in B(s) as they appear in s.

For example, for

s = 3=333-34-3333-3-3-333,

we have b(s) = 010011000111001 and B(s) = (1,11,111,1). Note that s =
sty

Now recall that every application of the rewrite rules p; and p, used in the
algorithm involves a pair (a3, ay'/3), where v is a maximal occurrence of a
substring of s of the form —(3-)*. Such occurrences precisely correspond
to elements a in B(s). E.g., in the above example, with a = 1 corresponds
v = =, and with a = 111 corresponds v = —d—d—-. More specifically, if a
in B(s) starts at position b,(s) in b(s), then the corresponding occurrence in
sf is =(3=)*, starting in r,(s™), with k¥ = |a| — 1. This correspondence will
be frequently employed in the sequel.

We will also need two more lemmas:

Lemma 3 Let s € A*. Then Min(s) contains a string not containing con-
secutive occurrences of V.

Proof: Let s’ € Min(s) be arbitrarily chosen. If s’ has no consecutive
occurrences of V, then we are done. Otherwise, consider a normal form of s
w.r.t. ¥V — —33-. This string has no consecutive occurrences of V, has the
same degree as the original s, is also equivalent to s’, and hence is in Min(s).

|

Lemma 4 Let t € A*, such that b(t) = 1°O! (i.e.. b(t) consists completely
of 1’s). Then:

1..d(t) > [[b(t)]/2].
2. If d(t) = [|b(t)|/2], then

p— JV(EV) e if ny is odd;
(V) =(IV)2  if ny is even,

where 201 + 205 = ny.



Proof:

1. By induction on |b(t)| = n, + 1. If [b(t)| = 1, then d(¢) > 1 = [1/2]. If
1b(t)] = N+1 (with N > 1), then ¢ can be written either as a3—*, with
k > 1 and odd, or as aV—F, with k even. In both cases, n, = N — 1.
We have

) 2 d(0) +1 2 [o(e)/2] +1= [N/2] +12 [<] = b2,

2. For any i : 0 < i < ny, we have that d(r;(¢)) > 1 and odd. But then
by the previous item, d(r;(¢)) must also be minimal with this property,
and therefore d(r;(t)) = 1. It is now straightforward to see that ¢ must
be of the form stated in the proposition.

We are now ready to prove soundness of our algorithm:
Proposition 5 Algorithm 1 outputs only strings in Min(s).

Proof: Since the rewritings by ps; in step 3 of the algorithm are degree-
preserving, it suffices to verify the claim for outputs of step 2. To keep
notation simple, we can assume that s = s. We use induction on #B(s).
If #B(s) =0, then s = (3)", which is also the only output, and is clearly of
minimal degree. Now consider an input string s for which #B(s) = N + 1,
and let s’ be an output string of step 2 of the algorithm. We have to show
that s € Min(s), for which it is sufficient to show that for some s” € Min(s),
d(s") > d(s").

First we introduce some notations. Let B(s) = (ai,...,ay,ay+1), and
let ay1 start at by(s) in b(s). Then s = a—(3=)k(3)™, where:

e « is the prefix of s up to r,1(s), or, if p =0, « = A\. So n, = p.
Moreover, o does not end in —=3. So either &« = A\, @ = 3, or « has the
form /4.

o k— |CLN+1| - ]_,
e m is the number of 0’s following ay1 in b(s).

Correspondingly, s’ = o/+/(3)™, where:
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e o is defined similarly as «, but now for s’ instead of for s. Moreover,
o' is an output of step 2 of the algorithm on input «. In particular,

N = Ng.
e if k is odd;
/= ' where 20, + 20, = k.
*7 {(va)flﬁ(avyz if o is even, | ST

Note that n,, = k.

Now let s € Min(s). Note that s = s’ = s”, and hence b(s) = b(s') =
b(s"). By Lemma 3, we may also assume that s” contains no consecutive V’s.
But then s” can be written as s” = o4"(3)™, where o equals A or 3 or is
of the form (3”34, depending on the corresponding form of «. In particular,
Nar = N = No. Note that b(«) = b(a/) = b(”), and hence a = o/ = .

Since d(s") = d(c’) +d(v') and d(s") = d(a”) +d(v"), if we can show that
d(a") > d(a') and d(v") > d(v'), we will have obtained that d(s") > d(s').

Since o' is an output of the algorithm on input «, and o = a, by the
induction hypothesis (given that #B(a) = N) we have d(o') < d(a").

It remains to show that d(7") > d(y'). We know that b(y) = b(y') =
b(7") = ayy1. By Lemma 4, item 1., we must have that d(v") > [|lany1]/2],
and since d(v') = [|ans1|/2], as is readily verified, the proof is complete. ®

Having shown soundness, showing completeness is now a lighter task:

Proposition 6 Algorithm 1 outputs all strings in Min(s).

Proof: Consider first the following subclaim: Each s' € Min(s) which con-
tains no consecutive occurrences of ¥ is output by the algorithm in step 2.
This claim can be shown along the lines of the proof of Proposition 5, using
Lemma 4. We leave the details to the reader. Now consider s’ € Min(s)
having consecutive occurrences of V. Let s” be a normal form of s' w.r.t.
VW — —33-. Then s" r—>;r3 s'. So, since by the above subcase, s” is output
by the algorithm in step 2, s’ is output by the algorithm in step 3. Hence,
Algorithm 1 outputs all strings in Min(s). ]

The correctness of Algorithm 1 now follows immediately from Proposi-
tions 5 and 6.
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4 Complexity analysis

In this section, we look at the complexity of the problem of finding equivalent
strings of minimal degree. We do this by considering the associated decision,
search and enumeration problems.

A first observation is that Algorithm 1 cannot in general run in polyno-
mial time, since its number of outputs cannot in general be bounded by a
polynomial. To see this, we define:

Definition Let s € A*. Then the list of maximal occurrences of substrings
of % of the form —(3-)%, such that k is even, is denoted by C(s). The
occurrences are ordered in C(s) as they appear in s%.

The following property was already suggested in the previous section:

Lemma 7 Let s € A*. Then the number of outputs of step 2 of Algorithm 1
on input s equals
g
11 (5 +1).
tinC(s)

Proof: It is readily seen on inspection of the algorithm that the number of
outputs of step 2 equals
H Ny (t)a

tinC(s)

where N(t) is the number of different normal forms of ¢ w.r.t. p;. This
number equals the number of different pairs ({1, ¢5) for which 2¢; 4+ 205 = ny:
clearly, this is precisely n;/2 + 1 (n; is even.) [ |

If we define C(s) to be the subset of C(s), consisting of those elements t
for which n, > 2, it follows that on input s, Algorithm 1 outputs at least
2#C(s) strings. In view of this, the only hope to have a polynomial upper
bound on the number of outputs of Algorithm 1 is that #C (s) is logarithmic
in |s|. But this fails to be true: there is an infinite class of strings for which
#C(s) is linear in |s|. Indeed, for an arbitrary m > 0, define

Sm = (—E|—E|—EE|)m71—E|—E|—|.

Then #C(s,,) = m and |s,,| = Tm — 2.
Concluding, the problem of finding all equivalent strings of minimal de-
gree is of superpolynomial output complexity. However, it is not difficult

12



to see that Algorithm 1 can be implemented in time linear in its number
of outputs. Remark also that for each s’ € Min(s), |s'| is bounded by
2ns +1 < 2|s| + 1, since a necessary condition for s’ to be minimal is that
no consecutive —’s occur in s’. This suggests that the problem is not inher-
ently intractable. We will confirm this by next showing that the associated
decision, search, and enumeration problems can be solved in low polynomial
time.

Devising linear-time algorithms for the search (Algorithm 8) and decision
(Algorithm 9) problem is easy:

Algorithm 8 (Search problem)
Input: s € A*.
Output: An s’ € Min(s).

Method: Output the particular normal form of s™ w.r.t. =3- — ¥V, ob-
tained by applying the rule in a single scan from left to right.

Algorithm 9 (Decision problem)
Input: s,s' € A*.
Output: Is s’ € Min(s)?

Method: First, test whether s = s', using the procedure mentioned in Sec-
tion 2. If not equivalent, output false. Otherwise, apply the search algo-
rithm, yielding a string s" € Min(s). Output the boolean d(s') = d(s").

We have:
Proposition Algorithms 8 and 9 are correct and run in linear time.

Proof: First consider the search algorithm. During the repeated left-to-right

application of =3— — V, maximal occurrences of ~(3-)*, such that & is odd,
. . k=1 . : . .

are rewritten into V(3V) "z, which corresponds to applying p;, while maximal

occurrences of =(3-)* such that k is even, are rewritten into (V3)¥—, which

corresponds to applying p, with ¢; = k/2 and 5 = 0. Hence, the output

of the search algorithm is also an output of Algorithm 1, in step 2. Clearly,
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only linear time is needed for computing s and performing the left-to-right
scan.

The correctness and linear time complexity of the decision algorithm now
follow immediately. [ |

The enumeration problem is more complicated. Given s, our task is to
compute #Min(s). Of course, a naive way to do this is to run Algorithm 1,
while increasing a counter each time a string is output. But obviously, a
serious drawback of this enumeration procedure is that it takes superpolyno-
mial time, as we saw above. What we want is an exact figure for #Min(s),
formally independent of Algorithm 1, and computable in polynomial time.

In Lemma 7, we already found how to compute the cardinality of the
subset of Min(s) consisting of those strings output in step 2 of Algorithm 1.
Now we must refine this calculation by taking also step 3 of the algorithm into
account. Recall that in step 3, random occurrences of —33— are rewritten
into VV. Our analysis will be built around the following auxiliary notion:

Definition Let s € A*. Then D(s) is the list of maximal occurrences
of substrings of s of the form (¢,33)... (¢, 33)tmy1, where t; is in C(s),
for 1 < i < m. The weight of such a substring is defined to be m. The
occurrences are ordered in D(s) as they appear in s®.

For example, in the following string s, D(s) = (L1, La):

s = s™ = 23-3-3-3- 333 =3-3-33-33- 333
Ll L2

The weight of L; is 0; that of Ly is 2.

The weight of an element of D(s) equals exactly the number of occurrences
of =33= in it. Moreover, the occurrences of =33- in (elements of) D(s)
match exactly those in (s®)?t. The reader is invited to check this claim on
the above example. This leads to:

Lemma 10 Let s € A*. Then

#Min(s) = ] #Min(L).

LinD(s)

A formal proof of this lemma is straightforward and left to the reader.
By the lemma, we can further concentrate on individual members of D(s), or

14



s" € Min(s) | o4(s")
V3-33-33- | 00
—3v33—-33- | 00

Vavwd4- | 10
vV3a-33dvww | 01
—3v3avw | 01

Table 1: o4(s') for each s’ € Min(s), where s = =3-3-33-33—.

somewhat more general, on strings of the form (¢,33) ... (¢,,33)t,+1, where
t; = =(3=)*% with k; even, for 1 <i < m+ 1. Note that for a string s of this
type, (sfv)?1 = s, so we can ignore step 1 of Algorithm 1.

With s = (t,33)...(¢t,,33)t4+1 as above, we can associate a sequence
N (s) of m + 1 numbers defined by:

N(s)i=(ki/24+1,..., kpn1/2+1)

(compare with Lemma 7, noting that k; = n;). Further, with each s €
Min(s), we associate a boolean string o4(s') over the alphabet { T'(rue), F'(alse)}
of length m, defined by:

os(s") = 0s(s)1 ... 05(8 ) m,

where o4(s'); is True iff in the computation of s’ by Algorithm 1 applied to
s, the i-th occurrence of —3d— in s is preserved in step 2 and is rewritten
into VV in step 3 of the algorithm.

For example, if s = =3-3-33-33-, then N (s) = (2,1, 1), and Table 1
shows o,(s") for each s’ € Min(s).

Not all boolean strings equal o,(s’) for some s'. Actually, we can precisely
characterize the range of o,, as done in the next lemma, the proof of which
first requires a definition:

Definition Let 2 be a boolean string of length m. A position 7 : 1 < i <
m + 1 is called free w.r.t. z if both the ¢ — 1-th and the i-th symbol of z
are False. If m # 0, this notion can be naturally extended to include 1 and
m + 1: 1 (resp. m + 1) is free w.r.t. z if the first (resp. the last) symbol of
z is False. Finally, if m = 0 (i.e., if z is the empty string), then we simply
state that 1 is free w.r.t. 2. The set {i : 1 < i < m+ 1| free w.r.t. z} is
denoted by Free(z).
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Lemma 11 Let s equal (t133) ... (t,,33)tmy1 as above, and let z be a boolean
string of length m. Then z = o4(s") for some s' € Min(s) iff z contains no
consecutive occurrences of True.

Proof: Only if: For simplicity, we assume that m = 2; the general argument
is analogous. We must show that there is no s’ € Min(s) for which o(s") =
TT. Suppose that there is such a §’. Then in the computation of s’ from s
by Algorithm 1, in step 2, the first as well as the second occurrence of =39
must be preserved, in order to be rewritten into VV in step 3. For the first
occurrence to be preserved, t, must be rewritten into —(3V)*2/? in step 2;
however, for the second to be preserved, ¢, must be rewritten into (VEI)’”/Q—'.
If k; > 0, this yields a contradiction. If ks = 0, then s = t;39—-33¢3, and
regardless of how #; and ¢3 are rewritten in step 2, at most one application
of =33— — VV will be possible in step 3, a contradiction with o,(s") = TT.

If: For each i:1 <i <m+1, define ¢ as follows. If i € Free(z), then ¢,
may be any normal form of ¢; w.r.t. p,. Otherwise, we consider the following
possibilities.

o If i = 1, then t/ := (V3I)k1/2,

o If i = m+ 1, then t, := —=(3V)kn+1/2,

e Otherwise, if the i — 1-th symbol of z is True, then ¢, := —(3V)*/2,
e Otherwise, the i-th symbol of z is True, and #; := (V3)ki/2 =,

All the above possibilities are mutually exclusive. Now define s” := (#,33) ...
(t,33)1,,,1, and define s as the string obtained from s” by repeatedly ap-
plying —=33— — WV according to z. s’ is well-defined, since z contains no
consecutive occurrences of True. Clearly, s € Min(s) and o,(s") = z. |

We will denote the set of all boolean strings of length m having no con-
secutive occurrences of True by &£,. We point out that #¢&,, equals Fj, o,
the m + 2-th Fibonacci number.

In order now to tie all the above notions together, we introduce one more
auxiliary construct. Consider an arbitrary m 4+ 1-ary sequence of numbers
R = (ri)1<i<m+1, and an arbitrary boolean string z of length m. Then the
product of R and z is defined by:

Rxz:= ][] mn

i€Free(z)
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We can now show:

Lemma 12 Let s be as above, and let z € &,. Let o;'(z) denote {s' €
Min(s) | o5(s'") = z}. Then #0;'(2) = N(s) X z.

Proof: By induction on m. If m = 0, then s = ¢;, and Min(s) = {(V3)“*—(3V)* |
20, + 20y = ki}. Furthermore, z must be the empty string, and o;'(2) =
Min(s). So

#o7'(2) = #Min(s) =k /2 + 1 = N(s) x z.
If m > 0, then s can be written as «33t,,,1, where v = (¢t133) . .. (£;p—133)tn.
We write z as 21 ...2,, where each z; is True or False. By the induction
hypothesis, #0.'(z1 ... 2m-1) = N(a) X 21 ...2m_1. We now consider two
cases.

If 2z, = False, then for each s’ for which o4(s') = z, in the computa-
tion of §' from s by Algorithm 1, t,,.; can be rewritten into any one of
{(VI)“r=(3V)% | 20, + 205 = kypy1} in step 2. This yields k4 1/2 + 1 possi-
bilities, and we have

#o, (2) = (B2 4+ Do, (21 2mr) = (B2 + DN (@) X 2102y =
N(s) x z.

If z, = True, then for each s’ for which o4(s’) = z it holds that in the
computation of s from s by Algorithm 1, t,,,; is necessarily rewritten into
—(3V)Fm+1/2 in step 2. It follows that

#o N (2) =#0, (21 2m1) =N(Q) X 210 21 = N(5) X 2.

By the combined efforts of Lemmas 10, 11 and 12, we have thus estab-
lished:

Proposition 13 Let s € A*. Then

#Min(s) = [ Y. N(L) %z,

LinD(s) Zegw(L)

where for each L in D(s), w(L) denotes the weight of L.
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Although we now have an exact figure for #Min(s) formally independent
of Algorithm 1, we still have not arrived at our final goal, being an efficient
(polynomial time) algorithm for computing #Min(s). Indeed, in the product
of Proposition 13, each factor is a sum over #&,,) terms, the naive imple-
mentation of which may require an exponential number of steps, since w(L)
may be linear in |s| and #&,, = F,12.2

Fortunately, we have the following property. For an arbitrary sequence
of m + 1 numbers R = (ri)1<i<m+1, denote the sum Y. R x z by £(R).
Then the following Fibonacci-like recurrence holds for X(R):

Lemma 14

0: X((r)) =r;
1: X({rq,re)) =rirg + 1;
2: B((r, ..y rmg)) =12{rey o 1) F 2((r3, oy Tirt)-

3 33
Vol

Proof: If m = 0, then &, = {A}, and (r) x A = ;. If m = 1, then
En = 10,1}, and (ry,re) x 0+ (ry,m) X 1 = riry + 1. Now let m > 2. We
have

Em = Ema UEma,

where &, 1 (En2) is the subset of &,, consisting of those strings whose first
symbol is False (True).?
If we write 2 = zy ...z, where each z; is True or Fulse, then clearly:

o ifz € gm,l:
Rxz=r1-(roy...,lme1) X 22 2Zm),
and 23 ... 2, is an arbitrary element of &, 1;

o if € &0
RXZ:<T3,...,Tm+1>XZg...Zm,

and z3...z, is an arbitrary element of &,, .

2 Recall that F), is asymptotically exponential in n.
3 Note that #&n1 = #Em—1 and #En2 = #Em—2, which gives us, as mentioned
earlier, that #&,, = Fi42, since #& =1 = F» and #& = 2 = F3.
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Hence,

YR) = > Rxz+ > Rxz

2€Em 1 2€Em, 2
= mnX((ra, ... ) F E((rs, - Tg)

|

Note that using the recurrence of the above lemma, we can compute X(R)
in time proportional to m.
We can finally present:

Algorithm 15 (Enumeration problem)
Input: s € A*.
Output: #Min(s).

Method: Compute the product shown in Proposition 13, where each factor,
Y (N (L)), is computed using Lemma 14.

Proposition Algorithm 15 is correct and runs in quadratic time.

Proof: The correctness was already shown by Proposition 13. The quadratic
time complexity follows from the following facts:

1. #D(s) < |s|;
2. for each L in D(s), w(L) < |s|;
3. computing N(L) takes only linear time; and

4. computing (N (L)) using Lemma 14 takes only time proportional to
w(L).
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