
First-Order Logic of Information Flows:

Input–output properties, Primitivity,
Limited access patterns

Jan Van den Bussche

joint work with

Bart Bogaerts (Free U. Brussels)

Eugenia Ternovska (Simon Fraser U.)

Heba Aamer, Dimitri Surinx

1

Logic of Information Flows [Ternovska]

Model complex systems by connecting modules

Module: a relation (input arguments, output arguments)

Connecting: first-order logic!

Also applications with higher-order relations, fixpoint logic

2

Dynamic semantics: “Law of Inertia”

Binary relation Increment

1st argument: input

2nd argument: output

Standard (static) semantics, assignment ν:

ν |= Increment(x, y) ⇔ ν(y) = ν(x) + 1

Dynamic semantics, pair of assignments (ν1, ν2):

(ν1, ν2) |= Increment(x, y) ⇔ ν2(y) = ν1(x) + 1

and ν2 = ν1 elsewhere

3

Facebook example

Database D with a binary relation:

Friends
alice bob
alice carol
carol dave
carol eve

All pairs (ν1, ν2) such that D, (ν1, ν2) |= Friends(x, y):

ν1 ν2
x y z x y z

alice ∗ − alice bob −
alice ∗ − alice carol −
carol ∗ − carol dave −

Example of a BAR!

4

Binary assignment relation (BAR)

BAR: set of pairs of variable assignments

The dynamic semantics of a relation is a BAR

Relations are atomic modules

Model complex modules by connecting them

Semantics of connectives: operations on BARs

E.g. M1(x, y) ∨M2(u, v) union of BARs

5

Operations on BARs

Boolean connectives (union, intersection, difference)

Selection (equality)

Cylindrification (existential quantification)

Composition: R ◦ S = {(ν1, ν3) | ∃ν2 : R(ν1, ν2) ∧ S(ν2, ν3)}

Converse: R−1 = {(ν2, ν1) | R(ν1, ν2)}

6

Operations on BARs

Boolean connectives (union, intersection, difference)

Selection (equality)

Cylindrification (existential quantification)

Composition: R ◦ S = {(ν1, ν3) | ∃ν2 : R(ν1, ν2) ∧ S(ν2, ν3)}

Converse: R−1 = {(ν2, ν1) | R(ν1, ν2)}

7

Operations on BARs

Boolean connectives (union, intersection, difference)

Selection (equality)

Cylindrification (existential quantification)

Composition: R ◦ S = {(ν1, ν3) | ∃ν2 : R(ν1, ν2) ∧ S(ν2, ν3)}

Converse: R−1 = {(ν2, ν1) | R(ν1, ν2)}

8

Operations on BARs

Boolean connectives (union, intersection, difference)

Selection (equality)

Cylindrification (existential quantification)

Composition: R ◦ S = {(ν1, ν3) | ∃ν2 : R(ν1, ν2) ∧ S(ν2, ν3)}

Converse: R−1 = {(ν2, ν1) | R(ν1, ν2)}

9

Selection

σlx=y(R) = {(ν1, ν2) ∈ R | ν1(x) = ν1(y)}

σrx=y(R) = {(ν1, ν2) ∈ R | ν2(x) = ν2(y)}

σlrx=y(R) = {(ν1, ν2) ∈ R | ν1(x) = ν2(y)}

10

Cylindrification

∃lx(R) = {(ν′1, ν2) | ∃ν1 : (ν1, ν2) ∈ R and ν′1 = ν1 outside x}

∃rx(R) = {(ν1, ν
′
2) | ∃ν2 : (ν1, ν2) ∈ R and ν′2 = ν2 outside x}

11

Example

σrx=y(R) = R ∩ ∃lxσlrx=yσ
lr
x=x∃lx(R)

op ν1 ν2 condition
R x1 y1 x2 y2

∃lx ∗ y1 x2 y2

σlrx=x x2 y1 x2 y2

σlrx=y x2 y1 x2 y2 x2 = y2

∃lx ∗ y1 x2 y2 x2 = y2

R ∩ x1 y1 x2 y2 x2 = y2

12

The evaluation problem, first try

Expressions E built from relation names using the operators

Evaluation problem for expression E on instance D:

Input: An assignment ν1

Output: All assignments ν2 such that D, (ν1, ν2) |= E

Not practical. . .

• We should only need to give values for “input variables”

• We are only interested in values for “output variables”

13

What are the inputs, outputs of an expression?

Atomic modules (relations):

• input arguments are specified in the vocabulary

• remaining arguments are outputs

E.g. relation Friend of input arity 1, total arity 2

Expression Friend(x, y) has input var x, output var y

For complicated expressions, not so obvious

14

Semantic definition of an output variable

Variable x is an output of expression E if. . .

. . . there exists instance D, assignments ν1, ν2 such that

• D, (ν1, ν2) |= E

• ν2(x) 6= ν1(x)

15

Our definition of input variables

Variable x is an input of expression E if. . .

. . . there exists instance D, assignments ν1, ν2, ν′1 such that

• D, (ν1, ν2) |= E

• ν′1 = ν1 except on x

• every ν′2 such that D, (ν′1, ν
′
2) |= E differs from ν2

on at least one output variable

16

LIF evaluation, ideal version

Input: Assignment νin on the input variables

Output: Projection on output variables of

{νout | ∃ν′in ⊇ νin : D, (ν′in, νout) |= E}

Unfortunately, deciding whether a variable is output (input)

of some given expression is undecidable

(Reduction from satisfiability problem for

first-order logic)

17

Syntactic approximation of inputs, outputs

E I(E) O(E)
R(x, y) x y

R(x, y)− S(u, y) x, u y
R(x, y)− S(x, z) x, y, z y
R(x, y) ◦ S(y, z) x y, z

∃lxR(x, y) ∅ x, y

σlry=y(R(x, y)) x, y ∅

We have definitions of I(E) and O(E) for any expression E

Compositional: I(E1 op E2) and O(E1 op E2) depend only on
I(Ej), O(Ej), and op

Sound: I(E) contains all semantic inputs, O(E) all outputs

Optimal: Best possible compositional definition

18

Outline

What is LIF?

Inputs and outputs

Expressive power of LIF

• primitivity of composition

Forward LIF and limited access patterns

19

Is composition primitive?

1. Unlimited setting: infinite supply of variables

2. Bounded-variable: fixed, finite supply

3. Disjoint input–output setting

20

Composition is redundant

under disjoint input–outputs

E1 ◦ E2 ≡ ∃rO2
(E1) ∩ ∃lO1

(E2)

• Oj is set of output variables for Ej

• Inputs, outputs of E2 must be disjoint

Example for R(x, y) ◦ S(y, z):

op ν1 ν2 condition
∃rzR(x, y) x1 ∗ ∗ x1 y1 ∗ R(x1, y1)
∃ly S(y, z) x2 ∗ ∗ x2 y2 z2 S(y2, z2)

∩ x1 ∗ ∗ x1 y1 z2 R(x1, y1) ∧ S(y1, z2)

21

Application to unlimited setting

To do E1 ◦ E2:

1. Copy E2’s output variables to fresh variables

2. Composition becomes expressible

3. Copy back

⇒ Composition is not primitive

22

Composition is primitive in bounded-variable LIF

n variables

LIF is expressible in FO(3n)*

LIF w/o composition in FO(2n)

In LIF we can express existence of 3n-clique

*For n = 1, LIF reduces to Tarski’s algebra of binary relations

23

Outline

What is LIF?

Inputs and outputs

Expressive power of LIF

LIF and data with limited access patterns

• Executable first-order logic

• Forward LIF as an alternative

24

Data with limited access patterns

Relations can only be accessed

with values for input arguments

E.g. Telephone(name, number)

Inspired by Data on the Web, Query Processing

Access plans based on relational algebra

Access join E ./
j1=1

...
jk=k

R for relation R of input arity k

25

Executable first-order logic

[Nash & Ludäscher 2004]

Syntactic restriction of first-order logic

Equivalent to relational algebra access plans

“Codd theorem” under limited access patterns

Is there room in the middle?

Executable FO
declarative←−−−−−−−− ? procedural−−−−−−−→ Access Plans

26

Forward LIF

E ::= R(x̄; ȳ)

| (x = y) | (x = c)

| (x := y) | (x := c)

| E ◦ E | E ∪ E | E ∩ E | E − E

Navigational graph query language

• nodes are variable assignments

• edges labeled by relation access

• equality tests, variable setting

Disjoint input–output Forward LIF ≡ Executable FO

27

Conclusion

By giving first-order logic a dynamic semantics

with law of inertia. . .

. . . we obtain a declarative language for procedural knowledge

28

