
A

A Formal Account of the Open Provenance Model

Natalia Kwasnikowska, Hasselt University and transnational University of Limburg

Luc Moreau, University of Southampton

Jan Van den Bussche, Hasselt University and transnational University of Limburg

On the Web, where resources such as documents and data are published, shared, transformed, and repub-

lished, provenance is a crucial piece of metadata that would allow users to place their trust in the resources
they access. The Open Provenance Model (OPM) is a community data model for provenance that is de-

signed to facilitate the meaningful interchange of provenance information between systems. Underpinning

OPM is a notion of directed graph, where nodes represent data products and processes involved in past
computations, and edges represent dependencies between them; it is complemented by graphical inference

rules allowing new dependencies to be derived. Until now, however, the OPM model was a purely syntac-

tical endeavor. The present paper extends OPM graphs with an explicit distinction between precise and
imprecise edges. Then a formal semantics for the thus enriched OPM graphs is proposed, by viewing OPM

graphs as temporal theories on the temporal events represented in the graph. The original OPM inference

rules are scrutinized in view of the semantics and found to be sound but incomplete. An extended set of
graphical rules is provided and proved to be complete for inference. The paper concludes with applications

of the formal semantics to inferencing in OPM graphs, operators on OPM graphs, and a formal notion of

refinement among OPM graphs.

Categories and Subject Descriptors: H.1.m [Models and Principles]: Miscellaneous

General Terms: Languages, Standardization, Theory, Verification

Additional Key Words and Phrases: Provenance, Temporal reasoning, World Wide Web

1. INTRODUCTION

In the context of the Web, provenance is information about entities, activities, and people
involved in producing a resource (a piece of data, or any other thing) [Moreau et al. 2013].
This information can be used to form assessments about the quality, reliability, or trustwor-
thiness of the resource. On the Web, data flows across multiple systems, implemented using
different technologies, and potentially hosted by different institutions. Hence, tracking the
provenance of data in this context is particularly challenging, since it involves understand-
ing flows of information in these different systems. There is a rich literature on provenance
tracking mechanisms in e-science [Simmhan et al. 2005], in databases [Buneman et al. 2008;
Cheney et al. 2009], and in the Web [Moreau 2010b]. In the present paper, however, we are
concerned with providing logical foundations for provenance information that has already
been collected.

Following a strong community momentum [Gil et al. 2010], there now exists a standard
provenance interchange format, given by the PROV-DM W3C Recommendation [Moreau
et al. 2013]. With PROV-DM in place, provenance information will increasingly be shared,
copied, integrated, and compared. In order to perform these activities in a meaningful
manner, it is important that we have a formal semantics for provenance information. Such
a formal semantics will give us a formal criterion for when two provenance instances are
equivalent, when one instance subsumes another one, or when one is refinement of another
one. In this paper, we present a proposal for such a semantics.

We take a logic-based approach and view a provenance instance as a logical theory. Our
approach is temporal: the axioms of the theory state inequalities on temporal variables.
These variables represent the timepoints of creation of artifacts, of beginning and ending
of processes, and of usage of artifacts by processes. A model of a provenance instance is an
assignment of concrete timepoints to variables that satisfies the axioms of the theory. We
can then simply say that two provenance instances are equivalent if they have the same

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

models; or we can define appropriate notions of refinement or subsumption in terms of
logical implications among theories.

We develop our work in the context of the Open Provenance Model (OPM) [Moreau et al.
2011], which has been very popular as a precursor to the PROV-DM standard [Missier and
Goble 2011; Miles 2011; Groth and Moreau 2011; Freitas et al. 2011; Lim et al. 2011;
Kwasnikowska and Van den Bussche 2008]. OPM is more lightweight than PROV-DM and
thus a more tractable data model for formalization. At the same time, the essential elements
of provenance instances, namely entities and activities, and the relationships that connect
entities or activities with other entities or activities, are present in OPM as well as in PROV-
DM; only the terminology is a little bit different. As a matter of fact, our work begins with
a critique of OPM, enhancing it with a number of improvements, which have also been
adopted by PROV-DM.

In OPM, provenance instances are represented as graph structures. In the setting of our
improved OPM model, we make the following contributions.

(1) Our main result (Theorem 4.7) provides a direct, clear and concise characterization of
the logical consequences of an OPM graph, in terms of a comprehensive list of patterns
that may be matched against the graph.

(2) Our characterization semantically justifies the inference rules that are part of OPM; one
of the main corollaries of our main result is a completeness theorem for these inference
rules (Corollary 4.13).

(3) We clarify the effect of cycles in OPM graphs by characterizing the equalities on temporal
variables that such cycles entail (Proposition 5.10).

(4) Based on our formal semantics, we propose a notion of refinement among OPM graphs
(Section 6.3).

(5) We define a powerful operation on OPM graphs, called “proper and legal merge-
renaming”, and show that this operation always results in a refinement (Theorem 6.9).

Since an initial draft of this paper was circulated [Kwasnikowska et al. 2010], the temporal
inequalities we propose in this paper have become part of the W3C PROV-CONSTRAINTS
Recommendation [Cheney et al. 2013]. Moreover, our notions of interpretation and model
have been adopted in the W3C PROV-SEM Working Draft [Cheney 2013]. Thus, many
ideas of the present work have percolated into the PROV standard, so that the above list
of contributions apply to PROV as well. A detailed discussion of how our results can be
applied to PROV will be given in Section 8.

The formalism introduced in this work is amenable to effective implementation, as has
been demonstrated by the implementation of several PROV validators. An online PROV
validator developed in Java [Moreau et al. 2014] is available at provenance.ecs.soton.ac.uk.
The validator prov-check developed by Groth1 retrieves the patterns from our Theorem 1 by
means of SPARQL queries against an RDF representation of the PROV instance. Cheney
and Cresswell2 have made an implementation in Prolog. Moreover, based on an earlier draft
of this paper [Kwasnikowska et al. 2010], Dey et al. [Dey et al. 2013] have implemented tools
(using Datalog) to generate temporal models for OPM graphs as formally defined in this
paper.

To conclude, we would like to stress that a temporal approach is only one possible ap-
proach to give a semantics to OPM graphs. Still, it is an approach that follows naturally
from the informal explanations of dependencies in OPM graphs given in the reference spec-
ification. Also, temporal ordering of events is a fundamental approach already known from
the distributed systems literature [Lamport 1978; Mattern 1989; Tel 1994]. It remains an
interesting topic for future research to explore alternative approaches, e.g., using Halpern

1https://github.com/pgroth/prov-check
2checker.pl: https://github.com/jamescheney/prov-constraints

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

and Pearl’s notions of actual cause and explanation [Halpern and Pearl 2005] as suggested
by Cheney [Cheney 2010]. We will discuss Cheney’s paper together with other related work.

This paper is organized as follows. We begin by reviewing the basic features of OPM,
showing the need for a formal semantics, in Section 2. Section 3 then formally defines OPM
graphs and their temporal interpretation. In Section 4, the notion of OPM inference, which
allows new edges to be inferred, is defined and characterized with respect to the temporal
semantics. Given that OPM graphs are meant to be exchanged and manipulated to address
provenance use cases, we formalize common operations over OPM graphs in Section 5. From
the outset, it was envisaged that relations between OPM graphs, such as refinement, would
be of value to reasoners; however, no precise definition of refinement has been proposed so
far. This problem is tackled in Section 6, where a purely semantic definition of refinement is
proposed, based on the temporal semantics. The notion of account is formalized in Section 7.
Related work specific to OPM is discussed in Section 8; that section also presents an explicit
mapping of our temporal axioms into PROV-CONSTRAINTS. Conclusions and topics for
further research are presented in Section 9.

2. OPM: GRAPHS AND INFERENCE RULES

The OPM reference specification defines an OPM graph as a directed, edge-labeled graph.
Nodes can be of two types: artifacts3 and processes. Accordingly, there are four types of
edges: generated-by, used, derived-from, and informed-by, depending on the type of their
source and destination:

type of source type of destination type of edge
artifact process generated-by
process artifact used
artifact artifact derived-from
process process informed-by

Generated-by and used-edges are labeled with so-called roles, which can be likened to field
names in records, or to parameter names in procedures.4

Example 2.1. Let us consider an e-shop over the Web, making a variety of e-material
available to its customers, but also acting as a market place for products sold by third
parties. Figure 1 shows an OPM graph with three processes ‘Take Order’, ‘Deliver’, and
‘Third Party Process’, and seven artifacts ‘billing address’, ‘order’, ‘invoice info’, ‘delivery
request’, ‘invoice’, ‘e-book’, and ‘toy’. The graph contains provenance information about an
e-book and a toy that have been bought from an e-shop. As soon as the order was taken, a
delivery request is generated. The billing address is provided separately; once provided, the
information necessary to make an invoice is sent to the delivery department as well.5 Upon
receiving the delivery request and matching invoice information, the delivery department
generates a paper invoice which is sent to the customer; furthermore, an access code for
the e-book is made available through the Web transaction. Toys are delivered by a third
party. Here the information is less detailed, simply because the observer that generated it
does not have access to the third party system; all that is given is that the third party was

3In the context of the Web, an artifact would be regarded as a Web resource [Jacobs and Walsh 2004] in
a given state. A process is an execution of a program, whether it is a service on the Web or a client-side
script, running in a browser.
4In the reference specification, informed-by is called ‘triggered-by’ instead. The reference specification also
speaks of accounts, which we defer to Section 7. It further introduces agents and their incident controlled-by
edges, which are the sole feature of OPM which we ignore in the present work, since OPM does not allow
provenance of agents to be expressed, and therefore agents have no bearing on the temporal interpretation
of graphs.
5The example is slightly contrived in order to allow us to illustrate some subtle points of the semantics of
OPM graphs later on.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

book

Take Order

order
order

billing address

invoice info delivery request

Deliver Third Party Process

toyinvoice e−book

addr

inv

inv

del

req

toyinv

Fig. 1. OPM graph for e-shop order.

influenced by the taking of the original order, and that the toy derives from the same order.
Note that there is no derived-from edge from the delivery request to the billing address, as
the former may have already been generated before the latter was provided.

Formally, we have the following.

Definition 2.2 (OPM graph, first definition). An OPM graph is a structure

(Art ,Proc,Roles,GeneratedBy !,Used !,DerivedFrom, InformedBy)

where

— Art and Proc are two disjoint finite sets of elements called artifacts and processes, respec-
tively;

— Roles is a finite set of elements called roles;
— GeneratedBy ! ⊆ Art × Roles × Proc;
— Used ! ⊆ Proc × Roles ×Art ;
— DerivedFrom ⊆ Art ×Art ;
— InformedBy ⊆ Proc × Proc.

Artifacts and processes are collectively referred to as the nodes of an OPM graph. Nodes
are identifiers, serving as local references; the actual value of the identifiers is not important
as all the information contained in an OPM graph is given by its structure. Nevertheless,
when the node identifiers refer to actual objects on the Web, or when different parties want
to compare of merge different OPM graphs, some care has to be taken in agreeing on the
chosen identifiers. This situation is very similar to URIs in RDF and Linked Data on the
Web.

The elements of GeneratedBy ! ∪ Used ! are called precise edges, and the elements of
DerivedFrom ∪ InformedBy are called imprecise edges; all together they are called edges.
Precise edges are of the form (x, r, y) and are additionally denoted as x

r→ y, or, when it is
not important to know r, as x

!→ y. Imprecise edges (x, y) are denoted simply as x → y.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Note how the above definition allows for multiple precise used-edges between a same
process-artifact pair, with multiple roles. They would indicate that during its lifetime a
process used a same artifact several times, with different roles.

Remark 2.3. We do not specify that roles are disjoint from artifacts and processes be-
cause we do not need that assumption. This is not to say, however, that we attach any
importance to an artifact or process that may appear as a role. If an identifier of a node
also appears as a role, the two intents of this identifier, one as node, and one as role, will
never be confused in our theory, as we will never compare roles with nodes.

2.1. Informal meaning of edges

OPM is not some kind of programming language and OPM graphs are neither some kind
of programs. Indeed, provenance information is not restricted to computer programs. More-
over, if one must insist on a programming analogy, then OPM graphs can better be thought
of as representing execution traces of programs, without any further information about the
program itself.

Indeed, the reference specification makes clear that edges in an OPM graph indicate causal
dependencies. Specifically, the specification provides the following informal meanings:

edge type edge meaning
used P

!→ A P could not have completed without A

generated-by A
!→ P A could not have existed without P

informed-by P2 → P1 P2 could not have completed without P1

derived-from A2 → A1 A2 could not have existed without A1

Thus, for example, in Figure 1, we see that ‘Third Party Process’ must have ended after
‘Take Order’ was started; that ‘toy’ must have been produced after ‘order’ was given; that
‘e-book’ must have been produced after ‘Deliver’ started; and that ‘Deliver’ must have ended
after the ‘invoice info’ was produced.

2.2. Inference rules

Interpreting edges in an OPM graph as causal dependencies, the OPM reference specification
also includes four inference rules that infer new dependencies from the given dependencies
in an OPM graph. Concretely, the rules infer new, so-called “multi-step” edges, denoted as
X

∗→ Y , of each of the four possible types. The rules are recursive and essentially based on
the transitive closure of derived-from edges. Let A, B, C be artifacts and let P and Q be
processes:

Basis. For every existing edge X
!→ Y or X → Y , we can infer the trivial multi-step

edge X
∗→ Y .

Derived-from. If we can infer A
∗→ B and B

∗→ C, then we can also infer A
∗→ C.

Generated-by. If we can infer A
∗→ B and B

∗→ P , then we can also infer A
∗→ P .

Used. If we can infer P
∗→ A and A

∗→ B, then we can also infer P
∗→ B.

Informed-by. If we can infer P
∗→ A and A

∗→ Q, then we can also infer P
∗→ Q.

For example, in Figure 1, we can infer multi-step edges from ‘e-book’ to ‘order’, from
‘Deliver’ to ‘billing address’, and from ‘Deliver’ to ‘Take Order’, among others. Note that
we cannot infer a multi-step edge from ‘delivery request’ to ‘billing address’.

Remark 2.4. Note that there are no further rules such as ‘from A → P → B infer
A

∗→ B’, or ‘from P → Q → R infer P
∗→ R’. We will see in Remark 4.3 that both of these

inferences are unsound.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

2.3. OPM: a critique from a formal viewpoint

Although the edges in an OPM graph have a clear informal meaning, a formal semantics is
lacking. By developing such a formal semantics, we are able to address the following open
issues, pertaining to edges, but also to other concepts underpinning OPM.

(1) A formal semantics can define what is correct reasoning in an OPM graph (cf. Re-
mark 2.4), and would allow us to assess whether the inference rules are sound, or com-
plete.

(2) Furthermore, there seems to be no good reason why multi-step edges can only be inferred,
but cannot be asserted in the graph to begin with. For example, at a coarser level of
granularity, it may be that only multi-step information is available without that the steps
in between can be detailed. This issue was brought up by the “OPM community”6, but
it has not been investigated so far.
In this respect, the distinction between imprecise edges and multi-step edges is unclear.
For example, in Figure 1, the edges ‘toy’ to ‘order’ and ‘Third Party Process’ to ‘Take
Order’ have a multi-step flavor already. Conversely, one may wonder why there are no
precise derived-from (or informed-by) edges, and why there are no imprecise used or
generated-by edges. In general, the distinction between precise edges (edges carrying
roles) and imprecise edges has been questioned during the development of OPM.7

(3) Time is regarded as a fundamental concept of OPM (and hence was voted to be kept
in the OPM reference specification8), but the manner in which time contributes to the
essence of OPM has not been established formally.

(4) OPM graphs containing cycles of derived-from edges are not legal according to the OPM
reference specification. OPM also defines some operations over graphs, but some, such
as union, are known to be capable of forming cycles, and hence leading to graphs that
are not legal. Whether the acyclic nature of graphs should be mandated by default, or
whether it can be inferred, and the conditions under which it holds is an open problem.

(5) An account is a construct by which multiple descriptions of execution can co-exist in
a same OPM graph. The reference specification indicates that accounts may be related
according to some relations, and suggests a notion of refinement. This notion again has
not been formalized.

In the next two sections, we will address these gaps by proposing an extended model that
allows imprecise edges asserted in a graph for all four types of edges; proposing a formal
semantics that allows a rigorous notion of inference; and investigating sound and complete
inference in OPM graphs. Our extended model allows precise derived-from edges, leading to
a new notion of “use–generate–derive” triangles in OPM graphs that show a tight relation
between a derivation and the process responsible for the derivation.

We believe the semantic distinction between imprecise and precise edges is important.
Imprecise specifications relieve the provenance asserter of the extra burden of having to give
precise derivations when these are not available or are not important for the application at
hand; at the same time, when precise information is available and important, our theory
allows the understanding of the extra knowledge that is provided.

3. OPM GRAPHS AND THEIR TEMPORAL SEMANTICS

We begin with an improved definition of OPM graph where both precise and imprecise
edges of all four types are allowed, with the exception of precise informed-by edges.9

6See discussions in http://twiki.ipaw.info/bin/view/OPM/WorkInProgressV1pt1
7http://twiki.ipaw.info/bin/view/Challenge/FirstOPMWorkshopMinutes
8http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMoveTimeToProfile
9We could have allowed precise informed-by edges, but in our current approach they would have exactly the
same semantics as imprecise ones, which is why we omit them. It is an interesting open problem whether

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

toy

Take Order

orderbilling address

invoice info delivery request

Deliver Third Party Process

toyinvoice e−book

addr order

inv del

inv req

inv book

addrorder order

inv req

Fig. 2. Example of an OPM graph according to the improved definition.

Definition 3.1 (OPM graph, improved definition). An OPM graph is a structure

(Art ,Proc,Roles,GeneratedBy !,Used !,DerivedFrom!,
GeneratedBy ,Used ,DerivedFrom, InformedBy)

where

— Art and Proc are two disjoint finite sets of elements called artifacts and processes, respec-
tively;

— Roles is a finite set of elements called roles;
— GeneratedBy ! ⊆ Art × Roles × Proc;
— Used ! ⊆ Proc × Roles ×Art ;
— DerivedFrom! ⊆ Art × Roles ×Art ;
— GeneratedBy ⊆ Art × Proc;
— Used ⊆ Proc ×Art ;
— DerivedFrom ⊆ Art ×Art ;
— InformedBy ⊆ Proc × Proc.

In extension of our original terminology, the elements of GeneratedBy !∪Used !∪DerivedFrom!
are called precise edges, and the elements of GeneratedBy∪Used∪DerivedFrom∪InformedBy
are called imprecise edges; all together they are called edges.

For future use, we introduce the following notation. When the distinction between precise
and imprecise derived-from edges is of no consequence, we use the following set to refer to
all derived-from edges of an OPM graph:

DerivedEdges = DerivedFrom ∪ {(A,B) | (A, r,B) ∈ DerivedFrom!} .

there is a natural approach by which precise informed-by edges can be given a more specific semantics than
imprecise ones.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

!

B

A

Pr

r

Fig. 3. A use–generate-derive triangle (A, B, P, r).

Example 3.2. The graph shown in Figure 2 extends the graph of Figures 1 with some
new features allowed by the improved definition. All derived-from edges involved in the
making of the invoice and e-book have now become precise. Moreover we have added an
imprecise used-edge from ‘Third Party Process’ to ‘order’ and an imprecise generated-by
edge from ‘toy’ to ‘Take Order’.

3.1. Legality

The OPM reference specification defines a notion of legal graph as a directed graph without
cycles in the derived-from edges, in which each artifact is generated by at most one process.
It turns out that cycles in the derived-from edges do not strictly need to be forbidden; we
will discuss this issue in more detail in Section 5.2. On the other hand, we can refine the
notion of legality to take advantage of the new possibility of precise derived-from edges.
This leads to the following.

Definition 3.3 (Legal OPM graph). An OPM graph is called legal if

— for each artifact A there is at most one process P with a precise generated-by edge A
!→ P ;

and
— for each precise derived-from edge A

r→ B there is a process P with precise edges A
!→ P

and P
r→ B, for the same role r.

A configuration (A,B, P, r) with edges A
r→ B, A

!→ P , and P
r→ B, is called a use–

generate–derive triangle, or simply triangle for short (see Figure 3). To denote that a use–
generate–derive triangle (A,B, P, r) occurs in some given OPM graph G, we use the notation
G 4 (A,B, P, r).

A use–generate–derive triangle is the graphical syntax we introduce to state in OPM that
B was not merely used by P , but was specifically used as part of the creation of A. Thus,
the common role r labeling both the usage of B by P and the derivation of A from B is
used to express that this usage of B has affected the output A. Note that P might also use
B in additional roles different from r, which would correspond to usages not relevant to the
generation of A. The generated-by edge from A to P must be precise, but is not required to
be labeled r, thus allowing more freedom for producers of OPM graphs. The generated-by
edge must still be precise, failing which we would not be certain that it was P itself that
generated A. This indeed will be the distinction in semantics between precise and imprecise
generated-by edges introduced in Definition 3.6.

Example 3.4. Figure 2 contains a number use–generate–derive triangles, notably:

— Two triangles involving the process ‘Deliver’:
— (invoice, invoice info,Deliver, inv);
— (e-book,delivery request,Deliver, req).

— three more involving the process ‘Take Order’:
— (invoice info,billing address,Take Order, addr);
— (invoice info, order,Take Order, order);
— (delivery request, order,Take Order, order).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

In this paper, unless otherwise explicitly stated, we only consider legal OPM graphs.
Whenever we refer to a single OPM graph G, we use the names defined in this section to
refer to the different constituents of the OPM graph. If we handle more than one OPM graph,
for instance graphs G and H, we use superscripts G and H to distinguish their respective
constituents. We extend this convention to other concepts related to OPM graphs.

3.2. Temporal models for OPM graphs

The informal meaning of OPM edges, given in Section 2, is temporal in nature. In order to
formalize these statements, we need to refer to such temporal events as the production of
an artifact, and the start and completion of a process. In order to better exploit precise use-
edges and use–generate–derive triangles, we also refer to the use of an artifact by a process
as a temporal event. This leads us to introduce the formal notion of temporal model which
we develop in this section.10

We start with the notion of a temporal interpretation of a legal OPM graph: an assignment
of time-points to processes, artifacts, and precise used-edges, specifically:11

— for each artifact A, its creation time, denoted by create(A);
— for each process P , its beginning and ending times, denoted by begin(P) and end(P)

respectively;
— for each precise used-edge P

r→ A, the time when P used A in role r, denoted by
use(P, r,A).

To make this formal, we fix some OPM graph G for the remainder of this section. We
define the set of temporal variables of G, denoted by Vars(G), as follows:

Vars(G) = {create(A) | A ∈ Art} ∪ {begin(P), end(P) | P ∈ Proc}
∪ {use(P, r,A) | (P, r,A) ∈ Used !} .

We then define:

Definition 3.5. A temporal interpretation of G is a triple (T,≤, τ), where

— T is a set, we call its elements time-points;
—≤ is a partial order on T ;
— τ is a mapping from Vars(G) to T .

When no confusion can arise, we omit T and ≤ from the notation and simply denote a
temporal interpretation by τ .

Not every temporal interpretation makes sense as a temporal model of G. Indeed, to
reflect the dependencies specified in G, the interpretation should satisfy various constraints
reflecting these dependencies.

In order to define these constraints formally, we define an inequality over G as a syntactical
expression of the form u � v, with u, v ∈ Vars(G). Thus, inequalities are simple formulas.
By a trivial inequality we mean an inequality of the form u � u. We are now ready to define
the set of constraints expressed by a legal OPM graph.

10The reference specification also allows OPM graphs to be explicitly decorated with time points, but this
is optional, so in this paper we focus on the semantics of “blank” graphs: graphs initially without temporal
decorations. Indeed, the temporal models developed in this section correspond to all consistent ways in
which such a blank OPM graph can be decorated.
11One may wonder why precise generated-by edges do not get a time-point. But, as a matter of fact, they

do. For each precise generated-by edge A
r→ P , we indeed have a time-point create(A). Since the OPM

graph is legal, there can be at most one precise edge emanating from A, so we do not need to specify r and
P .

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Table I. The inequalities making up the temporal theory of an OPM graph.

ax 1: for each process P , the inequality begin(P) � end(P);

ax 2: for each precise generated-by edge A
!→ P in G, the inequalities begin(P) � create(A) �

end(P);

ax 3: for each precise used-edge P
r→ A in G, the three inequalities begin(P) � use(P, r, A),

use(P, r, A) � end(P), and create(A) � use(P, r, A);
ax 4: for each imprecise derived-from edge A→ B in G, the inequality create(B) � create(A);
ax 5: for each imprecise generated-by edge A→ P in G, the inequality begin(P) � create(A);
ax 6: for each imprecise used-edge P → A in G, the inequality create(A) � end(P);
ax 7: for each informed-by edge P → Q in G, the inequality begin(Q) � end(P);
ax 8: for each G 4 (A, B, P, r), the inequality use(P, r, B) � create(A).

Table II. Two temporal models for the graph shown in Figure 3.

τ1 variable value
create(B) 1
begin(P) 2
use(P, r, B) 3
create(A) 4
end(P) 5

τ2 variable value
create(B) 1
begin(P) 1
use(P, r, B) 1
create(A) 1
end(P) 1

Definition 3.6. The temporal theory of G, denoted by Th(G), is the set consisting of all
the inequalities stated in the axioms listed in Table I.12

Axioms 1–3 are clear; and Axioms 4–7 are a verbatim formalization of the informal mean-
ing of edges from the OPM reference specification, recalled in Section 2. The eighth and final
axiom, the “triangle axiom”, corresponds to the intended usage of OPM by which a precise
derived-from edge in a use–generate–derive triangle (A,B, P, r) in G is not redundant, but
expresses exactly that P needed to read B in role r before it could generate A.

Example 3.7. In Figure 2, the precise generated-by edge from ‘e-book’ to ‘Deliver’ yields
the constraint that the e-book access code was made available before the ‘Deliver’ process
completed. In contrast, the imprecise generated-by edge from ‘toy’ to ‘Take Order’ only
yields that the toy was delivered by the third party after the ‘Take Order’ process started.
The use–generate–derive triangle (e-book, delivery request, Deliver, req) also yields that
the delivery request was received by the Deliver process before the e-book access code was
communicated.

We finally define the temporal models of G as follows. Naturally, a temporal interpretation
τ is said to satisfy an inequality u � v if τ(u) ≤ τ(v).

Definition 3.8. A temporal interpretation τ of G is a temporal model of G, denoted by
τ |= Th(G), if it satisfies all inequalities from Th(G).

Example 3.9. Consider the small OPM graph G shown in Figure 3. Let us use natural
numbers with their natural ordering as time-points. Then the two interpretations τ1 and
τ2, presented in Table II, are temporal models of G. Temporal model τ2, which maps all
temporal variables to the same time-point, might be generated by a very coarse clock.

Many temporal interpretations of G, however, are not temporal models of G. If, for
example, we would modify τ1 to τ ′1 by setting τ ′1(end(P)) = 0, then Axiom 1 would be
violated. Likewise, if we would modify τ2 to τ ′2 by setting τ ′2(use(P, r,B)) = 0, then Axiom 3
would be violated. Also, if we would modify τ1 to τ ′′1 by setting τ ′′1 (create(A)) = 0, then we
would violate Axioms 2 and 8.

12In mathematical logic, a theory is sometimes (but not always) defined as a set of formulas closed under
logical implication. Here it is just a set of formulas, not necessarily closed in this way.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Example 3.10. For another example, consider an OPM graph with two artifacts A and
B and one process P , with edges A

!→ P
r→ B. Then both τ1 and τ2, defined as follows, are

models of the graph:

τ1

create(B) 1
begin(P) 2
use(P, r,B) 3
create(A) 4
end(P) 5

τ2

begin(P) 1
create(A) 2
create(B) 3
use(P, r,B) 4
end(P) 5

In model τ1, P uses B before creating A, but in model τ2, B does not yet exist when A
is created. Note that B does not have a generated-by edge, so the graph does not specify
which process generated B.

Example 3.11. Consider a graph with three processes P , Q and R and edges P → Q →
R. Then both τ1 and τ2, defined as follows, are models of the graph:

τ1

begin(R) 1
end(R) 2
begin(Q) 3
end(Q) 4
begin(P) 5
end(P) 6

τ2

begin(P) 1
begin(Q) 2
end(P) 3
begin(R) 4
end(Q) 5
end(R) 6

Example 3.12. For a final example, consider an OPM graph with two artifacts A and
B and nothing else (no edges either). Then any possible temporal interpretation qualifies
as a model. In particular, in some models τ we have τ(create(A)) < τ(create(B)); in other
models we have τ(create(B)) < τ(create(A)); and still in others we have τ(create(A)) =
τ(create(B)). This is because the OPM graph does not impose any constraints due to the
absence of any edge between A and B.

4. INFERENCE IN OPM GRAPHS

The axioms of Definition 3.6 allow us to obtain a number of inequalities over an OPM
graph’s variables. These inequalities logically imply further inequalities. For a trivial exam-
ple, in an OPM graph with derived-from edges A → B → C, Axiom 4 gives the inequalities
create(C) � create(B) and create(B) � create(A), which logically imply the further in-
equality create(C) � create(A).

Formally, we define:

Definition 4.1. Let G be a legal OPM graph and let u, v ∈ Vars(G). The inequality
u � v is a logical consequence of G, denoted by Th(G) |= u � v, if u � v is satisfied in every
temporal model of G.

A general example of logical consequence is provided by the following lemma and proof.

Lemma 4.2. Let G be a legal OPM graph with artifacts A and B and a precise edge
A

r→ B for some role r. Then Th(G) |= create(B) � create(A).

Before proving this lemma we note that Axiom 4 is almost exactly the same, except that it
is stated for an imprecise derived-from edge. Thus, the present lemma shows that the same
constraint holds for precise derived-from edges. This constraint did not need to be explicitly
given as an axiom because it already logically follows from the given axioms.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Proof. Since G is legal, there exists a process P in G with edges P
r→ B and A

!→ P .
Let τ be a temporal model of G. By Axiom 3 we have τ(create(B)) ≤ τ(use(P, r,B)). By
Axiom 2 we have τ(use(P, r,B)) ≤ τ(create(A)). We conclude τ(create(B)) ≤ τ(create(A))
as desired.

Remark 4.3. Model τ2 from Example 3.10 shows that create(B) � create(A) is not a
logical consequence of a graph with edges A → P → B. Since create(B) � create(A) is the
semantics of an (imprecise) derived-from edge (Axiom 4), this explains the unsoundness of
the first inference considered in Remark 2.4. Similarly, model τ2 from Example 3.11 shows
that the begin(R) � end(P) is not a logical consequence of a graph with edges P → Q → R,
thus explaining the unsoundness of the second inference considered in Remark 2.4.

A fundamental problem is to know exactly which inequalities logically follow from a
given OPM graph. This problem has many applications. For example, if the provenance
information for the US National Climate Assessment is recorded carefully [Tilmes et al.
2013], we may want to make sanity checks such as inferring that some source data must
have been generated before various conclusions were drawn from them.

It is well known that an inequality u � w can be inferred from Th(G) by using repeated
applications of the rule of transitivity: “from u � v and v � w we infer u � w”.13 Such an
approach is unsatisfactory, however, as it is hard to relate the newly inferred inequalities to
nodes and edges in the graph.

The inference given by Lemma 4.2 provides a case in point. When the user asks why
create(B) � create(A) must hold, pure reasoning by inequalities can only present the fol-
lowing proof:

create(B) � use(P, r,B) by axiom 3
� create(A) by axiom 2

In contrast, a much more direct justification for create(B) � create(A) is the presence of
the edge A

r→ B in the graph.
Indeed, we show in Section 4.2 that it is always possible to provide such direct jus-

tifications, by performing temporal inference in a purely graphical manner. We prove in
Theorem 4.7 that every possible logical consequence can be directly inferred from the OPM
graph by looking for a fixed set of patterns in the graph.

4.1. Edge-inference rules

The cornerstone of our graph-based inference of inequalities is provided by the four original
OPM inference rules already recalled in Section 2. We revisit them here in full detail, at
the same time extending them so as to better exploit the possible presence of precise edges.
Inferred edges will prove to play an important role in graphical patterns that we introduce
to infer inequalities. Moreover, we establish that inference of edges is the only action we
need to perform to infer inequalities that do not involve use-variables. (For inequalities
involving use-variables, patterns more complicated than a single edge have to be matched
in the graph.) We thus provide a justification for the edge inferences introduced in the OPM
reference specification.

We first argue for the inference of edges at the intuitive level, based on following chains
of derived-from edges. Then we define edge inference formally in Definition 4.5.

Suppose there is a chain of derived-from edges in G (which can be either precise or
imprecise) that starts in an artifact A and ends in an artifact C. We denote this by A 99K C.

13For a set of inequalities Σ and an inequality ϕ, ϕ is a logical consequence of Σ if and only if ϕ can be
inferred from Σ by using transitivity. Ullman [Ullman 1989] presents a self-contained proof for a slightly
more general case.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

B

A

C

(a)

B

(!)

P

A

(b)

A

(!)

P

B

(c)

A

!

P

B

(d)

Q

A

P

(e)

A

!

P

Q

(f)

Fig. 4. Inference of (a) derived-from, (b) generated-by, (c)–(d) used and (e)–(f) informed-by edges. The
bold edges are newly inferred. The edges labeled by “(!)” may be either precise or imprecise.

Formally, relation 99K between two artifacts is nothing else than the transitive closure of
DerivedEdges. Since A has been indirectly derived from C, we can think of A 99K C as an
inferred edge, as illustrated in Figure 4(a).

Next we show how to infer generated-by edges. Suppose we have artifacts A and B with
A 99K B and, in addition, a generated-by edge from B to a process P in G, either a precise
edge B

!→ P or an imprecise edge B → P . Then A has been indirectly generated by P and
we can infer an edge A 99K P , as illustrated in Figure 4(b).

We can infer used-edges as well. Suppose we have artifacts A and B with A 99K B. In
addition, there is a used-edge from a process P to A in G, either precise P

!→ A or imprecise
P → A. Then P has indirectly used B and we can infer an edge P 99K B, as illustrated in
Figure 4(c). Moreover, we can also infer a used-edge in the following situation. Suppose we
again have A 99K B, but now in combination with a precise edge A

!→ P in G. Since A was
precisely generated by P , but A has also been indirectly derived from B, we can conclude
that P has indirectly used B. Again, we can infer P 99K B, which we show in Figure 4(d).

Finally, to infer informed-by edges, we can reason as follows. Suppose, for some processes
P and Q and an artifact A, we have edges P 99K A and A 99K Q. Then, A represents
information that flowed from Q to P and we can infer an edge P 99K Q, as illustrated
in Figure 4(e). Moreover, an informed-by edge can also be inferred in the following case.
Suppose we again have A 99K Q, but now in combination with a precise edge A

!→ P in
G. Since A was directly generated by P , but A was also indirectly generated by Q, we can
conclude that P was somehow influenced by Q. Again, we can infer P 99K Q, which we
show in Figure 4(f).

There are also trivial inferences for all types of edges, to the effect that an edge that is
already present in the graph can always be inferred.

Example 4.4. In Figure 2, we can now see that the informed-by edge from ‘Third Party
Process’ to ‘Take Order’ is redundant, in the sense that it can already be inferred using
the precise edge from ‘toy’ to ‘Third Party Process’ and the imprecise edge from ‘toy’ to
‘Take Order’ (Figure 4(f).) Likewise, the imprecise used edge from ‘Third Party Process’ to
‘order’ is redundant in the sense that it can be inferred now using the edge from ‘toy’ to
‘order’ (Figure 4(d).)

The above discussion is formalized in the following definition. We present the rules in a
standard notation used in formal logic, where for each rule the premises are stated above a
bar, and the conclusion below it.

Definition 4.5 (Edge-inference rules). Let G be a legal OPM graph and let X and Y
be two nodes in G. In the following, we define when X 99K Y can be inferred from G,
denoted by G ` X 99K Y . Specifically, let A, B and C be artifacts in G, and let P and Q
be processes in G.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

A → B in G or A
!→ B in G

G ` A 99K B
trivial derived-from

A → P in G or A
!→ P in G

G ` A 99K P
trivial generated-by

P → A in G or P
!→ A in G

G ` P 99K A
trivial used

P → Q in G

G ` P 99K Q
trivial informed-by

Fig. 5. Trivial edge-inference rules.

G ` A 99K B G ` B 99K C

G ` A 99K C
derived-from

G ` A 99K B B → P in G or B
!→ P in G

G ` A 99K P
generated-by

G ` A 99K B P → A in G or P
!→ A in G or A

!→ P in G

G ` P 99K B
used

G ` A 99K Q G ` P 99K A or A
!→ P in G

G ` P 99K Q
informed-by

Fig. 6. Edge-inference rules.

We begin by stating four trivial inference rules which mean that if an edge already belongs
to G, then that edge can be inferred from G. These rules are presented in Figure 5. Next
we define four further inference rules, in cases where at least one of the present edges was
previously inferred. These rules are presented in Figure 6.

Note that, as a direct consequence of the above definition, we have the following proper-
ties:

— G ` A 99K B iff (A,B) belongs to the transitive closure of DerivedEdges;
— if G ` A 99K B and G ` B 99K P then G ` A 99K P ;
— if G ` P 99K A and G ` A 99K B then G ` P 99K B.

Edge-inference rules introduced in this section allow us to derive new edges from a graph
G, noted as G ` X 99K Y , with X and Y two nodes of G. Inferred edges do not belong to
the sets of edges identified in Definition 3.1, implying that these edges X 99K Y are inferred
“outside” G. Thus, the temporal theory of Definition 3.6 does not associate a temporal
meaning to these edges, directly. In the next section, we observe that inferred edges have a
similar temporal semantics as imprecise edges.

4.2. Characterization of temporal inference

Let us reconsider the axioms of Definition 3.6 that define the temporal semantics of an
OPM graph. We see that each axiom is a rule that relates a pattern in the graph to one or
more inequalities. For example, Axiom 2 relates the pattern consisting simply of a single

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

edge A
!→ P , to the inequalities begin(P) � create(A) and create(A) � end(P). Axiom 1

even relates the pattern consisting simply of a process node P to the inequality begin(P) �
end(P). Axiom 8 has a more complicated pattern in the form of a use–generate–derive
triangle.

In a similar way, we now introduce ten more such rules. Rules 1–9A–9B are shown in
Figure 7. (The figure also includes some axioms, but we explain this after the statement of
Theorem 4.7.) An important difference with the axioms, however, is that every dashed edge
in a pattern now stands not just for an edge that is present in the graph, but for an edge
that can be inferred by the edge-inference rules.

Example 4.6. In Figure 2, let u1 be the timepoint where ‘Take Order’ uses the ‘billing
address’, and let u2 be the timepoint where ‘Deliver’ uses the ‘invoice info’. Then rule 9A
derives that u1 � u2. This can be seen by matching node Q in the rule to the node ‘Deliver’
in the graph; A to ‘invoice info’; B to ‘billing address’; and P to ‘Take Order’.

The following theorem, proven in the Appendix, states that these rules are sound and
complete in the following sense. The rules are sound in that they represent valid inferences:
the inequalities they infer are indeed logical consequences of the axioms in the sense of
Definition 4.1. Moreover, the rules are complete in that any inequality that is a logical
consequence of the axioms, and that is not already part of the axioms, can be inferred by
one of the ten rules.

Theorem 4.7. Let G be a legal OPM graph and let ϕ be a nontrivial inequality over
the temporal variables of G. Then Th(G) |= ϕ if and only if either (0) ϕ already belongs to
Th(G), or ϕ matches one of the following inequalities:

— Cases not involving use-variables:
(1) create(B) � create(A) with G ` A 99K B;
(2) begin(P) � create(A) with G ` A 99K P ;
(3) create(A) � end(P) with G ` P 99K A;
(4) begin(Q) � end(P) with G ` P 99K Q;

— Cases involving use-variables:
(5) create(B) � use(P, r,A) with P

r→ A in G and G ` A 99K B;
(6) begin(Q) � use(P, r,A) with P

r→ A in G and G ` A 99K Q;
(7) use(P, r, C) � create(A) with G 4 (B,C, P, r) for some B, and G ` A 99K B;
(8) use(P, r,B) � end(Q) with G 4 (A,B, P, r) for some A, and G ` Q 99K A;
(9) use(P, r,B) � use(Q, s,A) with G 4 (C,B, P, r) for some C, with Q

s→ A in G, and
either (a) A = C or (b) G ` A 99K C.

Note that in the above, A, B and C, or P and Q, need not be distinct.
Since Rules 1–4 subsume Axioms 4–7, Figure 7, which includes the remaining axioms,

provides a complete picture of the possible logical consequences of an OPM graph in the
sense of Definition 4.1. Definition 4.1 is purely semantic and does not give any concrete algo-
rithm for checking logical consequence. Figure 7 now gives us direct shortcuts from patterns
in an OPM graph to its logical consequences. Indeed, to check that an inequality u � v is
logical consequence of a graph, it suffices to select the corresponding pattern in Figure 7,
and verify that it is satisfied by the graph (extended with the proper inferred edges). Vice
versa, if an inequality u � v is logical consequence of Th(G), then the corresponding pattern
is known to exist in G.

We anticipate that developers can leverage Theorem 4.7 to design reasoners for OPM.
So far, reasoners have typically relied on Semantic Web technologies, such as OWL and
SRWL, to compute transitive closures of OPM properties [Moreau et al. 2010; McGrath
and Futrelle 2008]. What this theorem shows is that there are logical consequences involving

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

(ax 1)
P

begin(P) � end(P)
(1)

B

A

create(B) � create(A)

(ax 2)
A

P

!

begin(P) � create(A) � end(P)
(2)

A

P

begin(P) � create(A)

(ax 3)
P

A

r

begin(P) � use(P, r, A) � end(P) create(A) � use(P, r, A)
(3)

P

A

create(A) � end(P)

(4)
P

Q

begin(Q) � end(P)
(5)

r

P

A

B

create(B) � use(P, r, A)
(6)

Q

r

P

A

begin(Q) � use(P, r, A)

(ax 8)

r

B

A

P

!

r

use(P, r, B) � create(A)
(7)

A

P

!

r

r

B

C

use(P, r, C) � create(A)
(8)

Q

P

!

r

r

A

B

use(P, r, B) � end(Q)

(9a)

s

P

!

r

r

A

B

Q

use(P, r, B) � use(Q, s, A)
(9b)

s

P

!

r

C

B

r

A

Q

use(P, r, B) � use(Q, s, A)

Fig. 7. Characterization of temporal inference. The numbers (1) to (9a) and (9b) correspond to the rules
numbered (1) to (9a) and (9b) stated in Theorem 4.7. Since the Theorem also invokes, as rule (0), the
temporal theory of G, we also show the axioms of Th(G) from Definition 3.6, so that this figure gives a
complete picture of logical consequence. Note, however, that Axioms 4 to 7 from Definition 3.6 need not be
shown because they are already subsumed by rules (1) to (4). Hence, only Axioms 1, 2, 3 and 8 are shown.
For inference of inequalities not involving use-variables, Axioms 1–2 and rules 1–4 already suffice; this will
be shown in Section 4.3.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

use-variables that cannot be directly represented by a single edge in OPM graphs; rather,
they are represented by graph patterns involving three or more nodes, as shown in Figure 7.

4.3. About non-use inequalities

The Open Provenance Model reference specification defines edges incident to artifacts in
terms of the creation of the artifact, with respect to the creation of another artifact, or the
beginning and ending of a process. There is some value in considering a temporal theory
that ignores ‘use’ time-points, since the theory becomes simpler (though it is unable to
tell us anything about usage of artifacts). In this case, it is worth characterizing temporal
inference in the context of this simpler theory.

First we state a remarkable corollary, after introducing the following definition.

Definition 4.8. If in an inequality ϕ of the form u � v, neither u nor v is a use-variable,
then we call ϕ a non-use inequality.

As a corollary to Theorem 4.7, we obtain the following completeness result for edge
inference, as far as non-use inequalities are concerned. Note that the edge-inference rules
are present as Rules 1–4 in Figure 7.

Corollary 4.9. Let G be a legal OPM graph and let ϕ be a non-use inequality. Then
Th(G) |= ϕ if and only if ϕ can be inferred using Axioms 1–2 and Rules 1–4 in Figure 7.

Proof. It is clear from Theorem 4.7 that if ϕ can be inferred using Axioms 1–2 and
Rules 1–4, then Th(G) |= ϕ. For the other direction, assume that Th(G) |= ϕ holds. Then
we know by Theorem 4.7 that ϕ can be inferred by the axioms and rules presented in
Figure 7. By examination of these axioms and rules, however, we notice that Axioms 1–2
and Rules 1–4 are the only ones that infer non-use inequalities.

It is interesting to note, that when dealing with non-use inequalities, we do not need
the full temporal theory of an OPM graph. We start with a small generalization of Defini-
tions 3.8 and 4.1.

Definition 4.10. Let G be a legal OPM graph and let u, v ∈ Vars(G). Let Σ be a subset
of Th(G). Any temporal interpretation that satisfies all inequalities of Σ is called a temporal
model of Σ. Furthermore, the inequality u � v is a logical consequence of Σ, denoted by
Σ |= u � v, if u � v is satisfied in every temporal model of Σ.

For a given OPM graph G, we can now select the non-use inequalities from its temporal
theory.

Definition 4.11. For a legal OPM graph G, we define the non-use temporal theory of G,
denoted by Thnon-use(G), as follows:

Thnon-use(G) = {ϕ ∈ Th(G) | ϕ is a non-use inequality}

∪
{

create(A) � end(P) | P !→ A in G
}

∪
{

create(B) � create(A) | A !→ B in G
}

.

The intuition is that Thnon-use(G) does not contain Axioms 3 and 8, and enforces Ax-
ioms 4 and 6 for precise and imprecise edges alike.14

14Note that in the full theory Th(G), the non-use inequality create(A) � end(P) for P
!→ A in G is implied

by Axiom 3, but since we omit this axiom, we need to recover the inequality in Axiom 6. Likewise, the

non-use inequality create(B) � create(A) for A
!→ B in G is provided by Lemma 4.2. Since the proof of

the lemma utilizes use-variables, the lemma doesn’t hold anymore and we need to recover the inequality in
Axiom 4.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

We can now observe that use-variables do not influence the non-use inequalities that are
logical consequences of Th(G).

Proposition 4.12. Let G be a legal OPM graph and let ϕ be a non-use inequality. Then
Th(G) |= ϕ if and only if Thnon-use(G) |= ϕ.

Proof. Since any temporal model τ of Th(G) is also a temporal model of Thnon-use(G),
the if-direction is immediate. For the only-if direction, let τ be a temporal model of
Thnon-use(G). We try to extend τ to τ ′ in such a way that τ ′ is a temporal model of
Th(G). For every non-use variable u simply put τ ′(u) = τ(u). Now we have to find suitable
values for:

— use(P, r,A) for each P
r→ A in G, so that Axiom 3 is satisfied, and

— use(P, r,B) for each G 4 (A,B, P, r), so that Axiom 8 is satisfied.

It is easy to verify that Axiom 3 holds if τ ′(use(P, r,A)) equals the maximum of τ(create(A))
and τ(begin(P)). Likewise, Axiom 8 holds if τ ′(use(P, r,B)) equals the maximum of
τ(create(B)) and τ(begin(P)). Thus τ ′ satisfies all eight axioms and is a temporal model
of Th(G). We know thus that τ ′ satisfies ϕ. Since ϕ is a non-use inequality, and τ ′ and τ
coincide on all variables used in non-use inequalities, τ also satisfies ϕ.

The above proposition together with Corollary 4.9 yields the following:

Corollary 4.13. Let G be a legal OPM graph and let ϕ be a non-use inequality. Then
Thnon-use(G) |= ϕ if and only if ϕ can be inferred using Axioms 1–2 and Rules 1–4 in
Figure 7.

This section provides a remarkable result since it establishes the completeness of edge
inferences (Rules 1–4 in Figure 7) for non-use inequalities. Furthermore, reasoning with
use time-points does not allow us to derive any new inequality about non-use variables.
We envisage this result to be leveraged by developers of reasoners for OPM, since it offers
opportunities to optimize reasoners, by reducing the number of time-points to reason over,
focusing on non-use variables in a first phase, and dealing efficiently with use-variables
afterwards.

5. OPERATIONS ON OPM GRAPHS

The reason for capturing provenance is that it can be used to address a variety of use
cases [Miles et al. 2007]. To this end, one needs to collect provenance information from
potentially different sources across the Web, combine and process it in multiple ways. It is
therefore useful to define operations on OPM graphs, which we anticipate can become part
of “provenance toolkits”.

When two OPM graphs are obtained from different sources, a reasoner may want to take
their union, if it ascertains they relate to some common entities. Given two OPM graphs,
an intersection operation helps identify their common elements. Different sources may use
different identifiers for graph nodes; thus, to be able to compute meaningful union and
intersection, it may be required to rename some nodes, before performing these operations.
In this section, we formally investigate the effect of these operations on OPM graphs on the
temporal theories of these graphs.

Initial observations on graph operations and legality

(1) A subgraph of a legal OPM graph may not be legal. For example, the graph presented in
Figure 8(a) is legal, whereas its subgraph composed of nodes A, B, P , role r, and edges

A
r→ B and A

r′

→ P is not legal, since the use–generate–derive triangle (A,B, P, r) is not
complete.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

D

B
r

r

r′

P

A

(a)

s′

A

C D

E

s

s

Q

(b)

D

A

B

r

r

P

r′

E

F

(c)

Fig. 8. Three legal OPM graphs.

(2) The union of two legal OPM graphs may not be legal. For instance, the graph presented
in Figure 8(a) is legal, and so is the graph in Figure 8(b). The union of these two graphs,
however, is not legal, since in the union A has two different precise generated-by edges:

A
r′

→ P and A
s′

→ Q.
(3) The intersection of two legal OPM graphs may not be legal. For instance, consider the

graph G from Figure 10(a) and the graph H which equals G except that identifier P
is replaced by a different identifier Q. Then G ∩ H consists only of the three artifacts
A, B and D, and the single edge A

r→ B. Due to this edge (without accompanying
use-generate-derive triangle) the intersection is not legal.

Union and intersection of theories. It is an interesting question for further research how
to deal with non-legality of union, or intersection, of legal OPM graphs. Presumably a kind
of “error-correcting” variants of union and intersection may be defined so that the result
is always legal, and so that the temporal theory of the result has some desired properties.
While we defer this question to further research, we can already answer some immediate
questions about the relationship between legal union and intersection of legal OPM graphs
and their temporal theories. Let G and H now be two legal OPM graphs.

Proposition 5.1. If G ∪H is legal then Th(G ∪H) = Th(G) ∪ Th(H).

Proof. Each inequality in Th(G) or Th(H) corresponds to a single node, a single edge
or some use–generate–derive triangle present in G or H. Thus all inequalities present in
Th(G) ∪ Th(H), also belong to Th(G ∪ H). Moreover, the only additional inequalities in
Th(G∪H) would correspond to some use–generate-derive triangles that were newly formed
by the union of G and H. Since both G and H are legal, this is impossible, because legal
OPM graphs cannot contain parts of a use–generate-derive triangle. Therefore, Th(G ∪H)
contains only inequalities that are already present in Th(G), or in Th(H), or in both.

Proposition 5.2. If G ∩H is legal then Th(G ∩H) ⊆ Th(G) ∩ Th(H).

Proof. Any inequality from Th(G ∩ H) corresponds to a single node, an edge, or a
use–generate–derive triangle present in G∩H, and thus in both G and H. Therefore, it also
belongs to Th(G) ∩ Th(H).

The converse inclusion does not hold. If G consists only of edge P → A, and H consists
only of edge A

!→ P , then G ∩H consists of the two nodes A and P . So,

Th(G) = {create(A) � end(P),begin(P) � end(P)} ,

Th(H) = {begin(P) � create(A), create(A) � end(P),begin(P) � end(P)} ,

and

Th(G ∩H) = {begin(P) � end(P)} .

Clearly create(A) � end(P) ∈ Th(G)∩Th(H) 6⊆ Th(G∩H). Note that create(A) � end(P)
is not even a logical consequence of Th(G ∩H).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Remark 5.3. The variant of Proposition 5.1 where we replace the theory by its clo-
sure (as defined in Section 6) no longer holds as stated. Indeed, we have Th(G ∪H) =
Th(G) ∪ Th(G) ⊇ Th(G) ∪ Th(H), but the latter containment relation can be strict. To
wit, consider G with three artifacts A, B and C and edge A → B, and H with the same
three artifacts and B → C. Then create(C) � create(A) belongs to Th(G ∪H) but not to
Th(G) ∪ Th(H).

The variant of Proposition 5.2 with closures does continue to hold as stated. Indeed, we
still have Th(G ∩H) ⊆ Th(G) ∩ Th(H), where the containment can again be strict. To
wit, consider G with three artifacts A, B and C and edges A → B → C, and consider
H which equals G except that identifier B is replaced by a different identifier B′. Then
create(C) � create(A) belongs to Th(G) ∩ Th(H) but not to Th(G ∩H).

5.1. Renaming and merging

By definition, the nodes and roles of an OPM graph are local to the graph. Prior to perform-
ing a union or an intersection of two OPM graphs G and H, we may need to resolve some
identity issues between the nodes and roles in the graphs [Missier et al. 2010]. For example,
some artifact node A in G may represent the same actual artifact as some artifact node B

in H15. Likewise, role r in edge P
r→ B in G may refer to the same actual role as role s in

edge Q
s→ C in H, and also P and Q may represent the same actual process. Moreover, it

is equally possible that some node or role is accidentally used in both graphs whereas this
node or role does not represent the same actual entity across the two graphs. Resolving
such identity issues leads to a renaming operation on one or both of the graphs, whereby
nodes and roles representing the same actual entity can be renamed to a common node or
role; likewise, nodes and roles not representing the same actual entity, but accidentally used
in both graphs, can be renamed to distinct nodes or roles.

Definition 5.4 (Renaming). Let G and H be OPM graphs, which need not be legal. Let
ρArt be a bijection from ArtG to a finite set Art ′, let ρProc be a bijection from ProcG to
a finite set Proc′, and let ρRoles be a bijection from RolesG to a finite set Roles ′, with the
sets Art ′, Proc′, and Roles ′ mutually disjoint. Then H is the renaming of G by ρArt , ρProc ,
and ρRoles , if the following holds:

— ArtH = Art ′,
— ProcH = Proc′,
— RolesH = Roles ′,
— GeneratedBy !H = {(ρArt(A), ρRoles(r), ρProc(P)) | (A, r, P) ∈ GeneratedBy !G};
— Used !H =

{
(ρProc(P), ρRoles(r), ρArt(A)) | (P, r,A) ∈ Used !G

}
;

— DerivedFrom!H = {(ρArt(A), ρRoles(r), ρArt(B)) | (A, r, B) ∈ DerivedFrom!G};
— GeneratedByH =

{
(ρArt(A), ρProc(P)) | (A,P) ∈ GeneratedByG

}
;

— UsedH =
{

(ρProc(P), ρArt(A)) | (P,A) ∈ UsedG
}

;

— DerivedFromH =
{

(ρArt(A), ρArt(B)) | (A,B) ∈ DerivedFromG
}

;

— InformedByH =
{

(ρProc(P), ρProc(Q)) | (P,Q) ∈ InformedByG
}

;

Note that ArtG and Art ′ need not be disjoint; similarly, neither ProcG and Proc′, nor
RolesG and Roles ′, need to be disjoint. Indeed, ρArt , ρProc and ρRoles may coincide with

15In OPM, node identifiers are scoped to a graph. A node may be associated with a URI by means of a
property, allowing it to refer to a Web resource.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

the identity function on some of their inputs, i.e., not all artifacts, processes and roles need
to be renamed.

Example 5.5. We can rename the graph presented in Figure 8(b) by the following bijec-
tions:

— ρArt(A) = A, ρArt(C) = B, ρArt(D) = F , and ρArt(E) = E;
— ρProc(Q) = P ;
— ρRoles(s) = r and ρRoles(s′) = r′.

Then we can take the union of the renamed graph with the graph shown in Figure 8(a),
which yields the legal OPM graph presented in Figure 8(c).

Since the renaming of an OPM graph G is isomorphic to G, and our entire approach
(in particular the definition of legality) is “logical” in the sense of Tarski [Tarski 1986],
isomorphic graphs have exactly the same properties. Hence, the following is immediate:

Proposition 5.6. The renaming of a legal OPM graph is legal.

We next define the following generalization of renaming.

Definition 5.7 (Merge-renaming). Let G and H be OPM graphs, which need not be
legal. Let ρArt , ρProc and ρRoles be as in Definition 5.4 except that ρArt , ρProc and ρRoles

need not be bijective: they only need to be surjective (onto) mappings. Then we say that
H is the merge-renaming of G by ρArt , ρProc , and ρRoles , exactly if the same equalities of
Definition 5.4 hold.

Merge-renaming allows the coalescing of two or more nodes to a single node (or two or
more roles to a single role). Coalescing of nodes or roles may be performed when analyzing
an OPM graph on a coarser level of detail. But coalescing may also be practical when more
information becomes available. For example, in a traffic accident scenario, there may be
observations about a “blue car” and other observations about a “Toyota”, only to realize
later that the blue car is the Toyota.

In contrast to Proposition 5.6, the merge-renaming of a legal OPM graph need not be
legal. For example, in Figure 9(c), if we coalesce C and D into a single artifact E, but do
not coalesce P and Q, nor their roles, then E has two distinct precise generated-by edges.

As a merge-renaming can coalesce artifacts, such an operation can introduce cycles of
derived-from edges to an OPM graph. In the next section, we investigate the consequences
of such cycles in OPM graphs.

5.2. Inference of equalities

Our definitions allow the presence of derived-from cycles in legal OPM graphs. By a derived-
from cycle, we mean a directed simple cycle composed of derived-from edges (precise or
imprecise). An OPM graph resulting from a typical experimental provenance collection
procedure does not contain such cycles, and indeed the current OPM reference specification
forbids them. For example, it would be strange to assert that A is derived from B and that
B is derived from A.

Nevertheless, cycles may arise in a graph when, after a merge operation, certain nodes
coalesce. Suppose, for example, that we have three artifacts A → B → C without a cycle. If
an application does not need the full level of detail provided, it may consider, for example, A
and C to be the same at a coarser level of detail. As a consequence, a cycle A → B → C = A
is created.

Thus, we do not want to disallow derived-from cycles in OPM graphs from the outset.
It is important, however, to understand the consequences of the presence of such cycles.
We observe that they enforce the equality of certain temporal variables. In the preceding
example, we would have create(A) = create(B) = create(C).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

First of all, we point out that every OPM graph has a trivial model τtriv consisting of
a single time-point t0 with τtriv(u) = t0 for every temporal variable u. Indeed, since the
temporal theory of an OPM graph consists only of non-strict inequalities, this interpretation
trivially satisfies all non-strict inequalities. Of course, that does not mean that this trivial
model is the only model that the OPM graph possesses. On the contrary: intuitively, on a
fine enough temporal granularity, we should expect that every OPM graph indeed possesses
a model where all temporal variables can be assigned distinct time-points. We observe that
this is indeed always possible provided there are no derived-from cycles.

Formally, we fix some OPM graph G for this section. Let us say that a temporal inter-
pretation (T,≤, τ) of G is all-distinct if τ(u) 6= τ(v) for any two distinct temporal variables
u and v of G. When, in addition, ≤ is a total order on T , we say that τ has the strict linear
order property.

Proposition 5.8. If G does not contain any derived-from cycles, then G has an all-
distinct temporal model that even satisfies the strict-linear-order property.

Proof. We construct a total order on all temporal variables of G that is a temporal
model of G under the identity mapping. Since G does not contain any derived-from cycles,
we can linearly order all artifacts so that no artifact has a derived-from edge from an
artifact coming later in the order. Note that there may be many possibilities for such an
ordering. Any such ordering imposes an ordering on the corresponding create-variables. All
begin-variables are placed before all create-variables, in some arbitrary order among them,
and similarly all end-variables are placed after all create-variables. Finally, a use-variable
involving artifact A is placed immediately as a successor of create(A). If there are more than
one use-variables for the same artifact A, they can all be placed in an arbitrary order right
after create(A). By inspecting the axioms we see that this order satisfies all axioms.

We note that Proposition 5.8 does not state that all temporal models of cycle-free graphs
are all-distinct. Rather, it establishes that one such all-distinct model exists. The next
proposition provides a partial converse to Proposition 5.8:

Proposition 5.9. If G does contain a derived-from cycle of length at least two, then
G cannot have an all-distinct temporal model.

Proof. Consider a derived-from cycle and let A and B be two distinct artifacts on
that cycle. Then any temporal model τ should satisfy τ(create(A)) ≤ τ(create(B)) as well
as τ(create(B)) ≤ τ(create(A)), so τ(create(A)) equals τ(create(B)). Hence τ is not all-
distinct.

Propositions 5.8–5.9 do not specify what happens when there are only derived-from cycles
of length one (loops). Moreover, for a temporal model τ , they do not specify which distinct
variables u and v cannot have distinct τ(u) and τ(v) if the graph contains derived-from
cycles. The next proposition fills these gaps by characterizing exactly when two temporal
variables must be equal in all temporal models.

Naturally, for two distinct temporal variables u and v of G, we write Th(G) |= u = v to
denote that both Th(G) |= u � v and Th(G) |= v � u. Thus, if Th(G) |= u = v, then there
is no model of G that is all-distinct since any temporal model τ must satisfy τ(u) ≤ τ(v)
and τ(v) ≤ τ(u); so τ(u) = τ(v). Intuitively, two temporal variables u and v of G such that
Th(G) |= u = v can be seen as indistinguishable in the given temporal model, for example
as a result of coalescing some nodes in a graph with a more detailed temporal model.

Proposition 5.10. Th(G) |= u = v if and only if u and v match one or more of the
following possibilities:

(1) u is create(A), v is create(B), and A and B lie together on a derived-from cycle.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

C

P

!

r

r

B

(a)

A

P

!

r

r

C

B

(b)

s

C

B

r P

r

!

A

D

s Q

!

(c)

Fig. 9. Graph patterns for Proposition 5.10.

(2) u is create(B), v is use(P, r,B), and in G, the nodes P and B, together with some node
C, match the pattern shown in Figure 9(a). Note that B and C need not be distinct.

(3) u is create(A), v is use(P, r,B), and in G, the nodes P , A and B, together with some
node C, match the pattern shown in Figure 9(b). Note that A, B and C need not be
distinct.

(4) u is use(P, r,B), v is use(Q, s,A), and in G, nodes P , Q, A and B, together with some
nodes C and D, match the pattern shown in Figure 9(c). Note that A, B, C and D need
not be distinct, nor P and Q.16

Proof. The proof of the if-direction amounts to an inspection of involved patterns to
verify that Th(G) |= u = v indeed holds. For example, let us examine pattern in Figure 9(c)
in case 4. By Axiom 3 we have Th(G) |= create(B) � use(P, r,B) for edge P

r→ B and
Th(G) |= create(A) � use(Q, s,A) for edge Q

s→ A. For the triangle (C,B, P, r) and G `
B 99K C, we can apply Rule 7 from Figure 7, so we have Th(G) |= use(P, r,B) � create(B),
and thus Th(G) |= create(B) = use(P, r,B). Likewise, for the triangle (D,A,Q, s) and
G ` A 99K D, we obtain Th(G) |= create(A) = use(Q, s,A). Since A and B lie on a derived-
from cycle, we also have Th(G) |= create(A) = create(B), hence Th(G) |= use(P, r,B) =
use(Q, s,A).

The proof of the only-if direction amounts to a lengthy but straightforward inspection of
the possible cases where both Th(G) |= u � v and Th(G) |= v � u, in the characterization
of temporal inference provided by Figure 7. For example, in case 4, we clearly see that we
can only obtain Th(G) |= use(P, r,B) = use(Q, s,A) by combining the following rules of
Figure 7: Rule 9a with again Rule 9a resulting in the pattern from Figure 9(c) with A = C
and B = D; Rule 9a with Rule 9b resulting in the pattern from Figure 9(c) with A = C;
and Rule 9b with again Rule 9b resulting in the pattern from Figure 9(c).

The patterns of Figures 9(a), 9(b), and 9(c) are respectively super graphs of Axiom 8, and
cases 7 and 9B in Figure 7. It is interesting to note that a graph that matches Figure 9(c)
also matches Figure 9(b) since B 99K A can be inferred from B 99K D and D

s→ A in
Figure 9(c). Likewise, a graph that matches Figure 9(b) also matches Figure 9(a) since
B 99K C can be inferred from B 99K A and A 99K C in Figure 9(b).

Hence, by repeated application of Proposition 5.10 (1)–(4), we derive that all use and
create time-points for artifacts A,B, C, D in Figure 9(c) are equal. Likewise, we note the

16Note that in Figure 9(c), if C and D coincide then C
!→ P and D

!→ Q must also coincide for G to be
legal.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

equality of all use and create time-points for artifacts A,B,C in Figure 9(b) and for B,C
in Figure 9(a).

The OPM reference specification does not allow derived-from cycles, but it does not
define a merge operation either. This section has demonstrated that a merge operation can
introduce derived-from cycles into OPM graphs, but they must satisfy some constraints:
all time-points of artifacts involved in a cycle must coalesce to a single time-point. Were a
merge operation added to the reference specification, two options are possible. On the one
hand, the absence of derived-from cycles can remain a legality constraint, but, therefore,
the merge operation should be such that it coalesces all artifacts (and related process) in a
cycle and removes all loops to ensure legality is preserved. On the other hand, the constraint
on derived-from cycles can be lifted, as it is in this paper, but the OPM edges decorated
with time information and involved in cycles should have equal time information whenever
the patterns of Proposition 5.10 are matched.

6. REFINEMENT AND COMPLETION

The OPM reference specification introduces the notion of refinement as a relation between
two graphs: this relation expresses that one graph represents a more complete description of
execution than another graph. The term refinement is inspired by the concept of specification
refinement in formal methods [Woodcock and Davies 1996]. The concept was only intuitively
defined as follows: a graph is a refinement of another if dependencies that can be inferred
in the original graph are “preserved” in the refinement. The purpose of this section is to
formally ground such a notion of refinement in the context of our temporal semantics.17

We fix two legal OPM graphs G and H for use in this section. We also define the following
convenient notion.

Definition 6.1. The logical closure of a set of inequalities Σ, denoted by Σ, is the set of
logical consequences of Σ, i.e., Σ = {ϕ | Σ |= ϕ}.

When context allows, we abbreviate logical closure to closure.
First, we define restriction of an arbitrary set of inequalities Σ to a subset of variables

occurring in Σ.

Definition 6.2. Let Σ be a set of inequalities over a set of variables V . Let W be a subset
of V . The restriction of Σ to W , denoted by Σ|W , is the set

Σ|W = {u � v ∈ Σ | u, v ∈ W} .

Given our temporal semantics, the intuition of a refinement is the following. Graph H is a
refinement of G if all the temporal constraints that can be inferred from Th(G) can also be
inferred from Th(H). Such definition would be too restrictive, however, as some temporal
constraints of Th(G) may be about temporal variables that do not exist in Th(H) at all.
Indeed, refinements can replace nodes by others (say, when a process is implemented by
composing two other processes). Hence, H is a refinement of G, if the temporal constraints
that can be inferred from Th(G) over the common set of variables between H and G, can
also be inferred from Th(H). Formally, the definition is expressed as follows.

Definition 6.3 (Refinement). H is a refinement of G if

Th(G)|Vars(G)∩Vars(H) ⊆ Th(H) .

17Technically, the OPM reference specification defines refinement between two accounts. However, like graph
operations, it is useful to define refinement over OPM graphs. Since accounts correspond to subgraphs, our
definition can naturally be used to compare two accounts for refinement as well. We will formally define
accounts in Section 7.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

In this definition, it is not necessary to restrict Th(H) because Th(H) is on the right-hand
side of a set containment. Indeed, for any three sets A, B and C, we have that (A∩B) ⊆ C
iff (A ∩B) ⊆ (C ∩B).

Note that Theorem 4.7 can be used effectively to decide whether a given graph H is a
refinement of a given graph G. Still, the definition of refinement is strictly semantic and
does not provide much guidance towards constructing a refinement. An interesting open
problem is to find a finite set of graph operations that all result in refinements, and such
that every refinement can be obtained by using these operations.

Remark 6.4. It is a consequence of our definition that whenever Vars(G) and Vars(H)
are disjoint, then H is a refinement of G and vice versa. Indeed, the operation of first adding
to G a separate graph component about an entirely disjoint set of nodes, immediately
followed by removing the old contents of G, may be considered as an extreme kind of
refinement. At any rate our definition of refinements remains open to scientific debate.

6.1. Graph operations and refinement

In this section we investigate the relations between the graph operations defined in Section 5
and refinement. We first investigate the subgraph operation, the union and the intersection.
Let G and H be two legal OPM graphs.

Proposition 6.5. If H is a legal subgraph of G, then G is a refinement of H.

Proof. Since H is a subgraph of G, it is clear from Definition 3.6 that Th(H) ⊆ Th(G).
Hence Th(H)|Vars(H)∩Vars(G) = Th(H) ⊆ Th(G) as desired.

Note that a legal subgraph of G is not necessarily a refinement of G. For instance, let G
be a use–generate–derive triangle (A,B, P, r), and let H be a subgraph of G consisting of
P

r→ B and A
!→ P . Then H is legal, but is not a refinement of G: create(B) � create(A) ∈

Th(G)|Vars(G)∩Vars(H) yet create(B) � create(A) 6∈ Th(H).
The above proposition also applies to the union and intersection, and their operands.

Corollary 6.6. If G ∪H is legal, then G ∪H is a refinement of G.

Note that G is not necessarily a refinement of a legal G ∪ H. For example, let G consist
of A → B and node P and let H consist of A

!→ P and node B. So G ∪ H is legal and
consists of A → B and A

!→ P . Then G is not a refinement of G ∪H: G ∪H ` P → B, so
create(B) � end(P) ∈ Th(G ∪H)|Vars(G∪H)∩Vars(G) yet create(B) � end(P) 6∈ Th(G).

However, if G and H are node-disjoint, then G is a refinement of G ∪H.

Corollary 6.7. G is a refinement of G ∩H.

Note that G∩H is not necessarily a refinement of G. For example, let G consists of A → Q,
A

!→ P and P → Q, and let H consist of A → Q and P → Q. Then G∩H equals H, which
is not a refinement of G: create(A) � end(P) ∈ Th(G)|Vars(G)∩Vars(H), yet create(A) �
end(P) 6∈ Th(G ∩H).

Next we investigate the merge-renaming operation. Let H be a renaming of G by ρArt ,
ρProc and ρRoles (conforming to Definition 5.4). Then G is not necessarily a refinement of
H, or vice versa. For instance, let G consist of A → B, let ρArt(A) = B and ρArt(B) = A,
then H consists of B → A. They are clearly not each others refinements.

Still, if one needs to apply a merge-renaming on a graph before performing a union or
an intersection, a merge-renaming operation that preserves the temporal constraints of the
original would be advisable. This motivates the following restricted version of the merge-
renaming operation:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

Definition 6.8 (Proper merge-renaming). Let ρArt , ρProc and ρRoles be as in Defini-
tion 5.7, and let ρ be the point-wise union of ρArt , ρProc and ρRoles . Then we use ρ(G) to
denote the merge-renaming of G by ρArt , ρProc and ρRoles .

We call a merge-renaming ρ(G) proper if for any node (or role) x in G, if ρ(x) 6= x but
ρ(x) is also a node (or role) in G, then ρ(ρ(x)) = ρ(x).

Intuitively, in a proper merge-renaming operation, some nodes/roles are preserved,
whereas all the others are either renamed into new ones or coalesced into preserved ones.
Such an operation disallows arbitrary renaming and permutation of nodes/roles. Although
it seems overly restrictive, it makes sense in the OPM model, because nodes and roles are
actually identifiers. Hence, coalescing of nodes/roles, or renaming them into new ones, is a
form of identity resolution. For example, witnesses of a car accident may speak of a “blue
car” or a “Toyota”. Later on, one realizes the witnesses talked about the same car, so both
“blue car” and “Toyota” should be renamed to the car’s registration number (while “blue
car” and “Toyota” become its annotations). Likewise, hospitals frequently admit uncon-
scious patients under a temporary ID. Later on, they are either matched to an already
known patient or to a new ID if the patient is admitted for the first time.

We conclude this section by showing that a proper and legal merge-renaming of a graph
is indeed a refinement of the original graph.

Theorem 6.9. Let G be a legal OPM graph, and let ρ(G) be a proper and legal merge-
renaming of G, for some ρ. Then ρ(G) is a refinement of G.

To prove the theorem we use the following auxiliary lemmas.

Lemma 6.10. Let G be a legal OPM graph, and let ρ(G) be a legal merge-renaming of G,
for some ρ. Then if G ` X 99K Y , also ρ(G) ` ρ(X) 99K ρ(Y), i.e., a legal merge-renaming
preserves edge-inference.

The above lemma is readily verified.

Lemma 6.11. Let G be a legal OPM graph, and let ρ(G) be a proper merge-renaming of
G, for some ρ. If a node (or role) x belongs to both G and to the image of ρ, then ρ(x) = x.

Indeed, if x is in the image of ρ, then there exist a node (role) y in G, such that ρ(x) = y.
If x = y, then ρ(x) = x holds immediately. If x 6= y, then ρ(y) 6= y, so ρ(ρ(y)) = ρ(y) (by
Definition 6.8). Thus ρ(x) = x holds as desired.

We can now prove the theorem. We need to prove the following:

Th(G)|Vars(G)∩Vars(ρ(G)) ⊆ Th(ρ(G)) .

Let Commons = Vars(G) ∩ Vars(ρ(G)). For each inequality ϕ ∈ Th(G)|Commons , we must
show that ϕ belongs to Th(ρ(G)). We know from Theorem 4.7, illustrated in Figure 7, that
each such inequality is associated with a pattern in G. Therefore, we need to find a similar
pattern in ρ(G) that produces exactly the same inequality.

Let ϕ ∈ Th(G)|Commons . We follow the axioms and rules presented in Figure 7, the axioms
first, to cover all possible forms that ϕ may assume:

(a) ϕ is begin(P) � end(P), for some P in G. Since begin(P), end(P) ∈ Commons, P is
also present in ρ(G). By Axiom 1, begin(P) � end(P) ∈ Th(ρ(G)).

(b) ϕ is begin(P) � create(A) or create(A) � end(P), for some A
!→ P in G. Since

create(A), begin(P), end(P) ∈ Commons, we also have A and P in ρ(G). From A
!→ P

in G, by Definition 6.8, we have ρ(A) !→ ρ(P) in ρ(G). We can apply Lemma 6.11 to
A and P , obtaining ρ(A) = A and ρ(P) = P . Hence, A

!→ P is also in ρ(G) and,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

by Axiom 2, both begin(P) � create(A) and create(A) � end(P) belong to Th(ρ(G)).
Note that A

!→ P in G and A
!→ P in ρ(G) need not have the same role.

(c) ϕ is one of the following: begin(P) � use(P, r,A), use(P, r,A) � end(P), or create(A) �
use(P, r,A), for some P

r→ A in G. The variable use(P, r,A) belongs to Commons; that
is only possible if edge P

r→ A is also present in ρ(G). By Axiom 3, begin(P) �
use(P, r,A), use(P, r,A) � end(P), and create(A) � use(P, r,A) belong to Th(ρ(G)).

(d) ϕ is use(P, r,B) � create(A), for some G 4 (A,B, P, r). For P
r→ B in G we apply

case c, so P
r→ B is also in ρ(G). For A

!→ P in G, by case b, A
!→ P belongs to ρ(G). We

can apply Lemma 6.11 to A, B, and r, obtaining ρ(A) = A, ρ(B) = B, and ρ(r) = r. For

A
r→ B in G, we apply Definition 6.8, so ρ(A)

ρ(r)→ ρ(B) in ρ(G), and thus A
r→ B in ρ(G).

Clearly, ρ(G) 4 (A,B, P, r), hence use(P, r,B) � create(A) ∈ Th(ρ(G)) (Axiom 8).
(e) ϕ is create(B) � create(A), for G ` A 99K B. Since create(A), create(B) ∈ Commons, A

and B also belong to ρ(G). From G ` A 99K B, by Lemma 6.10, we have ρ(G) ` ρ(A) 99K
ρ(B). We can apply Lemma 6.11 to A and B, obtaining ρ(A) = A and ρ(B) = B. Hence
ρ(G) ` A 99K B as desired and, by Rule 1, create(B) � create(A) ∈ Th(ρ(G)).

(f) ϕ is begin(P) � create(A), for G ` A 99K P . Since create(A), begin(P), end(P) ∈
Commons, A and P belong to ρ(G). From G ` A 99K P , by Lemma 6.10, ρ(G) `
ρ(A) 99K ρ(P). We can apply Lemma 6.11 to A and P , obtaining ρ(A) = A and
ρ(P) = P . Thus ρ(G) ` A 99K P and, by Rule 2, begin(P) � create(A) ∈ Th(ρ(G)).

(g) ϕ is create(A) � end(P), for G ` P 99K A. Since create(A), begin(P), end(P) ∈
Commons, A and P belong to ρ(G). From G ` P 99K A, by Lemma 6.10, we have
ρ(G) ` ρ(P) 99K ρ(A). We can apply Lemma 6.11 to A and P , obtaining ρ(A) = A and
ρ(P) = P . Therefore, ρ(G) ` P 99K A and, by Rule 3, create(A) � end(P) ∈ Th(ρ(G)).

(h) ϕ is begin(Q) � end(P), for G ` P 99K Q. Since begin(P), end(P), begin(Q), end(Q) ∈
Commons, P and Q belong to ρ(G). From G ` P 99K Q, by Lemma 6.10, ρ(G) `
ρ(P) 99K ρ(Q). We can apply Lemma 6.11 to P and Q, obtaining ρ(P) = P and
ρ(Q) = Q. Hence ρ(G) ` P 99K Q and, by Rule 4, begin(Q) � end(P) ∈ Th(ρ(G)).

(i) ϕ is create(B) � use(P, r,A), for P
r→ A in G and G ` A 99K B. By applying cases c

and e to P
r→ A in G and G ` A 99K B, respectively, we have P

r→ A in ρ(G) and
ρ(G) ` A 99K B. By Rule 5, create(B) � use(P, r,A) ∈ Th(ρ(G)).

(j) ϕ is begin(Q) � use(P, r,A), for P
r→ A in G and G ` A 99K Q. By applying cases c

and f to P
r→ A in G and G ` A 99K Q, respectively, we have P

r→ A in ρ(G) and
ρ(G) ` A 99K Q. By Rule 6, begin(Q) � use(P, r,A) ∈ Th(ρ(G)).

(k) ϕ is use(P, r, C) � create(A), for G 4 (B,C, P, r) and G ` A 99K B. By applying cases d
and e to G 4 (B,C, P, r) and G ` A 99K B, respectively, we have ρ(G) 4 (B,C, P, r)
and ρ(G) ` A 99K B. By Rule 7, use(P, r, C) � create(A) ∈ Th(ρ(G)).

(l) ϕ is use(P, r,B) � end(Q), for G 4 (A,B, P, r) and G ` Q 99K A. By applying cases d
and g to G 4 (A,B, P, r) and G ` Q 99K A, respectively, we have ρ(G) 4 (A,B, P, r)
and ρ(G) ` Q 99K A. By Rule 8, use(P, r,B) � end(Q) ∈ Th(ρ(G)).

(m) ϕ is use(P, r,B) � use(Q, s,A), for G 4 (C,B, P, r) and Q
s→ A in G, and either

A = C or G ` A 99K C. By applying cases d and c to G 4 (C,B, P, r) and Q
s→ A,

respectively, we obtain ρ(G) 4 (C,B, P, r) and Q
s→ A in ρ(G). If A = C, then A clearly

belongs to G and to the image of ρ, so, by Lemma 6.11, ρ(A) = A. If G ` A 99K C,
then, by case e, ρ(G) ` A 99K C. We can thus apply either Rule 9a or Rule 9b, so
use(P, r,B) � use(Q, s,A) ∈ Th(ρ(G)).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

6.2. Completion Operations

The edge-inference rules introduced in Definition 4.5 allow new edges to be inferred in an
OPM graph, the nodes of the graph remaining unchanged. The OPM reference specifica-
tion also defines completion operations, which add new nodes and new edges to a graph.
The addition of new nodes is an object-creating operation which, in logic programming, is
implemented using Skolem functions [Hull and Yoshikawa 1990].

The rationale for such completion operations was to provide syntactic transformations
over graphs, which offer an explanation for some OPM edges. First, we present the op-
erations graphically and intuitively, before formalizing them. According to Figure 10(a),
process introduction states that if an artifact B was derived from an artifact A, then there
exist a process R and role r such that B was generated by R with role r and R used A.
The operation does not specify which process was involved, nor the role of B with regard
to this process, but it states that such a process R and role r existed. Likewise, artifact
introduction, presented in Figure 10(b), states that if there is a process Q that was informed
by a process P , then there exist an artifact C and a role s such that Q used C precisely with
role s and C was generated by P . Again, the completion does not specify which artifact
and role were involved.18

r

R

A

B

(a)

C

s
Q

P

(b)

Fig. 10. Completion operations: (a) process introduction and (b) artifact introduction.

We can see that process introduction generalizes the use–generate–derive triangle of Fig-
ure 3 to imprecise derived-from and used-edges. We refer to this triangle as an imprecise
use–generate–derive triangle. Likewise, artifact introduction recognizes the existence of a
complementary imprecise use–generate–inform triangle. (We note that there is no precise
use–generate–inform triangle, since informed-by edges are always imprecise.)

Completion operations should be considered in conjunction with legality constraints. For
instance, Figure 11(a) depicts an artifact A2 derived from two artifacts A0 and A1. The
process introduction operation can be applied twice here, but the legality constraint requires
an artifact to be generated by a single process. Hence, Figure 11(b) displays the only possible
completion, where introduced process P used both A0 and A1, and generated A2.

Application of process insertion to the graph of Figure 12(a) entails that there is a process
that used A0 and that generated A2 precisely, but the legality constraint implies that this
process is P . Hence, we can derive that P used A0, which is the inference of a used-edge as
in Definition 4.5.

Completion operations can introduce new nodes in a graph, but can result in some un-
certainty as illustrated by Figures 13 and 14. In Figure 13, it is unknown whether the
two processes P0 and P1 introduced by the process introduction operation are identical.
Likewise, in Figure 14, it is not known whether the two artifacts A0 and A1 introduced
by artifact introduction are the same. This uncertainty is formalized below to the effect

18The reference specification also defines a third completion operation called artifact elimination, but that
operation is nothing else than the inference of informed-by edges.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

A0 A1

A2

(a)

⇒
r

A0

A2

P

A1

(b)

Fig. 11. Process introduction producing a legal
graph.

r

A1

A2

A0

P

(a)

⇒
r

A2

P

A1A0

(b)

Fig. 12. When completion becomes edge infer-
ence.

A2

A0

A1

⇒

A2

A0

P0 P1

A1

Fig. 13. Uncertainty: is P0 = P1 or P0 6= P1?

P1 P2

P0

⇒

P0

A1A0

P2P1

Fig. 14. Uncertainty: is A0 = A1 or A0 6= A1?

that completion is a non-deterministic operation: a given graph may have several possible
completions.

To define completion formally, we first formalize the notions of triangle relevant to com-
pletion operations.

Definition 6.12 (Complete Triangle for B → A). Let G be an OPM graph with two ar-
tifacts A and B and an imprecise edge B → A. Graph G contains a complete triangle for
B → A if there exists a process R and role r in G, with edges B

r→ R and R → A. We then
say that B,A,R, r constitute an imprecise use–generate–derive triangle.

Definition 6.13 (Complete Triangle for Q → P). Let G be an OPM graph with two pro-
cesses Q and P and an informed-by edge Q → P . Graph G contains a complete triangle for
Q → P if there exists an artifact C and role s in G, with edges Q

s→ C and C → P . We
then say that Q, P,C, s constitute an imprecise use–generate–inform triangle.

There can be at most one complete triangle for a given imprecise edge B → A in a legal
OPM graph G, since B can only be generated by one process R. On the other hand, there
may be several complete triangles for a given imprecise edge Q → P : for instance, two
artifacts C1, C2 could be generated by P and used by Q, with respective roles s1 and s2.

We then define a completion operation as possibly introducing a node, a role, and edges,
as appropriate, in order to form complete triangles.

Definition 6.14 (CompletionOperation). Let G be an OPM graph. A graph H results
from a completion operation on G, if H was obtained as follows:

— H is the result of process introduction for B → A in G, with A,B ∈ ArtG, if there exists
a process R and a role r, such that:
— ProcH = ProcG ∪ {R},
— RolesH = RolesG ∪ {r},
— GeneratedBy !H = GeneratedBy !G ∪ {(B, r, R)},
— UsedH = UsedG ∪ {(R,A)},
— all other sets remain the same;

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

— H is a result of artifact introduction for Q → P in G, with P,Q ∈ ProcG, if there exists
an artifact C and a role s, such that:
— ArtH = ArtG ∪ {C},
— RolesH = RolesG ∪ {s},
— GeneratedByH = GeneratedByG ∪ {(C,P)},
— Used !H = Used !G ∪ {(Q, s, C)},
— all other sets remain the same.

We note that a completion operation can introduce new nodes R and C or reuse existing ones
in G. Likewise, they can create new edges or reuse existing ones. In some cases, a completion
operation is exactly an edge inference (cf. inference of used-edges in Definition 4.5).

Not all completion operations lead to legal graphs. Hence, a completion operation applied
to legal graph G is said to be valid if it results in a legal graph H. We then call H a valid
completion of G.

Since G is always a subgraph of H, the result of a completion is always a refinement of
G (Proposition 6.5). The converse does not hold, however. Indeed, let us consider a graph
G with imprecise edges C → A and C → B, and an isolated process P . If graph H is
the result of completing C → A via P , we can infer H ` P 99K B. Hence, the inequality
create(B) � end(P) holds in H but not in G. Alternatively, let us consider a graph G with
imprecise edges Q → P and B → A. If graph H is the completion of Q → P via B, then
H ` Q 99K A, which cannot be inferred in G.

So, in summary, graphs can be completed non-deterministically, but completions are a
refinement of the original graph.

7. MULTI-ACCOUNT OPM GRAPH

In the OPM reference specification [Moreau et al. 2011], OPM graphs can contain multiple
accounts. Accounts are used to identify parts of a large, integrated, OPM graph, in which
each account is a coherent OPM graph in itself. An account should be perceived as one
perspective on what happened during a past execution.

Example 7.1. Recall the graph of Figure 1 describing the ordering of an e-book and a
toy from an e-shop. Assume the e-book is for Alice and the toy is for Alice’s young son Bob.
Figure 15 shows an extension of the graph with a second account that accounts for Bob’s
simple perspective of his mother getting him a new toy. Bob’s account is drawn in another
color. Note that the nodes ‘order’ and ‘toy’ belong to both accounts, as well as the edge
between them.

We define a multi-account OPM graph as follows:

Definition 7.2 (Multi-account OPM graph). A multi-account OPM graph is a structure

(Art ,Proc,Roles,GeneratedBy !,Used !,DerivedFrom!,
GeneratedBy ,Used ,DerivedFrom, InformedBy , accountOf)

where

— Art and Proc are two disjoint finite sets of elements called artifacts and processes, respec-
tively;

— Roles is a finite set of elements called roles;
— GeneratedBy ! ⊆ Art × Roles × Proc;
— Used ! ⊆ Proc × Roles ×Art ;
— DerivedFrom! ⊆ Art × Roles ×Art ;
— GeneratedBy ⊆ Art × Proc;
— Used ⊆ Proc ×Art ;

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

toy

Take Order

order
order

billing address

invoice info delivery request

Deliver Third Party Process

Get Toy

toyinvoice e−book

addr

inv del

inv req

inv book

Fig. 15. OPM graph with two accounts.

— DerivedFrom ⊆ Art ×Art ;
— InformedBy ⊆ Proc × Proc;
— accountOf is a function from Nodes ∪ Edges to P(Account), the set of all subsets of

Account , where
— Account is a finite set of elements called accounts,
— Nodes = Art ∪ Proc, and
— Edges = GeneratedBy ! ∪ Used ! ∪ DerivedFrom! ∪ GeneratedBy ∪ Used
∪DerivedFrom ∪ InformedBy .

The sets Art , Proc, Roles and Account are mutually disjoint.

In a multi-account OPM graph G, every node and edge of G can be associated with zero,
one, or more accounts, which is captured by the function accountOf , provided as the last
constituent of graph G.

For a given OPM graph G, for any A ∈ Art , we call accountOf (A) the account membership
of A in G. Likewise, for any P ∈ Proc, we call accountOf (P) the account membership of P
in G.

For a precise edge e in G, of the form (x, r, y), or for an imprecise edge e in G, of the
form (x, y), we say that x and y are incident to e, and denote this by the predicates
isIncident(x, e) and isIncident(y, e).

To ensure that the source and destination of an edge belong to the same account as the
edge, a node “inherits” and cumulates the account memberships of the edges it is incident
to. Formally, this is expressed as follows.

Definition 7.3 (Effective Account). For a given OPM graph G we define the effective-
account function

effectiveAccountOf G : Nodes ∪ Edges → P(Account)

as follows:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

— If x ∈ Nodes, then

effectiveAccountOf G(x) = accountOf (x) ∪⋃
{accountOf (e) | e ∈ Edges and isIncident(x, e)} .

— If x ∈ Edges, then

effectiveAccountOf G(x) = accountOf (x).

An account view is the single-account OPM graph extracted from a multi-account OPM
graph by restricting attention to the nodes and edges associated with a given account.
Formally, this operation is defined as follows.

Definition 7.4 (Account View). For a given multi-account OPM graph G and an account
α, we define the account view of G according to α, denoted by view(G, α), as follows:

— Artview(G,α) =
{

A ∈ Art | α ∈ effectiveAccountOf G(A)
}

;

— Procview(G,α) =
{

P ∈ Proc | α ∈ effectiveAccountOf G(P)
}

;

— Rolesview(G,α) = {r ∈ Roles | (x, r, y) is an edge in view(G, α)};
— GeneratedBy !view(G,α) =

{
(A, r, P) | α ∈ effectiveAccountOf G(A, r, P)

}
;

— Used !view(G,α) =
{

(P, r,A) | α ∈ effectiveAccountOf G(P, r,A)
}

;

— DerivedFrom!view(G,α) =
{

(A, r,B) | α ∈ effectiveAccountOf G(A, r,B)
}

;

— GeneratedByview(G,α) =
{

(A,P) | α ∈ effectiveAccountOf G(A,P)
}

;

— Usedview(G,α) =
{

(P,A) | α ∈ effectiveAccountOf G(P,A)
}

;

— DerivedFromview(G,α) =
{

(A,B) | α ∈ effectiveAccountOf G(A,B)
}

;

— InformedByview(G,α) =
{

(P,Q) | α ∈ effectiveAccountOf G(P,Q)
}

.

Definition 7.5. A multi-account OPM graph is called legal if all its account views are
legal.

Note that in a legal multi-account OPM graph, we can perform temporal inferences on each
account view, although separately. It is difficult to define temporal inference on the whole
graph, since each account potentially provides a different perspective. However, one can
perform various graph operations to combine different accounts into a single one, and then
perform temporal inference on the latter. One can also establish whether one account is a
refinement of another one.

8. RELATED WORK

With well over 400 publications [Moreau 2010b] on the topic of provenance, this section
focuses on OPM-specific related work. For a broader perspective, we refer the reader to
comprehensive surveys for provenance and e-science [Simmhan et al. 2005], provenance and
databases [Buneman et al. 2008; Cheney et al. 2009] and provenance and the Web [Moreau
2010b].

Cheney [Cheney 2010] investigates the use of structural causal models as a semantics
for provenance graphs, and relates some OPM concepts to notions of actual cause and
explanation proposed by Halpern and Pearl [Halpern and Pearl 2005]. Cheney considers
only a small fragment of OPM, having only used and generated-by edges, and interpreting
processes as functions. As a consequence he considers some inferences, like those considered

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

in Remark 2.4, which are not part of the OPM reference specification and which are unsound
for the temporal semantics considered in this paper. On the other hand, Cheney’s semantics
attempts the more ambitious goal of providing a global approximation (using the predictive
nature of causal models) for the program being executed (without having its explicit code),
so that its behavior can be repeated for any arbitrary input; our semantics is silent about
the predictive nature of OPM graphs.

Missier and Goble [Missier and Goble 2011] address the question of whether, for any OPM
graph, there exists a plausible workflow in the Taverna workflow language, which could
have generated the graph. To this end, they identify the extra information that should
be captured as part of an OPM graph so that the mapping from OPM to a workflow
representation can be derived. Thus, this work derives an executable semantics for OPM,
obtained by composing their translation and the Taverna semantics. It however does not
tackle OPM in full, ignoring accounts, time and refinement; their translation should be
revisited to leverage the distinction between precise and imprecise edges, introduced in this
paper. Similarly, Kwasnikowska and Van den Bussche [Kwasnikowska and Van den Bussche
2008] map the NRC data flow model, a formally specified data model for workflows, to
OPM.

Moreau [Moreau 2010a] proposes the reproducibility semantics for OPM, which is a de-
notational semantics characterizing how an OPM graph can be used to reproduce a past
computation; a “re-execution” of such a graph results in a new OPM graph, and mapping
of nodes from the original graph to the new graph. By doing so, he identifies a class of
reproducible OPM graphs. The reproducibility semantics assumes a mapping of each pro-
cess to a function (taking some inputs artifacts, and generating some output artifact), and,
like Cheney’s causal semantics of OPM, sees an OPM graph as a function operating on
inputs and producing outputs. Moreau defines a notion of refinement, corresponding to the
nested execution of procedures. Future work could try to integrate Moreau’s reproducibility
semantics and the temporal semantics presented in this paper.

Several approaches are specializing OPM to specific application domains or facets of
computing. Groth and Moreau introduce the D-Profile [Groth and Moreau 2011], as a
specialization of OPM for distributed systems. Their profile comprises artifact and process
types and graph patterns to describe communications in distributed systems. Similarly,
Freitas et al. introduce types of processes, artifacts and agents to describe data publication
over the Web [Freitas et al. 2011].

Several teams have adopted OPM and implemented inferences, as prescribed by the ref-
erence specification. To this end, many teams have exploited Semantic Web technologies,
such as OWL and SWRL, to implement OPM reasoning: e.g., Tupelo [McGrath and Futrelle
2008], OPMO [Moreau et al. 2010], Provenance Challenge 3 Tetherless [Ding et al. 2011], or,
reproducibility service [Moreau 2010a]; alternatively, some teams used recursive queries in
relational databases: e.g., OPMProv [Lim et al. 2011]. It is an open question as to whether
the complete specification of PROV-CONSTRAINTS can be implemented in any of the
OWL2 profiles.

W3C standardization activies. As part of the W3C Provenance Incubator activity [W3C
Provenance Incubator Activity 2010], mappings of multiple provenance ontologies to OPM
were defined [Sahoo et al. 2010]. These mappings showed that concepts such as processes
and artifacts mapped quite naturally between models. The mappings did not take into
account the temporal meaning of the various data models; revisiting these mappings in the
light of this temporal semantics would provide a better correspondence between ontologies.
Likewise, Miles explains how Dublin Core provenance-related concepts can be translated
into OPM graphs [Miles 2011]. Given that Dublin Core also introduces time, a finer-grained
mapping could be derived, based on the temporal semantics introduced in this paper.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

The aim of the W3C Provenance Working Group [W3C PROV 2011] was to support the
widespread publication and use of provenance information of Web documents, data, and
resources. The Working Group has developed PROV, a standard language for exchanging
provenance information among applications [Moreau et al. 2013]. As mentioned in the In-
troduction, the PROV data model has been influenced by the OPM data model. The PROV
data model has many more features but we restrict attention in the following discussion on
how it can represent the features considered in the present paper.

In PROV, artifacts and processes are called “entities” and “activities”, respectively.
Derived-from, generated-by, used, and informed-by edges are stated in PROV in the form
of facts with predicates ‘wasDerivedFrom’, ‘wasGeneratedBy’, ‘used’, and ‘wasInformedBy’,
respectively. Each fact has an identifier, which can be unnamed, in which case an existen-
tial variable is used as identifier. The identifiers occurring in wasGeneratedBy and used
facts serve as temporal variables for the corresponding timepoints of creation of an arti-
fact (entity) and usage of an artifact by a process (activity), respectively. The timepoints
of beginning and ending of a process can be indicated in PROV by the identifiers occur-
ring in wasStartedBy and wasEndedBy facts. Use-generate-derive triangles can be stated in
PROV by referring, in the wasDerivedFrom fact, to the identifiers occuring in the used and
wasGeneratedBy facts. Such wasDerivedFrom facts can then be considered as representing
precise derived-from edges.

PROV facts may carry temporal annotations; in this way, a specific (possibly partial)
temporal interpretation may be provided. The temporal annotations are subject to con-
straints in the form of inequalities [Cheney et al. 2013]. This allows us to compare the
axioms from Definition 3.6 with the PROV constraints.

(1) Axiom 1 is present in PROV as Constraint 30.
(2) Axiom 2 is present in PROV as Constraint 34.
(3) Axiom 3 is present in PROV as Constraints 33 and 37 combined.
(4) Axiom 4 is present in PROV as Constraint 42.19
(5) Axiom 5 is not present, as imprecise generated-by edges cannot be directly asserted as

such in PROV.
(6) Axiom 6 is not present, as imprecise used edges cannot be directly asserted as such in

PROV.20
(7) Axiom 7 is present in PROV as Constraint 35.
(8) Axiom 8, finally, is present in PROV as Constraint 41.

The Working Group [Moreau et al. 2013] is further defining two relations, alternateOf
and specializationOf, which in the context of OPM would link two artifacts that denote a
same thing in the world. If such relations are asserted, then the artifacts that are linked by
such relations are candidate for the merge operation defined in this paper.

19With the caveat that PROV specifies strict inequalities.
20Here, however, one may simulate an imprecise used edge p → e (with p a process/activity and e an
artifact/entity) with a used-fact with an unnamed identifier. The usage event will then be represented by
an existential variable, which we denote by _u here:

used(_u; p, e, -)
wasEndedBy(end; p, -, -, -)
wasGeneratedBy(gen; e, -, -)

The identifiers end and gen serve to represent the temporal variables create(e) and end(p), respectively. Now
PROV Constraint 37 yields that gen must precede _u, and Constraint 33(2) yields that _u must precede
end. Since _u is an existential variable, we can express this as

∃u : gen < u < end

which amounts to create(e) < end(p) which is what Axiom 6 would produce.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

9. CONCLUSION

In this paper we have shown how OPM can be given a formal semantics. Let us summarize
again the main steps of our approach. We have first syntactically enriched OPM by making
an explicit distinction between precise and imprecise edges. We have then defined a set of
temporal variables associated to an OPM graph. These variables represent the timepoints
of creation of artifacts, of beginning and ending of processes, and of usage of artifacts by
processes. An OPM graph is then viewed as a logical theory, i.e., a set of formulas. These
formulas are simple inequalities, and are produced from the edges in the graph, in the
way specified in Definition 3.6. Now any way to assigning concrete timepoint values to the
different events in a graph is called an interpretation of the graph (Definition 3.5). These
values may in principle come from any partially ordered set, although typically this partially
ordered set will be the integers or the real or rational numbers. Only when the interpretation
satisfies the inequalities inherent to the graph, i.e., the inequalities from its theory, is the
interpretation considered to be satisfactory; we then call it a temporal model of the graph
(Definition 3.8).

A very natural question now is, given an OPM graph, to understand which inequalities
are guaranteed to be satisfied in every of its temporal models. Our main Theorem 4.7 shows
that these “implied” inequalities allow a very clear and concise characterization: to verify
whether an inequality is implied, it suffices to match its associated graphical pattern against
the graph. The comprehensive list of graphical patterns is given in Figure 7. Crucially,
these graphical patterns involve the notion of “inferred edges”. These are edges that can be
traced out in the graph by following paths on derived-from edges, as pictorially illustrated
in Figure 4 and formally defined in Definition 4.5. Edge inference was already considered
in the original OPM reference specification, but purely as a syntactical game, without any
semantical justification. Moreover, we had to enrich edge inference to account better for
precise edges. In fairness, however, it turns out that, when use-timepoints are ignored, the
original OPM edge inference rules have been complete all along (Section 4.3). This result
comes full circle and is very satisfying, as it confirms formally that the original intuition
behind OPM (which was developed as a community effort) was largely correct.

The computational complexity of deciding whether a given inequality belongs to the
temporal theory of a given OPM graph is polynomial-time. The complexity is actually
dominated by the transitive closure computation on derived-from edges that is needed to
perform the edge inferences given in Figure 4. After that, inference amounts to retrieving
the relevant graph patterns listed in Figure 7. Each graph pattern can be implemented by a
fixed conjunctive database query applied to the graph augmented with inferred edges. Hence,
techniques for recursive and join query processing, well established in database systems, can
be applied for inferencing in large provenance graphs.

Our semantics is explicitly temporal in nature; the time aspect of OPM was kept in the
core specification21 since it is regarded as fundamental to the model. In this paper, we have
shown that time is fundamental to the core of OPM.

OPM is “merely” an exchange format for representing provenance information; the next
question then, of course, is how to extract provenance information out of running systems,
or out of databases. Much research exists on this question, and we refer to the surveys
[Simmhan et al. 2005; Buneman et al. 2008; Cheney et al. 2009] for more information.

Further research. Some open problems within the scope of the present paper that we
have left open are the following. First, the OPM reference specification also includes the
feature of Agents, a feature that we have left out in this work. Given that some proposals
are beginning to emerge for agents [Myers 2010; Moreau et al. 2013], a topic for further

21http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMoveTimeToProfile

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

research is to provide a temporal interpretation that can accommodate the notion of agent,
and its relation with processes.

Second, adopting Lamport’s definition of parallel events [Lamport 1978], two variables
u, v in Vars(G) could be defined as parallel events if neither u � v nor v � u are logical
consequences of G’s theory. In future work, one could take a parallel perspective on OPM,
and investigate patterns of parallelism in OPM graphs.

Finally, in Section 6 we proposed a definition of refinements in OPM. As already men-
tioned, it would be useful to explore the existence of a finite set of graph transforma-
tions that could be used to derive all possible refinements. Also, the notion of refinement
could take further constraints into consideration, such as process nesting (as considered by
Moreau [Moreau 2010a]).

Acknowledgements

Luc Moreau’s work is funded in part by the EPSRC SOCIAM (EP/J017728/1) and OR-
CHID Projects (EP/I011587/1), the FP7 SmartSociety Project (600854), and the ESRC
estat2 (ES/K007246/1).

REFERENCES

Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn Vansummeren. 2008. Curated
databases. In PODS ’08: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, New York, NY, USA, 1–12.
DOI:http://dx.doi.org/10.1145/1376916.1376918

James Cheney. 2010. Causality and the semantics of provenance. In Proceedings 6th Workshop on Develop-
ments in Computational Models (EPTCS), S.B. Cooper, E. Kashefi, and P. Panangaden (Eds.), Vol. 26.
63–74.

James Cheney. 2013. Semantics of the PROV Data Model. W3C Working Draft WD-prov-sem-20130312.
World Wide Web Consortium.

James Cheney, Laura Chiticarius, and Wang-Chiew Tan. 2009. Provenance in Databases: Why, How, and
Where. Foundations and Trends in Databases 1, 4 (2009), 379–474.

James Cheney, Paolo Missier, Luc Moreau (eds.), and Tom De Nies. 2013. Constraints of the PROV Data
Model. W3C Recommendation REC-prov-constraints-20130430. World Wide Web Consortium. http:
//www.w3.org/TR/2013/REC-prov-constraints-20130430/

Saumen Dey, Sean Riddle, and Bertram Ludäscher. 2013. Provenance Analyzer: Exploring Provenance
Semantics with Logic Rules. In Presented as part of the 5th USENIX Workshop on the Theory
and Practice of Provenance. USENIX, Berkeley, CA. https://www.usenix.org/conference/tapp13/
provenance-analyzer

Li Ding, James Michaelis, Jim McCusker, and Deborah L. McGuinness. 2011. Linked provenance data: A
semantic Web-based approach to interoperable workflow traces. Future Generation Computer Systems
27, 6 (2011), 797–805.

Andre Freitas, Sean O’Riain, Edward Curry, and Tomas Knap. 2011. W3P: Building an OPM based prove-
nance model for the Web. Future Generation Computer Systems 27, 6 (2011), 766–774.

Yolanda Gil, James Cheney, Paul Groth, Olaf Hartig, Simon Miles, Luc Moreau, Paulo Pinheiro da Silva
(editors), Sam Coppens, Daniel Garijo, Jose Manuel Gomez, Paolo Missier, Satya Sahoo, and Jun Zhao.
2010. Provenance XG Final Report. W3C Incubator Group Report XGR-prov-20101214. World Wide
Web Consortium. http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/

Paul Groth and Luc Moreau. 2011. Representing Distributed Systems Using OPM. Future Generation
Computer Systems 26, 6 (2011), 757–765.

Joseph Y. Halpern and Judea Pearl. 2005. Causes and Explanations: A Structural-Model Approach. Part
I: Causes. Br J Philos Sci 56, 4 (2005), 843–887.

Richard Hull and Masatoshi Yoshikawa. 1990. ILOG: Declarative Creation and Manipulation of Object
Identifiers. In Proceedings of the 16th International Conference on Very Large Data Bases, D. McLeod,
R. Sacks-Davis, and H. Schek (Eds.). Morgan Kaufmann, 455–468.

Ian Jacobs and Norman Walsh. 2004. Architecture of the World Wide Web, Volume One. W3C Recommen-
dation 15 December 2004. (2004). http://www.w3.org/TR/webarch/

N. Kwasnikowska, L. Moreau, and J. Van den Bussche. 2010. A formal account of the Open Provenance
Model. eprint 271819. University of Southampton.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

Natalia Kwasnikowska and Jan Van den Bussche. 2008. Mapping the NRC Dataflow Model to the Open
Provenance Model. In Second International Provenance and Annotation Workshop, IPAW’2008 (Lec-
ture Notes in Computer Science), Juliana Freire, David Koop, and Luc Moreau (Eds.), Vol. 5272.
Springer, 3–16.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM
21, 7 (1978), 558–565.

Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi. 2011. Storing, Reasoning, and Query-
ing OPM-Compliant Scientific Workflow Provenance Using Relational Databases. Future Generation
Computer Systems 27, 6 (2011), 781–789.

Friedemann Mattern. 1989. Virtual time and global states of distributed systems. In Proceedings of the
International Workshop on Parallel and Distributed Algorithms, M. Cosnard et al. (Eds.). Elsevier
Science Publishers, Amsterdam, 215–226.

Robert E. McGrath and Joe Futrelle. 2008. Reasoning about provenance with OWL and SWRL rules. In
AAAI Spring Symposium: AI Meets Business Rules and Process Management. 87–92.

Simon Miles. 2011. Mapping Attribution Metadata to the Open Provenance Model. Future Generation
Computer Systems 27, 6 (2011), 806–811.

Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. 2007. The requirements of using provenance in
e-Science experiments. Journal of Grid Computing 5, 1 (2007), 1–25.

Paolo Missier and others. 2010. Linking multiple workflow provenance traces for interoperable collaborative
science. In Proceedings 5th Workshop on Workflows in Support of Large-Scale Science. IEEE, 1–8.

Paolo Missier and Carole Goble. 2011. Workflows to Open Provenance Graphs, round-trip. Future Genera-
tion Computer Systems 27, 6 (2011), 812–819.

Luc Moreau. 2010a. Provenance-Based Reproducibility in the Semantic Web. Journal of Web Semantics 9,
2 (2010), 202–221.

Luc Moreau. 2010b. The Foundations for Provenance on the Web. Foundations and Trends in Web Science
2, 2–3 (Nov. 2010), 99–241.

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwasnikowska,
Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric Stephan, and Jan Van den
Bussche. 2011. The Open Provenance Model core specification (v1.1). Future Generation Computer
Systems 27, 6 (2011), 743–756.

Luc Moreau, Li Ding, Joe Futrelle, Daniel Garijo Verdejo, Paul Groth, Mike Jewell, Simon Miles, Paolo
Missier, Jeff Pan, and Jun Zhao. 2010. Open Provenance Model (OPM) OWL Specification. (2010).
http://openprovenance.org/model/opmo

Luc Moreau, Trung Dong Huynh, and Danius Michaelides. 2014. An Online Validator for Provenance:
Algorithmic Design, Testing, and API. In 17th International Conference on Fundamental Approaches

to Software Engineering (FASÉ14) (Lecture Notes in Computer Science). Springer-Verlag. http://
eprints.soton.ac.uk/340068/

Luc Moreau, Paolo Missier (eds.), Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen
Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon Miles,
James Myers, Satya Sahoo, and Curt Tilmes. 2013. PROV-DM: The PROV Data Model. W3C Rec-
ommendation REC-prov-dm-20130430. World Wide Web Consortium. http://www.w3.org/TR/2013/
REC-prov-dm-20130430/

James Myers. 2010. I Think Therefore I Am Someone Else: Understanding the confusion of granularity
with Continuant/Occurrent and Related Perspective Shifts. In Provenance and Annotation of Data
and Processes. Lecture Notes in Computer Science, Vol. 6378. Springer, 292–294.

Satya Sahoo, Paul Groth, Olaf Hartig, Simon Miles, Sam Coppens, James Myers, Yolanda Gil, Luc Moreau,
Jun Zhao, Michael Panzer, and Daniel Garijo. 2010. Provenance Vocabulary Mappings. Technical Re-
port. W3C. http://www.w3.org/2005/Incubator/prov/wiki/Provenance˙Vocabulary˙Mappings

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2005. A survey of data provenance in e-Science.
SIGMOD Record 34, 3 (2005), 31–36. DOI:http://dx.doi.org/10.1145/1084805.1084812

A. Tarski. 1986. What are logical notions? History and Philosophy of Logic 7 (1986), 143–154. Edited by
J. Corcoran.

Gerard Tel. 1994. Introduction to Distributed Algorithms. Cambridge University Press.

Curt Tilmes and others. 2013. Provenance Representation for the National Climate Assessment in the
Global Change Information System. IEEE Transactions Geoscience and Remote Sensing 51, 1 (2013),
5160–5168.

Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems. Vol. II. Computer Science
Press.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

W3C PROV 2011. W3C Provenance Working Group Activity. (2011). http://www.w3.org/2011/prov/

W3C Provenance Incubator Activity 2010. Provenance Incubator Group Charter.
http://www.w3.org/2005/Incubator/prov/charter. (2010).

Jim Woodcock and Jim Davies. 1996. Using Z. Specification, Refinement, and Proof. Prentice Hall.

A. PROOF OF THEOREM 4.7

In this section we present the proof of Theorem 4.7. First, we tackle the soundness property;
then, we address the completeness property.

A.1. Proof of soundness

Let G be a legal OPM graph and let ϕ be a nontrivial inequality over the temporal variables
of G that satisfies the conditions from Theorem 4.7. We have to show that Th(G) |= ϕ.
Thereto, let τ be a temporal model of G, i.e., τ |= Th(G). We have to show that τ satisfies
ϕ. We inspect the ten possibilities for ϕ:

(0) if ϕ ∈ Th(G), then τ satisfies ϕ since τ |= Th(G).
(1) ϕ is create(B) � create(A) with G ` A 99K B.

As a consequence of Definition 4.5, G ` A 99K B holds if (A,B) belongs to the transitive
closure of DerivedEdges. Therefore, there is a path A1, A2, . . . , An of derived-from edges
from A to B, for some n ≥ 2 with A1 = A and An = B, and with (Ai, Ai+1) ∈
DerivedEdges, for i ∈ {1, . . . , n− 1}. Since every (Ai, Ai+1) is an edge in G, we know
that create(Ai+1) � create(Ai) belongs to Th(G) (Axiom 4 and Lemma 4.2) and is thus
satisfied by τ , i.e., τ(create(Ai+1)) ≤ τ(create(Ai)). Hence we also have τ(create(An)) ≤
τ(create(A1)), because ≤ is a partial order for τ . Thus τ satisfies create(B) � create(A).

(2) ϕ is begin(P) � create(A) with G ` A 99K P .
By Definition 4.5, G ` A 99K P if either
a) there is already an edge A → P or A

!→ P in G; or
b) there is an artifact B such that G ` A 99K B and there is an edge B → P or B

!→ P
in G.

2a) For an edge A → P (A !→ P) in G, we know by Axiom 5 (Axiom 2), that ϕ ∈ Th(G)
and thus τ satisfies ϕ.

2b) We already know from case 1 that τ satisfies create(B) � create(A) for G ` A 99K B,
i.e., we have τ(create(B)) ≤ τ(create(A)). For an edge B → P (B !→ P) in G,
we know by Axiom 5 (Axiom 2), that begin(P) � create(B) belongs to Th(G).
Therefore τ satisfies begin(P) � create(B), i.e., τ(begin(P)) ≤ τ(create(B)). Hence
τ(begin(P)) ≤ τ(create(A)), since ≤ is a partial order for τ . We conclude that τ
satisfies begin(P) � create(A).

(3) ϕ is create(A) � end(P) with G ` P 99K A.
By Definition 4.5, G ` P 99K A if either
a) there is already an edge P → A or P

!→ A in G; or
b) there is an artifact B such that G ` B 99K A and there is an edge P → B or P

!→ B

or B
!→ P in G.

3a) For an edge P → A (P !→ A) in G, we know by Axiom 6 (Axiom 3) that ϕ ∈ Th(G)
and thus τ satisfies ϕ.

3b) We already know from case 1 that τ satisfies create(A) � create(B) for G ` B 99K
A. For an edge P → B (P !→ B) in G, we know by Axiom 6 (Axiom 3) that
create(B) � end(P) belongs to Th(G). For an edge B

!→ P in G, we know by
Axiom 2 that create(B) � end(P) belongs to Th(G). Therefore, in each case, τ
satisfies both create(A) � create(B) and create(B) � end(P). Hence τ also satisfies
create(A) � end(P).

(4) ϕ is begin(Q) � end(P) with G ` P 99K Q.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

By Definition 4.5, G ` P 99K Q if either
a) there is already an edge P → Q in G; or
b) there is an artifact A such that G ` A 99K Q, and either G ` P 99K A or there is an

edge A
!→ P in G.

4a) For an edge P → Q in G, we know by Axiom 7 that ϕ ∈ Th(G) and thus τ satisfies
ϕ.

4b) We already know from case 2 that τ satisfies begin(Q) � create(A) for G ` A 99K Q.
We also know from case (3) that τ satisfies create(A) � end(P) for G ` P 99K A.
For an edge A

!→ P in G, we know by Axiom 2 that create(A) � end(P) be-
longs to Th(G). Therefore, in each case, τ satisfies both begin(Q) � create(A) and
create(A) � end(P). Thus τ also satisfies begin(Q) � end(P).

(5) ϕ is create(B) � use(P, r,A) with P
r→ A in G and G ` A 99K B.

We already know from case 1 that τ satisfies create(B) � create(A) for G ` A 99K B.
For edge P

r→ A in G we know, by Axiom 3, that create(A) � use(P, r,A) belongs to
Th(G), and is thus satisfied by τ . Therefore, τ also satisfies create(B) � use(P, r,A).

(6) ϕ is begin(Q) � use(P, r,A) with P
r→ A in G and G ` A 99K Q .

We already know from case 2 that τ satisfies begin(Q) � create(A) for G ` A 99K Q.
For edge P

r→ A in G, we know, by Axiom 3, that create(A) � use(P, r,A) belongs to
Th(G), and is thus satisfied by τ . Thus, τ also satisfies begin(Q) � use(P, r,A).

(7) ϕ is use(P, r, C) � create(A) with G 4 (B,C, P, r) and G ` A 99K B.
We already know from case 1 that τ satisfies create(B) � create(A) for G ` A 99K B.
From G 4 (B,C, P, r) we know, by Axiom 8, that use(P, r, C) � create(B) belongs to
Th(G), and is thus satisfied by τ . Therefore, τ also satisfies use(P, r, C) � create(A).

(8) ϕ is use(P, r,B) � end(Q) with G 4 (A,B, P, r) and G ` Q 99K A.
We already know from case 3 that τ satisfies create(A) � end(Q) for G ` Q 99K A. From
G 4 (A,B, P, r) we know, by Axiom 8, that use(P, r,B) � create(A) belongs to Th(G),
and is thus satisfied by τ . Hence, τ also satisfies use(P, r,B) � end(Q).

(9) ϕ is use(P, r,B) � use(Q, s,A) with G 4 (C,B, P, r) in G, Q
s→ A in G, and either (a)

A = C or (b) G ` A 99K C.
We already know from case 1 that τ satisfies create(C) � create(A) for G ` A 99K C (9b).
If A = C (9a) then, obviously, τ(A) = τ(C), and τ still satisfies create(C) � create(A).
For edge Q

s→ A in G, we know, by Axiom 3, that create(A) � use(Q, s,A) belongs to
Th(G), and is thus satisfied by τ . From G 4 (C,B, P, r) we know, by Axiom 8S, that
use(P, r,B) � create(C) belongs to Th(G), hence is satisfied by τ . Therefore, we have
use(P, r,B) � create(C) � create(A) � use(Q, s,A). We conclude that τ also satisfies
use(P, r,B) � use(Q, s,A).

A.2. Proof of completeness

Let G be a legal OPM graph and let ϕ be a nontrivial inequality over the temporal variables
of G such that Th(G) |= ϕ. We must show that ϕ ∈ Th(G) or that ϕ matches one of the
cases 1–9 of Theorem 4.7.

It is well known [Ullman 1989] that ϕ can be inferred from Th(G) by using repeated
applications of the rule of transitivity: “from u � v and v � w infer u � w.” We proceed
by induction on the number of applications of the transitivity rule.

If ϕ can be inferred by zero applications, then ϕ is already in Th(G) and we are done, as
this corresponds to case 0 of the theorem.

Now consider an application of transitivity inferring ϕ of the form u � w from u � v � w,
where, by induction, the theorem can already be assumed to hold for the inequalities u � v
and v � w. Since begin-variables (end-variables) never appear on the right-hand (left-hand)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

side of an inequality, v cannot be a begin-variable (end-variable). That leaves us with two
cases, with v being either a create- or a use-variable.

v is a create-variable. Let v be a create-variable, say create(Av). Let us list the possibilities
for u and note the relevant properties:

(a) u is also a create-variable, say create(Au). By induction, we know that the inequality
u � v either already belongs to Th(G), so there is an edge Av → Au in G (Axiom 4), or
the inequality corresponds to case 1 of the theorem, therefore G ` Av 99K Au. In either
case we have G ` Av 99K Au.

(b) u is a begin-variable, say begin(Pu). By induction, u � v either belongs to Th(G), so
there is an edge Av

!→ Pu in G (Axiom 2) or Av → Pu in G (Axiom 5); or u � v
corresponds to case 2 of the theorem, therefore G ` Av 99K Pu. In either case we have
G ` Av 99K Pu.

(c) u is a use-variable, say use(Pu, ru, Au). By induction, u � v either (c1) belongs to Th(G),
so there is some use–generate–derive triangle (Av, Au, Pu, ru) in G (Axiom 8); or (c2)
u � v corresponds to case 7 of the theorem, thus there is a use–generate–derive triangle
(A′

v, Au, Pu, ru) in G with G ` Av 99K A′
v.

We also list the possibilities for w and their relevant properties:

(d) w is also a create-variable, say create(Aw). By the induction hypothesis applied to v � w,
reasoning similarly as in case (a) above, we have G ` Aw 99K Av.

(e) w is an end-variable, say end(Pw). By induction, v � w either belongs to Th(G), so there
is an edge Av

!→ Pw in G (Axiom 2) or Pw → Av in G (Axiom 6); or v � w corresponds
to case 3 of the theorem, therefore G ` Pw 99K Av. We have thus either (e1) Av

!→ Pw

in G or (e2) G ` Pw 99K Av.
(f) w is a use-variable, say use(Pw, rw, Aw). This necessitates the presence of edge Pw

rw→ Aw

in G. By induction, the inequality v � w either (f1) belongs to Th(G), so that Aw = Av

(Axiom 3); or (f2) v � w corresponds to case 5 of the theorem, thus G ` Aw 99K Av.

We can now inspect the nine possible combinations:

(ad) ϕ is create(Au) � create(Aw). From G ` Av 99K Au and G ` Aw 99K Av we infer
G ` Aw 99K Au, which matches case 1 of the theorem.

(ae) ϕ is create(Au) � end(Pw). From G ` Av 99K Au and either Av
!→ Pw in G or G `

Pw 99K Av we infer G ` Pw 99K Au, which matches case 3 of the theorem.
(af) ϕ is create(Au) � use(Pw, rw, Aw) with Pw

rw→ Aw in G. In case f1, we have G ` Av 99K Au

and Av = Aw, so the case corresponds to case 5 of the theorem. In case f2, we infer
G ` Aw 99K Au from G ` Aw 99K Av and G ` Av 99K Au, which again matches case 5 of
the theorem.

(bd) ϕ is begin(Pu) � create(Aw). From G ` Av 99K Pu and G ` Aw 99K Av we infer
G ` Aw 99K Pu, which corresponds to case 2 of the theorem.

(be) ϕ is begin(Pu) � end(Pw). From G ` Av 99K Pu and either Av
!→ Pw in G or G ` Pw 99K

Av we infer G ` Pw 99K Pu, which matches case 4 of the theorem.
(bf) ϕ is begin(Pu) � use(Pw, rw, Aw) with Pw

rw→ Aw in G. In case f1, we have G ` Av 99K Pu

and Av = Aw, so the case corresponds to case 6 of the theorem. In case f2, we infer
G ` Aw 99K Pu from G ` Aw 99K Av and G ` Av 99K Pu, which again matches case 6 of
the theorem.

(cd) ϕ is use(Pu, ru, Au) � create(Aw). Case c1 corresponds directly to case 7 of the theorem.
In case c2, we infer G ` Aw 99K A′

v from G ` Av 99K A′
v and G ` Aw 99K Av, which

again matches case 7 of the theorem.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

A′
v

Au

Puru

ru

Av

!

!

Pw

(a)

Au

Puru

ru

!

Av

Pw

A′
v

(b)

Pu

!

Av

rv

rv

A′
w

rw

Pw

Aw

(c)

Pu

!

rv

A′
w

Pv

Av

rv

rw

Pw

Aw

(d)

Fig. 16. Proof of the completeness of Theorem 4.7 for cases (a) c2 with e1, (b) c2 with e2, (c) h1 with l,
and (d) h2 with l. The bold edges are newly inferred.

(ce) ϕ is use(Pu, ru, Au) � end(Pw). First, consider case c1 together with e1. Since G 4
(Av, Au, Pu, ru), Pu and Pw must be equal because G is legal. In this case the inequality
holds by Axiom 3. Case c1 together with e2 corresponds directly to case 8 of the theorem.
Finally, in case c2, from G ` Av 99K A′

v, and either Av
!→ Pw (from e1, see Figure 16(a))

or G ` Pw 99K Av (from e2, see Figure 16(b)) we infer G ` Pw 99K A′
v, which matches

case 8 of the theorem.
(cf) ϕ is use(Pu, ru, Au) � use(Pw, rw, Aw). Case c1 together with f1 corresponds directly to

case 9a of the theorem. Case c1 together with f2 matches case 9b of the theorem. The
same holds for c2 together with f1. In case c2 together with f2 we infer G ` Aw 99K A′

v
from G ` Aw 99K Av and G ` Av 99K A′

v, which again matches case 9b of the theorem.

v is a use-variable. Let v be a use-variable, say use(Pv, rv, Av). Note that this necessitates
the presence of the edge Pv

rv→ Av in G. Let us list the possibilities for u and note the relevant
properties:

(g) u is a create-variable, say create(Au). By induction, we know that the inequality u � v

either (g1) already belongs to Th(G), so Au equals Av with the edge Pv
rv→ Av in

G (Axiom 3); or (g2) the inequality corresponds to case 5 of the theorem, therefore
G ` Av 99K Au with the edge Pv

rv→ Av in G.
(h) u is a begin-variable, say begin(Pu). By induction, u � v either (h1) already belongs to

Th(G), thus Pu equals Pv with the edge Pv
rv→ Av in G (Axiom 3); or (h2) the inequality

corresponds to case 6 of the theorem, therefore G ` Av 99K Pu with the edge Pv
rv→ Av

in G.
(i) u is also a use-variable, say use(Pu, ru, Au). By induction, we know that the inequality

u � v can only correspond to case 9 of the theorem, therefore we have some triangle
(A′

v, Au, Pu, ru) in G with the edge Pv
rv→ Av in G, and either Av = A′

v or G ` Av 99K A′
v.

We also list the possibilities for w and their relevant properties:

(j) w is a create-variable, say create(Aw). By induction, v � w either (j1) already belongs
to Th(G), so there is some use–generate–derive triangle (Aw, Av, Pv, rv) in G (Axiom 8);
or (j2) the inequality corresponds to case 7 of the theorem, and there is a use–generate–
derive triangle (A′

w, Av, Pv, rv) in G with G ` Aw 99K A′
w. Note that in both cases we

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

can infer G ` Aw 99K Av. Indeed, in case j1 we have the edge Aw
rv→ Av in G. In case j2

we have G ` Aw 99K A′
w and the edge A′

w
rv→ Av in G.

(k) w is an end-variable, say end(Pw). By induction, v � w either (k1) already belongs to
Th(G), so Pw equals Pv with the edge Pv

rv→ Av in G (Axiom 3); or (k2) corresponds to
case 8 of the theorem, thus there is some use–generate–derive triangle (Aw, Av, Pv, rv)
in G with G ` Pw 99K Aw. Note that in both cases we can infer G ` Pw 99K Av. Indeed,
in case k1 we have the edge Pw

rv→ Av in G. In case k2 we have G ` Pw 99K Aw and the
edge Aw

rv→ Av in G.
(l) w is also a use-variable, say use(Pw, rw, Aw). By induction, we know that the inequality

v � w can only correspond to case 9 of the theorem, so there is some use–generate–
derive triangle (A′

w, Av, Pv, rv) in G with Pw
rw→ Aw in G, and either Aw = A′

w or
G ` Aw 99K A′

w. Note that in both cases we can infer G ` Aw 99K Av by the edge
A′

w
rv→ Av in the triangle.

We can now inspect the nine possible combinations:

(gj) ϕ is create(Au) � create(Aw). In case g1, we have G ` Aw 99K Av and Av = Au, so the
case corresponds directly to case 1 of the theorem. In case g2, we have G ` Aw 99K Av

and G ` Av 99K Au, so we can infer G ` Aw 99K Au, which, again, matches case 1 of the
theorem.

(gk) ϕ is create(Au) � end(Pw). In case g1 together with k1, we have Av = Au, Pv = Pw,
and the edge Pv

rv→ Av in G, so the case corresponds directly to case 3 of the theorem.
In case g2 together with k1, we have Pv = Pw with the edge Pv

rv→ Av in G. From the
latter and G ` Av 99K Au, we infer G ` Pw 99K Au, which again matches case 3 of the
theorem. In case g1 together with k2, we have G ` Pw 99K Av and Av = Au, so the
case corresponds directly to case 3 of the theorem. In case g2 together with k2, we infer
G ` Pw 99K Au from G ` Pw 99K Av and G ` Av 99K Au. Hence the case again matches
case 3 of the theorem.

(gl) ϕ is create(Au) � use(Pw, rw, Aw). In case g1, we have G ` Aw 99K Av and Av = Au, so
the case corresponds directly to case 5 of the theorem. In case g2, we infer G ` Aw 99K Au

from G ` Aw 99K Av and G ` Av 99K Au, which matches case 5 of the theorem.
(hj) ϕ is begin(Pu) � create(Aw). By case j, we infer G ` Aw 99K Pv. (Indeed, in case j1 we

easily infer G ` Aw 99K Pv. In case j2 we also infer G ` Aw 99K Pv from G ` Aw 99K A′
w

and A′
w

!→ Pv in G.) Now in case h1 we have Pv = Pu, so the case corresponds directly
to case 2 of the theorem. In case h2 we have G ` Aw 99K Av and G ` Av 99K Pu, so we
can infer G ` Aw 99K Pu. Thus the case again matches case 2 of the theorem.

(hk) ϕ is begin(Pu) � end(Pw). In case h1 together with k1, we have Pu = Pv = Pw, so
the inequality trivially holds (Axiom 1). In case h1 together with k2, we have Pv = Pu,
and we infer G ` Pw 99K Pv from G ` Pw 99K Aw and G ` Aw 99K Pv. Thus the case
corresponds to case 4 of the theorem. In case h2 we have G ` Pw 99K Av, which combined
with G ` Av 99K Pu, yields G ` Pw 99K Pu. Hence the case again matches case 4 of the
theorem.

(hl) ϕ is begin(Pu) � use(Pw, rw, Aw). By case l, we infer G ` Aw 99K Pv from A′
w

!→ Pv

in G, and either Aw = A′
w or G ` Aw 99K A′

w. Also, there is an edge Pw
rw→ Aw in

G, and G ` Aw 99K Av. In case h1 (see Figure 16(c)) we have Pv = Pu, so the case
corresponds to case 6 of the theorem. In case h2 (see Figure 16(d)), from G ` Aw 99K Av

and G ` Av 99K Pu, we infer G ` Aw 99K Pu. Hence the case again matches case 6 of the
theorem.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

(i j) ϕ is use(Pu, ru, Au) � create(Aw). We infer G ` Aw 99K A′
v from G ` Aw 99K Av,

and either Av = A′
v or G ` Av 99K A′

v. Together with G 4 (A′
v, Au, Pu, ru), the case

corresponds to case 7 of the theorem.
(ik) ϕ is use(Pu, ru, Au) � end(Pw). We already have G 4 (A′

v, Au, Pu, ru). In case k1, we
have Pw = Pv. We infer G ` Pv 99K A′

v from the edge Pv
rv→ Av in G, and either

Av = A′
v or G ` Av 99K A′

v. The case thus matches case 8 of the theorem. In case k2,
we infer G ` Pw 99K A′

v from G ` Pw 99K Aw, Aw
rv→ Av in G, and either Av = A′

v or
G ` Av 99K A′

v. Hence the case again matches case 8 of the theorem.
(i l) ϕ is use(Pu, ru, Au) � use(Pw, rw, Aw). We already have Pw

rw→ Aw in G and G 4
(A′

v, Au, Pu, ru). We additionally infer G ` Aw 99K A′
v from G ` Aw 99K Av, and either

Av = A′
v or G ` Av 99K A′

v. Hence the case matches case 9b of the theorem.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

