On the expressive power of update primitives

Tom J. Ameloot

Abstract

The SQL standard offers three primitive operations (insert,
delete, and update which is here called modify) to update
a relation based on a generic query. This paper compares
the expressiveness of programs composed of these three
operations, with the general notion of update that simply
replaces the content of the relation by the result of a query.
It turns out that replacing cannot be expressed in terms
of insertions, deletions, and modifications, and neither can
modifications be expressed in terms of insertions and dele-
tions. The expressive power gained by if-then-else control
flow in programs is investigated as well. Different ways to
perform replacing are discussed: using a temporary vari-
able; using the new SQL merge operation; using SQL’s
data change delta tables; or using queries involving object
creation or arithmetic. Finally the paper investigates the
power of alternating the different primitives. For example,
an insertion followed by a modification cannot always be
expressed as a modification followed by an insertion.

1 Introduction

The three basic update primitives for relational databases
are the insertion of a tuple in a relation; the deletion of a
tuple from a relation; and the modification of the compo-
nents of a tuple in a relation. These three primitives are
so simple, so natural and so commonplace that they are
hardly ever questioned, apart perhaps from the folk wis-
dom that instead of modifying ¢ to t’, one can equivalently
insert ¢’ and delete t.

The database query language SQL, however, provides
much more powerful versions of the three basic update
operations. An SQL insert operation allows to insert an
entire set of tuples, given by a query applied to the current
instance. Likewise an SQL delete operation allows to delete
an entire set of tuples, again determined by a condition
that can be an arbitrarily complex boolean query. For
example, acting on a relation R(A,B) in SQL we can write
delete from R RO where exists (select R1.B from R R1 where
R1.B=R0.A).

Also an SQL update operation allows to modify a set of
tuples determined by a query condition, and moreover, the
new values of the modified tuples can again be determined
by queries as well, which are applied to the instance before
the update. These queries must return single values (the

Jan Van den Bussche

Emmanuel Waller

so-called “scalar subqueries”). A classical example is to
modify the salary of some employee to the current average
salary, but scalar subqueries are not restricted to aggre-
gate functions. For example, in SQL we can write update
R RO set R0.B = (select R1.B from R R1 where R1.A=R0.B).
This will succeed on any instance satisfying the constraint
that for every tuple (ag,bp) in R there exists exactly one
tuple (a1,b1) in R with a; = byg. By using a more com-
plicated query, we can make the update succeed on any
instance, leaving tuples (ag, by) that violate the constraint
unchanged.

The goal of the present paper is to understand better
the expressive power of these query-based insertions, dele-
tions and modifications. For instance, can we still express
a modification by an insert followed by a delete? At first
this may appear to be the case. For a simplistic example,
consider again a relation R(A,B), and a typical modifica-
tion like update R set B=0 where A=5. Assuming we are
satisfied with relations as sets, as opposed to SQL’s rela-
tions as bags, we can express this modification by insert
into R (select A,0 from R where A=5) followed by delete
from R where A=5 and not B=0. However, this is not al-
ways so easy; the reader is invited to try to express update
R set A=B, B=A, which simply swaps the two columns, by
a sequence of insertions and deletions acting solely on R.

The last qualification is important: if we can use a tem-
porary relation S as scratch space, then quite trivially we
can express any update using only insertions and deletions.
More specifically, for any query Q(R) that maps instances
of R to instances of R, we may consider the replacement
update that replaces the content of R by Q(R)E Any such
replacement can be expressed by the following crude pro-
cedure: erase S; insert Q(R) in S; erase R; and insert all of
S in R. Interestingly, we will see that this procedure can
also be mimicked using SQL:2011’s new “data change delta
tables” [29] [33]. Furthermore, the procedure can also be
mimicked when the query language is powerful enough and
allows the introduction of new data elements; or when the
data elements in the relation are numbers and the query
language can do arithmetic.

Nevertheless, achieving a desired update “in place” may
be preferred over ways that copy information around, for
instance for reasons of efficiency. So we should better un-

1This general notion of replacement should not be confused with
MySQL’s ‘replace’ operation [28|, which behaves like an “upsert”:
an insert that behaves like a modify for insertions that violate some
declared key constraint.



derstand the intrinsic expressive power of the basic up-
date primitives, in the absence of temporary relations. The
ideal framework for such a study is given by the generic
queries from the classical theory of database query lan-
guages [2, 5] [7, T4], 22]. Such queries do not interpret data
elements as numbers, and neither do they introduce new
data elements, but apart from that they cover exactly all
data manipulations on the level of the logical structure of
the relations in the database. In this framework every up-
date to a relation can be modeled as a replacement update,
defined by some generic query Q.

We consider a simple update language, called UL, where
programs are built from insertions, deletions and modifica-
tions using sequential composition and if-then-else state-
ments. We will show that modification is primitive in UL:
there exist modifications that are not expressible by any
program not using modification. An example is the modifi-
cation that swaps the two columns of R, already mentioned
above. (Insertion and deletion are likewise primitive, but
this is obvious.) Moreover, UL is not update-complete:
there exist simple updates that are not expressible by any
program. This result holds even though arbitrary queries
can be used in the update operations. An example of an
inexpressible update is the replacement of R by its com-
plement (with respect to its active domain).

Interestingly, the latest SQL:2011 standard [29] B3] has
a merge operation that allows to combine insertions and
deletions (and modifications as well) in a single operationﬂ
We will provide a formalization of this operation and will
show that any replacement can be expressed by a single
merge. In this sense, our results show that the addition of
merge has strictly increased the power of SQL’s repertoire
of update operations.

We also investigate how the if-then-else construct influ-
ences the expressive power of update programs. We show
that in general it does, not only in the full language, but
also in every fragment (obtained by omitting one or two
update primitives). These results hold even though if-then-
else may well be expressible by the queries used inside the
individual update operations.

Finally we investigate the expressive power of alternat-
ing the update primitives. For database queries expressed
in first-order logic, it is well known that using more al-
ternations between existential and universal quantifiers al-
lows the expression of more queries [I5]. In our setting,
we show that an insertion followed by a modification is
not always expressible by a modification followed by an
insertion. The converse separation holds as well, and we
have similar separations for combinations of insertions and
deletions, and of deletions and modifications. These results
can be likened to the separation of the levels ¥; and II; in
the above-mentioned quantifier alternation hierarchy; but
this analogy should not be taken too literally. Indeed, as

2Earlier editions of SQL already had a version of merge, but did
not allow to combine insertions and deletions.

in all our results, the generic queries used inside the up-
date operations can be arbitrarily powerful. Since we have
solved only the first level, the hierarchy for higher levels
of alternation of update primitives remains to be further
explored.

Most of the inexpressibility proofs amount to showing
that, when trying to express some update by an unsuitable
program, some loss of information cannot be prevented.
This points at the fundamental weakness of in-place up-
dating. The property that generic queries do not distin-
guish between isomorphic instances, or subinstances, plays
an essential role in our arguments.

To conclude this introduction we would like to remark
that efficiency, mentioned above as a potential motivation,
is not our only motivation, as indeed we do not give any
concrete results regarding efficiency. We mainly believe
that the simplicity of the question of in-place updates calls
for a thorough foundational understanding. Moreover, up-
date operations are ubiquitous and, as mentioned above, as
late as 2011 the SQL standard has made two fundamental
additions to SQL’s update features. This shows that there
is a still current interest in powerful in-place updating in
practice. We hope our work may serve in part as some
theoretical justification of these additions to the standard.

This paper is organized as follows. Section [2| discusses
related work. Section [3| defines the update language UL
formally. Section [] presents the results on the expres-
sive power of the language and its fragments. Section
presents the results on alternation. Section [f] discusses the
different ways in which one can express general replace-
ment updates. Section [7] concludes with a discussion of
open problems and topics for further research.

2 Related work

The authoritative reference on the expressive power of up-
date languages is still Abiteboul and Vianu’s work on the
language TL and its variants [5 [6]. The present paper
is complementary in scope to that work. Indeed, in TL,
temporary relations are taken for granted, so the ques-
tions investigated in the present paper were not consid-
ered. For instance, in TL, modifications are superfluous.
Abiteboul and Vianu also invented a technique of version-
ing using value invention (the introduction of new data
elements). By this technique, in a setting with temporary
relations and where input relations need not be preserved
(altogether different from our setting), even deletions can
become superfluous [6]. In Section |§| we will show a differ-
ent application of the value invention technique, to simu-
late replacement updates using just in-place insertions and
deletions.

An even earlier seminal paper by Abiteboul and Vianu
is that on relational transactions [4]. In that work, pro-
grams that are sequential compositions of insertions, dele-



tions and modifications are considered, very much as in the
present paper. However, the queries inside the update op-
erations in a relational transaction are limited to selections
expressed by conjunctions of equalities and nonequalities
between attributes and constants. In the present paper,
formalizing the update operations of SQL, we allow at least
first-order queries, or even arbitrary generic queries inside
update operations.

In the present paper we work in the relational data
model and are inspired by SQL, but it should be noted
that over the past decade there has also been much in-
terest in providing facilities to update XML data in the
context of XQuery [30} 10, [32]. It should be interesting to
extend our work to that context; indeed some work on the
expressive power of the XQuery-based update primitives
has already been reported by the Antwerp school [21].

In general there is a large literature concerned with up-
dates, investigating topics such as equivalence [23], order-
independence [25] [§], commutativity [17,[19], type checking
[11] and independence [26] [12]; we can only give a few refer-
ences. The recent work cited above is mostly in the setting
of XML [13]; updates in the relational model are the topic
in Abiteboul’s 1988 invited paper [I]. We also recall the
rather large interest in declarative specification of updates
that existed in the 1990s; we only cite two reference vol-
umes [27, [18]. Finally we mention the challenging and ever
ongoing topic of belief revision and knowledge update in
the field of Artificial Intelligence.

3 Updates

In this section we formalize the three basic update primi-
tives (insertion, deletion, and modification) and also intro-
duce the general primitive of replacement. We then define
the simple update language considered in this paper.

3.1 Preliminaries

We recall some basic notions and terminology from the
theory of relational databases. From the outset we assume
a countably infinite universe dom of data elements. For
a natural number k, a k-ary relation is a finite subset of
dom X --- x dom (k times), or, in other words, a finite
set of k-tuples of data elements. The set of all k-ary rela-
tions is denoted by Rel(k). A database schema is a finite
set S of relation names where every relation name has an
associated arity (a natural number). An instance I of S
is an assignment of a relation I(R) to every relation name
R € 8, so that if R has arity k then I(R) is k-ary. The set
of all instances of S is denoted by inst(S).

Generic queries and updates We next define queries
and updates as two special kinds of database transforma-
tions as defined in general by Abiteboul and Vianu [5].

Recall that a permutation of dom is a bijection from dom
to dom. A permutation can also be applied to a relation or
to an instance, simply by applying the permutation to all
appearances of data elements in the relation or instanceEI
When a permutation p is the identity on some given subset
C C dom, then p is also called a C-permutation.

Let k be a natural number and let S be a database
schema.

e A k-ary query over S is a mapping ¢ : inst(S) —
Rel(k) for which there exists a finite set C C dom
such that for every C-permutation p of dom, we have
q(p(I)) = p(q(I)) for all instances I. We say that ¢ is
C-generic.

e An update over S is a partial mapping u : inst(S) —
inst(S) that is again C-generic for some finite set
C C dom, i.e., for every C-permutation p and ev-
ery instance I, we have u(I) is defined iff u(p(I)) is
defined, and if so then u(p(I)) = p(u(l)).

The intuition behind C-genericity is that the query or
update may interpret the constants in C' specially, but
otherwise treats all data elements generically, in the typ-
ical database fashion of set-oriented bulk data processing
[2, [7, 14) 22]. For example, the SQL query select * from R
where A=5 is {5}-generic, and the SQL update update R
set B=0 where A=5 is {0, 5}-generic.

We assume familiarity with first-order logic, relational
algebra, and relational calculus as basic languages for ex-
pressing queries [2].

We also recall that a nullary query can be likened to a
logic formula without free variables, thus merely returning
a boolean value true (the nonempty nullary relation) or
false (the empty nullary relation) on every instance. Hence
nullary queries are also called boolean queries. Boolean
queries will be used as the conditions in the if-then-else
statements of our update language.

Remark 3.1. We allow updates to be partial mappings be-
cause in general, modification updates may be undefined
on some instances as we will see in the next section. We
assume queries to be total for simplicity; our results do
not depend on this assumption. Also, one normally re-
quires queries and updates to be computable. We omit
this requirement simply because we do not need it. We
assure the reader that none of our results relies on the use
of noncomputable queries.

3.2 Update operations

Replace The most general update operation is replace,
defined as follows. Let S be a database schema and R € S

3Formally, if t = (a1,...,ax) is a tuple and p is a permutation,
then p(t) equals the tuple (p(a1),...,p(ar)). If r is a relation then
p(r) equals the relation {p(t) | ¢ € r}. Finally, if I is an instance
then p(I) equals the instance given by p(I)(R) = p(I(R)) for each
relation name R.



a relation name of arity k. Let ¢ be a k-ary query over S.
Then replaceg(q) is the update over S defined as follows.
For any instance I of S, we have replacer(q)(I)(R) = q(I),
and replacer(q)(1)(S) = I(S) for each S # R. So, the
content of relation R is simply replaced by the result of
the query gq.

Insert The update insertr(g) can now be defined as
replaceg(q’), where ¢’ is the query defined by ¢'(I) =
I(R)Uq(I).

Delete The update deleteg(q) can now be defined as
replaceg(q’), where ¢’ is the query defined by ¢'(I) =
I(R) — q(I) (set difference).

Modify For a modification of a relation R of arity k,
we need a query q of arity 2k rather than just k. The
intuition is that ¢ returns pairs of tuples (¢,t") where ¢ is
the modified version of . To avoid ambiguity we require ¢
to return a 2k-ary relation that is a function on k-tuples,
i.e., that does not contain two tuples of the form (¢,¢)
and (t,t”) where t, ¢ and t” are k-tuples and ¢ # t".
This formalizes the requirement in SQL that only scalar
subqueries can be used in the assignment clause of an SQL
update statement.

Formally, we define the update modify z(g) to be defined
on an instance I only if ¢(I) is a function. In that case
modifyz(¢)(I) is defined to be equal to replacer(¢')(1),
where ¢’ is the query defined by

¢(I)={t e I(R) | ~3t": (t,t') € q(1)}
uf{t' |t eI(R): (t,t') eql)}.

So, the tuples from relation R that are not mentioned in
the result of ¢ are left untouched, and the other tuples are
modified. We feel this definition most elegantly formalizes
the use of queries in an SQL update statement, by bundling
the query in the where-clause together with the queries
used in the assignment clause, all in a single 2k-ary query.

Ezample 3.2. For a binary relation R(A, B) the SQL state-
ment update R set B=0 where A=b5 can be modeled as
modify z(g), where ¢ is the query {(5,y,5,0) | R(5,y)}
(expressed in first-order logic). Likewise, the SQL state-
ment update R set B=A, A=B is modeled as modify,(q),
where ¢ is the query {(z,y,y,2) | R(z,y)}. Now recall
the SQL update from the Introduction, update R RO set
RO.B = (select R1.B from R R1 where R1.A=R0.B). It would
not be quite correct to model this as modifyz(g) where ¢
is the query {(z,y,z,2) | R(z,y) A R(y,2)}. Indeed, by
our above-defined semantics, that update leaves any tu-
ples in qundef := {(z,y) | R(z,y) A—3z R(y, z) } untouched,
whereas the SQL update is well defined only if gunder is
empty. Hence the strictly correct way to model the SQL
update is to use for g the query {(z,y, =, 2) | qundet = 0 —

(R(z,y) A R(y, z))}, which makes that ¢ does not return a
function (and thus the modification undefined) whenever
Gundet is nonempty. Note furthermore that the update is
also undefined if q](li)dcf = {(z,y) | R(z,y) A IZ22 R(y, 2)}
is nonempty (here 322z is an abbreviation for “there ex-
ist at least two distinct 2”). In summary, we can write a

“safe” version of the update by using for ¢q the query

{(,y,2,2) | R(z,9) A (qChet(2y) — 2 =1y)
A (=42 (@, y) — Ry, 2))}.

Since this query returns a function on all instances, the
corresponding modification update is always defined. Tu-

ples in qunder U ql(li)def are left untouched.

Remark 3.3. One may wonder how it can be guaranteed
that a 2k-ary query ¢ returns a function on all inputs, or on
all inputs that satisfy a given set ¥ of integrity constraints.
For a 2k-ary relation r, requiring that r is a function on
k-tuples amounts to the constraint on r that the first &
columns form a superkey, which is a special kind of func-
tional dependency (FD). Given a conjunctive query g, a
set ¥ of FDs, and an FD o, the implied constraint prob-
lem that ¢(I) satisfies o for every I that satisfies X, can
be solved by the chase algorithm [2, [24]. For first-order
queries, the property of always returning a function is un-
decidable. It is an interesting research topic to see if there
exists a syntactic fragment of the first-order queries that
would be expressively complete for the first-order function-
returning queries in the presence of FDs. O

That queries must return functions poses a serious lim-
itation on the expressive power of modifications. The fol-
lowing technical lemma shows that if there are too many
symmetries in the instance, it is very difficult for a query
to return a function. Recall that an automorphism of an
instance I is a permutation p such that p(I) = I. When
an automorphism p is the identity on C' C dom, then p is
also called a C-automorphism. We say that p fizes a tuple
t simply when p(t) = t.

Lemma 3.4. Let S be a database schema, let q be a C-
generic, 2k-ary query over S, and let I be an instance of
S. If q(I) is a function, then for every pair of k-tuples
(t,t') € q(I), the tuple t' is C-fixed with respect to (I,t),
meaning that every C-automorphism of I that fixes t also
fizes t'.

Proof. For the sake of contradiction, suppose p is a C-
automorphism of I that fixes ¢ but not ¢/, so p(t') # t'.

We have p(t,t') = (t,p(t')) € pa(1)) = a(p(1)) = (1),
whence ¢(I) is not a function, a contradiction. O

Example 3.5. Let S consist of a single unary relation name
S and let I be an instance of S where I(S) = {a,b, ¢, d}.
Using a and b as constants, we can easily modify a in S
to b, by using the modification modifyg({(a,b)}). Here,



{(a,b)} denotes the constant query ¢ that always outputs
{(a, b)}; note that this query is {a, b}-generic. In SQL, we
would write (using attribute name A for the single column
of S) the statement update S set A=b where A=a.

But no modification modifyg(q), with ¢ any {a,b}-
generic query, is able to modify a to ¢. Indeed, ¢ is not
{a, b}-fixed with respect to (I,a), as witnessed by the per-
mutation that swaps ¢ and d but leaves a and b fixed.
Hence, by the above Lemma, (a,c) cannot be in ¢(I).

3.3 The update languages /£ and U L™

Let S be a database schema. We define the update pro-
grams over S as follows.

e If R € S is a relation name of arity k and ¢ is a k-
ary query over S, then ‘insertp(q)’ and ‘deleter(q)’ are
programs.

e If R € S is a relation name of arity k and ¢ is a 2k-ary
query over S, then ‘modify(q)’ is a program.

e If P, and P, are programs, then P;; P, is also a pro-
gram.

e If ¢ is a boolean query over S and P, and P, are
programs, then ‘if ¢ then P; else P; endif’ is a program.

e If ¢ is a boolean query over S and P is a program,
then ‘while ¢ do P enddo’ is a program.

The language UL is formed by all programs that do
not use while-loops; the extended language allowing while-
loops is denoted by ¢/ L£¥Pile,

Every program denotes an update in the obvious man-
ner. The construct P;; P; signifies sequential composition,
and if-then-else statements and while-loops have the fa-
miliar meaning. A program that contains modifications
may not be well defined on every input. Indeed we agree
that when a program running on an instance I encoun-
ters a modification step that is not defined on the current
instance, the entire program is undefined on I. Further-
more, programs may be undefined on some instances due
to nonterminating while-loops.

Note that every program P is indeed C-generic for some
C. Specifically, let Q be the set of all queries used in P.
This set is finite. Each ¢ in Q is Cy-generic for some finite

set Cgq. Then take the union C = J,co Cy.

FO-programs Most of our inexpressibility results con-
cern arbitrary programs, which may use arbitrary queries
inside the update operations. But when writing down a
program, we need a query language to express the queries.
In all our positive results (results where we have to give a
specific program) we will be sufficient with first-order logic
(FO) as the query language; programs using first-order
queries are called FO-programs. In writing FO-programs

we will often use a mix of relational algebra and relational
calculus whenever convenient.

Ezxample 3.6. A simple example of an FO-program over a
database schema with relations R, S and T, where R and
T have the same arity, is the following:

if S # () then inserty(R) else deleter(R) endif.

This program inserts all of R in T if S is nonempty, and
deletes all of R from T otherwise. Note that this pro-
gram can be equivalently written without an if-then-else
construct as follows:

insertr ({z | R(z) A S # 0});
deleter({x | R(z) A S = 0}).

Clearly this works because conditionals can be expressed
in queries, but also because this example program has a
simple behavior. In particular, the first statement does not
change the relation S, so that the condition in the second
statement is not influenced by the execution of the first
statement. We will see later that, in general, if-then-else
constructs cannot be eliminated from the language.

For an example of a program in UL, the following
FO-program closes off binary relation R transitively:

while 3z, y, z(R(x,y) A R(y, z) A ~R(x, z)) do
|

insertg({(z, 2) | Iy(R(z,y) A R(y,2))})
enddo

4 Expressiveness of update primi-
tives

The update language defined in the previous section fea-
tures the three ubiquitous update primitives, which can be
combined using sequential composition, if-then-else, and
while-loops. Two natural questions arise as to the expres-
sive power of this language.

The first question concerns replacement. Earlier we have
defined replacement as the most general update primitive,
which simply replaces a relation with a prescribed new
content, given by a query. Is every replacement operation
expressible by a program in our language?

The second question concerns the minimality of the lan-
guage. Is every feature of the language really primitive?
It is quite obvious that deletions cannot be eliminated, as
they are the only construct that allow a relation to be
erased. Likewise it is obvious that insertions cannot be
eliminated, as they are the only construct that allow the
cardinality of a relation to increase. Also while-loops can
clearly not be eliminated. Hence the question of minimal-
ity will be focused on modifications and the if-then-else
construct.



4.1 Inexpressibility of replacement

Recall that the active domain of an instance I, denoted
by adom(I), is the set of all data elements appearing in
the relations of I. Now fix the database schema Sgraph
consisting of a single relation name R of arity 2. Each in-
stance I of Sgraph can be viewed as a directed graph (V, E)
where V = adom(I) and E = I(R). Consider the comple-
mentation query, denoted by R°, over Sgrapn, defined by
Re(I) = adom(I)? — I(R)

We now show that complementing the set of edges of a
directed graph is not possible by any update program.

Theorem 4.1. No update program in ULV over Seraph
can express the update replacer(R°)

Proof. Let us denote replacen(R°) by u. Consider an in-
stance I where I(R) is of the form {(a,c), (¢, a), (b,d),
(d,b), (a,a), (b,b),(c,c),(d,d)}, for four distinct data ele-
ments a, b, ¢ and d. We can view I as a graph G with
undirected (symmetric) edges and a loop at each node.
Similarly, u(I) then equals the graph Gs:
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Finally the empty instance over Sgrapn Will be denoted by
Go.

We also need a notion of “adornment”, defined as fol-
lows. Let C' be a finite set of data elements, disjoint
from {a,b,c,d}. For any fixed z € C, we call the sets
{(a:2), (b,2),(c.2), (d,2)} and {(z,0), (2,0), (z,0), (2. d)}
C-adornments. Edges belonging to such adornments are
called adornment edges. Also any subset of C' x C'is called
a C-adornment. Edges belonging to such adornments are
called constant edges. Finally a union of C-adornments is
also called a C-adornment. Now for any graph G’ on the
nodes {a,b,c,d} and any C-adornment Z, we call GU Z a
C-adorned version of G'.

We can now make the following claim: Let P be a se-
quence of C-generic insertions, deletions, and modifica-
tions, where C is disjoint from {a,b,c,d}. Let G' be a
C-adorned version of G or G1. Then P(G') equals a C-
adorned version of G or of one of Gop—G4. Assuming this
claim, the theorem follows readily. Indeed, take any pro-
gram P. We know that P is C-generic for some C. Choose
a, b, c and d not in C. The execution of P on I traces out
a sequence of C-generic insertions, deletions, and modifi-
cations. Hence, by the claim, the result of P on I is a
C-adorned version of G or of one of Gy—G4, and not the
desired result Gs.

We prove the claim by induction on the length of the
sequence P. For the empty sequence the claim holds triv-
ially. Now consider a sequence u; P; there are three possi-
ble cases for the first update w.

The first case is that u is modify (g) for some C-generic,
4-ary query q. We will take G’ to be a C-adorned version
of GG; the argument for Gy is similar but simpler. By C-
genericity of ¢, we know that every C-automorphism of G’
is also an automorphism of ¢(G’). When we make use of
this fact below, we will simply write “by symmetry”. Note
that the C-automorphisms of G’ are the symmetries of the
square, which form the dihedral group of order 4. Specifi-
cally, they are the eight permutations of {a,b,c,d} gener-
ated by the rotation (a b ¢ d) and the reflection (a b)(c d).

Consider the possibilities for the modification made by
u to edge (a,c) in G'. By Lemma|[3.4] the new tuple must
be fixed by every C-automorphism of G that fixes (a,c).
Thus there are four possibilitiesﬁ

1. (a,c,a,c) € q(G) or (a,c,c,a) € q(G), i.e., u modifies
a, c) to itself, or to its reversal.

(
2. (a,¢,a,a) € q(G) or (a,c,c,c) € q(G), i.e., u modifies
(a,c) to a loop at its tail, or at its headﬂ

3. (a,¢,a,z) € ¢(G), or (a,c,e,x) € ¢(G), or (a,c,x,a) €
q(G), or (a,¢,z,¢) € q(G) for some z € C, ie., ie., u
modifies (a, ¢) to an adornment edge between its head
or tail and a constant in C.

4. (a,c,z,2') € q(G) for some z,2' € C, i.e., u modifies
(a,c) to a constant edge.

By symmetry, u has the same behavior on the three other
edges (c,a), (b,d) and (d,b) as it has on (a,c). So, exactly
one of the above four cases applies for all these four edges
uniformly.

Always using Lemma [3.4] we can similarly list the pos-
sibilities for the modification made by w to the loops in
G’, and to the adornment edges. Constant edges, by sym-
metry, can only be modified to constant edges. By going

4There is also the possibility that (a,c) is not present in
71,2(¢(G)), but this possibility has the same consequences as pos-
sibility

5For a directed edge e = (x,y), the node z is called the tail of e
and y is called the head [9].



through all combinations of possibilities one then verifies
that «(G’) must be of one of the desired forms. The proof
is continued in the Appendix. O

4.2 Primitivity of modify

The five constructs of the language UL are insertion,
deletion, modification, if-then-else, and while-loops. In
general, we say that a construct is redundant if for ev-
ery database schema S and every program P over S that
uses the construct, P is equivalent to a program over S
that does not use the construct. We say that a construct
is primitive if it is not redundant. We now show that
modifications are primitive in this sense. Consider again
the database schema Sgrapn of directed graphs and the FO
query ¢rev = {(z,y,y,2) | R(x,y)} over Sgraph. Note that
modify g (¢rev) is the update that reverses all edges of the
graph.

Theorem 4.2. No update program in ULYhe oper Sgraph,
that does mot use modifications, can express the update

modify 5 (grev)-

The theorem is proved like Theorem by a nonreacha-
bility argument, based on symmetry and Lemma [3.4} The
proof is described in the appendix.

4.3 Primitivity of if-then-else

That if-then-else is primitive is not entirely trivial, because
queries used in update operations can be arbitrary power-
ful and express conditionals. This was already illustrated
in Examples and We will show that if-then-else is
primitive in YL and in all its fragments, with the caveat
that some of our results assume programs without con-
stants.

Formally, for a nonempty subset F of {insert,delete,
modify}, we define the fragment UL(F) consisting of all
UL programs that can use if-then-else in addition to only
the update primitives in F. A program not using if-then-
else is called a straight-line program. It will be convenient
to also allow the empty straight-line program and agree it
expresses the identity update.

4.3.1 Inexpressibility by straight-line programs

The following useful lemma, which may be interesting in its
own right, brings out a limitation of straight-line programs.

Lemma 4.3. If a straight-line program P expresses a to-
tal and injective update, then P is equivalent to the subse-
quence of P consisting of all the modifications of P.

The proof of this Lemma, which is given in the Ap-
pendix, is based on another lemma:

Lemma 4.4. Fvery total, injective update is also surjec-
tive.

By Lemmal[4.3] in order to find an update not expressible
by any straight-line program, it suffices to find an update
that is total, injective, and not expressible by modifica-
tions only. Over the by now familiar database schema
Sgraph; wWe can define such an update, which, moreover,
is expressible by an FO-program in UL ({insert, delete}) as
well as in UL({insert, modify}). The details are given in
the Appendix, allowing us to conclude:

Theorem 4.5. There exists an update over Sgrapn that is
expressible both by an FO-program in UL({insert, delete})
and by an FO-program in UL({insert, modify}), but not ex-
pressible by any straight-line program.

It immediately follows that if-then-else is primitive in the
two mentioned fragments, as well as in the full language
UucL.

4.3.2 The fragment {delete, modify}

For the fragment {delete, modify} a result as sharp as The-
orem [L.5|remains open. We still can show, however, that if-
then-else is primitive in this fragment, except that we have
not proven this for programs with constants. Programs
with constants can make various markings in a graph, so
that it becomes trickier to prove that they are unable to
achieve a certain task.

Formally, a program without constants is a program in
which all queries used in update operations are C-generic
with C' = (. We say that if-then-else is primitive without
constants if there exists a program without constants but
using if-then-else, that is not equivalent to a straight-line
program without constants.

Proposition 4.6. Over the schema Sgrapn, if-then-
else is primitive without constants in the fragment
U L(delete, modify).

Proof. Let u be the update over Sgrapn expressed by the
following FO-program:

if 3z R(x,x) then
deleter({(z,z) | R(z,2)});

mOdIfyR({(‘T7 Y, Z, .’,E) | R(‘T7 y)})
else (do nothing) endif

Here, (do nothing) can be expressed by, say, deleter ().

Suppose, for the sake of contradiction, that w is
expressed by an (-generic straight-line program P in
UL (delete, modify). Choose nine data elements a, b, ...,
h, i and consider the following graph:

g h 1
n [ [
- F o0 1]
We have

(
d

oD
D

u(G) =



We cannot use an unreachability argument as in the
proofs of Theorems [4.1] and as indeed, u(QG) is reach-
able from G by deletions and modifications. Instead, we
use a fooling argument. The idea is that at some point in
the execution of P, the program is confused whether it is
working on input G or on the subset of G without the loops.
The remainder of the proof is given in the Appendix. [

4.3.3 The single-primitive fragments

What about the fragments UL(insert), UL(delete), and
UL(modify)? We can show that if-then-else is still prim-
itive in these fragments, but no longer over the schema
Seraph, by the following easy proposition:

Proposition 4.7. Over any database schema that consists
of a single relation name, if-then-else is redundant in the
fragments UL (insert), UL(delete), and UL(modify).

The proof of this proposition, given in the Appendix, is
based on the following lemma;:

Lemma 4.8. Let S be a single-relation database schema
and let m € {insert, delete, modify}. Then every straight-
line program P over S that uses only operations of kind m,
is equivalent to a single operation of kind m.

So we must go to multiple-relation database schemas. It
turns out that unary relations are already sufficient now.
For the fragment U L(modify), our result is again without
constants only. The proof is given in the Appendix.

Proposition 4.9. Let R, S and T be unary relation
names.

e Quer the schema {R,S}, if-then-else is primitive in

UL(insert).

e Quer the schema {R, S, T}, if-then-else is primitive in
UL (delete).

e Quer the schema {R,S, T}, if-then-else is primitive
without constants in UL(modify).

Remark 4.10. Proving the above proposition requires some
creativity in coming up with the inexpressible updates, but
is otherwise quite straightforward, because each update op-
eration can act on a single relation only. It may be interest-
ing to consider update operations that can change multiple
relations in parallel. Such operations are not provided in

SQL.

5 Alternation

In this section we present some initial results on the ex-
pressive power of alternating different update primitives.

Everything else in this direction remains to be further ex-
plored. We work over the database schema Sgpqpn of di-
rected graphs; an analogous investigation could be per-
formed over other schemas as well. Another caveat is that
we restrict attention to updates without constants (for-
mally, C-generic updates with C' = 0).

For m';m’ € {insert, delete, modify}, an update of the
form m;m’ is a composition of two update operations
op;;0py where op, is of kind m and op, is of kind m’.

Theorem 5.1. Let m,m’ € {insert, delete, modify} be two
different update primitives. Then there exists a first-order
update over Sgraph, Without constants, of the form m;m/,
that is not equivalent to any update, without constants, of
the form m';m.

The lengthy proof is given in the Appendix and gives in
each of the six cases an inexpressible update. The essential
idea is always that information loss cannot be prevented
when we have to start with an unsuitable operation. More
specifically, for each update, we choose an input with some
symmetries. Then after the first step, these symmetries
cause generic queries to be confused how to proceed on an
intermediate result that may correspond to different inputs
with different outputs.

The above theorem shows that between any two primi-
tives, the two different forms of one alternation (starting
with either of the two primitives) can be separated. Much
more generally one would expect a hierarchy in analogy
(but not more than an analogy) to the quantifier alterna-
tion hierarchy for first-order queries on relational databases
[15]. The question remains to be explored. We can only
offer an example in the fragment UL (insert,delete) of a
straight-line program with two alternations that cannot
be expressed using only one alternation.

Ezample 5.2. Over the schema Sgpapn consider the update
u = replaceg (R o R), where Ro R = {(x,z) | Jy(R(x,y) A
R(y,z))}. We conjecture that this update is not express-
ible in /L™ at all. At least we can show that u is not ex-
pressible by any straight-line program in U L(insert, delete)
that is without constants and uses only one alternation.
Since Sgrapn has only a single relation name, by Lemma4.8]
such a program is of the form insert; delete or delete; insert.

Consider the following instance I and its updated version
u(I):

SN

U(I): Ca+——h—cCcD

I= a— h——¢C
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First, consider any program P, without constants, of the
form insert; delete. For P to compute w(I) on input I, the
insertion step must insert in w(I) that are not in I, yielding
an instance that has the transposition (a ¢) as an automor-
phism. Since u(I) does not have this transposition as an
automorphism, we cannot go from the intermediate result



to u(I) by an @-generic update. By a similar argument
we can see that no program of the form delete;insert can
compute u(I) on input I.

Nevertheless, the following ad-hoc program does com-
pute u(/) from I using two alternations: delete (¢, a); in-
sert R o R; delete (a,b) and (b,c). Here, in this ad-hoc
program, a, b and ¢ are not used as constants but can
be distinguished on the relevant intermediate results by
generic queries.

6 Expressing replace

As already mentioned in the Introduction, the limitations
in expressive power of the language ULV ag illustrated
by Theorems and vanish in the presence of tem-
porary relations. Temporary relations can be elegantly
formalized as follows [5]. Let u be an update over some
database schema S. To express u by a program P, we
allow P to be a program over a larger schema S’ D S.
When given an instance of S as input to P, the relations
outside S are initialized to the empty set. The final re-
sult of P, an instance of S’, is restricted to the relations
from S. In the presence of temporary relations, there is not
that much difference anymore between an update language
and a general query language. At any rate, the expressive
power of UL with temporary relations is quite large
and well-understood. When the queries used inside pro-
grams are first-order, the expressible queries (or updates)
are known as the while-queries, or the queries expressible
in FO(PFP), the extension of first-order logic with partial
fixpoints [2].

In SQL practice, however, the use of temporary rela-
tions can be cumbersome, perhaps harder to optimize, and
in-place update operations seem to be preferred by SQL
programmers. To wit, the SQL community has standard-
ized two extensions of the basic insert—delete—modify up-
date repertoire in the recent SQL:2011 standard: the merge
statement and data change delta tables [29]. We will show
that these two extensions both allow to express the general
replace primitive.

6.1 Merge

The SQL:2011 merge statement is a quite complex instruc-
tion that involves a combination of insertions, deletions,
and modifications, performed on a target relation by pro-
cessing a source relation [33]. We refer to the DB2 doc-
umentation for a detailed description [I6]. We offer the
following formalization.

Let R be a relation name of arity & and let gsource be
a query of arity [. Furthermore, let g¢matcn be a query
of arity k + I; let qupdate be a query of arity 2k + [;
and let gqelete and @insert be queries of arity k + [. Then

mergeR(Qsource7 Gmatch; Qupdate; ddelete qinsert) is the update
u defined as follows.

Let I be an instance. We define the following relations:

® Tsource = Gsource({). This formalizes the source rela-
tion of the SQL merge statement.

® Tmatch = {(tas) € qmatch(l) | t e I(R) ANCAS Tsource}-
This formalizes that target tuple ¢t and source tuple s
match.

® Tupdate — {(ta sat/) € Qupdate(I) ‘ (ta 5) € rmatch}-
This represents that the matching pair (¢, s) qualifies
the conditions to do an update (‘update’ in the SQL
sense); t' is the modified tuple.

® Tdelete = Gdelete() NTmatch- This returns the matching
pairs that qualify to do a delete.

® Thomatch = T'source — 7Tk+17...,k+l(7amatch)- This returns
the source tuples that do not match.

® Tinsert — {(37 t) € (insert (I) | ERS Tnomatch}' This repre-
sents the insert action specified for source tuples that
do not match any target tuple.

For u to be defined on I, a number of requirements must
be satisfied:

e The first £ columns should be a superkey for rmpagen,
i.e., each target tuple can match with at most one
source tuple.

e The first k 4+ [ columns should be a key for rypdate,
similar to the well-definedness requirement for modi-
fications;

e Relation 7rgelete must be disjoint from
(Tupdate);

e The first | columns should be a key for 7iusert, i-€.,
each nonmatched source tuple can insert at most one
tuple.

If these requirements are satisfied by I, then u(I) replaces
the contents of relation R by the relation

(I(R) - (Wl,...,k(rupdatc> U Wl,...,k(rdclctc)))
U 7Tk+l+1,...,2k+l(rupdate) U 7Tl+1,...,l+k(7"insert)

It is now clear that an arbitrary replacement replaceg(q)
can be expressed by merge using the following queries:
source 18 (R - Q) U (q - R), Qupdate 18 0; and gmatch, Gdelete;
and gipsert are the equality query {(x1,..., 2%, y1,- .-, Yk) |
X1 =y1 A+ Axp = yr}. Quite simply, all tuples in R — ¢
match for equality and are deleted; all tuples in ¢ — R do
not match for equality and are inserted. So, we need only
a very simple application of the merge statement. Yet, the
crucial feature that was added to SQL:2011 in comparison
to earlier standards is that deletions as well as insertions
can be used in one merge statement, and it is exactly that
feature that allows our replacement procedure to work.



FEzample 6.1. In SQL syntax, over a binary relation
R(A,B), the following statement replaces R by Ro R (com-

pare Example :

merge into R
using (
((select A,B from R)
except
(select R1.A,R2.B from R R1, R R2
where R1.B=R2.A))
union
((select R1.A,R2.B from R R1, R R2
where R1.B=R2.A)
except
(select A,B from R)))
as S(A,B)
on R.A=S.A and R.B=S.B
when matched then delete
when not matched then insert values (S.A,S.B)

6.2 Data change delta tables

Data change delta tables are a feature of SQL:2011 that
allow update operations to be put inside queries. The table
before the update, as well as the table after the update, can
be accessed by the query. Data change delta tables can be
used to perform arbitrary in-place replacement updates,
when used in conjunction with the with clause of select
statements. The with clause allows intermediate queries to
be given a temporary name inside a larger query, and is
better known as the way to specify recursion in SQL; here
we do not use recursion.

Specifically, remember the procedure to perform a re-
placement replacep(gq) using a scratch relation S: insert g
into S; erase R; and insert .S into R. This procedure can
be almost literally programmed as follows:

with S as (q),

Dummy as (select * from old table (delete from R))
select *
from new table (insert into R (select * from S))

The specifications old table and new table are not actu-
ally important for the above to work. So, we need only a
very limited application of data change delta tables; the
only feature we really need is the ability to put updates
in queries, and the ability to simulate temporary relations
using the with clause.

6.3 Value invention

The classical definitions of C-generic query and update im-
ply that the active domain of the output ¢(I) is a subset of
the active domain of the input I (plus the constants in C).
One can extend the notion of generic query and update,
however, to allow for value invention: the introduction of
new data elements in the result [5, [3, BT 2].

We now describe an, admittedly artificial, technique to
perform replacep(q), with ¢ a classical C-generic query,
using only in-place insertions and deletions on R, if the
queries allowed inside insertions can do value invention.
So, value invention is used as an auxiliary mechanism only.
Moreover, the query language must be sufficiently powerful
to do counting and iteration. Although the combination
of iteration and value invention in general leads to Turing
completeness, our technique has only polynomial complex-
ity. It remains open if replacement can still be simulated
if only first-order logic, extended with value invention, is
permitted inside the queries.

Concretely, we assume R to be binary, but the method
can be adapted to higher arities. We proceed in four steps.

Encoding: Let n be the cardinality of adom(R) U C.
Then for every edge e = (a,b) € R we insert in R
a chain of n + 2 new data elements (eg,e1), (e1,e2),
..., (en, ent1), along with edges (e,, b) and (eg, a) and
the loop (€n+1,€n+1). Note that after this insertion,
the newly introduced data elements are indistinguish-
able from the original data elements except by their
structural properties. And indeed, they can still be
structurally distinguished as follows. In the instance
after the insertion, call a sl-chain any chain of dis-
tinct data elements starting in a source node (node
without entering edges) and ending in a loop. The
length of a chain is the number of elements on it. Let
m be the maximum length of an sl-chain. Chains of
distinct nodes in the original graph can be at most n
long. The start node of such a chain is linked from its
new eg element, making a total length of n + 1. Since
the new elements form sl-chains of length n + 2, they
can be distinguished by their lying on an sl-chain of
maximum length m.

Remove original edges: After the encoding insertion
step, the original graph is still definable. Indeed, it
consists of all pairs (a, b) such that there is an sl-chain
€o - - - ey and edges (eg, a) and (e, b). Note that a can
be distinguished from e; by the maximum length of
the chain as explained above. Hence, we can delete
the original edges without loss of information.

Insert g: We can now determine the result of query g on
the original instance, since the original relation R is
still encoded in the current relation R. The result is
inserted into R. Note that, since ¢ is a classical C-
generic query, this inserts only edges between original
elements of R. In particular, as before, this insertion
cannot introduce sl-chains of length longer than n+1.

Remove encoding: We can finally remove all elements
lying on a maximal-length sl-chain, and we are left
with the desired value of the replacement.



6.4 Arithmetic

Also when interpreting the data elements in relations as
numbers on which arithmetic can be performed, we leave
the framework of generic queries. Queries again no longer
need to be domain-preserving, as witnessed by the simple
SQL query select A+B from R.

In this context we can simulate replacement in a way
similar to the simulation using value invention, but sim-
pler, since no iteration over long chains is needed anymore.
In fact, the whole procedure can now be programmed in
SQL as a sequence of insert and delete statements using
normal query expressions, i.e., without using the program-
ming facilities of SQL/PSM. The arithmetical operators
needed below are order comparisons, addition, and the ag-
gregate functions max and count. It would be interest-
ing to understand better exactly how much (or how little)
arithmetic is really needed.

The encoding step is now much simpler. Let M be the
maximum number appearing in both relations R and ¢(R).
Also, for any edge e = (a,b) in R, let ne be its rank in a
lexicographic ordering of the tuples of R. Then we encode
e by inserting the edges (eg, e1), (e1,b), (o, a), where now
eo and ey are no longer abstract new data elements, but
the numbers eg = M +2(n. — 1)+ 1 and e; = eg + 1.

After inserting these edge encodings, the original edges
can still be distinguished. The source nodes are exactly
all elements eg. The two edges leaving a source node eg
are (ep,a) and (eg,e1), and a can be distinguished from
e1 simply by a < e;. Then b can be retrieved as the only
node pointed to by e;.

7 Conclusion

Theoretical computer science has a rich tradition of inves-
tigating its computational models to the bone, with the
goal of understanding the power and complexity of each
individual feature. In database theory we have certainly
followed this tradition in the investigation of high-level log-
ical query languages. Computational models for updating
deserve the same attention, because of their practical in-
terest as witnessed by additions to recent SQL standards.

In this paper we have scratched the surface of much that
remains to be explored. Throughout the text we have
identified open problems, mostly of a technical or theo-
retical nature. One theory-oriented question we have not
yet mentioned is the arity required of temporary relations,
similarly to questions investigated about the arity required
of auxiliary relations in first-order incremental evaluation
systems (see the recent paper [20] and references therein).

Here we conclude with some directions for further re-
search. In Section [2| we have already mentioned the obvi-
ous direction of working with other data models than the
relational model.

We have focused on updating a single relation, possibly
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part of a multi-relation database. As such, replacement
of a single relation by a query applied to the database
was the natural upper bound on expressive power for our
investigation. However, in general one wants to perform
multi-relation updates and much of our study needs to be
reconsidered for that context.

In this paper we have also focused on sequential compo-
sition as a natural way of executing programs. Database
servers in practice also process sequences of SQL state-
ments. Yet it seems interesting to also study parallel com-
position of updates. Also, in practice, updates often hap-
pen through cursors. It would be interesting to model this
by a formally defined programming language, so that again
the possibilities and limitations of cursor-based SQL pro-
gramming can be investigated on the theoretical level.

Finally, we have not investigated the efficiency, perfor-
mance, and optimization aspects of updating. It would be
interesting to compare the efficiency of using temporary
relations versus other ways of performing complicated up-
dates. Also, it would be interesting to rigorously test the
thesis that in-place updates are more efficient than general
replacement updates.
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Appendix

Now consider the

possibilities for the modification made by w to the loop-
edge (a,a) in G. By Lemma the new tuple must
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be fixed by every C-automorphism of G’ that fixes (a, a).
Thus there are four possibilities{f]

5. (a,a,a,a) € ¢(G), i.e., u modifies (a,a) to itself.

- (
6. (a,a,a,c) € q(G) or (a,a,c,a) € q(G), i.e., u modifies
(a,a) to the edge leaving a or the edge entering a.

7. (a,a,a,z) € ¢(G) or (a,a,z,a) € q(G) for some z € C,
i.e., u modifies (a,a) to an adornment edge between a
and a constant in C.

8. (a,a,2,2') € ¢(G) for some z,2" € C, i.e., u modifies
the (a,a) to a constant edge.

By symmetry, v has the same behavior on the three other
loops (b,b), (¢,¢), (d,d) as it has on (a,a). So, exactly
one of the above four cases applies for all these four loops
uniformly.

Similarly, adornment edges (a,z) or (x,a), if existing,
can be modified to other adornment edges, to the loop
(a,a), or to constant edges. Finally, constant edges, by
symmetry, can only be modified to constant edges.

By going through all combinations of possibilities one
can verify that w(G’) must be a C-adorned version of G,
G1, or Gs. If G or Gy, the claim follows by induction. If
G2, we argue as follows. Note that u; P(G') = P(u(G")).
The graph G, and any of its C-adorned versions like u(G’),
is fully symmetric over {a,b,c,d}: every permutation of
{a, b, c,d} is an automorphism of Ga. Since P is C-generic
with C disjoint from {a,b,c,d}, also P(u(G’)) must be
fully symmetric. Now the only graphs on {a,b,c,d} U C
that are fully symmetric in the above sense are the C-
adorned versions of Gg, G2, G3 and Gy, so the claim fol-
lows.

The second case is that w is insertg(g) for some C-
generic, binary query q. We assume G’ is a C-adorned
version of G1; the argument for G is similar but simpler.
We consider three independent possibilities for u on G':

1. If (a,a) € u(G’), then by symmetry, the other loops
(b,b), (¢,¢) and (d,d) are in u(G") as well.

2. If (a,b) € u(G"), then by symmetry, also (b, ¢), (¢, d),
(d,a), and all reversals of these edges are in u(G’).

3. If (a,z) € u(G") or (z,a) € u(G’) for some = € C, then
by symmetry, also (b,z), (¢,z) and (d,z), or (x,b),
(z,¢) and (z,d) are in u(G’) as well.

Going through all combinations of possibilities we obtain
that u(G’) must be a C-adorned version of G, Gy, G,
or G4. We can now reason as before. When G or Gy,
we can apply induction, and when G3 or G4, we are fully
symmetric.

6 Again there is also the possibility that (a,a) is not present in
71,2(¢(G)), but this possibility has the same consequences as possi-
bility@
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The final case is that u is deleteg(q) for some C-generic,
binary query ¢. Again using symmetry, we can see that
u(G') is a C-adorned version of G, Gy, G1, or G2 and we
can reason as before. O

Proof of Theorem[4.4 (Sketch.) Consider an instance
over Sgraph that has the following form viewed as a graph:

G:

a——=¢C

We make a similar argument as in the proof of Theo-
rem (4.1} using symmetry. Specifically, one verifies that
the only instances reachable from G by C-generic inser-
tions and deletions, with C' disjoint from {a,b, c}, are C-
adorned versions of the empty graph, the graph G itself,
and the following four graphs:

a ——C a Cc

N & N

Here, lines without arrows denote undirected, i.e., sym-
metric pairs of, edges. None of these graphs equals the
reversal of (G, and the same reasoning can be applied as in
the proof of Theorem O

Proof of Lemmal[].4 Let u be a total, injective, C-generic
update over some schema S and let J be an arbitrary in-
stance of S. We must show that J = u(I) for some instance
I. Since u is a C-generic function, for any instance I, we
have adom(u(I)) C adom(I) U C. Thus consider the set
J ={I € inst(S) | adom(I) C adom(J) U C}. The image
of J by u is a subset of 7. But then the image of J by
u equals J, since u is total and injective and J is finite
(pigeon-hole principle). Hence, since J € J, there exists
I € J such that u(I) = J, as desired. O

Proof of Lemma[/.3 By induction on the length of P. For
the empty program, the lemma holds trivially. Now con-
sider a straight-line program of the form op; P where op is
an insertion, deletion, or modification, so that the update
expressed by op; P is total and injective. In particular, op
must already be total and injective in itself.

First, assume op is an insertion. We claim that any in-
sertion that is not the identity, is not injective. By this
claim, op must be the identity, so op; P is equivalent to P
and the lemma follows by induction. To prove the claim,



let us define the partial order C on instances defined by
I C L iff I1(R) C Ix(R) for each relation name of the
database schema. Since op is an insertion, op is inflation-
ary with respect to this partial order. Since op is not the
identity, there is an instance I such that I C op(I). We
then consider the increasing sequence (I,), where Iy = T
and I,,11 = op(I,). Then adom(I,) C adom(I)U C for
every n, where C is a finite set such that op is C-generic.
Since, over a fixed database schema, there are only finitely
many possible instances J with adom(J) C adom(I) U C,
the sequence converges, i.e., there exists m such that
I, = Ln+1. Choose the least such m; note that m > 0
because Iy # I;. Then we have op(I,—1) = I, = op(Im),
so op is not injective as desired.

Second, assume op is a deletion. By a similar argument,
now using a decreasing sequence, we can show that any
deletion that is not the identity is not injective. Then the
lemma follows again by induction.

Finally, assume op is a modification. Since op is total
and injective, op is also surjective by Lemma 4.4 Since
op; P is total and injective and op is surjective, P must
be total and injective. By induction, P is equivalent to its
sequence of modifications, so the same holds for op; P as
desired. O

Proof of Theorem[4.5 Consider the following technical
condition (x) on instances G over Sguapn. First, there
must exist precisely one node, called the “marker”, with
the property that it has edges to all other nodes; sec-
ond, the marker must have a loopﬂ and third, every non-
marker node with a loop must have an edge to or from
another nonmarker node. Now define the update ucrwm
over Sgraph (“complement loops with marker”) as follows.
If G does not satisfy condition (%), then ucrwm(G) = G;
else, ucLwm (G) equals G where a loop is added to all non-
marker nodes that do not have a loop, and the loop is
removed from all nonmarker nodes that have a loop.

This update is expressible by an FO-program in
UL({insert, delete}), as well as in UL ({insert, modify}). In-
deed, condition (x) is expressible by an FO boolean query.
Then the actual update is done in two steps: first, delete
all edges from the marker to nonmarker nodes with a loop,
and also all loops on these nonmarker nodes; second, insert
loops at nodes pointed to by the marker, and also re-insert
edges from the marker to all nonmarker nodes. (Note that,
after the first step, the marker is still distinguishable as the
only node with a loop.) The delete step can be expressed
by a modification as well as by a deletion. Indeed, we can
delete edges leaving the marker by modifying them to the
loop at the marker.

Furthermore, ucpw is clearly total, and it can be ver-
ified that it is injective. Moreover, ucpwm 1S not ex-
pressible by modifications only, since modifications can-
not increase the cardinality of relations, whereas ucpwwm

7A loop in a directed graph is an edge of the form (z,x).
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maps the graph with three edges {(a,a), (a,b), (a,c)} (the
marker is a) to the graph with five edges obtained by
adding loops to b and c. O

Proof of Proposition[].6 (Continued.) Let us first char-
acterize which graphs can be reached from G by (-generic
modifications only. It turns out there are only four
such graphs, namely A U By for k 1,...,4, where
A= {(a7 a), (b7 b)7 (Cv C)}v By = {(da 9)7 (8, h), (f, Z)}a By
{(9:d). (h,€), (i, )}, By = {(d,d), (e,), (£, )}, and By
{(g,9),(h,h),(i,7)}. Indeed, using reasoning by symmetry
as in the proof of Theorem [4.1] it can be shown that any (-
generic modification applied to a graph of the form AU By
yields another graph of the form AUB; with [ € {1,2,3,4}.

Since u(G) is not of the form AU By, the program P has
at least one deletion that is not the identity when executed
on input G; let § be the first such deletion. Thus, consider
the prefix P’ of P up to, but not including, §. We know
that G’ = P'(G) is of the form A U Bj,. We can rule out
By, however, since AU By has lost the domain elements d,
e and f which are needed in u(G). We can rule out Bj as
well, since then G’ would consist of six isolated loops; an
()-generic deletion that is not the identity has no choice but
entirely erasing an instance with so much symmetry. So,
G’ equals AU By or AU By. Now § applied to G’ cannot
delete the edges from By, as again this would result in the
loss of d, e and f. So, ¢ deletes the edges from A. (By
symmetry, if & deletes one edge from A then it deletes all
edges from A.) We conclude that the prefix P’; 6(G) equals
Bl or BQ.

Let us now consider what P’;§ does on input B;. Rea-
soning as before, P'(B;) equals By or By. Then the dele-
tion 0 is not allowed to delete anything. Indeed, by sym-
metry it would then delete everything, leaving the empty
instance, whereas the u(B1) equals By itself. We conclude
that P’;§(B;) equals By or Bs.

Noting that B; and By are isomorphic, we obtain that
P’;6(G) and P’;6(B;) are isomorphic, whence, by gener-
icity, P(G) and P(By) are isomorphic as well. This shows
that P is incorrect, since By = u(B7) is not isomorphic to
u(G). O

Proof of Lemmal[].8 It suffices to show that the compo-
sition of two update operations of kind m is equivalent
to a single update operation of kind m. For insertions,
insertr(q1); insertg(ge) is equivalent to insertr (g1 U go(R U
q1)). For deletions, deleter(q1);deleter(g2) is equivalent
to deleter(q1 U g2(R — ¢1)). Finally, consider a composi-
tion modify »(q1); modifyz(g2). Here, g1 and g2 are 2k-ary
queries with k the arity of R. Without loss of general-
ity, we may assume that ¢; and go return functions (from
k-tuples to k-tuples) that are defined on all tuples of R,
whenever they return functions at all. Let ¢;" be the k-ary
ary such that modify(q1) is equivalent to replacey(q;").
Let ¢4 be defined by ¢4(I) = {(¢,¢") | 3’ : (t,¢') € q1 (1)
and (¢,t") € q2(¢;"(I))}. Finally let ¢4 be defined by



a5 (I) = g5(I) if g1 (I) is a function, and ¢4 (I) = adom(I)*
otherwise. Then the composition can be expressed as
modify 5 (¢%). O

Proof of Proposition[{.7 Consider a program P of the
form if g then P; else P; endif. By induction, P; and P
may be assumed to have no if-then-else. Consequently,
P, and P, are compositions of update operations of the
same primitive. By Lemma [£.8] P; and P> each may be
assumed to consist of a single update operation (of the
same primitive). It now remains to note that if-then-else
can be pushed inside the update operation. Indeed, for
any primitive m € {insert, delete, modify}, we can see that
if ¢ then mp(q1) else mg(g2) endif is equivalent to mpg(q’)
where ¢’ is the query if ¢ then g; else go with the obvious
semantics. O

Proof of Proposition[].9 For UL(insert), let u be the up-
date expressed by the following program:

if RNS =0 then
insertg(S);
inserts(R)

else (do nothing) endif

This update cannot be expressed by any straight-line
program P using only insertions. In proof, consider
the input instance I = {(R,{a}), (S,{b})} with u(I)
{(R,{a,b}),(S,{a,b})}. Since each insertion can change
one relation only, there is a prefix P’ of P such that
P'(I) equals either I {(R,{a,b}), (S, {b})} or I =
{(R,{a}),(S,{a,b})}. Say it is I; the argument for I,
is analogous. Since u(l;) = I;, and we have only inser-
tions, every step of P on I; should be the identity. Hence,
we have P/(I) = I, = P'(I1), yet u(I) # u(ly), so P does
not correctly express u.

For UL (delete), let u be the update expressed by the
following program:

ifT#OANT CRAT C S then
deleter (7T);
deleteg(T)

else (do nothing) endif

This update cannot be expressed by any straight-line pro-
gram P using deletions only. In proof, consider the input
instance I = {(R, {a,b}), (S,{a,b}), (T, {b})} with u(I) =
{(R,{a}), (S,{a}), (T,{b})}. Since each deletion can
change one relation only, there is a prefix P’ of P such that
P'(I) equals either I} = {(R, {a}), (S, {a,b}), (T, {b})} or
I = {(R,{a,b}), (S,{b}), (T,{b})}. Say it is I1; the argu-
ment for I is analogous. Since u(Il;) = I;, and we have
only deletions, every step of P on I; should be the identity.
Hence, we have P'(I) = I, = P'(I1), yet u(I) # u(ly), so
P does not correctly express .

For UL(modify), let u be the update expressed by the
following program:
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if (T is a singleton disjoint from R and S) then

modify p({(z,y) | R(z) AT(y)});
modifyg({(z,y) | S(z) AT(y)})
else (do nothing) endif

This update cannot be expressed by any straight-line
program P using only §@-generic modifications. In
proof, consider the input instance I = {(R,{a1,a2}),
(S’ {alv a2})7 (T’ {b})} with U(I) {(R7 {b}>7 (S’ {b})7
(T, {b})}. By symmetry, the only three possible
results of a modification applied to [ are [ it-
self, I, = {(R{b}), (S, {ar,az}), (T, b))}, and I, —
{(R,{a1,a2}),(S,{b}), (T, {b})}. Since u(I) # I, there ex-
ists a prefix P’ of P such that P/(I) equals either Iy or
I5. Say it is I;; the argument for Is is analogous. The
only two possible results of a modification applied to Iy
are I itself and Is = {(R, {b}), (S, {b}), (T, {b})}. On I3,
no modifications except for the identity are possible. Since
u(ly) = Iy, every step of P on I should be the identity.
Hence, we have P'(I) = I; = P'(I1), yet u(I) # u(ly), so
P does not correctly express u. O

Proof of Theorem[5.4} In this proof it will be understood
that all updates considered are (-generic. Also, for nota-
tional convenience, we will identify an instance I of Sgraph
with the binary relation I(R). We will use unordered pairs
{a, b} as undirected edges, which should be understood as
an abbreviation for the two symmetric directed edges (a, b)
and (b, a).

To separate insert; delete from delete; insert, we use the
following update u:

insertr({(y,z) | R(z,y) A R(y,9)});
deleteg({(x, ) | R(x,z)}).

To show that this update cannot be expressed in
the form delete;insert, consider the instance I
{(1,2),(2,2),(3,4)}. We have u(I) = {(1,2),(2,1),(3,4)}.
The delete step must delete (2,2) and cannot delete any
other edges as this would result in the loss of domain ele-
ments. Hence the delete step yields the intermediate result
J ={(1,2),(3,4)}. By symmetry, it is impossible to map
J to u(I) by a generic update.

To separate delete;insert from insert; delete, we use the
following update wu:

deleter({(z,y) | R(z,y) A (R(z,z) V R(y,y))});
insertp({(z,z) | Jy(R(z,y) V R(y,x))}).

To show that this update cannot be expressed in the
form insert; delete, consider the instance I = {1,2,3}% —
{(2,2),(3,3)}. We have u(l) ={(2,2),(2,3),(3,2),(3,3)}-
The insert step must insert (2,2) and (3,3), yielding the
intermediate result J = {1,2,3}2. By symmetry, it is im-
possible to map J to u(I) by a generic update.

To separate modify; delete from delete; modify, we use the
following update wu:



1. For each induced subgraph isomorphic to G
{(0,1), (0,2),(0,3),{0,4}, {0,5}, {0,6}} reverse the
directed edges (0,1), (0,2) and (0, 3);

2. Delete the edges from any induced subgraph isomor-
phic to {{0,4},{0,5},{0,6}}.

To show that this update cannot be expressed in the form
delete; modify, consider the instance I = G. We have
u(I) = {(1,0),(2,0),(3,0)}. We analyze what the delete
step can do. Note that it has to treat (0,1), (0,2) and
(0,3) similarly by symmetry; furthermore, it has to treat
(4,0), (5,0) and (6,0) similarly, and also (0,4), (0,5) and
(0,6) similarly.

e It cannot delete the edges (0,1), (0,2) and (0,3) as
this would result in the loss of active domain elements
1, 2 and 3.

e It cannot delete both directions of the undirected
edges {0,4}, {0,5} and {0,6}, as this would result
in the intermediate result G; = {(0,1), (0,2),(0, 3)}.
But on input G, itself, the intermediate result must
also be G (otherwise, the whole active domain would
be lost). However, G; = u(G1) # u(G), which is a
contradiction (same intermediate result but different
final results).

e It cannot delete the edges (0,4), (0,5) and (0,6) and
keep the other directions, as this would result in the
intermediate result G2 = {(0,1),...,(6,0)}. Again we
obtain a contradiction since on input G5 itself, the in-
termediate result must also be Ga, yet u(G2) # u(G).

e Finally it cannot delete the edges (4,0), (5,0)
and (6,0) and keep the other directions, as this
would result in the intermediate result Gj
{(0,1),...,(0,6)}. By symmetry, it is impossible to
go from G5 to the u(G) with a generic update.

We conclude that the delete step on input G yields G itself
as intermediate result. By Lemma we cannot go from
G to u(G) by a generic modification, since for each edge e
involving 4, 5 or 6, there exists no pair €’ that is fixed with
respect to (G, e). Hence these edge e cannot be modified.

To separate delete; modify from modify; delete, we use the
following update wu:

1. In any isolated subgraph isomorphic to the graph G
from the previous case, delete {0,4}, {0,5} and {0, 6};

2. In any isolated subgraph of the form G;
{(0,1),(0,2),(0,3)}, reverse all edges.

To show that this update cannot be expressed in the form
modify, delete, consider again the instance I = G. We have
u(I) {(1,0),(2,0),(3,0)}. Let us denote the modifi-
cation step by m and investigate how m can modify the
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edges of G. As in the previous case, it has to treat the
three groups of edges uniformly.

The modification must produce at least the new edges
(1,0), (2,0) and (3,0), as these cannot be produced by the
subsequent deletion. By Lemma [3.4] these new edges can
come only from modifying the original edges (0, 1), (0,2)
(0,3), since these are the only edges with respect to which
the new edges are fixed.

For the edges in each of both groups (0,4)..(0,6) and
(4,0)..(6,0), by Lemma/[3.4] there are only four possibilities
for the modification:

A. no change;

B. reverse;

C. modify to (0,0);

D. modify to loop at 4, 5, or 6, respectively.

So we must consider all 16 combinations of cases [AHDI for

group (0,4)..(0,6) with cases for group (4,0)..(6,0).
First we state a trivial but generally helpful lemma.

Lemma A.1. For any modification m and any instance
I, if I Cm(I), then I =m(I).

Proof of Lemma. Since I C m(I), the total number of tu-
ples in m(I) is at least that of I. But a modification can

never strictly increase the total number of tuples. Hence,
m(I)=1. O

Now to the 16 cases.

[AIA] The intermediate result I’ of the modification is like G
except that (0, 1)..(0, 3) have been reversed. Note that
u(I") = I'. Hence, since the second step is a deletion,
I’ must be a subset of m(I’), whence, by the Lemma,
m(I')y = I'. Since u(I) # u(G), however, we get a
contradiction (same intermediate result but different
final results).

In all the following cases we will have a similar rea-
soning: we obtain an intermediate result I’ with the
two properties that u(I’) = I’ (whence I' = m(I'))
but u(I') # u(G), yielding a contradiction. So, we
will just list the intermediate result in each case.

Al {(1,0)..(3,0),(0,4)..(0,6)}.
{(1,0)..(3,0), (0,4)..(0,6), (0,0)}
{(1,0)..(3,0), (0,4)..(0,6), (4,4)..(6,6) }
[BA] {(1,0)..(3,0), (4,0)..(6,0)}.

BBl {(1,0)..(3,0), (0,4)..(0,6), (4,0)..(6,0)}
{(1,0)..(3,0), (4,0)..(6,0), (0,0)}.
{(1,0)..(3,0), (4,0)..(6,0), (4,4)..(6,6) }



Same as [BIC|

[AB] Same as [AC

{(1,0)..(3,0), (0,0)}.
{(1,0)..(3,0), (0,0), (4,4)..(6,6)}.
Same as [BIDl

DBl Same as [AID|

Same as [AD!

{(1,0)..(3,0), (4,4)..(5,5)}.

To separate insert; modify from modify; insert, we use the
following update u:

insertp ({(z,z) | Ju, v, v (R(u,v) A R(u,v) ANu # o
Az =uVr=0v)});
modifyp({(z,y,y, ) | R(z,z) A R(z,y) A R(y,y)})-

To show that this update cannot be expressed in the form
modify; insert, consider the instance I = {(1,0),(2,0)}. We
have u(I) = {(0,1),(0,2), (0,0),(1,1),(2,2)}. In principle,
there are six possibilities for the modification step m to
modify both edges (1,0) and (2,0) uniformly:

A. no change;

reverse;

modify to the other edge;
modify to loop at 0;

modify to loop at tail;

= = U Qv

modify to loop at tail of the other edge.

Nevertheless, [C] has the same global effect as [A] so we
ignore it; [D] loses domain elements 1 and 2; [E] and [F] lose
domain element 0. So it remains to consider cases [Al and
Bl

In case [A] the intermediate result is G itself. By the
subsequent insertion we cannot go from G to u(G) because
the edge (1,0) of G is not in u(G).

In case [B] the intermediate result is I’ = {(0, 1), (0,2)}.
Note that u(I') = I’ #" u(G). We now reason that m(I’)
must be I’ itself, from which we get the desired contra-
diction. So, suppose m(I’) # I'. Then reasoning as
before, the remaining possibilities for m(I’) are {(0,0)},
{(1,1),(2,2)}, or {(1,0),(2,0)}. The first two possibili-
ties do not have all required domain elements, and the last
possibilities cannot reach I’ by an insertion.

To separate modify; insert from insert; modify, we use the
following update u:

modify z({(z,y, =, ) | R(z,z) A R(x,y) A R(y,y)});
insertgp({(x,2) | Iy(R(z,y) V R(y,2))}).
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To show that this update cannot be expressed in
the form insert; modify, consider the instance I
{1,2,3,4}2 - {(3,3), (4,4)}. We have u(I) = {1,2,3,4}> —
{(1,2),(2,1)}. On input I, by symmetry, there are only
two possibilities for the insertion step: insert nothing, or
insert {(3,3),(4,4)}. The latter possibility can be ruled
out, however, because it results in the complete directed
graph from which u(I) cannot be produced by a generic
update.

So, we are left with the modification step which acts
directly on I, and we must show that no generic modifi-
cation can map I to u(I). In I we can distinguish several
groups of edges whose members must be treated uniformly
by symmetry. Two such groups are the “top loops:” the
loops at 1 and 2, and the “top edges”: the two edges be-
tween 1 and 2. It is very important to note that I has 14
edges and u(G) has 14 edges as well. Hence, the modifica-
tion must be injective on the edges.

Let us see what the modification can do with a top loop.
The possibilities are the following:

L1. no change;

L2. modify to the other top loop;
L3. modify to the leaving top edge;
L4. modify to the entering top edge.

By Lemma there are no other possibilities, primarily
due to the automorphism that fixes 1 and 2 but swaps 3
and 4. We can rule out possibilities [L3] and [L4] because
they would lead to the continued presence of the top edges
in the final result u(I), which is incorrect. Possibilities
and have the same global effect.

The possibilities for the modification of a top edge are
the following;:

T1. no change;

T2. modify to the other top edge;

T3. modify to the loop at the tail;

T4. modify to the loop at the head.

We can rule out and because they keep the top
edges in the final result. Possibilities [T3] and [T4] have the
same global effect.

Since the modification maps both the set of top loops,
and the set of top edges, to the set of top loops, the mod-
ification is not injective on the edges and we obtain that
u(I) cannot be reached, as desired. O
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