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Abstract

The paper studies the primitivity of the basic operators UNION, AND, OPTIONAL, FILTER,
and SELECT, as they are used in the SPARQL query language. The question of whether one
operator can be expressed in terms of the other operators is answered in detail. It turns out that
only AND is non-primitive. These results are shown to be insensitive to the choice of semantics
for filter conditions (three-valued or two-valued). It is also shown that these two semantics can
simulate each other.
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1. Introduction

Currently there is renewed interest in the classical topic of graph databases [AG08b, Woo12,
HKVdBZ13]. Much of this interest has been sparked by SPARQL: the query language for RDF.
The Resource Description Framework (RDF) [RDF04] is a popular data model for information
in the Web. RDF represents information in the form of directed, labeled graphs. The stan-
dard query language for RDF data is SPARQL [SPA13]. The current version 1.1 of SPARQL
extends SPARQL 1.0 [SPA08] with important features such as aggregation and regular expres-
sions. Other features, such as negation and subqueries, have also been added, but mainly for
efficiency reasons, as they were already expressible, in a more roundabout manner, in version 1.0
(this follows from known results to the effect that every relational algebra query is express-
ible in SPARQL [AG08a].). Hence, it is still relevant to study the fundamental properties of
SPARQL 1.0.

The expressive power of SPARQL has been analyzed in its relationship to the relational
algebra [Cyg05], SQL [CLF09], Datalog [AG08a, Pol07], and OWL [SP07]. Also the rela-
tionship between expressivity and complexity and optimization of evaluation has been studied
[PAG09, SML10, LM12].

The main goal of this paper is to understand the primitivity of the basic operators used in
SPARQL patterns: AND, UNION, OPT, FILTER, and SELECT. (SELECT, which performs
projection, was added as a subquery feature in SPARQL 1.1.) Indeed, primitivity has been a
recurring topic in the investigation of database query languages, e.g., [AHV95, CH80, FGL+11].
It turns out that AND is not primitive: adapting an idea of Angles and Gutierrez [AG08a], we
can express AND in terms of OPT and FILTER. We show that this is the sharpest result possible,
in the sense that without FILTER, or without OPT, AND is not expressible. We also show that
AND can no longer be expressed in terms of OPT and FILTER if one insists on a “well-designed”
expression [PAG09]. We then proceed to show that the remaining operators are primitive.
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In a final section of the paper, we show that the above results are insensitive to the choice
of semantics for filter conditions. Indeed, while the official semantics uses a three-valued logic
[APG09], a two-valued semantics has been considered as well [PAG09]. Besides, we point out
that the choice of semantics has no impact on the expressivity: the two semantics can express
each other.

2. SPARQL

In this section we recall the syntax and semantics of SPARQL patterns, closely following the
core SPARQL formalization given by Arenas, Gutierrez and Pérez [PAG09, APG09].

2.1. RDF graphs

Let I, B, and L be infinite sets of IRIs, blank nodes and literals, respectively. These three sets
are pairwise disjoint. We denote the union I ∪ B∪ L by U, and elements of I ∪ L will be referred
to as constants.

A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B∪ L) is called an RDF triple. An RDF graph is a finite
set of RDF triples.

2.2. Syntax of SPARQL patterns

Assume furthermore an infinite set V of variables, disjoint from U. The convention is to write
variables starting with the character ‘?’. SPARQL patterns are inductively defined as follows.
• Any triple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a pattern (called a triple pattern).
• If P1 and P2 are patterns, then so are the following: P1 UNION P2, P1 AND P2, and

P1 OPT P2.
• If P is a pattern and S is a finite set of variables then SELECTS (P) is a pattern.
• If P is a pattern and C is a constraint (defined next), then P FILTER C is a pattern; we call

C the filter condition.
Here, a constraint is a boolean combination of atomic constraints; an atomic constraint can
have one of the three following forms: bound(?x) (bound), ?x =?y (equality), and ?x = c
(constant equality), for ?x, ?y ∈ V and c ∈ I ∪ L.

2.3. Semantics of SPARQL patterns

The semantics of patterns is defined in terms of sets of so-called mappings, which are simply
total functions µ : S → U on some finite set S of variables. We denote the domain S of µ by
dom(µ).

Now given a graph G and a pattern P, we define the semantics of P on G, denoted by JPKG,
as a set of mappings, in the following manner.
• If P is a triple pattern (u, v,w), then

JPKG := {µ : {u, v,w} ∩ V → U | (µ(u), µ(v), µ(w)) ∈ G}.
Here, for any mapping µ and any constant c ∈ I ∪ L, we agree that µ(c) equals c itself. In
other words, mappings are extended to constants according to the identity mapping.

• If P is of the form P1 UNION P2, then JPKG := JP1KG ∪ JP2KG.
• If P is of the form P1 AND P2, then JPKG := JP1KG on JP2KG, where, for any two sets of

mappings Ω1 and Ω2, we define
Ω1 on Ω = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 and µ1 ∼ µ2}.
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Table 1: Truth tables for the three-valued semantics.

p q p ∧ q p ∨ q
true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

p ¬p
true false
false true
error error

Here, two mappings µ1 and µ2 are called compatible, denoted by µ1 ∼ µ2, if they agree on
the intersection of their domains, i.e., if for every variable ?x ∈ dom(µ1) ∩ dom(µ2), we
have µ1(?x) = µ2(?x). Note that when µ1 and µ2 are compatible, their union µ1 ∪ µ2 is a
well-defined mapping; this property is used in the formal definition above.

• If P is of the form P1 OPT P2, then
JPKG := (JP1KG on JP2KG) ∪ (JP1KG r JP2KG),

where, for any two sets of mappings Ω1 and Ω2, we define
Ω1 rΩ2 = {µ1 ∈ Ω1 | ¬∃µ2 ∈ Ω2 : µ1 ∼ µ2}.

• If P is of the form SELECTS (P1), then JPKG = {µ|S∩dom(µ) | µ ∈ JP1KG}, where f |X denotes
the standard mathematical notion of restriction of a function f to a subset X of its domain.

• Finally, if P is of the form P1 FILTER C, then JPKG := {µ ∈ JP1KG | µ(C) = true}.
Here, for any mapping µ and constraint C, the evaluation of C on µ, denoted by µ(C), is
defined in terms of a three-valued logic with truth values true, false, and error. Recall that
C is a boolean combination of atomic constraints.
For a bound constraint bound(?x), we define:

µ(bound(?x)) =

true if ?x ∈ dom(µ);
false otherwise.

For an equality constraint ?x =?y, we define:

µ(?x =?y) =


true if ?x, ?y ∈ dom(µ) and µ(?x) = µ(?y);
false if ?x, ?y ∈ dom(µ) and µ(?x) , µ(?y);
error otherwise.

Thus, when ?x and ?y do not both belong to dom(µ), the equality constraint evaluates to
error. Similarly, for a constant-equality constraint ?x = c, we define:

µ(?x = c) =


true if ?x ∈ dom(µ) and µ(?x) = c;
false if ?x ∈ dom(µ) and µ(?x) , c;
error otherwise.

A boolean combination is then evaluated using the truth tables given in Table 1.
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3. Primitivity of operators

Let us abbreviate the operator AND by A; FILTER by F ; OPT by O; SELECT by S; and
UNION by U. Then we can denote any fragment of SPARQL, where only a subset of the
five operators is available, by the letter word formed by the operators that are available in the
fragment. Thus, for example,AFSU denotes the fragment where OPT is disallowed.

Since OPT is the least conventional operator of the five, one may wonder whether it is not
already expressible in terms of the other four operators. The answer is negative, however, in view
of the following well-known and easy-to-prove proposition.

Proposition 1. Every pattern P in AFSU is monotone. That is, for any two graphs G1 ⊆ G2,
we have JPKG1 ⊆ JPKG2 .

Formally, we should define what we mean when we say that some operatorX is “expressible”
in some fragment W. We will simply take this to mean here that for every pattern P in the
fragmentWX (i.e., adding X toW) there exists a pattern Q in the given fragmentW such that
for all graphs G, we have JPKG = JQKG.

We can now conclude:

Corollary 2. OPT is not expressible inAFSU.

Proof. Consider the pattern P = (?x, p, ?y) OPT (?y, q, ?z). Suppose, for the sake of contradic-
tion, that P would be expressible as Q for someAFSU pattern Q.

Consider the graphs G1 = {(a, p, b)} and G2 = G1 ∪ {(b, q, c)}. Then JPKG1 = {µ1} and
JPKG2 = {µ2} where µ1 = (?x = a, ?y = b) and µ2 = (?x = a, ?y = b, ?z = c). Since JPKG1 =

JQKG1 , we have µ1 ∈ JQKG1 . Since G1 ⊆ G2, by Proposition 1, we have JQKG1 ⊆ JQKG2 . Hence,
µ1 ∈ JQKG2 = JPKG2 . The latter set equals {µ2}, however, and since µ1 , µ2, we have arrived at a
contradiction.

Remark 3. The example in the above proof suggests that patterns involving OPT might satisfy
some weaker notion of monotonicity, involving extension of mappings rather than straight inclu-
sion of one set of mappings in another. This so-called “weak monotonicity” still does not hold
in general, but it holds for so-called “well-designed” patterns [AP11].

We next show that AND is not primitive:

Proposition 4. AND is expressible in FO.

Proof. First we recall the MINUS operator [AP11]. For any two patterns P and Q, we can
consider the extended pattern P MINUS Q with the following semantics: for any graph G,
JP MINUS QKG = JPKG r JQKG.

It is well known [AG08a, AP11] that P MINUS Q is expressible as (P OPT (Q AND
(?x, ?y, ?z))) FILTER ¬ bound(?x), where ?x, ?y and ?z are fresh variables not occurring in P
or Q. Actually, we can express MINUS already in the fragment OF because in the above expres-
sion, we can replace AND by OPT without changing the semantics (this works because ?x, ?y, ?z
are fresh variables.).

We can now express P1 AND P2 as (P1 OPT P2) MINUS (P1 MINUS P2). To see the
correctness of this expression, first, using the equality P1 OPT P2 = (P1 AND P2) UNION
(P1 MINUS P2), we can rewrite it as

((P1 AND P2) MINUS (P1 MINUS P2)) UNION ((P1 MINUS P2) MINUS (P1 MINUS P2)).
4



The second term in the above expression is empty, so we can concentrate on the first term and
must show that it is equivalent to P1 AND P2. Thereto, for any two sets of mappings Ω1 and Ω2,
we must show that Ω1 on Ω2 is contained in (Ω1 on Ω2) r (Ω1 r Ω2); the other containment is
obvious. Thus, let µ ∈ Ω1 on Ω2 and let µ′ ∈ Ω1 r Ω2 be arbitrary. We must show that µ � µ′.
Assume, for the sake of contradiction, that µ ∼ µ′. We have µ = µ1 ∪ µ2 for some µ1 ∈ Ω1 and
µ2 ∈ Ω2. Since µ ∼ µ′ and µ2 ⊆ µ, also µ2 ∼ µ

′. However, since µ2 ∈ Ω2, this contradicts that
µ′ ∈ Ω1 rΩ2.

One may wonder whether OPT and filters are really needed in order to express AND. That
OPT is really needed is quite obvious, in view of the property that any pattern using neither AND
nor OPT can return mappings with at most three variables in their domain only. This property is
clearly violated by the pattern (?x, ?y, ?z) AND (?u, ?v, ?w), for example. We next confirm that
filters are really needed to express AND; this is Proposition 6. First we need a technical lemma.

Lemma 5. For every OSU pattern P there exists a singleton graph G (graph consisting of a
single RDF triple) such that JPKG is nonempty.

Proof. By induction on the structure of P. If P is a triple pattern (?x, ?y, ?z), choose an arbitrary
mapping µ : {?x, ?y, ?z} ∩ V → I and let G = {(µ(?x), µ(?y), µ(?z))}. If P is P1 UNION P2, the
claim readily follows by induction. If P is P1 OPTP2, then by induction, P1 is nonempty on some
singleton graph G. But then by the semantics of OPT, P is nonempty on G as well. Finally, if P is
SELECTS (P1) then again P1 is nonempty on some singleton graph G. Hence P is nonempty on
G as well. Note that in the worst case, JP1KG only contains mappings µ with dom(µ)∩S = ∅. But
then still, the projection µ|∅ of such a mapping yields the empty mapping, which then belongs to
JPKG, so JPKG is still nonempty.

Proposition 6. AND is not expressible in OSU.

Proof. Consider the pattern P = (?x, p, ?y) AND (?x, q, ?y). It is clear that P is always empty
on any singleton graph. By Lemma 5 however, every OSU pattern Q, is nonempty on some
singleton graph. Hence, the claim follows.

Remark 7. The pattern expressing MINUS, used in the proof of Proposition 4, is not well-
designed [PAG09]. Indeed, when restricting to well-designed patterns, it turns out that AND
regains its primitivity. Specifically, the following proposition contrasts Proposition 4:

Proposition 8. AND is not expressible by any union of well-designed FO patterns.

Proof. We will show that any well-designed FO pattern P that is satisfiable (JPKG is nonempty
for some graph G) is already satisfiable by a singleton graph. Then this property also follows for
unions. Since this property clearly does not hold for (?x, p, ?y) AND (?x, q, ?y), this will prove
the proposition.

For any FO pattern P, we define the set lmsp(P) of leftmost subpatterns of P, inductively
as follows: if P is a triple pattern t, then lmsp(P) := {t}; if P is of the form P1 FILTER C or
P1 OPT P2, then lmsp(P) := lmsp(P1) ∪ {P}. There is exactly one triple pattern t in lmsp(P),
which is the leftmost leaf in the parse tree of P; the leftmost subpatterns correspond to the nodes
on the path from the lefmost leaf to the root. Furthermore, for every Q ∈ lmsp(P) we define Q′

inductively as follows: if Q is a triple pattern t, then Q′ := t; if Q is of the form Q1 FILTER C
then Q′ := Q′1 FILTER C; if Q is of the form Q1 OPT Q2 then Q′ := Q′1.
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It follows from the definition of well-designedness [PAG09] that if P is well-designed, and
Q1 FILTER C is in lmsp(P), then all variables from C already occur in the leftmost triple pattern
t of P. Using this observation, we can prove the following claim. Let P be a well-designed
pattern in FO and let t be its leftmost triple pattern; let S be the set of variables in t. Let
Q ∈ lmsp(P). Then for any graph G and any µ ∈ JQKG we have S ⊆ dom(µ) and µ|S ∈ JQ′K{µ(t)}.
We prove the claim by induction on the height of Q. If Q is t itself, the claim is trivial. If Q
is of the form Q1 FILTER C, then µ ∈ JQ1KG and µ(C) = true. By induction, S ⊆ dom(µ) and
µ|S ∈ JQ′1K{µ(t)}. Since all variables in C already occur in S , we have µ|S (C) = µ(C) = true
so µ|S ∈ JQ′1 FILTER CK{µ(t)} = JQ′K{µ(t)}. If Q is of the form Q1 OPT Q2, we can always write
µ = µ1∪µ2 with µ1 ∈ JQ1KG. By induction, S ⊆ dom(µ1) ⊆ dom(µ) and µ|S = µ1|S ∈ JQ′1K{µ1(t)} =

JQ′1K{µ(t)} = JQ′K{µ(t)}, as desired.
Applying the claim to Q = P, we obtain that if P evaluates to a nonempty result on some

graph G, then P′ evaluates to a nonempty result on some singleton graph H. By Lemma 4.3 of
Pérez et al. [PAG09] (again using that P is well-designed), this in turn implies that P is nonempty
on H, which is what we have to prove.

Let us now turn to the question of primitivity of FILTER. Thereto we need another lemma
which uses a simplified notion of mapping scheme of a pattern, defined as follows: MS(u, v,w) :=
{{u, v,w} ∩ V}; MS(P1 UNION P2) := MS(P1) ∪MS(P2); MS(P1 OPT P2) = MS(P1 AND P2) :=
{M1 ∪ M2 | M1 ∈ MS(P1), M2 ∈ MS(P2)}; and MS(SELECTS (P1)) := {M ∩ S | M ∈ MS(P1)}.

Lemma 9. Let G be the complete graph on two constants a, b ∈ I (i.e., G = {a, b}×{a, b}×{a, b}).
Let P be anyAOSU pattern in which no other constants occur than a or b. Then JPKG consists
of all possible mappings µ : M → {a, b} with M ∈ MS(P).

Proof. By induction on the structure of P. If P is a triple pattern (u, v,w), we are given that each
of u, v and w is either a variable or a constant in {a, b}. From the definition of G it is then clear
that every mapping µ : {u, v,w} ∩ V → {a, b} belongs to JPKG.

If P is of the form P1 UNION P2, the claim readily follows by induction.
If P is of the form P1 AND P2, let µ : M1 ∪ M2 → {a, b} be arbitrary with Mi ∈ MS(Pi) for

i = 1, 2. Let µi := µ|Mi . By induction, µi ∈ JPiKG, and µ1 ∼ µ2 since they are both restrictions of
the same mapping µ. Hence, µ = µ1 ∪ µ2 ∈ JPKG as desired. Conversely, any µ ∈ JPKG is of the
form µ1∪µ2 with µi ∈ JPiKG. By induction, dom(µi) ∈ MS(Pi), so dom(µ) = dom(µ1)∪dom(µ2) ∈
MS(P) as desired.

If P is of the form P1OPTP2, the claim follows from the previous case since JPKG = JP1AND
P2KG for the complete graph G under consideration. Indeed, take any µ1 ∈ JP1KG. Take any S 2 ∈

MS(P2) and consider a mapping µ2 : S 2 → {a, b} compatible to µ1. By induction, µ2 ∈ JP2KG.
Hence, for every µ1 ∈ JP1KG there exists a compatible µ2 ∈ JP2KG.

Finally, if P is of the form SELECTS (P1), let µ : S ∩ M → {a, b} be arbitrary with M ∈

MS(P1). Let µ̄ : M → {a, b} be an arbitrary extension of µ to M. By induction, µ̄ ∈ JP1KG.
Hence, µ = µ̄|S∩dom(µ̄) ∈ JPKG as desired. Conversely, any µ ∈ JPKG is of the form µ̄|S∩dom(µ̄)
with µ̄ ∈ JP1KG. By induction, dom(µ̄) ∈ MS(P1). Hence, dom(µ) = S ∩ dom(µ̄) ∈ MS(P) as
desired.

As a consequence we obtain:

Proposition 10. FILTER is not expressible inAOSU.
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Proof. Consider the pattern P = (?x, ?y, ?z) FILTER ?x =?y. Suppose, for the sake of contradic-
tion, that P is expressible as Q for someAOSU pattern Q.

Let G be the graph from Lemma 9. It is clear that any triple pattern involving constants
other than a and b is empty on G. Hence, in Q we may replace all these patterns by the special
expression ∅ standing for the empty pattern (the pattern that evaluates to the empty set on every
graph). We can then normalize these expressions ∅ away by applying the following rewrite rules:

∅ AND P2 → ∅, P1 AND ∅ → ∅, ∅ UNION P2 → P2,

P1 UNION ∅ → P1, ∅ OPT P2 → ∅, P1 OPT ∅ → P1,

and SELECTS (∅) → ∅. If the entire pattern rewrites to ∅, then Q is empty on G, while P is not
empty on G, which is impossible. Hence, we may now assume that Q involves no constants other
than a and b, so that Lemma 9 applies.

Since P returns mappings with domain equal to {?x, ?y, ?z}, and Q expresses P on G, by
Lemma 9, the set {?x, ?y, ?z}must belong to MS(Q). However, by the same Lemma, the mapping
(?x = a, ?y = b, ?z = a) belongs to JQKG = JPKG. Since this mapping does not satisfy the filter
condition, however, we have arrived at a contradiction.

The primitivity of UNION is already known: it follows from the known property [PAG09,
Claim 3.9] that a UNION-free pattern can never return two different but compatible mappings,
whereas this is clearly possible for the pattern (?x, p, ?y)UNION(?y, q, ?z) on the graph {(a, p, b),
(b, q, c)}. One can actually see the primitivity of UNION in a different way as well. It is readily
verified that UNION-free patterns evaluated on a singleton graph can return at most one mapping,
whereas the pattern (?x, r, ?y) UNION (?y, r, ?x) returns two mappings on the singleton graph
{(a, r, b)}.

Finally, we discuss the primitivity of SELECT. The following lemma and proposition provide
the result.

Let P be a pattern and G be a graph. We denote JPK?x
G = {µ ∈ JPKG | dom(µ) = {?x}}.

An ?x-variable triple pattern is a triple pattern in which ?x is the only occurring variable (i.e.,
in one of the forms (?x, a, b), (a, ?x, b), (a, b, ?x), (?x, a, ?x), (a, ?x, ?x), (?x, ?x, a), or (?x, ?x, ?x)).

Lemma 11. For every pattern P in AFOU, there exists some finite set T of ?x-variable triple
patterns such that for every graph G and for every µ ∈ JPK?x

G , there exists some triple pattern
t ∈ T such that µ ∈ JtKG.

Proof. By induction on the structure of P. Basically, if P = t is a triple pattern and t is not an
?x-variable triple pattern then T = ∅ since JtK?x

G = ∅ for any graph G. But, if t is an ?x-variable
triple pattern then T = {t}.

Inductively, if P is of the form P1UNIONP2 or P1FILTERC, the claims follows by induction.
If P is of the form P1 ANDP2, by induction, we have set T1 and T2 for P1 and P2 respectively.

We set T = T1 ∪ T2. Let µ ∈ JPK?x
G . Since µ ∈ JPKG, there exist µ1 ∈ JP1KG and µ2 ∈ JP2KG such

that µ = µ1 ∪ µ2 and µ1 ∼ µ2. Since dom(µ) = {?x}, there are three cases:
• dom(µ1) = ∅ and dom(µ2) = {?x}. In this case, µ = µ2. By induction, µ2 ∈ JtKG for some

t ∈ T2 ⊆ T .
• dom(µ1) = {?x} and dom(µ2) = ∅. In this case, µ = µ1. By induction, µ1 ∈ JtKG for some

t ∈ T1 ⊆ T .
• dom(µ1) = {?x} = dom(µ2). In this case, µ = µ1 = µ2. Again the claim follows by

induction.
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Finally, let P be of the form P1 OPT P2. We again seet T = T1 ∪ T2. If µ ∈ JPKG then either
µ ∈ JP1 AND P2KG or µ ∈ JP1KG. In the first case, we reason as for P1 AND P2; and the second
case follows immediately by induction.

Proposition 12. SELECT is not expressible inAFOU.

Proof. Consider the pattern P = SELECT?x((?x, ?y, ?z)). Suppose, for the sake of contradiction,
that P is expressible as Q for some AFOU pattern Q. In this sense, JPKG = JQKG = JQK?x

G .
Let G = {(a, p, b)} be a singleton graph where a, p, b do not occur as constants in Q. Thus for
every ?x-variable triple pattern t occurring in Q, we have JtKG = ∅. Then, by Lemma 11, we can
conclude that JQK?x

G = ∅. However, JPKG = {?x = a}. We have arrived at the contradiction.

4. Two- versus three-valued semantics

As an alternative [PAG09] to the three-valued semantics for filter conditions, we may redefine
the evaluation of a constraint C on a mapping µ, now denoted by µ(C)2, in terms of standard two-
valued logic, as follows. For bound constraints, the definition does not change.

For equality and constant-equality constraints, we redefine:

µ(?x =?y)2 :=

true if ?x, ?y ∈ dom(µ) and µ(?x) = µ(?y);
false otherwise.

µ(?x = c)2 :=

true if ?x ∈ dom(µ) and µ(?x) = c;
false otherwise.

A boolean combination is then evaluated using classical boolean logic.
We can then define the two-valued semantics of a pattern P on a graph G, denoted by JPK2

G,
in exactly the same way as above, except that the semantics of filter patterns now uses the two-
valued evaluation of filter conditions. Formally, if P is of the form P1 FILTER C, then JPK2

G :=
{µ ∈ JP1K2

G | µ(C)2 = true}.

Example 13. Let G be the graph consisting of a single triple (a, p, b) with a, p, b ∈ I. Consider
the following pattern P: ((?x, p, ?y) OPT (?y, q, ?z)) FILTER ¬(?x =?z), where ?x, ?y and ?z are
variables and q ∈ I is a constant different from p. Then JPKG is empty, but JPK2

G is not, containing
the mapping µ = (?x = a, ?y = b). Indeed, J(?x, p, ?y)OPT(?y, q, ?z)KG = {µ}. Since ?z < dom(µ),
we have µ(¬(?x =?z))2 = true whereas µ(¬?x =?z) = error.

The above example suggests the two semantics differ mainly in their treatment of negation.
And indeed we have the following proposition. A pattern is called positive if every filter condition
is a positive constraint; a constraint is called positive if it is built up from atomic constraints using
only disjunction and conjunction, but no negation.

Proposition 14. For every positive pattern P and every graph G, we have JPKG = JPK2
G.

Proof. The claim follows from the observation that, for every positive constraint C and every
mapping µ, we have µ(C) = true if and only if µ(C)2 = true. This is readily verified by induction
on the structure of C.

Nevertheless, we have the following theorem which shows that the choice of semantics does
not impact expressivity.
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Proposition 15. For every pattern P there exists a pattern Q such that for every graph G, we
have JPKG = JQK2

G. Conversely, for every pattern Q there exists a pattern P such that for every
graph G, we have JQK2

G = JPKG.

Proof. For any constraint C, define C(2) to be the constraint obtained from C by replacing every
equality constraint ?x =?y by (?x =?y ∧ bound(?x) ∧ bound(?y)), and every constant-equality
constraint ?x = c by (?x = c ∧ bound(?x)). It is then readily verified by induction that for every
mapping µ, we have µ(C) = µ(C(2))2. Hence, replacing every filter condition C in P by C(2), we
obtain the desired pattern Q.

For the converse direction, from Q to P, we first observe that disjunction in filter conditions
can be avoided. Indeed, constraints can be put into disjunctive normal form, and P FILTER
(C1 ∨ C2) is equivalent to (P FILTER C1) UNION (P FILTER C2). (This observation holds for
the three-valued and the two-valued semantics alike.) Furthermore, the double negation axiom
¬¬C ≡ C is also valid in three-valued logic. So, we may assume that every filter condition in Q
is a conjunction of possibly negated atomic constraints.

Now consider such a constraint C that is a conjunction of possibly negated atomic con-
straints. Then define C(3) as the constraint obtained from C by leaving every unnegated atomic
constraint untouched, and replacing every negated equality constraint ¬(?x =?y) by (¬(?x =

?y) ∨ ¬ bound(?x) ∨ ¬ bound(?y)), and every negated constant-equality constraint ¬(?x = c) by
(¬(?x = c) ∨ ¬ bound(?x)). It is then readily verified by induction that for every mapping µ, we
have µ(C)2 = µ(C(3)). By rewriting all filter conditions in Q in this manner we obtain the desired
pattern P.

It is natural to ask whether the results of Section 3 still hold under the two-valued semantics.
Indeed, it can be verified that all the proofs of that section remain valid. Hence we can conclude
the main result of this paper.

Theorem 16. The only non-primitive operator is AND, both under the three-valued as under
the two-valued semantics.

5. Conclusion

In order that programmers who use SPARQL can get the most out of their queries, as well as
implementers of SPARQL processing engines have the widest array of techniques available, it is
important to have as much insight as possible in the precise semantics of SPARQL patterns and
the interplay among their several operators [SML10]. In this note, we have focused on the basic
operators present in SPARQL 1.0. Similar investigations can be done on the manyfold extensions
of SPARQL that are being considered, not in the least in SPARQL 1.1, and indeed investigations
along these lines are currently ongoing, e.g., [FGL+11, BPR12, LPPS12].
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