
Expressive Power of Safe First-Order Logical
Decision Trees

Joris J.M. Gillis! and Jan Van den Bussche

Hasselt University and transnational University of Limburg

Abstract. This paper characterizes the expressive power of a subclass
of first-order logical decision trees (FOLDTs) as a fragment of first-
order logic. Specifically, using safe FOLDTs one can express precisely
the boolean combinations of safe existential sentences.

1 Introduction

In Logical and Relational Learning [5], the logical languages that can be learned
most effectively offer rather limited expressiveness, typically not going beyond
the existential fragment of first-order logic. Indeed, this is the standard balancing
exercise between expressive power and efficiency that one faces everywhere in the
fields of AI and computer science. First-order logical decision trees (FOLDTs)
[1] are one of the few logical languages used in ILP that offer higher expressive
power, yet can still be learned effectively (cf. the Tilde system, part of the
ACE-ilProlog system [2,3]). FOLDTs allow the expression of certain properties
involving universal quantification in a natural and direct manner. For example,
consider the vocabulary with a binary relation symbol E, used to indicate the
edges of a directed graph, and unary relation symbols R and B, used to indicate
the “red” and the “blue” nodes in the graph. Then the very simple FOLDT
shown in Fig. 1 expresses the property that every blue node has edges to all red
nodes, expressed in first-order logic as

(∀x)(B(x) → (∀y)(R(y) → E(x, y))). (∗)

A natural question now, which has remained unanswered in the literature so
far, is, exactly which properties can be expressed by FOLDTs? Blockeel and De
Raedt [1] have given a translation of FOLDTs into recursion-free Prolog which
can be equivalently expressed in first-order logic (FOL). However, exactly which
fragment of FOL do we cover by FOLDTs? In the present paper we answer
the question for a subclass of FOLDTs, called the safe FOLDTs and show the
equivalence between safe FOLDTs and the fragment of FOL formed by all safe
boolean combinations of existential sentences. For example, the above formula
can be rewritten as the negation of an existential sentence:

¬(∃x, y)(B(x) ∧R(y) ∧ ¬E(x, y)) (†)
! Ph.D. Fellow of the Research Foundation Flanders (FWO).

B(x) ∧R(y) ∧ ¬E(x, y)

no yes

Fig. 1. Example of a FOLDT.

This existential sentence is safe because variables x and y, which occur in
the negative literal ¬E(x, y), also occur in a positive literal (B(x) and R(y)
respectively). A formal definition of safety will be provided later in the paper.

Note that formula (†) closely matches the FOLDT of Fig. 1.
Our result implies that properties whose expression require the alternation

of quantifiers in an essential way are not expressible as a safe FOLDT. A typical
example of such a property is “there exists a blue node with edges to all red
nodes”, or in FOL,

(∃x)(B(x) ∧ (∀y)(R(y) → E(x, y))).

It is interesting to put our result in the perspective of the logical learning
model by Osherson and Weinstein [7,8,9]; see also [6]. Indeed, there it has been
shown that a query is learnable in the limit if and only if it is ∆2-expressible.
Since our result places safe FOLDTs in ∆2, as we will see in section 5, our result
may help to explain why FOLDTs are effectively learnable (in the limit).

2 Preliminaries

To avoid misunderstanding, we fix terminology and notation for some well-known
notions from logic. A relational vocabulary is a set τ of relation symbols, each
with an associated arity (a natural number). A τ -interpretation I consists of a
nonempty set dom(I), called the domain of I, and a k-ary relation RI on dom(I),
for each R ∈ τ , with k the arity of R.

A boolean query over τ is a function Q from the set of τ -interpretations to the
two-element set {yes,no}. In the most basic classification setting of learning from
interpretations, the learner is provided with some yes- and some no-instances of
a boolean query Q, and must infer a classifier, i.e., an expression for Q. Often
this expression can be translated in a first-order logic (FOL) sentence; this is the
case, for example, with classifiers in the form of recursion-free Prolog programs.
A FOL sentence over τ is a FOL formula without free variables and involving
only the relation symbols from τ , besides the equality symbol. The boolean query
Q expressed by such a sentence ϕ is defined as follows: for every τ -interpretation

I, we have that Q(I) = yes if and only if I |= ϕ. Here, I |= ϕ denotes that ϕ is
true in I. The class of queries expressed by FOL formulas is called the class of
first-order queries.

3 First-Order Logical Decision Trees

Fix a relational vocabulary τ . Recall that a literal is an atomic formula with
relation name from τ , or the negation of such an atomic formula. A first-order
logical decision tree (FOLDT) over τ is a couple (T, λ), such that

– T is a finite binary tree; and
– λ is a labeling function on the nodes of T such that each internal node

(including the root) is labeled with a conjunction of literals over τ , and each
leaf node is labeled with ‘yes’ or ‘no’; the label of node n is denoted by λn.

When no confusion can arise, we will refer to the FOLDT simply as T and leave
λ implicit.

An example of a FOLDT over the vocabulary consisting of the two binary
relation names R and S, is shown in Figure 2.

R(x, y1)

noS(x, y2)

yesno

Fig. 2. FOLDT expressing the first-order query ∃x
`
∃y1 R(x, y) ∧ ¬∃y2 S(x, y2)

´
.

The semantics of FOLDTs has been defined by a translation into recursion-
free Prolog [1]. The resulting Prolog programs use negation by failure which
sometimes gives non-declarative results. Consider, for example, the simple FOL-
DT consisting of a root with two leaves as children. The left child is labeled yes,
the right child is labeled no. The root is labeled ¬R(x). Then the semantics of
this FOLDT is equivalent to ¬(∃x)R(x). In contrast, if the root would be labeled
S(x)∧¬R(x), the semantics would become (∃x)(S(x)∧¬R(x)). Moreover, if the
root would be labeled ¬R(x) ∧ S(x), the semantics would be ¬(∃x)(R(x)) ∧
(∃x)(S(x)).

We next define a more declarative semantics for FOLDTs, which is equivalent
to the original Prolog semantics in the case the FOLDTs are safe. We will define
safety below, but first we already give the semantics.

A FOLDT T expresses a Boolean first-order query QT . The query QT is
defined by translating T into a FOL sentence ΦT .

1. We first define formulas αn for every node n of T :

αn :=






true if n is the root of T ;
αp ∧ λp if n is the left child of node p;
αp ∧ ¬(∃y)(αp ∧ λp) if n is the right child of node p.

where y is the set of free variables in αp ∧ λp.
2. For each node n we next define βn as the formula (∃z)(αn), where z is the

set of free variables in αn.
3. Finally, we define

ΦT :=
∨

{β" | (is a leaf node labeled yes}.

Example 1. Consider the FOLDT T of Fig. 2. Let us number the root, the left
child of the root, and the only leaf node labeled yes, as 1, 2, and 3, respectively.
Then

α1 = true

α2 =
(
true ∧R(x, y1)

)
≡ R(x, y1)

α3 = R(x, y1) ∧ ¬(∃x, y1, y2)
(
R(x, y1) ∧ S(x, y2)

)

and we obtain ΦT = (∃x, y1)(α3):

(∃x, y1)R(x, y1) ∧ ¬(∃x, y1, y2)
[
R(x, y1) ∧ S(x, y2)

]
.

3.1 Safety

Let n be a node of a FOLDT T . Let An = (m1, . . . ,mk) be the sequence of
nodes from the root r = m1 to node n (mk is the parent of n and mk+1 denotes
n). The leftish ancestors of n are the nodes mi, 1 ≤ i ≤ k, in An such that mi+1

is the left child of mi.

Example 2. The fragment of a FOLDT depicted in Fig. 3 has three nodes of
interest. The root, node 1, has no leftish ancestors, because it is the root. Node
2 has the root as sole leftish ancestors. The root is the sole leftish ancestor of
node 3. Indeed, A3 = (1, 2, 3), node 2 is a left-child of 1 and thus is 1 a leftish
ancestor.

The conjunction λn, labeling node n, is a sequence of literals. The local
predecessors of the occurrence of a literal ξ in λn is the set of literals syntactically
preceding ξ in λn. The global predecessors of ξ are the literals of the leftish

1

2

3

. . .

. . .

.

Fig. 3. Fragment of a FOLDT with a complex left-ancestor relation.

ancestors. The union of the local and global predecessors is called the set of
predecessors of ξ. The positive predecessors of ξ are the positive literals in the
set of predecessors of the literal. A variable in an occurrence of a negative literal
ξ is covered if it occurs in a positive predecessor of ξ, otherwise it is open.
Variables in an occurrence of a positive literal are always covered. The basic
building blocks of the node labelings are relation symbols, which are inherently
safe.

Example 3. In the FOLDT in Fig. 4 variable y in node 2 is covered by the
occurrence of x in R(x, y) in node 1. The variable x in ¬T (x, y), in node 3, is
covered locally by S(x) in this same conjunction. On the other hand, the variable
y is not covered in node 3, because the root is not a leftish ancestor of node 3
and y does not occur locally.

The definition of a FOLDT allows both covered and open variables. A FOLDT
T is safe, if all occurrences of variables are covered. It is readily verified that our
definition of the semantics of FOLDTs conforms to the original definition given
by Blockeel and De Raedt [1, Fig. 2], at least when the FOLDT is safe.

4 The expressive power of safe FOLDTs

Our main result characterizes the expressive power of FOLDTs as follows.

Theorem 1. A Boolean query is expressible by a safe FOLDT if and only if it
is expressible by a boolean combination of safe existential FOL sentences.

1 : R(x, y)

2 : ¬S(y) 3 : S(x) ∧ ¬T (x, y)

yes yesno !"no

Fig. 4. The occurrences of y in nodes 2 and 3 are not covered.

Here, an existential FOL formula is of the form (∃y)ψ(x, y), where ψ is quan-
tifier-free and x and y are sets of variables. In other words, a formula is existential
if it can be written such that all the quantifiers are in front (prenex normal form)
and are existential. An existential FOL sentence is an existential FOL formula
without free variables. Boolean combinations are then built up from existential
sentences using conjunction, disjunction, and negation. The existential fragment
of FOL is usually denoted by Σ1 [4]. We denote the class of boolean combinations
of Σ1-sentences by BC (Σ1). The class BC (Σ1) is thus a subset of the class of
boolean combinations of Σ1-formulas.

The notion of safety for BC (Σ1)-sentences is defined in the following stan-
dard way [10]. Let χ be a BC (Σ1)-sentence. For χ to be safe every Σ1-sentence in
χ must be safe, defined as follows. Let ϕ ≡ (∃x)ψ(x) be an existential sentence
where ψ is quantifier-free. For ϕ to be safe, we require ψ to be in DNF, and
furthermore we require that in every disjunct of ψ, every variable is “covered”.
Here, a variable is covered if it occurs in a positive literal.

The reader should not be lulled into interpreting our theorem as merely
stating that the FOL translation ΦT of a FOLDT T is in BC (Σ1); in fact, it is
not. Indeed, the gist of the proof of the only-if direction, shown in Lemma 1,
consists of showing that ΦT , for any safe FOLDT, can always be simplified into
an equivalent BC (Σ1)-sentence. Example 1 already gave an example of this
simplification. The if direction of the theorem is proven by Lemmas 2, 3, 4, 5
and 6.

Lemma 1. Let T be a safe FOLDT. Then ΦT can be equivalently expressed as
a boolean combination of safe Σ1-sentences.

Proof. Firstly, we show the conversion of ΦT into a BC (Σ1) sentence. Secondly,
it is proven that if T is safe, then ΦT is also safe.

ΦT can be equivalently expressed as a BC (Σ1) sentence: First, we prove
that for any node n in T , αn can be written in the form:

αn(x) ≡ ψn(x) ∧ φn

where ψn is a conjunction of literals (in particular, ψn is quantifier-free) and
φn is a conjunction of negated Σ1-sentences (in particular, φn is in BC (Σ1)).
We prove this by induction on the position of n in T .
Base case: n is the root of T Trivial, because αn ≡ true, so we can

choose true both for ψn and φn.
Induction: n is a descendant of the root Let p be the parent node of

n. The induction hypothesis states that αp(x) ≡ ψp(x) ∧ φp. Node n is
either the left or the right child of p. Let y be the variables in λp that
do not yet belong to x. Let x′ = x ∪ y.
If n is the left child of p, we have:

αn(x′) ≡ αp(x) ∧ λp(x, y)
≡ [λp(x, y) ∧ ψp(x)] ∧ φp

So we can choose ψn(x′) ≡ λp(x, y) ∧ ψp(x) and φn ≡ φp.
If n is the right child of p, we have:

αn(x) ≡ αp(x) ∧ ¬(∃x, y)
[
αp(x) ∧ λp(x, y)

]

≡ ψp(x) ∧ φp ∧ ¬(∃x, y)
[
ψp(x) ∧ φp ∧ λp(x, y)

]

≡ ψp(x) ∧
(
φp ∧

(
¬φp ∨ ¬(∃x, y)

[
ψp(x) ∧ λp(x, y)

]))

≡ ψp(x) ∧
(
φp ∧ ¬(∃x, y)

[
ψp(x) ∧ λp(x, y)

])

So we can choose ψn(x) ≡ ψp(x) and φn ≡ φp∧¬(∃x, y)
[
ψp(x)∧λp(x, y)

]
,

because both ψp and λp are quantifier-free.
Secondly, the β formula of any node n in FOLDT T can now be converted
into a BC (Σ1) formula as follows:

βn ≡ (∃x)αn(x)
≡

(
(∃x)ψn(x)

)
∧ φn

Finally, we know that ΦT is the disjunction of the β sentences of the yes-
labeled leaves. Thus ΦT is a BC (Σ1) sentence; note that ΦT is in DNF.

T is safe, then ΦT is safe: If T is safe, each occurrence of a variable if covered,
either locally or by a leftish ancestor. Note in the recursive definition of the α
formula, that the conjunctions of all leftish ancestors of a node are combined
into a single conjunction, thus constructing a safe existential sentence.

+,

The if-direction of the theorem follows from three basic constructions:

1. The conjunction of two safe FOLDT-expressible queries is safe FOLDT-
expressible. Indeed, if we have two safe FOLDTs T1 and T2 then we can
form their conjunction by attaching a copy of T2 at every leaf node of T1

labeled yes. This construction is only correct if we make sure in advance
(without loss of generality) that T1 and T2 have disjoint sets of non-output
variables. The output variables of the resulting FOLDT are the union of
those of T1 and T2.

2. The negation of a safe FOLDT-expressible query is safe FOLDT-expressible.
Indeed, to negate a safe FOLDT it suffices to swap the leaf labels yes and
no.

3. Every safe Σ1-expressible query is expressible by a safe FOLDT. Indeed,
consider a safe Σ1-sentence σ of the form (∃x)ψ(x). We have ψ in DNF:
γ1 ∨ · · · ∨ γ". We construct a FOLDT for σ as depicted in Fig. 5. The root is
labeled γ1. From the root descends a chain of right children, labeled γ2 until
γ". Every node on this linear chain, including the root, gets as left child a
leaf labeled yes. Finally, the rightmost node on the chain (the one labeled
with γ") gets as right child a leaf labeled no.

We prove in Lemmas 4, 5 and 6 that the above constructions are correct.
First we prove two auxiliary lemmas.

Lemma 2. Let T be a FOLDT, let p be a node in T and let n and m be the
respective left- and right child of p. Then:

βn ∨ βm ≡ βp

Proof.

βn ∨ βm

≡ (∃x, y)
(
αp(x) ∧ λp(x, y))

)
∨

(
(∃x)αp(x) ∧ ¬(∃x, y)

(
αp(x) ∧ λp(x, y)

))
(1)

≡
(
(∃x)αp(x) ∨ (∃x, y)(αp(x) ∧ λp(x, y))

)
∧

(
(∃x, y)(αp(x) ∧ λp(x, y)) ∨ ¬(∃x, y)(αp(x) ∧ λp(x, y))

)
(2)

≡ (∃x)αp(x) (3)

Here, y is the set of free variables in λp. We take the following steps in formula:

1. Replacing the β-formulas by their definition.
2. Distributing the first disjunct over the two parts of the second disjunct.
3. In the first conjunct of 2, the second part is a specialization of the first part,

thus we may drop the second part. In the second conjunct, a tautology has
been created.

+,

Lemma 3. Let T be a FOLDT, let p be a node in T and let n and m be the
respective left- and right child of p. Then:

βn ∧ βm ≡ false

Proof. Let x be the set of free variables in αp and let y be the free variables in
λp that are not in x.

βn ∧ βm

≡ (∃x, y)
(
αp(x) ∧ λp(x, y)

)
∧

(∃x)αp(x) ∧ ¬(∃x, y)
(
αp(x) ∧ λp(x, y)

)

≡ false

+,

Lemma 4. Let T1 and T2 be two safe FOLDTs. Suppose, without loss of gen-
erality, that the sets of variables in T1 and T2 are disjoint. The conjunction
construction is safe and correct.

Proof. Let T be the FOLDT constructed to express the conjunction of FOLDTs
T1 and T2.

If both T1 and T2 are safe, then so is T . Let n be an internal node of T . It
is easily verified that all occurrences of variables in the conjunction labeling n,
λn, are covered. If an occurrence of a variable is not covered, it would also be
“uncovered” in T1 or T2, because the structure and labeling are preserved.

To prove the correctness, we need to show that:
∨

yes−leaf " in T

β" ≡ ΦT1 ∧ ΦT2

≡
∨

yes−leaf "1 in T1

βT1
"1
∧

∨

yes−leaf "2 in T2

βT2
"2

≡
∨

yes−leaf "1 in T1, "2 in T2

βT1
"1
∧ βT2

"2

Let (be a yes-leaf of T . Leaf (corresponds to a yes-leaf (2 from a copy
of T2. The copy of T2 replaces a yes-leaf (1 from T1. Thus we denote (as the
couple ((1, (2). We have that βT1

"1
≡ (∃y1)α

T1
"1

(x1, y1), where y1 is the set of free
variables in αT1

"1
. We need to prove that

βT
" ≡ βT1

"1
∧ βT2

"2
.

To this end, we show that the α-formula of each node n, equal to (1 or a descen-
dent of (1, can be converted to the form:

αn(x) ≡ αT1
"1

(x1) ∧
(
ψn(x2) ∧ φn

)

Here, x1 is the set of free variables in αT1
"1

, x2 is the set of free variables in ψn,
x is the union of x1 and x2, ψn is a conjunction of literals (in particular, ψn is
quantifier-free), φn is a conjunction of negated Σ1-formulas (in particular, φn is
in BC (Σ1)) and ψn ∧ φn ≡ αT2

"2
. This last property can be verified in the same

way as in the proof of Lemma 1.
If n = (1, the claim holds trivially, as we can choose ψn ≡ true ≡ φn.
If n -= (1, let p be the parent node of n, by the induction hypothesis we know:

αp(x) ≡ αT1
"1

(x1) ∧
(
ψn(x2) ∧ φn

)

There are two cases:

1. Node n is the left child of p: Let y be the set of free variables in λp that are
not in x2

αn(x) ≡ αp(x′) ∧ λp(x2, y)

≡ αT1
"1

(x1) ∧
((

ψp(x2) ∧ λp(x2, y)
)
∧ φp

)

So we can choose ψn(x′2) ≡ ψp(x2)∧λp(x2, y) with x′2 = x2∪y and φn ≡ φp.
2. Node n is the right child of p:

αn(x) ≡ αp(x′) ∧ ¬(∃x′, y)
[
αp(x) ∧ λp(x2, y)

]

≡ αT1
"1

(x1) ∧ ψp(x2) ∧ φp ∧

¬
(
(∃x1)

[
αT1

"1
(x1)

]
∧ (∃x2, y)

[
ψp(x2) ∧ λp(x2, y)

]
∧ φp

)

≡ αT1
"1

(x1) ∧ ψp(x2) ∧ φp ∧
(
¬φp ∨ ¬(∃x1)αT1

"1
(x1) ∨ ¬(∃x2, y)

[
ψp(x2) ∧ λp(x2, y)

])

≡ αT1
"1

(x1) ∧
(
ψp(x2) ∧ φp

)
∧

(
¬(∃x1)αT1

"1
(x1) ∨ ¬(∃x2, y)

[
ψp(x2) ∧ λp(x2, y)

])
(4)

In formula 4 we encounter an interesting situation. If ¬(∃x1)αT1
"1

(x1) eval-
uates to true, the first conjunct (αT1

"1
(x1)) will never evaluate to true and

thereby the formula will evaluate to false. However, if ¬(∃x1)αT1
"1

(x1) would
evaluate to true, we could not have arrived at (1. Obviously, as we are now
in a descendant of (1, this is a contradiction. The subformula can thus be
dropped from the disjunction, so we can choose:

ψn(x2) ≡ ψp(x2)
φn ≡ φp ∧ ¬(∃x2, y)

[
ψp(x2) ∧ λp(x2, y)

]

Hereby the statement is proven correct.
+,

Lemma 5. Let T be a safe FOLDT. The negation construction is safe and
correct.

Proof. A FOLDT is safe if all occurrences of variables are covered. The difference
between T and T¬ are the leafs labels. The leafs are not labeled with conjunctions
of literals and the structure is not changed. Therefore, T¬ is also safe.

Lemmas 2 and 3 state that if a certain node evaluates to true, exactly one
one leaf descending from that node also evaluates to true. By definition, we
know that βr ≡ true, where r is the root node of T . As a result, for any
interpretation, exactly one leaf evaluates to true whereas all others will evaluate
to false. Clearly, by inverting the leaf labels, all interpretations accepted by T
are rejected by T¬ and vice versa. +,

Lemma 6. Let Tσ be the tree constructed as above to express the safe Σ1-
sentence σ ≡ (∃x)(γ1(x1)∨ . . .∨γ"(x"). Then Tσ is a safe FOLDT and ΦTσ ≡ σ.

Proof. Because σ is a safe existential sentence and each conjunct labels one node,
each variable is locally covered.

We prove the equivalence by induction on (.

(= 1:

ΦTσ ≡ (∃x1)γ1(x1)
≡ σ

(> 1: Let σ′ be σ without the last disjunct. Then by the induction hypothesis
we know that:

σ′ ≡ (∃x)[γ1(x1) ∨ . . . ∨ γ"−1(x"−1)] ≡ ΦTσ′

By construction, Tσ is obtained from Tσ′ by replacing the no-labeled leaf
by an internal node m labeled with γ"(x"), and with the left child labeled
yes and the right child labeled no. From Lemmas 2 and 3 it readily follows
that the α-formula of node m is equivalent to ¬ΦTσ′ . Hence, the sentence
describing the semantics of Tσ is:

ΦTσ ≡ ΦTσ′ ∨
[
¬ΦTσ′ ∧ γ"(x")

]

≡ ΦTσ′ ∨ γ"(x")
≡ σ

+,

5 Discussion

Our result places the expressive power of FOLDTs at a rather low position in
the quantifier alternation hierarchy for first-order logic [4]. The safe existential
sentences are a subset of Σ1, the existential fragment of first-order logic. The
next level in this hierarchy is Σ2, consisting of all formulas that can be put in
prenex form with a quantifier prefix of the form ∃∗∀∗. Similarly, Π2 consists of

yes

! yes

yes no

γ1

γ2

γ!

Fig. 5. Illustration of a FOLDT expressing a Σ1-formula.

the ∀∗∃∗ formulas. It is easy to see that BC (Σ1) formulas can be put both in
Σ2 form and in Π2 form. This places the FOLDT-expressible queries in the class
known as ∆2: the queries expressible both by a Σ2-formula and by a Π2-formula.

Now it is known that there are queries expressible in Π2 but not in Σ2, and
vice versa, even in restriction to finite interpretations [4]. Any such queries are
not FOLDT-expressible. For example, the boolean query mentioned in the Intro-
duction “there exists a blue node with edges to all red nodes”, (∃x)(∀y)(B(x)∧
(R(y) → E(x, y))), is a typical example of a query expressible in Σ2 but not in
Π2, and, consequently, not as a FOLDT. Likewise, the boolean query “all blue
nodes have an edge to some red node”, (∀x)(∃y)(B(x) → (R(y)∧E(x, y))) is in
Π2 but not in Σ2 and hence again not FOLDT-expressible.

In the present work we have focused on safe FOLDTs and the safe fragment
of existential formulas. This is due to the nature of Prolog evaluation. In future
work, we would like to dig deeper into the “full” semantics of FOLDTs, i.e., we
would like to incorporate unsafe FOLDTs in our definition of the semantics.

Most commonly, ILP learners induce clausal theories, i.e., conjunctions of
universally quantified clauses (disjunctions of literals). Since a univerally quan-
tified disjunction of literals amounts to a negated Σ1-formula, clausal theories

thus correspond to the fragment of BC (Σ1) formed by all conjunctions of negated
Σ1-formulas. (A safety notion appropriate for clauses an be analogously defined.)

Acknowledgment

We thank Hendrik Blockeel and Jan Struyf for interesting discussions and help
with the Tilde system. We also thank the anonymous referees for their helpful
comments on an extended abstract of this paper.

References

1. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101, 285–297 (1998)

2. Blockeel, H., Dehaspe, L., Ramon, J., Struyf, J., Van Assche, A., Vens, C., Fierens,
D.: The ace data mining system (2008)

3. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the efficiency of inductive logic programming through the use
of query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002),
https://lirias.kuleuven.be/handle/123456789/123799

4. Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of
Computer and System Sciences 25(1), 99–128 (1982)

5. De Raedt, L.: Logical and Relational Learning. Cognitive Technologies, Springer
(2008)

6. Martin, E., Sharma, A., Stephan, F.: A general theory of deduction, induction, and
learning. In: Proceedings of the 4th International Conference on Discovery Science.
pp. 228–242. DS ’01, Springer-Verlag, London, UK (2001)

7. Ohsherson, D., Weinstein, S.: Identification in the limit of first order structures.
Journal of Philiosophical Logic 15, 55–81 (1986)

8. Osherson, D., Stob, M., Weinstein, S.: A universal inductive inference machine.
The Journal of Symbolic Logic 56, 661–672 (1991)

9. Terwijn, S.: Learning and computing in the limit. In: Logic Colloquium ’02,
Lect. Notes Log., vol. 27, pp. 349–359. Assoc. Symbol. Logic, La Jolla, CA (2006)

10. Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Computer
Science Press (1988)

