
On the complexity of division and set joins in

the relational algebra

Dirk Leinders a,∗ Jan Van den Bussche a

aHasselt University and transnational University of Limburg, Agoralaan, gebouw

D, 3590 Diepenbeek, Belgium

Abstract

We show that any expression of the relational division operator in the relational
algebra with union, difference, projection, selection, constant-tagging, and joins,
must produce intermediate results of quadratic size. To prove this result, we show a
dichotomy theorem about intermediate sizes of relational algebra expressions (they
are either all linear, or at least one is quadratic), and we link linear relational algebra
expressions to expressions using only semijoins instead of joins.

Key words: database, relational algebra, semijoin algebra, complexity

1 Introduction

Relational division, first identified by Codd [7] , is the prototypical example of
a “set join”. Set joins relate database elements on the basis of sets of values,
rather than single values as in a standard natural join. Thus, the division
R(A,B) ÷ S(B) returns all A’s for which the set of B’s related to A by R

contains the set S. There is also a variant of division, where the set of B’s must
equal the set S. More generally, one has the set-containment join R 1

B⊇D
S of

R(A,B) and S(C,D), which returns

{

(a, c) | {b | R(a, b)} ⊇ {d | S(c, d)}
}

,

and again the analogous set-equality join. In principle, any other predicate on
sets could as well be used in the place of ⊇ or = [18,19]. Note that a set join

∗ Corresponding author.
Email addresses: dirk.leinders@uhasselt.be (Dirk Leinders),

jan.vandenbussche@uhasselt.be (Jan Van den Bussche).

Preprint submitted to Elsevier Science 18 August 2006

Person

pName Symptom

An headache

An sore throat

An neck pain

Bob headache

Bob sore throat

Bob memory loss

Bob neck pain

Carol headache

Disease

dName Symptom

flu headache

flu sore throat

Lyme headache

Lyme sore throat

Lyme memory loss

Lyme neck pain

Symptoms

Symptom

headache

neck pain

Person 1
Person.Symptom⊇Disease.Symptom

Disease

pName dName

An flu

Bob flu

Bob Lyme

Person ÷ Symptoms

pName

An

Bob

Fig. 1. An illustration of set-containment join and division.

with predicate “intersection nonempty” boils down to an ordinary equijoin!
An illustration is given in Figure 1.

It has long been observed that division is not well handled by classical query
processing [11,12]. Indeed, while set joins are expressible in the relational al-
gebra using combinations of equijoins and difference operators, the resulting
expressions tend to be complex and inefficient. In this paper, we will confirm
this phenomenon mathematically. Specifically, working in the relational alge-
bra with union, difference, projections, selections, constant-tagging, and joins
(cartesian product being a special case), we prove that any expression for the
division operator must produce intermediate results of quadratic size. (The
result holds both for containment- and equality-division, and then of course
also for the more general set joins.)

Our work thus provides a formal justification of work done by various authors
on implementing set joins directly as special-purpose operators, or on imple-
menting them by compiling to the more powerful version of the relational
algebra that includes grouping, sorting, and aggregation operators [13,16,17].
For instance, division (and set-equality join) can be implemented efficiently

2

in time O(n log n) using sorting or counting tricks. 1 Note, however, that for
set-containment join, no algorithm that is better than quadratic is known.

We will actually prove a number of more general results about relational alge-
bra expressions which we believe are interesting on their own, and from which
the result about division follows. Specifically, we will show that any expression
that never produces intermediate results of quadratic size, will produce only
intermediate results of linear size. Moreover, we will characterize the class of
queries expressible by these “linear” expressions as the class of queries express-
ible by the semijoin algebra: this is the variant of the relational algebra where
we replace the join operator by the semijoin operator [5,6]. Semijoin algebra
expressions are linear by definition, and thus our result shows that a semantical
restriction of relational algebra expressions (namely, linear) can be captured
by a syntactical restriction (namely, semijoin). Consequently, if a query is not
expressible in the semijoin algebra, then its complexity in the relational alge-
bra is at least quadratic. To prove our complexity result, we use an equivalence
relation on structures, called guarded bisimilarity, that is known to guarantee
indistinguishability in the “guarded” fragment of first-order logic [3,9,10,8].
This guarded fragment precisely corresponds to the semijoin algebra [14].

The paper is organised as follows. In Section 2 we recall the definitions and
known results on the semijoin algebra and the guarded fragment. Section 3
states and proves our dichotomy theorem. In Section 4 we show how the di-
chotomy theorem can be applied to prove complexity lower bounds for division
and set joins.

2 Semijoin algebra and guarded fragment

From the outset, we assume an infinite, totally ordered universe U of basic
data values. Throughout the paper, we fix an arbitrary database schema S.
A database schema is a finite set of relation names, where each relation name
R has an associated arity, denoted by arity(R). A database D over S is an
assignment of a finite relation D(R) ⊆ U

n to each R ∈ S, where n is the arity
of R.

To avoid misunderstanding, we define the relational algebra, as we will use it,
formally.

Definition 1 (relational algebra, RA) The syntax and semantics of the
relational algebra are inductively defined as follows:

1 For set-equality join, where the result size alone can already be quadratic, we
should really say in time O(n log n) plus output size.

3

(1) Each relation name R ∈ S is a relational algebra expression. Its arity
comes from S.

(2) If E1, E2 ∈ RA have arity n, then also E1 ∪E2 (union), E1 −E2 (differ-
ence) belong to RA and are of arity n.

(3) If E ∈ RA has arity n and i1, . . . , ik ∈ {1, . . . , n}, then πi1,...,ik(E) (pro-
jection) belongs to RA and is of arity k.

(4) If E ∈ RA has arity n and i, j ∈ {1, . . . , n}, then σi=j(E) and σi<j(E)
(selection) belong to RA and are of arity n.

(5) If E ∈ RA has arity n and c ∈ U, then τc(E) (constant-tagging) belongs
to RA and is of arity n+ 1.

(6) Let E1, E2 ∈ RA with arities n and m, respectively. Let θ be a conjunction
of the form

∧k
s=1 is αs js with αs ∈ {=, 6=, <,>}, with is ∈ {1, . . . , n},

and js ∈ {1, . . . ,m}. Then E1 1θ E2 (join) belongs to RA and is of arity
n+m.

The semantics of the union and difference operators are the obvious set oper-
ators. The semantics of the projection, the selection, the constant-tagging and
the join operator are as follows: (for relations r, r1 and r2)

πi1,...,ik(r) := {(ai1 , . . . , aik) | ā ∈ r}

σi=j(r) := {ā ∈ r | ai = aj}

σi<j(r) := {ā ∈ r | ai < aj}

τc(r) := {(ā, c) | ā ∈ r}

r1 1θ r2 := {(ā, b̄) | ā ∈ r1, b̄ ∈ r2, and ais αs bjs for s = 1, . . . , k}

Note that selections of the form σi=‘c’(E), where c ∈ U and E of arity n, can

be expressed as π1,...,n

(

σi=n+1τc(E)
)

.

We use RA= to denote the variant of RA where only equijoins are allowed.
More formally, in RA=, in every join condition θ, every αs is the symbol ‘=’.

Definition 2 (semijoin algebra, SA) The semijoin algebra is the variant
of RA obtained by replacing the join operator E1 1θ E2 by the semijoin op-
erator E1 nθ E2. The semantics of the semijoin operator is as follows: (for
relations r1 and r2)

r1 nθ r2 := {ā ∈ r1 | ∃b̄ ∈ r2 : ais αs bjs for s = 1, . . . , k}

Again, we use SA= to denote the variant of SA where only equi-semijoins are
allowed. So, in SA=, in every semijoin condition θ, every αs is the symbol ‘=’.

Example 3 Suppose S is Ullman’s well-known example schema [20]

{Likes(drinker,beer), Serves(bar,beer), Visits(drinker,bar)}.

4

R

a b c

d e f

S

d a b

T

e a

f c

Fig. 2. A database D over the schema S = {R, S, T}, where R and S are ternary
and T is binary, to illustrate the notion of “C-stored” tuple

Let us call a bar lousy if it only serves beers nobody likes. The query that asks
for the drinkers that visit a lousy bar can be expressed in SA as follows:

π1

(

Visits n
2=1

(π1(Serves) − π1(Serves n
2=2

Likes))
)

.

Note that this expression belongs to SA=. 2

If C is a finite set of constants such that all constants in expression E are in
C, then we say that E is an expression with constants in C. Note that SA
expressions with constants in C can only output “C-stored” tuples, defined as
follows:

Definition 4 (C-stored tuple) A tuple d̄ is C-stored in database D over
schema S if the tuple obtained by deleting in d̄ all values in C, belongs to
some projection πi1,...,ip(D(R)) for some relation name R in S.

Example 5 Let D be the database over the schema S = {R,S, T} shown in
Figure 2 and let C be the singleton {a}. Tuple (b, c) is C-stored in D, because
(b, c) is in projection π2,3(D(R)); tuple (a, f) is also C-stored in D, because
the tuple obtained by deleting all a’s in (a, f), i.e., (f), is in π1(D(T)). Tuples
(e, c) and (g) are not C-stored in D. 2

Next, we recall the definition of the guarded fragment of first-order logic [3,9,10,8].
When ϕ stands for a formula, we follow the standard convention to write
ϕ(x1, . . . , xk) to denote that every free variable of ϕ is among x1, . . . , xk.

Definition 6 (guarded fragment, GF) (1) Atomic formulas of the form
x = y and x < y and x = c, where c ∈ U, are in GF.

(2) Relation atoms of the form R(x1, . . . , xk), with R ∈ S of arity k, are in
GF.

(3) If ϕ and ψ are formulas of GF, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ

and ϕ↔ ψ.
(4) If ϕ(x̄, ȳ) is a formula of GF, and α(x̄, ȳ) is a relation atom such that all

free variables of ϕ do actually occur in α, then ∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) is a
formula of GF.

The semantics of GF is that of first-order logic (or the relational calculus as we
call it in database theory), interpreted over the active domain of the database
[1].

5

Example 7 The query from Example 3 can be expressed by the following GF
formula ϕ(x):

∃y
(

Visits(x, y) ∧ ¬∃z (Serves(y, z) ∧ ∃w Likes(w, z))
)

.

2

There is a strong correspondence between SA= and GF: one can be translated
into the other. The following theorem was proven in our previous work [14]:

Theorem 8 For every SA= expression E of arity k, there exists a GF formula
ϕE(x1, . . . , xk) such that for every database D,

{d̄ ∈ U
k | D |= ϕE(d̄)} = E(D)

Conversely, for every GF formula ϕ(x1, . . . , xk) with constants in C, there
exists an SA= expression Eϕ such that for every database D,

Eϕ(D) = {d̄ C-stored tuple in D | D |= ϕ(d̄)}

In our previous work [14], this correspondence between SA= and GF was
proved for the setting without constants. Nevertheless, an easy adaptation
of that proof shows that the correspondence still holds for the setting with
constants of this paper.

The correspondence between SA= and GF is very useful because it allows
us to apply the notion of “guarded bisimulation”, originally developed in the
context of GF, to SA=. We recall the definition next.

Definition 9 (guarded set) A set is guarded in database D if it is of the
form {d1, . . . , dn}, where (d1, . . . , dn) ∈ D(R) for some R ∈ S.

Definition 10 (C-partial isomorphism) Let A and B be databases over
schema S and let X,Y,C ⊆ U. A mapping f : X → Y is a C-partial isomor-
phism from A to B if it is bijective, and for each R ∈ S, of arity n, and all
x1, . . . , xn ∈ X, we have (x1, . . . , xn) ∈ A(R) ⇔ (f(x1), . . . , f(xn)) ∈ B(R),
and moreover, for all x, y ∈ X and for all c ∈ C, we have x < y ⇔ f(x) < f(y)
and x = c⇔ f(x) = c.

Definition 11 (C-guarded bisimulation, C-guarded bisimilarity) A C-
guarded bisimulation between two databases A and B is a non-empty set I of
finite C-partial isomorphisms from A to B, such that the following back and
forth conditions are satisfied:

Forth. For every f : X → Y in I and for every guarded set X ′ of A, there

6

A B

R

1 2

2 3

S

1 2

T

2 3

R

6 7

7 8

9 10

10 11

S

6 7

9 10

T

7 8

10 11

Fig. 3. Databases A and B to illustrate the notion of guarded bisimulation.

exists a partial isomorphism g : X ′ → Y ′ in I such that f and g agree on
X ∩X ′.

Back. For every f : X → Y in I and for every guarded set Y ′ of B, there
exists a partial isomorphism g : X ′ → Y ′ in I such that f−1 and g−1 agree
on Y ∩ Y ′.

Now let C be a set of constants and let A be a database and ā a C-stored
tuple in A, and let B, b̄ be another such pair. We say that A, ā and B, b̄ are
C-guarded bisimilar—denoted by A, ā ∼C

g B, b̄—if there exists a C-guarded
bisimulation I between them that contains the partial isomorphism ā 7→ b̄.

Example 12 Let A and B be the databases shown in Figure 2. Let C be
the empty set. The following set of ∅-partial isomorphisms is a ∅-guarded
bisimulation between A and B:

(1, 2) 7→ (6, 7) (2, 3) 7→ (7, 8)

(1, 2) 7→ (9, 10) (2, 3) 7→ (10, 11)

Let us check the back property for one particular partial isomorphism f : (1, 2) 7→
(6, 7). We consider all guarded sets Y ′ of B: if Y ′ is (6, 7), we choose g as f ;
if Y ′ is (9, 10), we also choose g as f (the intersection of Y and Y ′ is empty,
so any g will do); if Y ′ is (7, 8), we choose (2, 3) 7→ (7, 8) for g (the inter-
section of Y and Y ′ is {7} and f−1 and g−1 both map 7 to 2); finally, if Y ′

is (10, 11), we choose (2, 3) 7→ (10, 11) for g (the intersection of Y and Y ′ is
{10} and f−1 and g−1 both map 10 to 2). The other properties can be checked
analogously. 2

A basic fact about GF is that GF formulas can not distinguish between inputs
that are guarded bisimilar [3]:

Proposition 13 The guarded fragment is invariant under guarded bisimula-
tion. Formally, if A, ā ∼C

g B, b̄, then for any GF formula ϕ(x̄) with constants
in C we have A |= ϕ(ā) ⇔ B |= ϕ(b̄).

7

Andréka et al. [3] proved this result for the setting without constants. Never-
theless, an easy adaptation of that proof shows that the result still holds for
the setting with constants of this paper.

By Theorem 8 we obtain:

Corollary 14 If A, ā ∼C
g B, b̄, then for any SA= expression E with constants

in C we have ā ∈ E(A) ⇔ b̄ ∈ E(B).

3 A dichotomy theorem

Before we can state the theorem we need precise definitions of what we mean
by “linear” and “quadratic” expressions. Beware that “linear” is an upper-
bound notion, while “quadratic” is a lower-bound notion.

Definition 15 The size of a relation is defined as its cardinality. The size of
a database D, denoted by |D|, is the sum of the sizes of its relations.

Using the familiar O and Ω notation, we now define: 2

Definition 16 For any RA expression E, define the function

c(E) : N → N : n 7→ max{|E(D)| : |D| = n}.

Then E is called

• linear if for each subexpression E ′ of E, c(E ′) = O(n);
• quadratic if for some subexpression E ′ of E, c(E ′) = Ω(n2).

We will prove:

Theorem 17 Every RA expression is either linear or quadratic.

In other words, intermediate complexities such as O(n log n) are not achiev-
able in RA. Anyone who has played long enough with RA expressions will
intuitively know that, but we have never seen a proof. Moreover, we also have
the following variant:

Theorem 18 Every RA expression that is not quadratic, is equivalently ex-
pressible in SA=.

2 For a function f : N → N, recall that f = O(n) if for some c > 0 and some n0,
f(n) 6 cn for all n > n0; and f = Ω(n2) if for some c > 0, f(n) > cn2 infinitely
often [2].

8

Note that the equi-semijoin operator can be expressed in RA in a linear way;
for example, if R and S have arity two, then

R n
2=1

S = π1,2(R 1
2=1

π1(S)).

From the above theorems we therefore obtain:

Corollary 19 A query is expressible by a linear RA expression if and only if
it is expressible by an SA= expression.

We will prove Theorem 17 and 18 simultaneously. Our crucial lemma is Lemma 24.
In order to state it, we need two definitions.

Definition 20 Let E be an RA expression of the form E1 1θ E2. For α ∈ {=,
6=, <,>}, we define θα as the following conjunction

∧

{s∈{1,...,k}|αs is α}

is α js.

We also view θα as the set of pairs {(is, js) | αs is α, s = 1, . . . , k}. For
` = 1, 2, the sets constrained`(E) and their complements unc`(E) are now
defined as follows:

constrained1(E) := {i | ∃j : (i, j) ∈ θ=}

unc1(E) := {1, . . . , arity(E1)} − constrained1(E)

constrained2(E) := {j | ∃i : (i, j) ∈ θ=}

unc2(E) := {1, . . . , arity(E2)} − constrained2(E)

Example 21 For the expression E = R 13=1 S, where R and S are ternary,
we get:

θ= = {(3, 1)}

constrained1(E) = {3} unc1(E) = {1, 2}

constrained2(E) = {1} unc2(E) = {2, 3}.

2

In the next definition and in the proof of Theorem 17 and Theorem 18, we
will use intervals. For a, b ∈ U, recall the interval notation [a, b] for the set
{x ∈ U | a 6 x 6 b}.

Definition 22 Let D be a database and let E be an RA expression of the
form E1 1θ E2 with constants in C. We assume that C = {c1, . . . , ck} with
c1 < · · · < ck. For any d̄ ∈ E1(D), we denote the set of elements occurring in

9

d̄ by set(d̄). We now define the set of free values of d̄ as follows:

FE
1 (d̄) := set(d̄) − {di | i ∈ constrained1(E)}

− C

−
⋃

i∈{1,...,k−1}
[ci,ci+1] finite

[ci, ci+1]

The set FE
2 (d̄) of free values of a tuple d̄ ∈ E2(D) is defined analogously.

Example 23 Let U be Z. Consider expression E = σ2=‘2’R 13=1 σ3=‘5’S,
where R and S are ternary. So, C equals {2, 5}. Suppose that relation R

contains the tuples r1 = (1, 2, 3) and r2 = (4, 6, 3), and that relation S contains
the tuples s1 = (3, 5, 6) and s2 = (1, 1, 1). Then:

FE
1 (r1) = {1} FE

2 (s1) = {6}

FE
1 (r2) = {6} FE

2 (s2) = ∅

2

We can now state the following crucial lemma:

Lemma 24 Let E = E1 1θ E2 with constants in C and where E1 and E2 are
SA= expressions. Assume there exists a database D and a tuple (ā, b̄) ∈ E1 1θ

E2(D) such that FE
1 (ā) 6= ∅ and FE

2 (b̄) 6= ∅. Then there exists a sequence
(Dn)n>1 of databases such that for some constant c > 0 and for all n:

(1) |Dn| 6 cn, and
(2) |E1 1θ E2(Dn)| > n2.

Before we prove this lemma, we define the notion of “tuple space” used in the
proof.

Definition 25 Let D be a database over database schema S. The tuple space
TD of database D is defined as

⋃

{D(R) | R ∈ S}.

From the definition of guarded set, it is clear that for each tuple d̄ ∈ TD, set(d̄)
is guarded and conversely, for each guarded set X there is a tuple d̄ ∈ TD with
set(d̄) = X.

PROOF. We give a proof by construction.

The desired sequence is constructed as follows. For D1 we take D. For k > 1,
we construct Dk+1 from Dk as follows:

(1) for each x ∈ FE
1 (ā) and for each x ∈ FE

2 (b̄), we make a fresh new domain

10

element new
(k)(x) that has the same relative order in the domain as x;

if it is not possible to create such a new domain element, we create an
isomorphic copy D′

k of Dk such that for any two values r, s in D′
k with

r < x < s, there exists u ∈ U different from x such that r < u < s. This
is possible because to the left of the minimum of C, we can translate
all elements in Dk. Similarly for the elements in Dk to the right of the
maximum of C, and similarly for the elements in Dk in an infinite interval
[ci, ci+1]. So, we assume w.l.o.g. that we can always create these new
domain elements satisfying the specified condition;

(2) for each tuple t̄ = (t1, . . . , tn) ∈ TD satisfying set(t̄) ∩ FE
1 (ā) 6= ∅, we

construct a tuple f
(k)
1 (t̄) = (r1, . . . , rn) with

ri =











new
(k)(ti) if ti ∈ FE

1 (ā)

ti else

We put this tuple in precisely the same relations as t̄. Note that by
construction t̄ 7→ f

(k)
1 (t̄) is a C-partial isomorphism.

(3) for each tuple t̄ = (t1, . . . , tn) ∈ TD satisfying set(t̄) ∩ FE
2 (b̄) 6= ∅, we

construct a tuple f
(k)
2 (t̄) = (r1, . . . , rn) with

ri =











new
(k)(ti) if ti ∈ FE

2 (b̄)

ti else

We put this tuple in precisely the same relations as t̄. Note that by
construction t̄ 7→ f

(k)
2 (t̄) is a C-partial isomorphism.

To illustrate this construction, let database D be the one shown in the upper
part of Figure 4 and let expression E be (R n1=2 T) 13=1 (S n2=1 T). Let ā
be (1, 2, 3) and let b̄ be (3, 4, 5). Then, FE

1 (ā) = {1, 2} and FE
2 (b̄) = {4, 5}.

For each i ∈ FE
1 (ā)∪ FE

2 (b̄), we denote new
(1)(i) by i′ and new

(2)(i) by i′′. We
assume the following order on the domain of D3: 1 < 1′ < 1′′ < 2 < 2′ <
2′′ < 3 < . . . < 9 < 10. Databases D2 and D3 are shown in the lower part of
Figure 4.

Now take c := 2|D|. Because in each step at most 2|D| tuples are added, the
first requirement for the sequence holds.

We now check the second requirement. First, we show that for each n and k

with 1 6 k 6 n− 1
D, ā ∼C

g Dn, f
(k)
1 (ā)

Take an arbitrary n and consider the set I = {g
(k)
t̄ | t̄ ∈ TD with set(t̄) ∩

FE
1 (ā) 6= ∅, 1 6 k 6 n− 1} ∪ {ht̄ | t̄ ∈ TD}, where

• g
(k)
t̄ : t̄ 7→ f

(k)
1 (t̄), and

11

D

R

1 2 3

8 9 10

S

3 4 5

T

6 1

4 7

D2

R

1 2 3

8 9 10

1′ 2′ 3

S

3 4 5

3 4′ 5′

T

6 1

4 7

6 1′

4′ 7

D3

R

1 2 3

8 9 10

1′ 2′ 3

1′′ 2′′ 3

S

3 4 5

3 4′ 5′

3 4′′ 5′′

T

6 1

4 7

6 1′

4′ 7

6 1′′

4′′ 7

Fig. 4. Databases D = D1, D2 and D3 in the construction for
E = (R n1=2 T) 13=1 (S n2=1 T).

• ht̄ : t̄ 7→ t̄.

In our running example, I = {(1, 2, 3) 7→ (1′, 2′, 3), (1, 2, 3) 7→ (1′′, 2′′, 3),
(3, 4, 5) 7→ (3, 4′, 5′), (3, 4, 5) 7→ (3, 4′′, 5′′), (6, 1) 7→ (6, 1′), (6, 1) 7→ (6, 1′′),
(7, 4) 7→ (7, 4′), (7, 4) 7→ (7, 4′′)} ∪ {(1, 2, 3) 7→ (1, 2, 3), (3, 4, 5) 7→ (3, 4, 5),
(6, 1) 7→ (6, 1), (7, 4) 7→ (7, 4), (8, 9, 10) 7→ (8, 9, 10)}.

From the construction it follows that each of these functions is a C-partial
isomorphism between D and Dn. Now we check the back and forth properties
of I.

Forth. Take an arbitrary partial isomorphism f in I and an arbitrary guarded

12

set X ′ in D. Let t̄′ be a tuple in TD such that set(t̄′) = X ′. Suppose f is

g
(k)
t̄ for some t̄ and k. We distinguish 2 cases: i) X ′ ∩ FE

1 (ā) 6= ∅. Then, f

agrees with partial isomorphism g
(k)
t̄′ on set(t̄) ∩X ′. Indeed, they both map

values x ∈ FE
1 (ā) onto new

(k)(x) and they map values y 6∈ FE
1 (ā) onto y.

ii) X ′ ∩ FE
1 (ā) = ∅. Then, f agrees with ht̄′ on set(t̄) ∩ X ′. When f is ht̄

for some t̄, f clearly agrees with ht̄′ on set(t̄) ∩X ′.
Back. Take an arbitrary partial isomorphism f in I and an arbitrary guarded

set Y ′ in Dn. We distinguish 2 cases: i) Y ′ = set(f
(l)
1 (ū)) for some 1 6 l 6

n−1 and ū ∈ TD; and ii) Y ′ = set(t̄′) for some t̄′ ∈ TD∩TDn
. In case i), f−1

agrees with (g
(l)
ū)−1 on set(f(t̄))∩ Y ′. In case ii), f−1 agrees with (ht̄′)

−1 on
set(f(t̄)) ∩ Y ′.

Furthermore, for each 1 6 k 6 n−1, ā 7→ f
(k)
1 (ā) is an element of I. A similar

argument leads to

D, b̄ ∼C
g Dn, f

(k)
2 (b̄)

for each 1 6 k 6 n− 1.

By Corollary 14 we have that for each 0 6 k, l 6 n− 1: f
(k)
1 (ā) ∈ E1(Dn) and

f
(k)
2 (b̄) ∈ E2(Dn), where for simplicity we define f

(0)
1 and f

(0)
2 as the identity

function.

In our running example, only (1, 2, 3) satisfies R n1=2 T in D, but in D3 also
(1′, 2′, 3) and (1′′, 2′′, 3) satisfy this expression; also in D3 the tuples (3, 4, 5),
(3, 4′, 5′) and (3, 4′′, 5′′) satisfy S n2=1 T .

We now show that each pair of tuples (f
(k)
1 (ā), f

(l)
2 (b̄)) with 1 6 k, l 6 n − 1

satisfies θ. We first show that (f
(k)
1 (ā), f

(l)
2 (b̄)) satisfies θ=. Let (i, j) ∈ θ=.

Then, i is in constrained1(E), and therefore the i-th component of f
(k)
1 (ā) is

ai. Analogously, the j-th component of f
(l)
2 (b̄) is bj. Because (ā, b̄) satisfies θ,

it satisfies θ=, and therefore ai = bj.

The pair of tuples (f
(k)
1 (ā), f

(l)
2 (b̄)) also satisfies θ<. Let (i, j) ∈ θ<. By con-

struction, the i-th component of f
(k)
1 (ā) equals either ai or new

(k)(ai), and,

analogously, the j-th component of f
(l)
2 (b̄) equals either bj or new

(l)(bj). Be-
cause (ā, b̄) satisfies θ, we have ai < bj. By choosing new

(k)(ai) and new
(l)(bj)

with the same relative order in the domain as ai and bj, respectively, we also
have new

(k)(ai) < bj, ai < new
(l)(bj), and new

(k)(ai) < new
(l)(bj).

The arguments that (f
(k)
1 (ā), f

(l)
2 (b̄)) satisfies θ 6= and θ> are similar. So, each

pair of tuples (f
(k)
1 (ā), f

(l)
2 (b̄)) with 1 6 k, l 6 n − 1 satisfies θ, and we thus

obtain at least n2 tuples in E1 1θ E2(Dn), which completes the proof.

13

Using Lemma 24, we can now prove Theorems 17 and 18. By structural in-
duction, we will prove that any RA expression that is not quadratic, is linear
and equivalently expressible in SA=.

The base case is clear: R is not quadratic, is linear, and is in SA=. For the
case of selection, consider an expression of the form σE that is not quadratic
(the actual selection condition does not matter here). Then E is not quadratic
either, and by induction, E is linear and equivalently expressible in SA= as
E ′. We conclude that σE is linear and equivalently expressible in SA= as σE ′.
The cases of projection, union, difference, and constant-tagging are handled
similarly.

The only nonstraightforward case is E = E1 1θ E2. Suppose E uses constants
in C = {c1, . . . , ck} with c1 < · · · < ck. Assume E is not quadratic. Then the
conditions of Lemma 24 cannot be satisfied, because otherwise E would be
quadratic. Hence, we know that for each database D and each joining pair of
tuples (ā, b̄) in E1(D) 1θ E2(D), either FE

1 (ā) or FE
2 (b̄) is empty (or both). If

FE
1 (ā) is empty, ā can be completely retrieved from E2(D), from the constants

in C, and from the intervals [ci, ci+1] with i ∈ {1, . . . , k − 1} that are finite; if
FE

2 (b̄) is empty, b̄ can be completely retrieved from E1(D), from the constants
in C, and from the intervals [ci, ci+1] with i ∈ {1, . . . , k − 1} that are finite.
The expression E can thus be written as Z1 ∪ Z2, where

Z1 = {(ā, b̄) ∈ E1 1θ E2 | F
E
1 (ā) = ∅}

Z2 = {(ā, b̄) ∈ E1 1θ E2 | F
E
2 (b̄) = ∅}

We can now express Z1 and Z2 in SA=. First let

C ∪
⋃

i∈{1,...,k−1}
[ci,ci+1] finite

[ci, ci+1] = {v1, . . . , vm}

and let us write τv1···vm
as a shorthand for τvm

· · · τv1 . Now we can write Z2 as

⋃

f : unc2(E)→constrained2(E)
∪{arity(E2)+1,...,arity(E2)+m}

πp̄
(

σψτv1···vm
(E1 nθ= σϕτv1···vm

E2)
)

,

where f ranges over all possible mappings from unc2(E) to constrained2(E) ∪
{arity(E2) + 1, . . . , arity(E2) +m}, and where

ϕ ≡
∧

j∈unc2(E)

j = f(j),

ψ ≡
∧

α∈{6=,<,>}

∧

(i,j)∈θα

i α g(j),

14

and p̄ = 1, . . . , arity(E1), g(1), . . . , g(arity(E2)) where

g(j) =















min{i | (i, j) ∈ θ=} if j ∈ constrained2(E)

min{i | (i, f(j)) ∈ θ=} if j ∈ unc2(E) and f(j) ∈ constrained2(E)

arity(E1) + ` if j ∈ unc2(E) and f(j) = arity(E2) + `

The use of the minimum function is arbitrary here; any function that chooses
an element out of a set will do.

The SA= expression for Z1 is entirely analogous. Since SA= expressions are
always linear, it also follows that E is linear, as desired. This concludes the
proof of Theorems 17 and 18.

4 Division, set join, and friends

By Corollary 19, to prove that a query can only be expressed in the relational
algebra by quadratic expressions, it suffices to show that it is not expressible
in SA=. And to show nonexpressibility in SA=, we have Corollary 14 as a tool.

We are thus fully armed now to return to the division operator and set joins
from the beginning of this article, and show:

Proposition 26 Division is expressible in RA only by quadratic expressions.
Furthermore, every RA expression that is empty if and only if the set join is
empty, must be quadratic.

Note that it would not be very interesting to claim that the set join itself can
only be expressed by quadratic expressions, because the output size of the set
join is already quadratic.

To prove Proposition 26, we need to show that R ÷ S is not expressible in
SA= using constants in a fixed finite set C. Thereto, consider the databases A
and B shown in Figure 5. (Here, we take the natural numbers as our universe
U.) We assume that the values in A and B are not in the set C. Then R÷ S

equals {1, 2} in A, but is empty in B (regardless of whether we use the set
containment, or the set equality variant of division). Nevertheless, A, 1 ∼C

g

B, 1, so any SA= expression that returns 1 on A will also return 1 on B and
therefore cannot express R÷S. To see that A, 1 ∼C

g B, 1, we invite the reader
to verify that the following set I is a C-guarded bisimulation:

I = {1 7→ 1} ∪ {ā 7→ b̄ | ā ∈ A(R) and b̄ ∈ B(R), or ā ∈ A(S) and b̄ ∈ B(S)}

To handle the set join version of Proposition 26, just insert a column into

15

A B

R

1 7

1 8

2 7

2 8

S

7

8

R

1 7

1 8

2 8

2 9

3 7

3 9

S

7

8

9

Fig. 5. Two databases A and B showing that division is inexpressible in SA=.

relation S (this will be the first column of the new relation), with always the
same value 4, which we assume is also not in C. Then the above I is still a
C-guarded bisimulation.

Other queries Clearly, the applicability of the techniques we have devel-
oped in this paper is not restricted to division and set joins! For example, over
the beer-drinkers database schema from Example 3, consider the following
query Q:

List all drinkers that visit a bar that serves a beer they like.

Any RA expression of this query must be quadratic.

To see this, we show again that Q is not expressible in SA= using constants in a
fixed finite set C. Thereto, consider the databases A and B shown in Figure 6.
(Here, we take the lexicographically ordered strings as our universe U.) We
assume that the values in A and B are not in the set C. In A, Alex visits
the Pareto bar, which serves Westmalle, which he likes. But in B no drinker
visits a bar that serves a beer he likes. Nevertheless, (A, alex) ∼C

g (B, alex),
so any SA= expression that returns alex on A will also return alex on B and
therefore cannot express Q. To see that (A, alex) ∼C

g (B, alex), we invite the
reader to verify that the following set I is a C-guarded bisimulation:

I = {alex 7→ alex}

∪
⋃

{

{ā 7→ b̄ | ā ∈ A(R) and b̄ ∈ B(R)} | R = Visits, Serves,Likes
}

16

A B

Visits(alex, pareto bar) Visits(alex, pareto bar)

Serves(pareto bar, westmalle) Visits(bart, qwerty bar)

Likes(alex, westmalle) Serves(pareto bar, westmalle)

Serves(qwerty bar, westvleteren)

Likes(alex, westvleteren)

Likes(bart, westmalle)

Fig. 6. Two databases A and B showing that the query “give all drinkers that visit
a bar that serves a beer they like” is not expressible in SA=.

5 Concluding remarks

The attentive reader will note that the beer-drinkers queryQ from the previous
section is a typical example of a “cyclic” join query, and such joins are already
long known not to be computable by semijoins only [5,6,4]. But note that the
semijoin programs that were considered in the theory of join dependencies can
use only semijoins, while SA expressions can also use σ, π, ∪ and −.

On the technical side, our work leaves open the generalisation where the uni-
verse of data elements is not merely equipped with a total order, but where
arbitrary predicates are present which can be used in join conditions. One
cannot expect our Theorem 18 to hold in all such cases, as this will depend on
the predicates at hand. A related issue is to investigate the impact of integrity
constraints on our results.

Practical query processing uses a more powerful relational algebra includ-
ing grouping, sorting, and aggregation operators. Proving complexity lower
bounds in such a rich setting seems very challenging to us. However, containment-
division can be expressed by the linear expression

πA
(

γA,count(B)(RnB=C S) n
count(B)=count(C)

γ∅,count(C)S
)

using grouping (γ) and aggregation (counting). Equality-division can be ex-
pressed by an analogous linear RA expression with grouping and counting [11,12].

17

Acknowledgment

We thank Jerzy Tyszkiewicz for helpful discussions on the relationship between
the semijoin algebra and the guarded fragment. The second author would also
like to thank Bart Goethals for inspiring discussions on the semijoin algebra,
and Dirk Van Gucht for inspiring discussions on the complexity of set joins.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] A. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[3] H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30(3):479–513, 1983.

[5] P.A. Bernstein and D.W. Chiu. Using semi-joins to solve relational queries.
Journal of the ACM, 28(1):25–40, 1981.

[6] P.A. Bernstein and N. Goodman. Power of natural semijoins. SIAM Journal

on Computing, 10(4):751–771, 1981.

[7] E.F. Codd. Relational completeness of data base sublanguages. In R. Rustin,
editor, Data Base Systems, pages 65–98. Prentice-Hall, 1972.

[8] H. de Nivelle and M. de Rijke. Deciding the guarded fragments by resolution.
Journal of Symbolic Computation, 35(1):21–58, 2003.

[9] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64(4):1719–1742, 1999.

[10] E. Grädel, C. Hirsch, and M. Otto. Back and forth between guarded and modal
logics. ACM Transactions on Computational Logic, 3(3):418–463, 2002.

[11] G. Graefe. Relational division: four algorithms and their performance. In
Proceedings of the 5th International Conference on Data Engineering, pages
94–101. IEEE Computer Society, 1989.

[12] G. Graefe and R.L. Cole. Fast algorithms for universal quantification in large
databases. ACM Transactions on Database Systems, 20(2):187–236, 1995.

18

[13] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms
for joins with set comparison join predicates. In Proceedings of the 23rd

International Conference on Very Large Data Bases, pages 386–395. Morgan
Kaufmann Publishers Inc., 1997.

[14] D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den Bussche. The semijoin
algebra and the guarded fragment. Journal of Logic, Language and Information,
14(3):331–343, June 2005.

[15] D. Leinders, J. Tyszkiewicz, and J. Van den Bussche. On the expressive power
of semijoin queries. Information Processing Letters, 91(2):93–98, 2004.

[16] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 157–168. ACM Press, 2003.

[17] K. Ramasamy, J.M. Patel, J.F. Naughton, and R. Kaushik. Set containment
joins: the good, the bad and the ugly. In Proceedings of the 26th International

Conference on Very Large Data Bases, pages 351–362. Morgan Kaufmann
Publishers Inc., 2000.

[18] S.G. Rao, A. Badia, and D. Van Gucht. Providing better support for a class
of decision support queries. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 217–227. ACM Press, 1996.

[19] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In
Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 743–754. ACM Press, 2004.

[20] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.
Computer Science Press, 1988.

19

