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Abstract

We revisit the notion of deep equality among objects in an ob�

ject database from a formal point of view� We present three natural

formalizations of deep equality� one based on the in�nite value�trees

associated with objects� one based on the greatest �xpoint of an oper�

ator on equivalence relations among objects� and one based on indis�

tinguishability of objects using observations of atomic values reachable

from the objects� These three de�nitions are then shown to be equiv�

alent� The characterization in terms of greatest �xpoints also yields a

polynomial�time algorithm for checking deep equality� We also study

the expressibility of deep equality in deductive database languages�

� Introduction

In object databases� objects consist of an object identi�er �oid� and a value�
typically having a complex structure built using the set and tuple constructor�
in which both basic values and further oids appear� An intuitive way to think
about an oid is thus as a reference to a complex value� so that such values
can be shared� As a consequence� the actual �value� of an oid �be it a
physical memory address� or a logical pointer� is of lesser importance� In
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particular� the only comparison on oids that makes sense on a logical level is
simply testing whether two given oids are in fact one and the same� In this
way one can check whether some complex value is shared or not� However� in
many applications� even this comparison is not really needed� since sharing is
mostly an implementation issue and often need not be part of the application
semantics�

It is thus of interest to see what happens when objects can only be distin�
guished by looking at their values� possibly dereferencing the oids appearing
therein �and this recursively�� Note that this corresponds to what is available
in typical visual interfaces for browsing object databases �e�g�� O�Look in the
O� system �P�	
��� where basic values �such as strings� numbers� or bitmap
images� can be directly observed but where oids can only be inspected by
dereferencing them and inspecting their associated complex value in turn�
When two objects are indistinguishable in this manner� they are typically
called deep�equal� The notion of deep equality is since long well�known in
object�oriented programming and databases �e�g�� �KC�
� SZ	���� but a sys�
tematic study of its fundamental properties has not yet been carried out� It
is our aim in this paper to contribute towards this goal�

We will look at three possible natural formalizations of deep equality� and
show that they are all equivalent�

The �rst is inspired by the �pure value�based� model of object databases
in terms of in�nite trees� introduced in �AK�	�� The complex value of an
object can be viewed as a tree� the leafs of which are basic values or oids�
By replacing each leaf oid by the tree corresponding to its value� and this
recursively� we obtain the �unfolding� of the entire value structure than can
be seen from the object by �following pointers in the forward direction only��
This unfolding can be in�nite when the instance contains cyclic references
�which is often the case�� Two objects can thus be called deep�equal if their
associated� possibly in�nite� value�trees are equal�

The second formalization is more abstract� deep equality can be de�ned
as the coarsest equivalence relation among objects �extended to complex
values in the natural way� satisfying the requirement that two objects are
equivalent if and only if their values are� Deep equality can thus be viewed
as the greatest �xpoint of an operator which maps equivalence relations to
�ner ones� This yields a polynomial�time algorithm for testing deep equality�

Our third formalization is inspired by the idea of indistinguishability dis�
cussed in the beginning of this introduction� We de�ne a class of logical






observation formulas� a subclass of any reasonable object calculus query lan�
guage� Observation formulas can observe and compare basic values� can
dereference oids� and can traverse paths in complex values� Thus� two ob�
jects can be de�ned to be deep�equal if they cannot be distinguished by any
observation formula�

In this paper we also study the expressibility of deep equality in deductive
database languages� Deep equality is readily expressible in the language of
�xpoint logic� However� we show that deep equality is not expressible in the
language of Datalog with strati�ed negation� It is expressible in this language
on databases containing only tuple values of bounded width �or set values of
bounded cardinality�� Up to now� the only examples of queries known to be
in �xpoint logic but not in strati�ed datalog were based on game trees �e�g��
�Kol	���� We will show that these game�tree queries can also be understood
in the context of deep equality� which might perhaps be more �natural� for
some�

Denningho� and Vianu �DV	�� and� more recently� Kosky �Kos	�� have
also introduced a notion of �similarity� of objects� which corresponds to
our second formalization of deep equality� Both �DV	�� and �Kos	�� noted
the analogy with the in�nite value�trees mentioned above� One of our con�
tributions is to make this very precise� Also� Denningho� and Vianu only
considered tuple values� no set values� One might expect at �rst that the
presence of set values would make the computational complexity of testing
deep equality intractable� our results imply that even with set values it re�
mains computable in polynomial time� We also point out that Kosky studied
the indistinguishability of two entire database instances� rather than of two
objects within one single instance as we do� Finally� deep equality is the ob�
ject database analog of the notion of strong bisimilarity in transition systems�
studied in the theory of communication and concurrency �Mil�	��

This paper is organized as follows� In Section 
� we introduce the data
model we will use� It is a standard object database model as used in� e�g��
the O� system �KLR	
�� In Section �� we recall the in�nite value�trees as�
sociated with objects� In Section �� we give the �xpoint de�nition of deep
equality� relate it to the in�nite tree de�nition� and show how it can be com�
puted in polynomial time� In Section �� we characterize deep equality as
indistinguishability by observation formulas� Finally� in Section 
� we study
the expressibility of deep equality in deductive database languages�
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� Data model

In this paper� we consider an object database to be simply a collection of
objects� where each object consists of an identi�er and a value� The value
of an object can be complex in structure and can contain references to �i�e��
identi�ers of� other objects� We do not consider database schemas and value
types in this paper� since they are irrelevant to our purposes� The reader
who wishes to apply our treatment to a setting with schemas and types will
encounter no di�culties in doing so�

More formally� assume given two disjoint sets of basic values and object
identi�ers �oids��

Given a set of oids O� the set of values over O is inductively de�ned as
follows�

�� Each basic value is a value over O�


� Each element of O is a value over O�

�� If v�� � � � � vn are values over O� then the tuple �v�� � � � � vn� is a value
over O�

�� If v�� � � � � vn are values over O� then the set fv�� � � � � vng is a value over
O�

An object database now consists of a �nite set O of oids� together with a
mapping � assigning to each oid o � O a value ��o� over O� The pair �o� ��o��
can be thought of as the object o�

Throughout the remainder of this paper� we will assume that value ��o�
of any object o in the database is either a basic value� a tuple consisting of
basic values and oids� or a set consisting of basic values and oids� Hence� we
do not consider objects whose value is simply another oid� or whose value is
a complex value with nested structure� The �rst case is related to standard
assumptions in the theory of in�nite regular trees� as will become clear in
the next section� The second case is for clarity of exposition only�

An object whose value is simply the identi�er of another object can always
be replaced by the latter object� Or alternatively� its value can be changed
into a unary tuple having the identi�er as its single component�
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Complex values with nested structure can be simulated by introducing
new objects� For example� an object � with the non��at value

���� � �f�� 
� �g� f�� �g�

can be simulated by introducing two new objects � and � with �at values
f�� 
� �g and f�� �g� respectively� and changing ���� to ��� ��� In order to
apply the treatment presented in the remainder of this paper to databases
containing non��at values� it su�ces to think of such values as objects having
the appropriate values�

To conclude this section� we introduce one last de�nition regarding the
model�

De�nition � A tuple database is a database is which no set values occur�

� Objects and in�nite trees

A �at tuple value �v�� � � � � vn� can be viewed as an ordered tree of depth at
most one� where the root is labeled by the n�ary tuple constructor symbol
�n� and the children of the root are labeled by v�� � � � � vn� respectively� �Note
that n may equal �� in which case the tree consists of a single node labeled
���� Similarly� a basic value v can be viewed as a trivial tree consisting of a
single node labeled v�

Now assume we are working with a tuple database� So� the value of every
object is either a basic value or a tuple value� In the tree corresponding
to such a value� we can replace the leaf nodes labeled by oids by the trees
corresponding to the values of the oids� obtaining a deeper tree� We can
repeat this for the oids appearing in these values in turn� If we keep on
repeating this process� it eventually stops if the database does not contain
cyclic references� However� if there are cyclic references� the process can go
on forever and yields a tree which is in�nite� In both cases� we obtain a tree
in which all leafs are labeled by basic values� there are no longer any leafs
labeled by oids� We call such trees ground trees�

Example � For example� consider a part�subpart database� where each ob�
ject is a part having a type �a basic value� and a list of subparts �a tuple of
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oids��

��o�� � �car� ���

����� � �o��

��o�� � �engine� ���

����� � �o�� o��

��o�� � �valve� ���

��o�� � �valve� ���

����� � � �

Then the tree associated with ��o�� according to the procedure described
above can be written �in in�x notation� as

�car� ��engine� ��valve� � ��� �valve� � �������
Since there are no cyclic references� the tree is �nite�

Example � Now consider a database containing the six objects adam� eve�
adam �� eve �� adam ��� and eve ��� with the following values�

��adam� � �adam� eve �

��eve� � �eve� adam��

��adam �� � �adam� eve ��

��eve �� � �eve� adam�

��adam ��� � �adam� eve ���

��eve ��� � �eve� adam����

The tree associated with adam is in�nite� from the root emanates an in�nite
path of right children� The internal nodes all have one left child alternatingly
labeled �adam� and �eve� starting with �adam� at the root� This same tree is
associated to the objects adam � and adam �� as well� The tree associated with
eve is similar to that of adam� it only di�ers in that the labeling starts with
�eve� at the root� Again the same tree is associated to eve � and eve �� as well�






How the in�nite tree associated to an object can be de�ned formally was
shown in �AK�	�� one considers the set of all tree equations of the form
o � ��o�� with o an oid in the database� One considers in this system of
equations the oids as indeterminates� standing for �possibly in�nite� ground
trees� A solution to the system of equations is a substitution assigning to each
oid o a ground tree tree�o� such that all equations become equalities under
this substitution� There always exists a unique such solution �Cou����� Each
tree tree�o� is regular � although it may be in�nite� it has only a �nite number
of distinct subtrees�

For an object o� tree�o� is the entire value structure that becomes visible
from o by following oid references in the forward direction only� Hence� it
seems natural to adopt the following de�nition�

De�nition � Two objects o and p in a tuple database are called deep�equal�

denoted by o
d
� p� if tree�o� � tree�p��

This de�nition immediately raises two problems� however�

�� How can deep equality be e�ectively tested for�


� Up to now we have only considered tuple databases� How do we de�ne
deep equality when �nite set values can occur�

We comment on these two problems separately�

�� Algorithms are known to test for equality of regular trees de�ned by
equations� by reduction to equivalence of automata �Cou���� However�
we would like a direct procedure� expressed directly in terms of the
database objects and values� Such a procedure would have the ad�
vantage of being more readily implementable in a su�ciently strong
database query language�


� The di�erence between sets and tuples is that the latter are ordered
while the former are not� The general theory of in�nite trees �Cou���
deals explicitly with ordered trees only� Nevertheless� as pointed out

�Note that incompletely speci�ed systems of equations� like fo � o�� o� � og� cannot
occur since we assumed from the outset that the value of an oid cannot be simply another

oid�
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in �AK�	�� one can in principle still assign regular trees to objects in
databases with set values �AK�	� �given that the sets are �nite�� This
leads to trees in which certain nodes represent sets rather than tuples�
However� the children of these nodes must be thought of as unordered�
and duplicate subtrees can occur which should be identi�ed �note that
these subtrees can in turn contain set nodes�� The proper notion of
equality in this setting is no longer immediately clear�

In the next section� we will address and solve the two problems together�

� Deep equality

In the previous section� we have de�ned deep equality in the special case of
tuple databases� We next present a characterization of deep equality in this
case which will suggest a de�nition in the general case� as well as a direct
polynomial�time algorithm for testing deep equality�

Thereto� we �rst need to make the following convention� Consider a �xed
equivalence relation on a set O of oids� We can extend � in a natural way
to values over O in the following inductive manner�

�� The only value equivalent to a basic value is the basic value itself�


� Two tuple values of the same width are equivalent if they are equivalent
component�wise�

�� Two set values are equivalent if each element in the �rst set is equivalent
to an element in the second set� and vice versa�

�� No other values are equivalent�

Another way of looking at this is as follows� for each equivalence class of
oids� choose a unique representative� Given two values v and w� replace each
oid occurring in them by the representative of its equivalence class� yielding
�v and �w� Then v and w are equivalent if and only if �v � �w� So this is indeed
a very natural and canonical extension� If v and w are �at values �as we have
assumed from the outset�� the test �v � �w can be implemented in time O�n�
for tuples �if the representative of each oid is already available�� and time
O�n log n� for sets �which have to be sorted and duplicate�eliminated �rst��
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In what follows� we will implicitly extend equivalence relations on oids to
equivalence relations on values in this fashion�

We can now present the following de�nition and proposition�

De�nition � An equivalence relation on the oids in a database is called
value�based if under this relation� two oids o and p are equivalent if and only
if their values ��o� and ��p� are�

So� under a value�based equivalence relation� equivalence of objects depends
solely on the values of these objects� Note that these values can contain oids
in turn� so the de�nition is recursive�

We now establish�

Proposition � On tuple databases� deep equality is the coarsest value�based
equivalence relation on oids�

Proof� First� we show that deep equality is indeed value�based� Consider

two oids o and p with o
d
� p� i�e�� tree�o� � tree�p�� Then

tree���o�� � tree�o� � tree�p� � tree���p���

We distinguish two possiblities�

�� ��o� and ��p� are basic values� in which case they must be identical
and hence equivalent�


� ��o� and ��p� are tuples� Since tree���o�� � tree���p��� the correspond�
ing tuple components are either equal �if they are basic values�� or have
equal trees �if they are oids�� In both cases� the tuple components are
deep equal� whence ��o� and ��p� are deep equal�

Conversely� if the values of two oids are deep equal then the two oids are
deep equal as well since the tree of an oid equals the tree of its value�

We next show that deep equality is the coarsest� Thereto� let � be any
value�based equivalence relation on the oids of the database� Consider two

oids o and p with o � p� We have to show that o
d
� p�

First� we need the notion of partial branch in an ordered tree� The set of
all partial branches in an ordered tree is the set of all sequences of natural
numbers de�ned as follows�

	



�� The empty sequence is a partial branch� representing the root of the
tree�


� If b is a partial branch denoting a node n in the tree� and i is a natural
number such that n has an i�th child� then �b� i� is a partial branch
denoting this child�

The node represented by a partial branch b of a tree t is denoted by t�b��
By induction� we prove the following lemma� For every partial branch b

in tree�o�� b is also a partial branch in tree�p� and the nodes tree�o��b� and
tree�p��b� represent basic values or oids that are equivalent under ��

If b is empty� we have tree�o��b� � o and tree�p��b� � p and indeed we
have o � p�

Now let �b� i� be a partial branch in tree�o�� So tree�o��b� has an i�th
child� and hence tree�o��b� represents an oid� denoted by o�� By induction� we
know that tree�p��b� represents an oid p� equivalent to o� under �� Since � is
value�based� we know that ��o� � ��p�� Since tree�o��b� is the root of tree�o��
occurring as a subtree in tree�o�� we know that tree�o��b� i� �tree�p��b� i�� rep�
resents the i�th component of ��o� ���p��� Since ��o� � ��p�� the fact to be
proven follows�

A consequence of the lemma is that every partial branch in tree�o� is also
a partial branch in tree�p� with the same labeling of the nodes along the
branch� By symmetry� we have also the converse and we can conclude that
tree�o� and tree�p� have the same set of �labeled partial branches�� It is well�
known �Cou��� that two �possibly in�nite� ordered trees are equal if and only
if their sets of labeled partial branches are equal� Hence� tree�o� � tree�p�

and thus o
d
� p� as had to be shown�

Example � To illustrate the above proposition� we point out that in gen�
eral there may exist several di�erent value�based equivalence relations on
oids �hence the quali�cation �the coarsest� really makes a di�erence�� The
simplest example is provided by two mutually dependent objects o� and o�
as follows�

��o�� � �o��

��o�� � �o��

Both the equality relation �under which o� and o� are not equivalent� and
the full relation �under which they are equivalent� are value�based� The
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full relation is of course the coarsest of the two� and indeed� o� and o� are
deep�equal�

Proposition � yields insight in the concept of deep equality� deep equal�
ity is the equivalence relation which makes the fewest possible distinctions
among oids� while at the same time distinguishing among all di�erent basic
values� such that objects and their values are identi�ed� Moreover� the reader
familiar with the theory of communication and concurrency will have noticed
the analogy with the observational equivalence concept of strong bisimilarity
�Mil�	��

We therefore propose to adopt Proposition � as the de�nition of deep
equality in the general �i�e�� not necessarily tuple database� case� Indeed� the
notion of value�based equivalence relation is also well�de�ned in the presence
of set values� Thus�

De�nition � Deep equality� denoted
d
�� is the coarsest value�based equiva�

lence relation on the oids in the database�

To see that this de�nition is well�de�ned� i�e�� that there is a unique coarsest
value�based equivalence relation� consider the following operator on equiva�
lence relations�

De�nition � Let � be an equivalence relation on the oids of some �xed
database� The value re�nement of �� denoted by Re�ne���� is the equiva�
lence relation on the same set of oids under which two oids are equivalent if
and only if their values are equivalent under ��

This operator is monotone with respect to set inclusion� It thus follows from
Tarski�s �xpoint theorem that it has a unique greatest �xpoint� Moreover�
an equivalence relation is a �xpoint of the operator Re�ne precisely when it
is value�based� Putting everything together� we can thus conclude�

Lemma � Deep equality is the greatest �xpoint of the operator Re�ne�

As is well�known� this greatest �xpoint can be computed as follows�

�� Start with the coarsest possible equivalence relation on the oids of the
database� under which any two oids are equivalent�
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� Apply Re�ne repeatedly until a �xpoint is reached�

Since at every iteration that has not yet reached the �xpoint� at least one
equivalence class will be split� the number of iterations until the �xpoint is
reached is at most linear�

A polynomial�time algorithm for computing deep equality is now readily
derived� using techniques similar to those used in stable coloring algorithms
for testing isomorphism for certain classes of graphs �RC���� One starts by
coloring each oid with the same color� During the iteration� one replaces the
color of an oid by the coloring of its value� Between rounds� the colors are
replaced by their order numbers in the lexicographic order of all the occurring
colors� This always keeps the colors short� The algorithm stops when the
coloring stabilizes� i�e�� when no new di�erences between oids are discovered�

Example � An example of how the algorithm proceeds on a database con�
sisting of objects having values of the form �v� o�� where v is a basic value and
o is an oid� is shown in Figure �� Horizontal arrows represent the links from
oids to oids� vertical arrows represent the links from oids to basic values� The
second attribute of o� is assumed to be o� itself �not shown in the �gure��
The colors are given as numbers� There are three iterations in this example�
The objects with the same color in the �nal stable coloring are those that

are deep�equal �in this example� these are the pairs o�
d
� o�� and o�

d
� o��� plus

all identical pairs��

� Indistinguishability

As discussed in the introduction� a basic intuition underlying deep equality is
that deep�equal objects can not be distinguished by observing basic values�
dereferencing oids� and following paths in complex values� To make this
intuition precise� we need to de�ne a query language in which two objects
are indistinguishable if and only if they are deep�equal� In analogy with the
notion of value�based equivalence relation of the previous section� we call such
a query language value�based� In this section� we will de�ne a value�based
calculus language called the observation calculus�

A �rst observation is that in a value�based language� equality comparisons
on oids cannot be permitted� Indeed� recall Example 
� Objects adam and
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database� o� � o� � o� � o� � o�� � o��
� � � � � �
a � a � a � b � a � a

initial coloring� � � � � � �

�rst iteration� � � � 
 � �

second iteration� � � 
 � 
 �

stable coloring� � 
 � � � 


Figure �� Testing deep�equality�

adam �� are deep�equal� but they can be distinguished using the following
formula ��x� using a comparison�

�y��z � y � ��x��
 � z � ��y��
 � z �� x

Indeed� ��adam� is true while ��adam ��� is false�
A second observation is that quanti�ers must be �range�restricted� �as is

actually the case in the formula � above�� Indeed� recall Figure �� Objects
o� and o�� are deep�equal� but they can be distinguished using the following
formula ��x� using an unrestricted quanti�er�

�y � x � ��y��


Indeed� ��o�� is true while ��o��� is false� Note that this example also illus�
trate that unrestricted quanti�ers e�ectively allow �backwards following of
pointers� and hence can break deep�equality�

We now turn to the de�nition of the observation calculus�

De�nition � The observation calculus uses variables ranging over basic val�
ues and oids� The formulas of the observation calculus are inductively de�ned
as follows�

�� true is a formula�
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� If x and y are variables and v is a basic value� then x �b y and x �b v

are formulas�

�� If � and � are formulas� then so are 	� and � � ��

�� If � is a formula in which variable x does not occur and in which
variable y occurs only free� then the following are formulas�


 ��y � y �b ��x����


 ��y � y � ��x��i��� with i a natural number�


 ��y � y � ��x����

The semantics of observation formulas is the obvious one� with the following
precautions�


 The equality predicate �b is only de�ned on basic values� from the
moment that one of x and y is an oid� x �b y becomes false�


 The quanti�er ��y � y �b ��x�� can only be true when x is an oid such
that ��x� is a basic value� in this case y is bound to this basic value�


 The quanti�er ��y � y � ��x��i� can only be true when x is an oid such
that ��x� is a tuple of at least i components� in this case y is bound to
this component�


 Finally� the quanti�er ��y � y � ��x�� can only be true when x is an
oid such that ��x� is a set� in this case y ranges over the elements of
this set�

As usual� disjunction and universal quanti�ers can be simulated using nega�
tion� We would like to repeat that observation formulas are meant as a
simple�to�de�ne formalization of typical object database browsing interfaces�
as discussed in the introduction� and not as a user�friendly language�

Example � Consider a part�subpart database� Each part object has as
value a tuple �v� s�� where v is the part type �a basic value� and s is a set
object� Each set object has as value a set of part oids �the subparts�� The
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following observation formula ��x�� x��� checks whether part object x� has
at least all types of subparts as object x��

��s� � s� � ��x���
���s� � s� � ��x���
�

��y� � y� � ��s�����y� � y� � ��s�����k� � k� � y������k� � k� � y����

k� �b k��

Formally� two objects o� and o� in a �xed database are called indistin�
guishable by observation formulas if for every observation formula ��x�� ��o��
holds in the database if and only if ��o�� holds in the database� We now es�
tablish the announced result�

Proposition � Two objects are deep�equal if and only if they are indistin�
guishable by observation formulas�

Proof� If� Let O be the set of oids in the database� and let n be the
cardinality of O� Recall from the previous section that deep equality equals
Re�nen�O � O�� For any natural number i� denote Re�ne i�O � O� by �i�
Furthermore� let Ci denote the partition of O according to �i�

By induction� we prove the following lemma� For each i� and each equiv�
alence class C in Ci� there is an observation formula �C

i de�ning C�
The base case i � � is trivial� C� consists of O only� and �O

i is simply
true�

Now let i 	 �� Recall that� by the de�nition of Re�ne� two objects are
equivalent under �i if and only if their values are equivalent under �i��� Let
C � Ci� So C consists of all objects equivalent to a certain object o� We
distinguish three possibilities�

�� The value of o is a basic value v� Then �C
i �x� is

��y � y �b ��x��y �b v�


� The value of o is a tuple �v�� � � � � vk�� For each � between � and k� let
y� be a variable� and let the formula ���y�� be either


 y� �b v�� if v� is a basic value� or

��




 �B
i���y��� if v� is an oid� where B is the equivalence class of v�

under �i���

The desired formula �C
i �x� now is

��y� � y� � ��x���� � � � ��yk � yk � ��x��k����y�� � � � � � �k�yk��

�� The value of o is a set fv�� � � � � vmg� For each � between � and m� let
���y� be de�ned as in the previous item� The desired formula �C

i �x�
then is

��y � y � ��x������y� � � � � � �m�y�� �

���y � y � ��x�����y�� � � � � � ���y � y � ��x���m�y���

Now let o and p be oids such that o �
d
� p� i�e�� o ��n p� We have to show that

o and p can be distinguished by an observation formula� By the lemma� the
equivalence class of o under �n can be de�ned by an observation formula ��
Obviously� ��o� holds while ��p� does not� and thus � distinguishes between
o and p�

Only if� Let o and p be oids such that o
d
� p� We prove by induction that

for each observation formula ��x�� ��o� holds i� ��p� holds� The base case
is trivial� the atomic formula true is always true� and the atomic formulas
x �b y and x �b v are always false on oids� The cases of negation and
conjunction are straightforward� For the case of existential quanti�cation�
we distinguish three possibilities�

�� ��x� is ��y � y �b ��x���� We have�

��o� holds 
 ��o� is a basic value v and ��v� holds

 ��p� is a basic value v and ��v� holds

 ��p� holds�

The second equivalence follows from the deep equality of o and p�


� ��x� is ��y � y � ��x��i��� We have�

�




��o� holds 
 ��o� is a tuple with i�th component v and ��v�
holds


 ��p� is a tuple with i�th component v and ��v�
holds


 ��p� holds�

The second equivalence follows from the deep equality of o and p �and
thus the deep equality of ��o� and ��p�� and the induction hypothesis
�in case v is an oid��

�� ��x� is ��y � y � ��x���� This case is analogous to the previous one�

To conclude� we note that a number of variations on the above theme are
possible�

If the number of quanti�ers in observation formulas is bounded� then
indistinguishability amounts to deep equality up to a bounded depth in the
in�nite trees only� or equivalently� to a bound on the number of iterations in
the �xpoint algorithm for deep equality�

One might also ask what happens in the case of the natural calculus� more
powerful than the observation calculus� obtained by allowing unrestricted
quanti�ers ��x� ranging over all oids and basic values in the database� and
allowing y �b ��x�� y � ��x��i� and y � ��x� as atomic formulas� As noted in
the beginning of this section� this amounts to allowing pointers to be followed
backwards as well� One can then show that o� and o� are indistinguishable if
and only if there exists a surjective strong homomorphism of the database to
itself� mapping o� to o�� which is the identity on basic values� and conversely�
another such homomorphismmust exist mapping o� to o�� This can be easily
proven by reduction to a well�known fact in model theory which says that
two relational structures are indistinguishable in �rst�order logic without
equality if and only if there exist strong surjective homomorphisms between
them� This reduction works by representing an object database instance as
a relational structure in the natural way�

� Expressibility

Is deep equality expressible in deductive database languages� The answer
may depend on the kind of databases under consideration� In the special

��



case of tuple databases� for instance� deep equality is readily expressed by
the following program in Datalog with strati�ed negation� The atomic EDB
predicates are the same as those of the calculus discussed at the end of the
previous section�

not deq�z�w�� z �b ��x�� w �b ��y�� z ��b w

not deq�x� y�� z �b ��x�� w �b ��y�� z ��b w

not deq�x� y�� z � ��x���� w � ��y����not deq�z�w�
���
not deq�x� y�� z � ��x��k� w � ��y��k�not deq�z�w�
deq�x� y�� 	not deq�x� y�

Here� k is the maximum width of any typle appearing in the database��

Note that only two strata are needed� In particular� the complement of deep
equality is expressible in Datalog without negation �only non�equality��

In the general case� i�e�� when set values can occur in the database� the
use of negation becomes fundamental� For example� on databases where the
value of each object is either a basic value or a set of oids� we can express
deep equality as 	not deq�x� y�� where not deq�x� y� is de�ned as the least
�xpoint of the following �rst�order query�

��x����y���x �b ��x�� � y �b ��y�� � x ��b y�
� ��z���w��z �b ��x� � w �b ��y� � z ��b w�
� ��z � ��x����w � ��y��not deq�z�w�
� ��w � ��y����z � ��x��not deq�z�w��

Because of the recursion through univeral quanti�cation� this �xpoint does
not correspond in any straightforward way to a program in Datalog with
strati�ed negation� In fact� we can show that no such program exists�

Proposition � Deep equality is not expressible in Datalog with strati�ed
negation�

Proof� The proof is based on a paper by Kolaitis �Kol	��� where an analysis
of the expressive power of strati�ed Datalog is presented in terms of two
families of tree structures Bi�k and B�

i�k� for i � � and k � �� These structures

�When the database is an instance of a known database schema� k is known in advance�

��



had been discovered earlier by Chandra and Harel �CH�
�� and are de�ned as
follows� For any �xed k� the de�nition is by induction on i� Each structure
consists of a binary relation Move� giving the directed edges in the tree� and
a unary relation Black � coloring certain leafs in the tree�


 B��k and B�

��k consist of a single node colored Black in B��k but not in
B�

��k� The Move relation is empty in both�


 Bi���k consists of a copy of B�

i�k� k disjoint copies of Bi�k� and a new
root node with Move�edges to the roots of all these copies�


 B�

i���k consists of k � � copies of Bi�k and a new root node with Move�
edges to the roots of all these copies�

Kolaitis proved the following fact� which we denote by ���� for every
strati�ed program P there is a natural number � such that P is equivalent�
on all structures B����k and B�

����k for any k� to a �rst�order formula 
 in
���k� for some k�� The latter means that 
 is a prenex normal form formula
with � alternations of quanti�ers� starting with an existential one� and such
that each block of quanti�ers of the same type has length at most k��

Chandra and Harel had proved the following fact� which we denote by
�y�� for any � and k�� the structures B����k� and B�

����k�
are indistinguishable

by any formula in ���k� �
As a result� for any program P there are natural numbers � and k� such

that B����k�� and B�

����k�
are indistinguishable by P �

Now de�ne the disjoint sum Ci�k � Bi�k � Bi�k consisting of two disjoint
copies of Bi�k� and C �

i�k � Bi�k�B�

i�k consisting of a copy of Bi�k and a copy of
B�

i�k� Inspection of Kolaitis�s proof yields that the above fact ��� also holds
when the disjoint sums C and C � are substituted for the single structures B
and B�� Indeed� the key to the proof of ��� is Lemma � in �Kol	��� which
is proven by verifying that the number of n�types on Bi�k and B�

i�k can be
bounded by functions fn�i� and f

�

n�i� that depend only on i� Since the number
of n�types on a disjoint sum of structures is at most the sum of the numbers
on the component structures� the Lemma carries over�

Moreover� also the fact �y� carries over� Indeed� Chandra and Harel�s
proof is an Ehrenfeucht�Fra !ss"e game argument� and a winning strategy on
two structuresA and B readily yields a winning strategy on the two structures
A�A and A� B as well�

�	



We can conclude that for any program P there are natural numbers � and
k� such that B����k� � B����k� and B����k� � B �

����k�
are indistinguishable by

P �
We are now ready to establish the link of the above with deep equality�

Any tree structure as above can be viewed as a database as follows� Each
node is an object� An internal node has the set of its children in the tree as
value� A leaf node colored Black has a basic value as value� say �� and a leaf
node not colored Black has a di�erent basic value as value� say �� Under this
view� the following is readily veri�ed by induction on i� for any k and i� the
roots of the two trees in the structure Bi�k �B�

i�k are not deep equal� On the
other hand� the roots of the two trees in the structure Bi�k�Bi�k are trivially
deep equal�

Now assume that� for the sake of contradiction� a program P exists which
expresses deep equality on any database Ci�k � Bi�k�Bi�k or C �

i�k � Bi�k�B
�

i�k�
Replace each atomic formula of the form y � ��x� by Move�x� y�� replace
��x� �b � by Black �x�� and replace ��x� �b � by 	Black �x�� By the previous
observation on deep equality� the program will dinstinguish between Ci�k and
C �

i�k for all i and k� however� we know that there exist � and k� such that
P cannot distinguish between C����k� and C �

����k�
� This yields the desired

contradiction�
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