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Abstract

We revisit the notion of deep equality among objects in an ob-
ject database from a formal point of view. We present three natural
formalizations of deep equality: one based on the infinite value-trees
associated with objects, one based on the greatest fixpoint of an oper-
ator on equivalence relations among objects, and one based on indis-
tinguishability of objects using observations of atomic values reachable
from the objects. These three definitions are then shown to be equiv-
alent. The characterization in terms of greatest fixpoints also yields a
polynomial-time algorithm for checking deep equality. We also study
the expressibility of deep equality in deductive database languages.

1 Introduction

In object databases, objects consist of an object identifier (oid) and a value,
typically having a complex structure built using the set and tuple constructor,
in which both basic values and further oids appear. An intuitive way to think
about an oid is thus as a reference to a complex value, so that such values
can be shared. As a consequence, the actual “value” of an oid (be it a
physical memory address, or a logical pointer) is of lesser importance. In
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particular, the only comparison on oids that makes sense on a logical level is
simply testing whether two given oids are in fact one and the same. In this
way one can check whether some complex value is shared or not. However, in
many applications, even this comparison is not really needed, since sharing is
mostly an implementation issue and often need not be part of the application
semantics.

It is thus of interest to see what happens when objects can only be distin-
guished by looking at their values, possibly dereferencing the oids appearing
therein (and this recursively). Note that this corresponds to what is available
in typical visual interfaces for browsing object databases (e.g., OsLook in the
O3 system [P192]), where basic values (such as strings, numbers, or bitmap
images) can be directly observed but where oids can only be inspected by
dereferencing them and inspecting their associated complex value in turn.
When two objects are indistinguishable in this manner, they are typically
called deep-equal. The notion of deep equality is since long well-known in
object-oriented programming and databases (e.g., [KC86, SZ90]), but a sys-
tematic study of its fundamental properties has not yet been carried out. It
is our aim in this paper to contribute towards this goal.

We will look at three possible natural formalizations of deep equality, and
show that they are all equivalent.

The first is inspired by the “pure value-based” model of object databases
in terms of infinite trees, introduced in [AK89]. The complex value of an
object can be viewed as a tree, the leafs of which are basic values or oids.
By replacing each leaf oid by the tree corresponding to its value, and this
recursively, we obtain the “unfolding” of the entire value structure than can
be seen from the object by “following pointers in the forward direction only”.
This unfolding can be infinite when the instance contains cyclic references
(which is often the case). Two objects can thus be called deep-equal if their
associated, possibly infinite, value-trees are equal.

The second formalization is more abstract: deep equality can be defined
as the coarsest equivalence relation among objects (extended to complex
values in the natural way) satisfying the requirement that two objects are
equivalent if and only if their values are. Deep equality can thus be viewed
as the greatest fixpoint of an operator which maps equivalence relations to
finer ones. This yields a polynomial-time algorithm for testing deep equality.

Our third formalization is inspired by the idea of indistinguishability dis-
cussed in the beginning of this introduction. We define a class of logical



observation formulas, a subclass of any reasonable object calculus query lan-
guage. Observation formulas can observe and compare basic values, can
dereference oids, and can traverse paths in complex values. Thus, two ob-
jects can be defined to be deep-equal if they cannot be distinguished by any
observation formula.

In this paper we also study the expressibility of deep equality in deductive
database languages. Deep equality is readily expressible in the language of
fixpoint logic. However, we show that deep equality is not expressible in the
language of Datalog with stratified negation. It is expressible in this language
on databases containing only tuple values of bounded width (or set values of
bounded cardinality). Up to now, the only examples of queries known to be
in fixpoint logic but not in stratified datalog were based on game trees (e.g.,
[Kol91]). We will show that these game-tree queries can also be understood
in the context of deep equality, which might perhaps be more “natural” for
some.

Denninghoff and Vianu [DV93] and, more recently, Kosky [Kos95] have
also introduced a notion of “similarity” of objects, which corresponds to
our second formalization of deep equality. Both [DV93] and [Kos95] noted
the analogy with the infinite value-trees mentioned above. One of our con-
tributions is to make this very precise. Also, Denninghoff and Vianu only
considered tuple values, no set values. One might expect at first that the
presence of set values would make the computational complexity of testing
deep equality intractable; our results imply that even with set values it re-
mains computable in polynomial time. We also point out that Kosky studied
the indistinguishability of two entire database instances, rather than of two
objects within one single instance as we do. Finally, deep equality is the ob-
ject database analog of the notion of strong bisimilarity in transition systems,
studied in the theory of communication and concurrency [Mil89].

This paper is organized as follows. In Section 2, we introduce the data
model we will use. It is a standard object database model as used in, e.g.,
the Oy system [KLR92]. In Section 3, we recall the infinite value-trees as-
sociated with objects. In Section 4, we give the fixpoint definition of deep
equality, relate it to the infinite tree definition, and show how it can be com-
puted in polynomial time. In Section 5, we characterize deep equality as
indistinguishability by observation formulas. Finally, in Section 6, we study
the expressibility of deep equality in deductive database languages.



2 Data model

In this paper, we consider an object database to be simply a collection of
objects, where each object consists of an identifier and a value. The value
of an object can be complex in structure and can contain references to (i.e.,
identifiers of ) other objects. We do not consider database schemas and value
types in this paper, since they are irrelevant to our purposes. The reader
who wishes to apply our treatment to a setting with schemas and types will
encounter no difficulties in doing so.

More formally, assume given two disjoint sets of basic values and object
identifiers (oids).

Given a set of oids O, the set of values over O is inductively defined as
follows:

1. Each basic value is a value over O;

2. Each element of O is a value over O;

3. If vy, ..., v, are values over O, then the tuple [vy,...,v,] is a value
over O;

4. If vy, ..., v, are values over O, then the set {vy,...,v,} is a value over
0.

An object database now consists of a finite set O of oids, together with a
mapping v assigning to each oid 0 € O a value (o) over O. The pair (o, 1(0))
can be thought of as the object o.

Throughout the remainder of this paper, we will assume that value v(0)
of any object o in the database is either a basic value, a tuple consisting of
basic values and oids, or a set consisting of basic values and oids. Hence, we
do not consider objects whose value is simply another oid, or whose value is
a complex value with nested structure. The first case is related to standard
assumptions in the theory of infinite regular trees, as will become clear in
the next section. The second case is for clarity of exposition only.

An object whose value is simply the identifier of another object can always
be replaced by the latter object. Or alternatively, its value can be changed
into a unary tuple having the identifier as its single component.



Complex values with nested structure can be simulated by introducing
new objects. For example, an object o with the non-flat value

v(e) = [{1,2,3},{3,4}]

can be simulated by introducing two new objects § and v with flat values
{1,2,3} and {3,4}, respectively, and changing v(«a) to [3,7]. In order to
apply the treatment presented in the remainder of this paper to databases
containing non-flat values, it suffices to think of such values as objects having
the appropriate values.

To conclude this section, we introduce one last definition regarding the
model:

Definition 1 A tuple database is a database is which no set values occur.

3 Objects and infinite trees

A flat tuple value [vq,...,v,] can be viewed as an ordered tree of depth at
most one, where the root is labeled by the n-ary tuple constructor symbol
x", and the children of the root are labeled by vy, ..., v,, respectively. (Note
that n may equal 0, in which case the tree consists of a single node labeled
x%.) Similarly, a basic value v can be viewed as a trivial tree consisting of a
single node labeled v.

Now assume we are working with a tuple database. So, the value of every
object is either a basic value or a tuple value. In the tree corresponding
to such a value, we can replace the leaf nodes labeled by oids by the trees
corresponding to the values of the oids, obtaining a deeper tree. We can
repeat this for the oids appearing in these values in turn. If we keep on
repeating this process, it eventually stops if the database does not contain
cyclic references. However, if there are cyclic references, the process can go
on forever and yields a tree which is infinite. In both cases, we obtain a tree
in which all leafs are labeled by basic values; there are no longer any leafs
labeled by oids. We call such trees ground trees.

Example 1 For example, consider a part-subpart database, where each ob-
ject is a part having a type (a basic value) and a list of subparts (a tuple of



oids):

(01) [
(£1) [
(02) = |
v(ly) = Jos,04]
(03) = |
(04) = |
(£s) [

Then the tree associated with v(0;) according to the procedure described
above can be written (in infix notation) as

[car, [[engine, [[valve, []], [valve, ]]””

Since there are no cyclic references, the tree is finite. [ |

Example 2 Now consider a database containing the six objects adam, eve,
adam’, eve’, adam”, and eve”, with the following values:

v(adam) = J[adam, eve]
v(eve) = [eve, adam’]
v(adam') = [adam, eve']
vieve') = [eve, adam]
v(adam") = [adam, eve”]
v(eve”) = [eve, adam”].

The tree associated with adam is infinite: from the root emanates an infinite
path of right children. The internal nodes all have one left child alternatingly
labeled ‘adam’ and ‘eve’ starting with ‘adam’ at the root. This same tree is
associated to the objects adam’ and adam'’ as well. The tree associated with
eve is similar to that of adam; it only differs in that the labeling starts with
‘eve’ at the root. Again the same tree is associated to eve’ and eve” as well.

|



How the infinite tree associated to an object can be defined formally was
shown in [AKS89]: one considers the set of all tree equations of the form
o = v(o), with o an oid in the database. One considers in this system of
equations the oids as indeterminates, standing for (possibly infinite) ground
trees. A solution to the system of equations is a substitution assigning to each
oid o a ground tree tree(o) such that all equations become equalities under
this substitution. There always exists a unique such solution [Cou83].! Each
tree tree(o) is regular: although it may be infinite, it has only a finite number
of distinct subtrees.

For an object o, tree(o) is the entire value structure that becomes visible
from o by following oid references in the forward direction only. Hence, it
seems natural to adopt the following definition:

Definition 2 Two objects o and p in a tuple database are called deep-equal,
denoted by o 4 p, if tree(o) = tree(p).

This definition immediately raises two problems, however:
1. How can deep equality be effectively tested for?

2. Up to now we have only considered tuple databases. How do we define
deep equality when finite set values can occur?

We comment on these two problems separately:

1. Algorithms are known to test for equality of regular trees defined by
equations, by reduction to equivalence of automata [Cou83]. However,
we would like a direct procedure, expressed directly in terms of the
database objects and values. Such a procedure would have the ad-
vantage of being more readily implementable in a sufficiently strong
database query language.

2. The difference between sets and tuples is that the latter are ordered
while the former are not. The general theory of infinite trees [Cou83]
deals explicitly with ordered trees only. Nevertheless, as pointed out

!Note that incompletely specified systems of equations, like {o = o', 0’ = o}, cannot

occur since we assumed from the outset that the value of an oid cannot be simply another
oid.



in [AKS89], one can in principle still assign regular trees to objects in
databases with set values [AK89] (given that the sets are finite). This
leads to trees in which certain nodes represent sets rather than tuples.
However, the children of these nodes must be thought of as unordered,
and duplicate subtrees can occur which should be identified (note that
these subtrees can in turn contain set nodes). The proper notion of
equality in this setting is no longer immediately clear.

In the next section, we will address and solve the two problems together.

4 Deep equality

In the previous section, we have defined deep equality in the special case of
tuple databases. We next present a characterization of deep equality in this
case which will suggest a definition in the general case, as well as a direct
polynomial-time algorithm for testing deep equality.

Thereto, we first need to make the following convention. Consider a fixed
equivalence relation on a set O of oids. We can extend = in a natural way
to values over O in the following inductive manner:

1. The only value equivalent to a basic value is the basic value itself;

2. Two tuple values of the same width are equivalent if they are equivalent
component-wise;

3. Two set values are equivalent if each element in the first set is equivalent
to an element in the second set, and vice versa.

4. No other values are equivalent.

Another way of looking at this is as follows: for each equivalence class of
oids, choose a unique representative. Given two values v and w, replace each
oid occurring in them by the representative of its equivalence class, yielding
v and w. Then v and w are equivalent if and only if v = w. So this is indeed
a very natural and canonical extension. If v and w are flat values (as we have
assumed from the outset), the test v = w can be implemented in time O(n)
for tuples (if the representative of each oid is already available), and time
O(nlogn) for sets (which have to be sorted and duplicate-eliminated first).



In what follows, we will implicitly extend equivalence relations on oids to
equivalence relations on values in this fashion.
We can now present the following definition and proposition:

Definition 3 An equivalence relation on the oids in a database is called
value-based if under this relation, two oids o and p are equivalent if and only
if their values (o) and v(p) are.

So, under a value-based equivalence relation, equivalence of objects depends
solely on the values of these objects. Note that these values can contain oids
in turn, so the definition is recursive.

We now establish:

Proposition 1 On tuple databases, deep equality is the coarsest value-based
equivalence relation on oids.

Proof. First, we show that deep equality is indeed value-based. Consider
two oids o and p with o 4 p, i.e., tree(o) = tree(p). Then

tree(v(o)) = tree(o) = tree(p) = tree(v(p)).
We distinguish two possiblities:

1. v(o) and v(p) are basic values, in which case they must be identical
and hence equivalent;

2. v(o0) and v(p) are tuples. Since tree(v(o)) = tree(v(p)), the correspond-
ing tuple components are either equal (if they are basic values), or have
equal trees (if they are oids). In both cases, the tuple components are
deep equal, whence v(0) and v(p) are deep equal.

Conversely, if the values of two oids are deep equal then the two oids are
deep equal as well since the tree of an oid equals the tree of its value.

We next show that deep equality is the coarsest. Thereto, let = be any
value-based equivalence relation on the oids of the database. Consider two

oids o and p with o = p. We have to show that o 4 P.

First, we need the notion of partial branch in an ordered tree. The set of
all partial branches in an ordered tree is the set of all sequences of natural
numbers defined as follows:



1. The empty sequence is a partial branch, representing the root of the
tree.

2. If b is a partial branch denoting a node n in the tree, and 7 is a natural
number such that n has an i-th child, then (b,) is a partial branch
denoting this child.

The node represented by a partial branch b of a tree ¢ is denoted by ¢[b].

By induction, we prove the following lemma: For every partial branch b
in tree(o), b is also a partial branch in tree(p) and the nodes tree(o)[b] and
tree(p)[b] represent basic values or oids that are equivalent under =.

If b is empty, we have tree(o)[b] = o and tree(p)[b] = p and indeed we
have o = p.

Now let (b,7) be a partial branch in tree(o). So tree(o)[b] has an i-th
child, and hence tree(o)[b] represents an oid, denoted by o’. By induction, we
know that tree(p)[b] represents an oid p’ equivalent to o' under =. Since = is
value-based, we know that v(0) = v(p). Since tree(o)[b] is the root of tree(o’)
occurring as a subtree in tree(o), we know that tree(o)[b, ] (tree(p)[b,]) rep-
resents the i-th component of v(o0) (v(p)). Since v(o) = v(p), the fact to be
proven follows.

A consequence of the lemma is that every partial branch in tree(o) is also
a partial branch in tree(p) with the same labeling of the nodes along the
branch. By symmetry, we have also the converse and we can conclude that
tree(o) and tree(p) have the same set of “labeled partial branches”. It is well-
known [Cou83] that two (possibly infinite) ordered trees are equal if and only
if their sets of labeled partial branches are equal. Hence, tree(o) = tree(p)

and thus o = p, as had to be shown. [ |

Example 3 To illustrate the above proposition, we point out that in gen-
eral there may exist several different value-based equivalence relations on
oids (hence the qualification “the coarsest” really makes a difference). The
simplest example is provided by two mutually dependent objects o; and o,
as follows:

v(oi) = [og]
v(og) = [oi]

Both the equality relation (under which o; and o, are not equivalent) and
the full relation (under which they are equivalent) are value-based. The

10



full relation is of course the coarsest of the two, and indeed, o; and o, are
deep-equal. [ |

Proposition 1 yields insight in the concept of deep equality: deep equal-
ity is the equivalence relation which makes the fewest possible distinctions
among oids, while at the same time distinguishing among all different basic
values, such that objects and their values are identified. Moreover, the reader
familiar with the theory of communication and concurrency will have noticed
the analogy with the observational equivalence concept of strong bisimilarity
[Milg89)].

We therefore propose to adopt Proposition 1 as the definition of deep
equality in the general (i.e., not necessarily tuple database) case. Indeed, the
notion of value-based equivalence relation is also well-defined in the presence
of set values. Thus:

Definition 4 Deep equality, denoted g, is the coarsest value-based equiva-
lence relation on the oids in the database.

To see that this definition is well-defined, i.e., that there is a unique coarsest
value-based equivalence relation, consider the following operator on equiva-
lence relations:

Definition 5 Let = be an equivalence relation on the oids of some fixed
database. The value refinement of =, denoted by Refine(=), is the equiva-
lence relation on the same set of oids under which two oids are equivalent if
and only if their values are equivalent under =.

This operator is monotone with respect to set inclusion. It thus follows from
Tarski’s fixpoint theorem that it has a unique greatest fixpoint. Moreover,
an equivalence relation is a fixpoint of the operator Refine precisely when it
is value-based. Putting everything together, we can thus conclude:

Lemma 1 Deep equality is the greatest fixrpoint of the operator Refine.

As is well-known, this greatest fixpoint can be computed as follows:

1. Start with the coarsest possible equivalence relation on the oids of the
database, under which any two oids are equivalent;

11



2. Apply Refine repeatedly until a fixpoint is reached.

Since at every iteration that has not yet reached the fixpoint, at least one
equivalence class will be split, the number of iterations until the fixpoint is
reached is at most linear.

A polynomial-time algorithm for computing deep equality is now readily
derived, using techniques similar to those used in stable coloring algorithms
for testing isomorphism for certain classes of graphs [RC77]. One starts by
coloring each oid with the same color. During the iteration, one replaces the
color of an oid by the coloring of its value. Between rounds, the colors are
replaced by their order numbers in the lexicographic order of all the occurring
colors. This always keeps the colors short. The algorithm stops when the
coloring stabilizes, i.e., when no new differences between oids are discovered.

Example 4 An example of how the algorithm proceeds on a database con-
sisting of objects having values of the form [v, o], where v is a basic value and
o0 1s an oid, is shown in Figure 1. Horizontal arrows represent the links from
oids to oids; vertical arrows represent the links from oids to basic values. The
second attribute of o3 is assumed to be o5 itself (not shown in the figure).
The colors are given as numbers. There are three iterations in this example.
The objects with the same color in the final stable coloring are those that
are deep-equal (in this example, these are the pairs o 4 o} and oy 4 ol plus
all identical pairs). [ |

5 Indistinguishability

As discussed in the introduction, a basic intuition underlying deep equality is
that deep-equal objects can not be distinguished by observing basic values,
dereferencing oids, and following paths in complex values. To make this
intuition precise, we need to define a query language in which two objects
are indistinguishable if and only if they are deep-equal. In analogy with the
notion of value-based equivalence relation of the previous section, we call such
a query language value-based. In this section, we will define a value-based
calculus language called the observation calculus.

A first observation is that in a value-based language, equality comparisons
on oids cannot be permitted. Indeed, recall Example 2. Objects adam and

12



database: 0p — 0 — 0y — 03 < 0y « 0o

a - a —= a —= b +— a + a

initial coloring: 1 1 1 1 1 1
first iteration: 1 1 1 2 1 1
second iteration: 1 1 2 3 2 1
stable coloring: 1 2 3 4 3 2

Figure 1: Testing deep-equality.

adam” are deep-equal, but they can be distinguished using the following
formula () using a comparison:

dy,Jz:y=v(@)2Nz=v(y)2ANz#x

Indeed, p(adam) is true while o(adam”) is false.

A second observation is that quantifiers must be “range-restricted” (as is
actually the case in the formula ¢ above). Indeed, recall Figure 1. Objects
o1 and o} are deep-equal, but they can be distinguished using the following
formula ¢ (x) using an unrestricted quantifier:

dy:x=v(y).2

Indeed, ©(01) is true while ¢ (0}) is false. Note that this example also illus-
trate that unrestricted quantifiers effectively allow “backwards following of
pointers” and hence can break deep-equality.

We now turn to the definition of the observation calculus.

Definition 6 The observation calculus uses variables ranging over basic val-
ues and oids. The formulas of the observation calculus are inductively defined
as follows:

1. true is a formula;

13



2. If x and y are variables and v is a basic value, then * =, y and x = v
are formulas;

3. If ¢ and ¢ are formulas, then so are ~p and ¢ A ¥;

4. If ¢ is a formula in which variable = does not occur and in which
variable y occurs only free, then the following are formulas:

o (Jy:y = v())p;
e (Jy:y=rv(x).i)p, with ¢ a natural number;

o (Jy:yecv(z

~—

).

The semantics of observation formulas is the obvious one, with the following
precautions:

e The equality predicate =, is only defined on basic values: from the
moment that one of # and y is an oid, © =, y becomes false.

e The quantifier (Jy : y = v(x)) can only be true when « is an oid such
that v(x) is a basic value; in this case y is bound to this basic value.

e The quantifier (Jy : y = v(x).i) can only be true when z is an oid such
that v(x) is a tuple of at least ¢ components; in this case y is bound to
this component.

e Finally, the quantifier (Jy : y € v(x)) can only be true when x is an
oid such that v(x) is a set; in this case y ranges over the elements of
this set.

As usual, disjunction and universal quantifiers can be simulated using nega-
tion. We would like to repeat that observation formulas are meant as a
simple-to-define formalization of typical object database browsing interfaces,
as discussed in the introduction, and not as a user-friendly language.

Example 5 Consider a part-subpart database. Fach part object has as
value a tuple [v, s], where v is the part type (a basic value) and s is a set
object. Each set object has as value a set of part oids (the subparts). The

14



following observation formula ¢(xy,x3), checks whether part object x5 has
at least all types of subparts as object xy:

(Fs1 281 = v(x1).2)(Isz 1 89 = v(x2).2)
(My1 11 € v(s1))(Fy2 : y2 € v(s2))(Fky t by = y1.1)(Fka @ k2 = yo.1)
ky =p ks.

Formally, two objects o; and o0y in a fixed database are called indistin-
guishable by observation formulas if for every observation formula ¢(x), ¢(o1)
holds in the database if and only if ¢(02) holds in the database. We now es-
tablish the announced result:

Proposition 2 Two objects are deep-equal if and only if they are indistin-
quishable by observation formulas.

Proof. If. Let O be the set of oids in the database, and let n be the
cardinality of O. Recall from the previous section that deep equality equals
Refine™(O x O). For any natural number 4, denote Refine'(O x O) by =;.
Furthermore, let C; denote the partition of O according to =;.

By induction, we prove the following lemma: For each v, and each equiv-
alence class C in C;, there is an observation formula ¢ defining C.

The base case 1 = 0 is trivial; Cy consists of O only, and ¢ is simply
true.

Now let ¢+ > 0. Recall that, by the definition of Refine, two objects are
equivalent under =; if and only if their values are equivalent under =;_;. Let
C € C;. So C consists of all objects equivalent to a certain object 0. We
distinguish three possibilities:

1. The value of o is a basic value v. Then ¥ (x) is
(Jy :y =p v(2))y = v.

2. The value of o is a tuple [vy,...,v]. For each ¢ between 1 and k, let
ye be a variable, and let the formula ¢,(y,) be either

o Yy, = vy, if vy is a basic value; or

15



e 2 (y,), if v, is an oid, where B is the equivalence class of vy
under =;_;.

The desired formula ¢ (z) now is
(Fyr :ya = v(x) 1) ... (Fye sy = v(x).k)er(y) A oo A or(yr).

3. The value of o is a set {vy,...,v,}. For each ¢ between 1 and m, let
©i(y) be defined as in the previous item. The desired formula ¢ (z)
then is

(Vy:y € v(@))(pi(y) V... Vouly)) A
(By:yev@)ay) A A By y € v(z)en(y)).

Now let 0 and p be oids such that o % p, i.e., 0 %, p. We have to show that
o and p can be distinguished by an observation formula. By the lemma, the
equivalence class of 0 under =,, can be defined by an observation formula ).
Obviously, 1 (o) holds while ¢ (p) does not, and thus ¢ distinguishes between
o and p.

Only if. Let o and p be oids such that o 4 p. We prove by induction that
for each observation formula ¢(z), ¢(0) holds iff ¢(p) holds. The base case
is trivial; the atomic formula true is always true, and the atomic formulas
x =p y and © =, v are always false on oids. The cases of negation and
conjunction are straightforward. For the case of existential quantification,
we distinguish three possibilities:

L. p(x)is (Jy : y = v(x)). We have:
¢(0) holds < v(0) is a basic value v and ¥ (v) holds
& v(p) is a basic value v and 1 (v) holds
< ¢(p) holds.

The second equivalence follows from the deep equality of o and p.

2. o(x)is (Jy : y = v(a).i)y. We have:

16



¢(0) holds < wv(o) is a tuple with i-th component v and ¢ (v)
holds
& v(p) is a tuple with i-th component v and ¢ (v)
holds
< ¢(p) holds.

The second equivalence follows from the deep equality of o and p (and
thus the deep equality of v(0) and v(p)) and the induction hypothesis
(in case v is an oid).

3. o(x)is (Jy : y € v(x)). This case is analogous to the previous one.
|

To conclude, we note that a number of variations on the above theme are
possible.

If the number of quantifiers in observation formulas is bounded, then
indistinguishability amounts to deep equality up to a bounded depth in the
infinite trees only, or equivalently, to a bound on the number of iterations in
the fixpoint algorithm for deep equality.

One might also ask what happens in the case of the natural calculus, more
powerful than the observation calculus, obtained by allowing unrestricted
quantifiers (dx) ranging over all oids and basic values in the database, and
allowing y =, v(2), y = v(x).1, and y € v(z) as atomic formulas. As noted in
the beginning of this section, this amounts to allowing pointers to be followed
backwards as well. One can then show that o; and oy are indistinguishable if
and only if there exists a surjective strong homomorphism of the database to
itself, mapping oy to og, which is the identity on basic values, and conversely,
another such homomorphism must exist mapping o2 to o;. This can be easily
proven by reduction to a well-known fact in model theory which says that
two relational structures are indistinguishable in first-order logic without
equality if and only if there exist strong surjective homomorphisms between
them. This reduction works by representing an object database instance as
a relational structure in the natural way.

6 Expressibility

Is deep equality expressible in deductive database languages? The answer
may depend on the kind of databases under consideration. In the special
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case of tuple databases, for instance, deep equality is readily expressed by
the following program in Datalog with stratified negation. The atomic EDB
predicates are the same as those of the calculus discussed at the end of the
previous section.

not_deq(z,w) + z = v(z),w =
not_deq(x,y) < z = v(x),w = I/(y) 7&5 w
not_deq(x,y) < z = v(z).l,w

not_deq(x,y) < z = v(x).k,w = v(y).k,not_deq(z,w)
deq(z,y) ¢ —not_deq(x, y)

Here, k is the maximum width of any typle appearing in the database.?
Note that only two strata are needed. In particular, the complement of deep
equality is expressible in Datalog without negation (only non-equality).

In the general case, i.e., when set values can occur in the database, the
use of negation becomes fundamental. For example, on databases where the
value of each object is either a basic value or a set of oids, we can express
deep equality as —not_deq(x,y), where not_deq(x,y) is defined as the least
fixpoint of the following first-order query:

(32" )(Fy) (@ =p v(2') Ay = v(y') N #b y)
Vo (F2)(Fw)(z = v(x) ANw =y v(y) A z #p w)
vV (Fz e v(z))(Vw € v(y))not _deq(z,w)
V. (Jw e v(y))(Vz € v(x))not _deq(z,w).
Because of the recursion through univeral quantification, this fixpoint does
not correspond in any straightforward way to a program in Datalog with
stratified negation. In fact, we can show that no such program exists:

Proposition 3 Deep equality is not expressible in Datalog with stratified
negation.

Proof. The proof is based on a paper by Kolaitis [Kol91], where an analysis
of the expressive power of stratified Datalog is presented in terms of two
families of tree structures B; j and Bzﬂk, forz > 0 and k& > 1. These structures

?When the database is an instance of a known database schema, k is known in advance.
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had been discovered earlier by Chandra and Harel [CH82], and are defined as
follows. For any fixed k, the definition is by induction on :. Each structure
consists of a binary relation Move, giving the directed edges in the tree, and
a unary relation Black, coloring certain leafs in the tree.

e By and B{)’k consist of a single node colored Black in By but not in
By - The Move relation is empty in both.

® B consists of a copy of B}, k disjoint copies of B;, and a new
root node with Move-edges to the roots of all these copies.

e Bl consists of k4 1 copies of B;; and a new root node with Move-
edges to the roots of all these copies.

Kolaitis proved the following fact, which we denote by (x): for every
stratified program P there is a natural number { such that P is equivalent,
on all structures Byyay and By, o, for any k, to a first-order formula x in
Yok, for some ky. The latter means that x is a prenex normal form formula
with ¢ alternations of quantifiers, starting with an existential one, and such
that each block of quantifiers of the same type has length at most k.

Chandra and Harel had proved the following fact, which we denote by
(T): for any £ and ko, the structures Byyay, and By, are indistinguishable
by any formula in Xy, .

As a result, for any program P there are natural numbers ¢ and kg such
that Bryg ko and Bé+27k0 are indistinguishable by P.

Now define the disjoint sum C;; = B, & B, ; consisting of two disjoint
copies of B;y, and C, = B; ;. ® Bj; consisting of a copy of B;  and a copy of
B . Inspection of Kolaitis’s proof yields that the above fact () also holds
when the disjoint sums C' and C” are substituted for the single structures B
and B’. Indeed, the key to the proof of (%) is Lemma 5 in [Kol91], which
is proven by verifying that the number of n-types on B;; and B[, can be
bounded by functions f,(¢) and f!(z) that depend only on i. Since the number
of n-types on a disjoint sum of structures is at most the sum of the numbers
on the component structures, the Lemma carries over.

Moreover, also the fact (f) carries over. Indeed, Chandra and Harel’s
proof is an Ehrenfeucht-Fraissé game argument, and a winning strategy on
two structures A and B readily yields a winning strategy on the two structures

A Aand A B as well.
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We can conclude that for any program P there are natural numbers ¢ and
ko such that Beyor, ®& Beyok, and Beyo g, @ Bé+27k0 are indistinguishable by
P.

We are now ready to establish the link of the above with deep equality.
Any tree structure as above can be viewed as a database as follows. Each
node is an object. An internal node has the set of its children in the tree as
value. A leaf node colored Black has a basic value as value, say 1, and a leaf
node not colored Black has a different basic value as value, say 0. Under this
view, the following is readily verified by induction on : for any k and ¢, the
roots of the two trees in the structure By, & B}, are not deep equal. On the
other hand, the roots of the two trees in the structure B; @ B, j, are trivially
deep equal.

Now assume that, for the sake of contradiction, a program P exists which
expresses deep equality on any database C;, = B, ;@ B, ;, or C;k = Bi7k@Bz{,k‘
Replace each atomic formula of the form y € v(x) by Move(x,y), replace
v(x) =5 1 by Black(z), and replace v(x) =, 0 by = Black(x). By the previous
observation on deep equality, the program will dinstinguish between C; ;, and
Cj}, for all 7 and k; however, we know that there exist ¢ and ky such that
P cannot distinguish between Cyiq, and Cy,,, . This yields the desired
contradiction. [ |
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